Understanding the Apple Ile

by Jim Sather

Foreword by Steve Wozniak

AT QUALITY SOFTWARE

Computer Book Division

Understanding the Apple 1le

by James Fielding Sather

BRADY COMMUNICATIONS, CO., INC. Quality Software
A Prentice-Hall Publishing Company 21601 Marilla Street
Chatsworth, CA 91311

BOWIE, MARYLAND 20715

Apple Books from Quality Software

Understanding the Apple I1 by Jim Sather . '
The companion to Understanding the Apple Ile, this book is the

definitive source of information about the Apple 1T and Apple IT Plus.

Beneath Apple DOS by Don Worth and Pieter Lechner
The popular best seller that tells all about DOS 3.3.

Beneath Apple ProDOS by Don Worth and Pieter Lechner
A critical, non-Apple explanation of how ProDOS works. Describes
how to use ProDOS with custom programming applications.

Apple Utility Software from Quality Software

Bag of Tricks (includes diskette) by Don Worth and Pieter Lechner
The best set of DOS-based disk utilities available. Four programs
in one. Edit disk sectors, reformat single tracks, repair catalogs.

Universal File Conversion (includes diskette) by Gary Charpentier

Move data between DOS 3.3, CP/M, Apple Pascal, SOS, and ProDOS.

Format disks for any 0S. Create CP/M files without a Softcard.
48-page manual explains how each OS stores different file types.

Ask for these fine products at your local computer store or bookstore.

Or call Quality Software direct, (818) 709-1721.

Production Editor: Kathryn M. Schmidt

Editorial Assistant: Tom Weinstein

Original Schematics and Diagrams: James Fielding Sather
Art Director and Cover Design: Vie Grenrock

Cover Art: George Garcia

Schematic Art and Compositor: Ron Widman

Photography: Gainsforth Studios

Printed By: Griffin Printing

$22.95

$19.95

$19.95

$39.95

$34.95

® 1985 Quality Software. All rights reserved. No part of this book may be reprinted, or reproduced,
or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying and recording, or in any information storage and retrieval system,
without permission in writing from the Publisher. No patent liability is assumed with respect to the
use of the information contained herein. While every precaution has been taken in the preparation of
this book, the publisher assumes no responsibility for errors or omissions. Neither is any liability

assumed for damages resulting from the use of the information contained herein.
ISBN 0-8359-8019-7

87 86 85 54321

Printed in the United States of America

foreword

Twill never forget the first conversation I had with Jim Sather. He was then in the process of
writing his first book, Understanding the Apple I1. Jim and I discussed the details, anoma-
lies, oversights, and paradoxes of the Apple IT hardware as we drove the LA freeways. Designers
like myself find it very rewarding to encounter others who understand and appreciate what we
feel are the tricks and magic of our circuits. I was able to add to the magic by explaining the
unusual framework in which the computer was designed. From my conversations with him, and
Sfrom his writing, it is obvious that Jim has a contagious enthusiasm about Apple computers, and
this enthusiasm is sure to spread to readers of his books. In Understanding the Apple II, Jim
provided the definitive treatment of Apple IT hardware. He has now followed that effort with the
equally definitive Understanding the Apple Ile.

Patterned after the earlier book, Understanding the Apple Ile leaves no stone unturned in
the search into the inner workings of the Apple Ile computer. All facets of the Apple are revealed,
from basic microprocessor operation to the inner secrets of the Apple Ile custom ICs. Disk
controller operation—my favorite subject—is explained in great detail. Numerous program-
ming examples illustrate the application of hardware knowledge.

Anyone who 1s at all concerned about the workings of the Apple Ile will benefit from this book,
as will students and programmers who have a need for reliable hardware reference material. It
18 an inclusive source for a great variety of Apple Ile information. The Apple Ile holds a special
niche in the history of microcomputers. Documentation of this quality is worthy of the computer it
describes.

preface

It has been close to a decade since an unknown kid,
having some fun in his own creative way, built the
first Apple computer. What a difference a decade
makes. Our boy is well known now, and he and his
pals have built millions of Apples with which mil-
lions of people have had a tremendous amount of fun
in their own creative ways.

The creative ways of different people lead them in
different directions, and not all Apple owners use
their computer for the same purposes. Yet diverse as
they are, people who use their Apple have a common
need for knowledge and understanding of the work-
ings of the computer. Most of them will teach them-
selves almost everything they learn about the Apple,
so they also have a need for tutorial literature and
meaningful reference material to guide them down
their chosen paths.

The purpose of Understanding the Apple Ile is to
provide tutorial descriptions and reference mate-
rial concerning the most basic of Apple Ile related
knowledge. It contains explanations of how the
hardware works and how programmers make the
hardware work. Emphasis is placed on assisting the
reader in attaining operational knowledge of the
Apple Ile. Operational knowledge consists of know-
ing what the Apple Ile can do, knowing how to make
itdo it, and knowing what a controlling program is
making the Apple IIe do. By way of assisting the
reader in achieving his goals, the goals of this book
are:

1. To provide clear descriptions of microcomputer
fundamentals and of the operational features of
the Apple Ile.

2. To provide examples that show how knowledge
of the operational features of the Apple Ile can
be applied.

3. To provide meaningful reference material con-
cerning Apple Ile hardware and operational
features.

4. To serve as a textbook for Apple-based high
school or university courses teaching computer
fundamentals.

5. To fill information gaps in Apple Ile literature

by describing previously undocumented opera-
tional features.

Those who will benefit from reading Understand-
ing the Apple Ile are inquiring people who want to
spend some time learning about this machine. Gen-
erally speaking, this refers to those persons who
program the Apple Ile in any language. It is recog-
nized that different people will carry their investi-
gation to different depths. For those who donot have
the time or desire to reach the greater depths, the
overview, busstructure, and I/O chapters (Chapters
1,2,and 7), as well as the application notes at theend
of every chapter, are recommended as providing a
good foundation for understanding the Apple Ile.
As a textbook for students or a learning guide to
hard core enthusiasts, cover to cover reading is
recommended.

While an inquiring mind is the only qualification
required of a reader of this book, certain sections
will be difficult for those readers without some
background knowledge. In order of descending
importance, helpful background knowledge in-
cludes understanding of BASIC programming lan-
guage, hexadecimal and binary number systems,
6502 assembly language, and technical illustrative
aids such as timing diagrams, truth tables, and
schematic diagrams. It should be noted by all read-
ers that (except for the technical aids) they will
eventually have to acquire the listed background
knowledge if they are to achieve a real understand-
ing of the Apple Ile computer. It is hoped that the
nontechnical aids and language in Understanding
the Apple Ile are sufficiently descriptive, and thata
technical background, although helpful, is not neces-
sary. In general, the later chapters contain more
detailed and technical information than the earlier
chapters, and the earlier sections in each chapter
are less technically oriented. Appendices E and F
contain some basic information on number systems
and circuit symbols for those readers who come to
this book with no previous knowledge of these
subjects.

Even though Understanding the Apple Ile is not a
programming instruction manual, many program-
ming examples that illustrate applications of the
principles being discussed are given in the body of
the text. Where possible, these examples are written

in BASIC so that the clearest attainable level of
illustration results. In addition, a number of soft-
ware application notes are included at the end of
various chapters which further demonstrate the
application of principles. These programming notes
are included because understanding the Apple Ile
includes a combination of programming knowledge
and hardware knowledge. Unless noted otherwise,
all software examples are creations of the author
and are hereby placed in the public domain. The
author requests that he be given credit as the pro-
grammer in all reproductions of these programs.

A number of hardware application notes are also
ineluded at the ends of chapters. Some of these notes
describe hardware projects which demonstrate rele-
vant principles. Other notes are simple descriptions
of hardware modifications that enhance operation
in some way. Figure 4.7 is an original design of the
author. Readers are encouraged to study, build, or
integrate it into their own designs. The author
requests that he be given credit as the designer in
any reproduction or other use of this schematic. The
D MAnual Controller is being manufactured by the
Southern California Research Group, and is avail-
able by mail as noted in Chapter 4.

Several hardware application notes detail modi-
fications to the Apple or Apple peripherals. Please
read the NOTE OF CAUTION following the Table
of Contents before performing any modifications to
your equipment. It is recommended that readers
unskilled in electronies workmanship who desire a
modification have the work performed at a comput-
er dealership or by a skilled friend. Persons who
modify their hardware should be able, or know
someone who is willing and able, to repair the modi-
fied assembly if it should fail.

Understanding the Apple Ile is the companion of
my previously published work, Understanding the
Apple IT*. These two books are identical in format
and outline, one describing the Apple II computer
and the other describing the Apple Ile. Readers of
?oth books will find that, where operational features
in the two computers are identical, the text in the
two books is identical. Those readers will also find
that some application notes which are relevant to
both the Apple IT and Apple Ile are found in both
books. To the extent that operational features and
hardware implementation in the Apple Ileisdiffer-
ent than that of the Apple II, Understanding the

?Ipme Ileis different from Understanding the Apple

*Quality Software, 1983,

In deference to readers who have experience only
with the Apple Ile, descriptions in Understanding
the Apple Ile assume that the reader is not familiar
with the functioning of the older Apple I1. However,
Apple II features and functions are sometimes de-
scribed in order to clarify differences between the
two computers or to explain why Apple lle features
exist. Some notes on differences between the Apple
IT and Ile are contained in Appendix L

There are differences among Apples that are sold
in various regions of the world, and it is sometimes
difficult to make statements that are accurate for all
versions. Generally, deseriptions in this book per-
tain to the Apple Ile as it is sold in the USA with
separate sections devoted to deseriptions of export
versions. Readers in other countries should be aware
that some descriptions, in particular those dealing
with signal frequency and video generation, may
give details that are not accurate in their country.
Those readers should rely on the sections of Chap-
ters 3 and 8 that deal directly with international
Apples for guidance. Additionally, it should be
noted that program listings in Figures 3.11and 3.12
have to be modified if they are to operate correctly in
50 Hz display scanning Apples such as those found
in Europe.

Figures 1.1, 3.8, 3.10, 5.3, 5.13, 7.1, and 8.5 illus-
trate functions internal to the Apple Ile special pur-
pose integrated circuits (the IOU, MMU, and timing
HAL). These drawings are my own representations
of those internal functions, based on my observa-
tions of Apple Ile signals and features. These draw-
ings do not accurately show internal circuit detail,
but are intended only to accurately depict internal
circuit functions.

Understanding the Apple Ile is the result of an
intensive investigation of the Apple Ile computer by
the author. There is no other source of much of the
information covered here, and the possibility of
error exists on the part of the author. For those
errors which do exist, the author is truly sorry.

The Apple Ile is not a perfect computer, Apple
Computer, Inc. is not a perfect company, and I am
not a perfect author. There are many opinions of the
author in the body of the text, and some of them are
negative toward the Apple Ile or the company that
manufactures it. The reader must rely on his own
judgment to evaluate these opinions. Although I
am sometimes critical of Apple Computer, Inc., I
acknowledge that the actions of this company have
enriched my life. Although I am sometimes critical
of the Apple Ile, I believe it is the best personal
computer that money can buy.

Contents

Chapter 1—The Apple lle—An Overview

APPLE [1e OVERVIEW 1-1
The Microprocessor and Bus Structure 1-2
Memory 1-3
Peripheral Slots 1-3
The Auxiliary Slot 1-4
The MMU, 10U, and Timing HAL 15
Video Output 1-7
The Keyboard 1-9
Other /O 1-10
The Power Supply 1-11
SUMMARY 1-11

Chapter 2—The Bus Structure of the Apple lle

COMPUTER BUSES AND THREE STATE LOGIC 2-1
THE PIGEONHOLE COMPUTER 2-5

THE MPU, RAM, AND ROM 2-6

RAM ADDRESSING AND DATA DISTRIBUTION 27
ADDRESS DECODING 2-10

/O (INPUT/OUTPUT) 2-14

THE COMPLETED BUS STRUCTURE 2-19

Chapter 3—Timing Generation and the

Video Scanner

TIMING OVERVIEW 3-2
THE TIMING SIGNALS 32
APPLE FREQUENCIES 3-4
THE TIMING DIAGRAM 3-5
TIMING SIGNAL DISTRIBUTION 37
DETAILED DESCRIPTION OF TIMING SIGNALS 3-8
TELEVISION SCANNING 3-12
THE VIDEO SCANNER 3-13
THE LONG CYCLE 3-19
TIMING GENERATOR HARDWARE 3-19
APPLICATION NOTES
Switching Sereen Modes in Timed Loops 3-23
Apple Timing Loops 3-28
An Applesoft Emulator for the Timing HAL 3-29

Chapter 4—The 6502 Microprocessor

6502 SIGNALS 4-2
6502 CONNECTIONS IN THE APPLE lle 44
6502 MEMORY USAGE 45
6502 TIMING IN THE APPLE Ile 4-5
APPLE PROGRAMMING 4-9
DMA IN THE APPLE 4-11
6502 INTERRUPTS IN THE APPLE Ile 4-14
RESET 4-14
NMI' and IRQ" 4-15
The BREAK Instruction 4-17
The Enhanced Firmware IRQ/BREAK Handler 4-18
Priority Among Interrupts 4-20
THE 65C02 MICROPROCESSOR 4-21
APPLICATION NOTES
6502/65C02 Instruction Details 4-23
D MAnual Controller 4-29

Chapter 5—RAM and Memory Managemen

THE 64K DYNAMIC RAM CHIP 5-1
RAM CONNECTIONS IN THE APPLE Ile 5-3
RAM ADDRESS MULTIPLEXING 5-5

The Arithmetic of Video Scanner Memory Addressing 57

TEXT/LORES Scanning 5-10

HIRES Scanning 5-11

Mixed Mode Scanning 5-13
REFRESHING RAM IN THE APPLE Ile 5-19
MEMORY MANAGEMENT 5-20

MMU Soft Switches 5-20

Configuring High Memory ($D000—$FFFF) 5-20

Switching between Motherboard and Auxiliary Card

RAM 5-24

Configuring the 1/0 Range ($C000—$CFFF) 5-28

KBD' and MD IN/OUT’ 5-28

The MMU Functional Diagram 5-29

MMU Signal Propagation Delay 5-32
RAM TIMING IN THE APPLE Ile 5-32
THE 1K AUXILIARY RAM CARD 5-38
APPLICATION NOTES

Reading Video Data from a Program 5-40

Chapter 6—ROM in the Apple lle

ROM HARDWARE 6-1
ROMEN' AND ROMEN2" 6-2
PERIPHERAL SLOT ROM 64
ROM TIMING 6-4
FIRMWARE IN THE APPLE 6-6
The System Monitor 6-6
The Apple II Plus 6-7
The Impact of the RAM Card 6-8
The Apple Ile 6-8
The Apple ITe Firmware Upgrade 6-8
APPLICATION NOTES
Modifying the System Monitor 6-10

Modifying 2 12K Firmware Card into a 24K DOS

HOSS 6-12

Chapter 7—Input/Output in the Apple lle

PERIPHERAL ADDRESS DECODING CIRCUITRY 71

10U SOFT SWITCHES 7-3
SERIAL I/0 HARDWARE 7-5
APPLE Ile KEYBOARD CIRCUITRY 7-9
PERIPHERAL SLOT CONNECTIONS 7-15
THE APPLE 1/0 SYSTEM: KSW AND CSW 7-21
Apple Monitor [/O 7-21
Linking I/O to Other Devices 7-22
Peripheral Cards and Primary 1/0 Devices 7-23
I/0 TIMING 7-23
THE AUXILIARY SLOT 7-26
APPLICATION NOTES
Programming the Game Paddles 7-29
Extending the Game 1/0 Socket 7-33
Gaining access to the Alternate Keyboard Set 7-37

Bhapter 8—Video Generation

THE APPLE lle VIDEO OUTPUT SIGNAL 8-3
COLOR SIGNALS 8-6
DISPLAY MAP MEMORY REPRESENTATIONS 88
VIDEO GENERATOR HARDWARE 89
Inputs to the Video ROM 8-11
Loading and Shifting of Dot Patterns 8-14
Video Generation in Export Apples 8-16
DISPLAY MODE SOFT SWITCHES 8-19
VIDEO GENERATION TIMING SIGNALS 821
TEXT OUTPUT 8-24
LORES GRAPHICS OUTPUT 8-27
HIRES GRAPHICS OUTPUT 831
MIXED MODE SWITCHING 8-37
APPLICATION NOTES
Programming Screen Character Sets in EPROM 8-40
Programming DOU BLE-RES Graphics Displavs in
BASIC 844
TECHNICAL NOTE
Details of Television Processing of Apple Video 8-47

“hapter 9—The Disk Controller

DISK I1OVERVIEW 9-1
THE DISK II DRIVE 9-5
THE DISK Il CONTROLLER 9-9
The Bootstrap ROM 9-9
The Command Decoder 9-12
Drive Off/On and Drive Select 9-12
Head Positioning Commands 9-13
READ/WRITE 9-13
SHIFT/LOAD 9-13
The Logic State Sequencer and Data Register 9-14
The WRITE Sequence 9-21
The READ Sequence 9-27
PROGRAMMING EXAMPLES FROM RWTS 9-34
DIFFERENCES BETWEEN RWTS AND DIIDD 9-42
APPLICATION NOTE
Installing a Write Protect Switch on the DISK Il Drive 9-46

Contents

Chapter 10—Maintenance and Care of the

Apple lle

APPLE HARDWARE RELIABILITY 10-1
IMPROVING YOUR APPLE'S RELIABILITY 10-3
REPAIR OF THE APPLE lle 10-4
WHEN YOUR APPLE BREAKS 10-6

The Firmware Diagnostics 10-6

The Peripheral Card Check 10-8

Power Supply Problems 10-8

Peripheral Failures 10-9

Other Symptoms 10-10

Glossary

Appendix A— References

Appendix B—Trademarks

Appendix C—6502/65C02 Data
Appendix D—BASIC Program Listings
Appendix E—A Logic Circuits Primer
Appendix F—A Number Systems Primer
Appendix G—Revisional Information
Appendix H— Historical Notes
Appendix |—Apple I/ lle Difference Notes
Index

Dedication

On behalf of my brothers and sisters,
Lee, Jenny, Tim, Mary, Mike, and Joe,

to my father,
Fredrick Ingwald Sather,
with love and respect.

Acknowledgements

My wife, Deborah, still tolerates me and proofreads all text before I submit it.

When I couldn’t answer my own questions, I asked the telephone. Thanks for informa-
tion, guidance, and answers to: Paul Darcy (PAL motherboard, history, general), Peter
Baum (much general information and assistance), Pieter Lechner and Bob Sander-Cederlof
(ProDOS), Walt Broedner (history), Dan Fischer (interrupts), Jeff Mazur (general), and
Eric Waller, Roger Wilbur, and Mike England (maintenance procedures).

Every page of this book gives evidence of effort put forth by the people at Quality Soft-
ware. What you see is far more polished than what I gave them.

Note of Caution

Several of the Application Notes in Understanding the Apple Ile contain
procedures for modifying the Apple Ile computer and peripheral cards.
Modification of your Apple or peripherals may void your warranty if the
warranty period has not yet lapsed. It may also increase your out of war-
ranty repair costs should the modified unit fail in the future. The decision to
perform any of the modifications described in Understanding the Apple Ile
rests solely with the owner of the hardware concerned. Neither Quality
Software nor the author bears responsibility for any negative consequence
of the owner’s decision to perform such modifications.

The following overview is a brief statement of the
hardware features of the Apple Ile computer. It is
not meant to be a description of everything pro-
grams can make the Apple Ile do. Rather, it is a
description of the basic capabilities with which
computer programmers and peripheral designers
work. An attempt is made to explain the technieal
terms thatare used, but newcomers to microcomput-
ers should not be discouraged if some points are not
absolutely clear to them. The chapters that follow
expand on all topics covered here, and Chapter 2 in
particular contains information which will elarify
much of Chapter 1.

First and foremost, the Apple Ile is a revised and
improved version of the Apple Il computer that was
designed by Steve Wozniak in the mid-seventies. It
1soperationally compatible with a 48K Apple IT that
has a 16K expansion RAM card in Slot 0 and an
80-column text card in Slot 3. The Apple Ile also
Supports 64K of auxiliary RAM and hasan improved
keyboard, improved graphics capability, and num-
€rous minor operational improvements, but com-

Patibility with the Apple II is its predominant
feature,

chapter 4

The Apple lle—
An Overview

Apple’s motivation in refining the Apple 1I was
reducing manufacturing costsand eliminating some
critical text handling weaknesses of the Apple II.
They achieved these goals very nicely and produced
a computer that is better than the Apple II but
which inherited its personality and many features
from the Apple II. The computer that is described
here is the Apple ITe, but much of what is said is also
true of the Apple II.

APPLE lle OVERVIEW

The Apple Ile is made up of five physical units: the
baseplate and case, the keyboard, the power supply,
the speaker, and the motherboard. The speaker,
power supply and keyboard are all utility units
which plug into the motherboard. It is the mother-
board which contains all the uniqueness of the
Apple Ile. The motherboard is the Apple Ile, and
the Apple Ile is consequently referred to as a single
board computer. On one board, it has a microproces-
sor, memory, video text and graphics output circuit-
ry, seven peripheral expansion slots, an auxiliary
expansion slot, and circuitry for communications

4-2 Understanding the Apple lie

with a variety of external devices. These features
are part of an organized structure centered around
the microprocessor.

The Microprocessor and Bus Structure

The brains of the Apple Ile is a 6502 micropro-
cessor. A microprocessor, or MPU (MicroProcess-
ing Unit), is a single chip logic device capab!e of
executing stored sequential programs.* A micro-
computer is a computer which uses an MPU as its
fundamental logic processor.

Digital computersoperate to a synchronizing beat
known as a cloekpulse, similar to the beat of musice,
but over ten thousand times as fast. The 6502 oper-
ates toa beat which occurs approximately 1,020,500
times a second. We say that the clockpulse frequency
is 1.0205 MegaHertz (MHz) meaning 1.0205 million
cycles per second. Actually, there is a clockpulse
jitter, which is described in the timing section of
Chapter 3. Until we get to that point, just say that
the 6502 operates at about 1 MHz. This, inciden-
tally, is slow by modern microprocessor standards.
There are 4 MHz 6502 MPUs available now, and
other MPUs have faster clockpulse rates than that.
With a given MPU, the faster the clock, the faster
the execution speed.

The structure of the Apple Ile is that of multiple
devices which can communicate with the MPU.
Onceevery clockpulse, the MPU outputs the address
of the location which is being communicated with,
and it transmits data to or receives data from that
location. The address which the MPU is putting out
isdistributed to all addressable devices in the Apple
ITe via the address bus, and data is transferred
between the MPU and the addressed location via the
data bus. Associated and distributed with the
address bus is the read/write control output of the
MPU. Read/write control tells the addressed loca-
tion whether data will be read from it or written to
it.

The 6502 has 16 address outputs, each connected
to one line (electrical conductor) of the address
bus.** It controls the 16 address lines and the
read/write line together by placing a high or a low
voltage on each line. The simultaneous condition of
the 16 address lines is the 6502 address. The 6502

*A chip is another name for an integrated circuit, or IC. It is a
unit with a small body and a number of metal pinsor leads, and it
contains complex electronic circuitry inside. If you look inside
the Apple Ile, you will see many little black chips plugged into
sockets on or soldered directly to the motherboard. There are four
chipsthat are bigger than all the others, and the 6502 MPU isone
of the four big chips.

address is a number between $0and $FFFF (65535),
and the 6502 can access any one of the $10000
(65536) addressed locations in that range.

The 6502 has eight data input/output lines, each
connected to one line of the data bus. It controls the
eight lines when writing and monitors the eight
lines when reading, and the simultaneous condition
of the eight lines is the 6502 data word. Like the
address lines, each of the data lines is brought to a
high or a low voltage when information is passed.
Each line can be one of two states (high or low), so
the information is said to be two state, or binary.
Other common ways of referring to the two states of
binary information are true/false, one/zero, and
on/off.

A unit of binary information is a bit. Whether a
line is high or low at a given instant is a bit of
information. The 6502 reads or writes and manipu-
lates information eight bits at a time and is there-
fore classified as an 8-bit MPU. A group of eight bits
is a byte. The 6502 manipulates and transfers data,
one byte at a time, to an addressed location in the
Apple Ile bus system.

Most locations which the MPU addresses are
memory locations. Memory contains the stored
program which the MPU is executing and about
half of the MPU’s time is spent fetching that pro-
gram. The program is stored sequentially, so fetch-
ing the program by the MPU simply involves
incrementing the address output while reading the
data input and interpreting it as a sequential pro-
gram. When not fetching the program, the MPU is
executing it. This execution involves logical manip-
ulation of data, storage of data at or loading of data
from addressed locations determined by the pro-
gram, changing the program fetching location to
somewhere other than the next sequential address,
or any combination of these and other functions.

Not all locations addressed by the MPU are
memory locations. Program instructions fetched
from memory may cause the MPU to address non-
memory locations such as the speaker or keyboard.
A memory location responds to a read at its address
by placing data on the data bus. The speaker
responds to a read or a write at its address with
sound. The MPU thus controls the speaker via the
address bus in an address decoding process.

**As described in Chapters 2 and 4, the 6502 is not connected
directly to the address bus. It is connected to the address bus
through isolating devices which give the Apple Ile a DMA
(Direct Memory Access) capability and allow the 6502 to address
the large number of electronic devices connected to the address
bus of the Apple ITe.

The Apple lle—An Overview 1-3

Address decoding is the only way a 6502 can control
other devices, so all programmed control of Apple
IIe devices is via address decoding.

Memory

General purpose microcomputers require two
types of memory, memory you can change (RAM)
and memory you can’t change (ROM).* RAM is
necessary so you can store general programs and
data. ROM is necessary so the computer has a pro-
gram to run when it is first turned on.

Both ROM and RAM are random address memo-
ries, meaning any specific memory location ean be
accessed at its specific address. Computer memory
islike thousands of light bulbs, each of which may or
may not be glowing. If the memory is random
access, the microprocessor can communicate with
any light bulb it chooses by calling its number. It
can, for example, check if light bulb number 25,765
is glowing or not. This is analogous to reading from
memory. Telling light bulb number 7,682 to not
glow is analogous to writing to memory; the MPU is
altering the state of light bulb 7,682. RAM and ROM
are functionally identical except that ROM is fixed
as if it was etched in stone. You can’t turn the light
bulbs on or off. You can only check to see if they are
on or off.

The MPU cannot really tell whether alight bulb is
glowing or not, but it can tell whether the voltage on
a line is high or low. RAM is capable of storing the
high/low state of its data input when the MPU
writesdata toa RAM address. Both RAM and ROM
are capable of bringing their data outputs high or
low in accordance with stored data when the MPU
reads data from a RAM or ROM address. In a posi-
tive logic system like that of the Apple 1le, storing
or reading a high voltage is thought of as storing or
saving a “1”. Storing or reading a low voltage is
thought of as storing or saving a “0”.

Since the 6502 is an 8-bit MPU, memory must be
organized so that it is accessed eight bits, or one
byte, at a time. The Apple Ile motherboard has
gockets for 65,536 bytes (524,288 bits) of RAM. This
1s normally referred to as 64K of RAM, meaning 64
Kilobytes. In addition to this motherboard RAM,
motherboard timing and memory management
fully support an additional 64K of RAM on a card

*ROM stands for Read Only Memory, which is accurate, and
RAM stands for Random Access Memory, which is the most
famous misnomer in all of computer jargon. Both read only
memory and read/write memory in the Apple Ile are random
access memory, and this book refers to them by their conven-
tional labels, ROM and RAM.

installed in an auxiliary slot that is mounted near
the front of the motherboard.

The 64K of motherboard RAM in the Apple Ile is
functionally similar to the 64K of RAM in an Apple
IT with Slot 0 16K expansion RAM card. Low RAM
is the 48K addressed at $0000-§BFFF, and high
RAM is 16K addressed at $D000-$FFFF with
$D000-$DFFF response switched between two 4K
banks. Low RAM is the main body of Apple Ile
RAM, and it does not share $0000-$BFFF with
other motherboard devices. High RAM is secondary
RAM that shares $D000-$FFFF response with
motherboard ROM. It is disabled for reading, in
favor of motherboard ROM, anytime the RESET
key is pressed. Auxiliary card RAM is divided the
same way as motherboard RAM, so a 128K Apple
Ile isthe RAM equivalent of two 48K Apple IIs with
two 16K RAM cards.

The Apple ITe uses dynamic RAM which must be
refreshed. Memory refresh must occur on a peri-
odic basis or dynamic RAM will not work. It’s like a
fire that goes out unless someone is constantly
pumping the bellows. Dynamic RAM is nice because
it’s inexpensive, but it requires a lot of external
circuitry to support the refresh requirement. The
Apple ITe fully supports 64K of motherboard RAM
and 64K of auxiliary card RAM in every way,
including refresh.

The Apple Ile motherboard contains 16,128 bytes
of system firmware (programs and data in ROM).
This firmware includes a system monitor, Apple-
soft BASIC, some separate keyboard-in / video-out
routines referred to as the 80-column firmware,
and some system diagnostic routines. The monitor
tells the Apple Ile what to do at power-up and con-
tains valuable utilities which make the Apple Ile
hardware accessible to its user; Applesoft is the
BASIC editor and command interpreter normally
used in the Apple Ile; the 80-column firmware is an
extension of the monitor written to support the
Apple Ile 80-column text display; and the firmware
diagnostics provide the Apple Ile with a modest self
testing capability.

Peripheral Slots

The Apple Ile peripheral slots are similar to a
card cage. What is a card cage? A card cage is a
very versatile physical package for microcomputers
and other electronic circuits. It is a row of slots
mounted close together into which printed cirecuit
cards are plugged. Behind the slots are hundreds of
wires connecting the slots together in accordance
with the design purpose. Card cage architecture is

14 Understanding the Apple lle

like a house with an intercom system. Just as com-
munication is possible between various rooms of the
house, communication is possible between the var-
jous cards plugged into the card cage. Each slot in
the card cage is a different station in the intercom
system. .

In a card cage microcomputer, part of the wiring
which interconnects the slots is a multiline address
bus and data bus, similar to the buses on the Apple
ITe motherboard. A microprocessor board can be
plugged into any slot, from where it can control
communication in the card cage via the address bus.
A very nice modern card cage micro would have a
multifunction single board microcomputer in one
slot and a variety of devices in the other slots. The
Apple Ile is exactly that computer, turned inside
out. Instead of mounting the main logic board in the
card cage, they mounted the card cage on the main
board.

The Apple Ile “card cage” consists of seven pe-
ripheral slots mounted on the back of the mother-
board. The address bus and data bus are connected
toall the slots, making them addressable extensions
of the Apple’s basic communication system.* Each
slot has a part of the 6502 address range assigned to
it, so programs can make the 6502 access a pe-
ripheral slot just as if it were a group of memory
locations.

Some important 6502 input control signals are
tied to pins on the peripheral slots. They are
RESET,READY, NMI' (Non-Maskable Interrupt),
and IRQ' (Interrupt ReQuest). These signals are
all described in greater detail in the 6502 section
of Chapter 4. Their connection to the peripheral
slots means that the processor can be interrupted,
stopped, started, and reset from any peripheral
card. It also means that any peripheral card can be
designed to respond to these control signals. For
example, pressing RESET at the keyboard resets
the 6502 and additionally turns off the floppy disk
drive. The disk drive controller is designed to
respond to the RESET' signal which is pulled low
when RESET is pressed. RESET, incidentally, is
read “reset prime.” In this book, the prime behind
the name of a logic term is used to signify that a
signal is active or true when a low voltage is pres-
ent.** It is an aid to understanding the logic func-
tions of a given signal. Knowing this, you could
guess from the second sentence of this paragraph

*As described in Chapters 2 and 7, the peripheral slots are actu-
ally connected to the data bus through a bidirectional bus driver
that enables the 6502 to communicate with a large number of
peripheral card devices via the data bus.

that the 6502 is interrupted and reset by low vol-
tages on the NMI’, IRQ’, and RESET" lines, and
enabled by a high voltage on the READY line.

Another peripheral slot signal which affects the
6502 but isn't connected directly to it is the DMA’
signal. DMA stands for Direct Memory Access
and refers to direct memory access from the pe-
ripheral slots. The DMA' line does a bit more than
give the slots access to memory, however. Itallowsa
card in aslot to isolate the 6502 from the address bus
and data bus and take control of communication in
the bus system. This means that a peripheral card
can control all hardware features of the Apple Ile. It
is as if you could plug a Suzy brain into Johnny and
have the Suzy brain control Johnny's body, a concept
much in vogue in some circles.

There are signals connected to the peripheral slots
other than those that have been mentioned. They
provide various capabilities so peripherals can be
designed to be fully integrated into the Applestrue-
ture. These signals include timing and control
inputs, power supply voltages, and control signals
decoded from address ranges on the address bus.
The purposes of these signals will be fully explained
in later chapters.

The Auxiliary Slot

The auxiliary slot is a 60-pin slot that is physically
separated from the peripheral slots. Like a pe-
ripheral slot, the auxiliary slot holds a card that is
designed to augment the features of the mother-
board. Unlike a peripheral slot, the auxiliary slot
does not feature full connection to the address bus
and data bus and is not supported as an I/O port by
Apple IIe firmware.

Rather than acting as an I/O port, the auxiliary
slot is designed to accept cards that interact with the
RAM, video generation, and/or timing generation
circuitry of the motherboard. It most commonly
holds a 64K RAM card that enables video display of
80-columns of text, enables doubling of the Apple
Ile video graphics horizontal resolution, and makes
a total of 128K of RAM accessible to the Apple Ile
MPU. Other functions such as RGB (Read-Green-
Blue) video signal generation can also be performed

**Most published computer literature will overscore a logic
term, rather than placing a prime symbol behind it, to signify
that it is active when low. In using the prime notation, Under-
standing the Apple IIe is following the convention used by Apple
in the Apple Ile Reference Manual for Ile Only. In addition to
signifying that a term is active when low, the prime symbel
following a logic term can mean that the inversion of that logic

t,e:rm is being referred to. Please see Appendix E for further
discussion of this subject.

The Apple lle—An Overview 16

by auxiliary slot cards, but such alternate function
cards will probably always contain at least enough
RAM to support the Apple Ile 80-column text dis-
play. Additionally, production and service facility
auxiliary slot cards can be designed to monitor
important Apple Ile timing and video generation
signals and inject substitutes for many of those sig-
nals to the motherboard.

The MMU, IOU, and Timing HAL

In addition to fundamental building blocks like
the MPU, ROM, RAM, and an I/O capability, a
microcomputer has a large amount of associated
circuitry that supports the operation of the funda-
mental building blocks. In the Apple Ile, much of
this circuitry is concentrated in two custom VLSI
{Very Large Scale Integration) ICs, the MMU and
the I0U. These custom ICs are very complex inte-
grated circuits, co-designed by Apple and an IC
manufacturer* to perform logical functions re-
quired in the Apple I1e.

The MMU (Memory Management Unit) contains
programmable soft switches and address decoding
circuitry which define the overall memory and /0
configuration of the Apple Ile. By this, it is meant
that the MMU controls which device (RAM, ROM,
1/0 device, or peripheral card) responds to which
addresses. This is a complex task in the Apple Ile,
because the memory map can be reconfigured so
that the same device does not always respond to a
given range of addresses.

Programmable soft switches are very important
in the operational scheme of the Apple Ile. They are
like a mechanical switch, except that they are
switched when they are addressed by the MPU, not
by the flip of a finger. Programs maintain control of
a number of Apple Ile functions by setting and
resetting soft switches that are mechanized in the
MMU and I0U. As an example, the RAMRD soft
switch is a programmable switch in the MMU that,
when set, enables MPU reading from much of auxil-
iary card RAM. It is set when the controlling pro-
gram causes the MPU to perform write access to
$C003 and reset when the program causes the MPU
to perform write access to $C002.

*Custom IC design is a cooperative effort by IC and equipment
manufacturers. In the case of the 10U and MMU, Apple
emp]oyee (and former Synertek employee) Walt Broedner
designed the IOU and the MMU within the constraints of the
Synertek custom IC program. Synertek is the primary MMU and
IQU source, and judging by the IOTU in my Apple Ile, American
Microsystems (AMI) is an alternate source.

The MM U accomplishes its memory management
funections by monitoring the address bus and R/W’,
and responding to certain addresses by setting or
resetting its configuration soft switches. Also, for
any address on the address bus and any status of the
MMU soft switches, the MMU controls which class
of motherboard device will respond to an address.
The MMU does this by activating or deactivating
various data bus management signals. A second
function of the MMU is to convert the MPU address
from the 16-line address bus format to the 8-line
multiplexed format that is required by dynamie
RAM. This subject and all subjects related to the
MMU are covered in detail in Chapters 2 and 5.

The IOU (I/0 Unit) contains circuitry primarily
related to the various facets of generating the Apple
ITe VIDEO signal. This includes the video scanner,
acounter that scans RAM for video output when the
MPU is not accessing RAM. It also includes cireuit-
ry to convert video scanner states to a multiplexed
RAM address, soft switches by which the display
mode of the Apple Ile is established, and circuitry
which is actively involved in processing the RAM
resident display map to generate the VIDEO signal.

In addition to the display related functions men-
tioned above, several I/0 functions of the Apple Ile
are implemented in the IOU. These include parts of
the cassette and speaker output functions, the
annunciator outputs, the KEYSTROBE (keyboard
strobe) soft switch, the keyboard auto repeat fune-
tion, and the capability to transmit the AKD (Any
Key Down)line to a line of the data bus soa program
can determine when a keyboard key is being held
down. The varied IOU tasks span topics covered in
several chapters of Understanding the Apple Ile.
Figure 1.1 is a general diagram of the IOU that
shows chapters and figures in which the IOU fune-
tions are discussed and illustrated.

A third special purpose VLSI IC on the Apple I[Ie
motherboard is the timing HAL. A HAL (Hard
Array Logic) is an IC, designed by a manufacturer
to perform logic functions within a general format.
The specific logic functions that the IC is to perform
are specified by the buyer—in this case, Apple
Computer, Inc. The timing HAL is similar to a
ROM, except that the HAL purchaser specifies logic
functions instead of memory contents.

The HAL in the Apple Ile is used in the process of
generating the timing signals that synchronize
functions throughout the motherboard. The nature
of these timing signals and the details of their gen-
eration are discussed in Chapter 3.

414 Understanding the Apple lie

sV
AKD
£ 10U (P31 o |28 |
(7.1) —30. | COK :> FF}_%\G% MD7 |9 w2
(42,{ 2, A6 1) .
Tl JRW FROMVIDED
{\r GENERATOR
£AD a0 |ADDRESS Stz
" L1 | DECODE SPKR |8
—— B2 DRESS o " SOFT T
(7.2
FLAL LATCH |-~ SWITCHES 241!
pAs | ALS AN3[13
F’Ai_ ALT | 80c0I'l6 | (39)
[10
@@TOHE PAGE2 HIRES FRLEA?;%
L 17 JRAO AUTO KSTRB|_ 32
@ At ===—+REPEAT AKD| 31 }(7-41
. VIDEO VIDEQ (3.8)
E SCANNER
20 _|rA3 RAM /I— AND
(5.2) ADDRESS FLASH
.21 JRA4 MUX. - I\ S PWR-UP RESET'| 15 (42
22 _|RAS (5.3) COUNTER|==—~ RESET hé]
.23 |na6 38) H L 38 | '
24 |RA7 HOl40 . 39)
TEXT
MIX
HIRES
{} ALTCHRSET
__ 25 ,|RAS’ GR+1 —‘ﬂ—wRE».[1|=LM;SGW2 ,
o] —Bfa1- Ttegs o sewals
IN\TI%&)AL SEGB | 4
g6 — APPLE Iic IRQ! GENERATOR Sii(; ;5
8.5) - L(B.S)
_ 3 lvioa RA10|36
(5.2}{ 23 . |vin7 CLRGATE' | 37
WNDW' | 38
FLGROUND SYNC')
Figure 14 10U Functions and Pin Assignments.

The Apple lle—An Overview 1-7

Video Output

The primary output of the Apple Ile is video. This
video is color compatible with the television system
used in the country in which an Apple Ile is sold.
There are two versions of the motherboard—one
which outputs video compatible with the NTSC tel-
evision system used in America and other areas, and
one which outputs video compatible with the PAL
television system used in most of western Europe
and other areas. An Apple Ilein a given country will
contain the version of the motherboard compatible
with that country’s television system. Additionally,
the video and keyboard ROMs will be tailored to the
requirements of that country’s language or lan-
guages.

Video from the Apple Ile can bedirectly inputtoa
color or monochrome video monitor but not to a
television set. Rather than video, a television accepts
RF (Radio Frequency) modulated by video. This
means that you can use the Apple Ile with a televi-
sion set, but the input to the television must bean RF
signal modulated by Apple ITe video. Generation of
the RF signal and modulation is acecomplished in a
user supplied modulator. Another name for the user
supplied modulator is a pain in the neck.

There are three basic Apple Ile video display
modes: TEXT, LORES graphics (LOw RESolution
colored blocks) and HIRES graphics (HIgh RE So-
lution colored points). Additionally, LORES and
HIRES graphics can be displayed with four lines of
text at the bottom of the screen in the Apple Ile
MIXED mode. MIXED mode is very useful, as far
as it goes, because there are many times when the
graphics programmer needs to enhance a display
with text. However, four lines at the bottom turn out
to be inadequate for many purposes. The HIRES
screen has good enough resolution to draw text, and
several programs are available that make it rela-
tively easy to place upper/lower case text on the
HIRES screen. This type of text can be drawn
a]ongside graphics to enhance graphic displays.

All display modes can be switched to normal
horizontal resolution (40 TEXT characters, 40
LORES blocks, or 280 HIRES points) or double
horizontal resolution (80 TEXT characters, 80
LORES blocks, or 560 HIRES points). The SINGLE-
RES (single horizontal resolution) modes are iden-
tical to the display modes of the older Apple IT
computer. The DOUBLE-RES (double horizontal
resolution) modes offer twice the characters, blocks,
or points per horizontal display width as do the
SINGLE-RES modes.

Memory scanning is used to generate video in all
Apple Ile display modes. Data that represents the
display is stored (mapped) in RAM so that video is
generated by processing data that comes from RAM
as it is scanned repeatedly. Certain areas of RAM
are designated as display memory. The designated
areas are:

TEXT/LORES Pagel $400—$7FF
TEXT/LORES Page2 $800—$BFF
HIRES
HIRES

(1K RAM)
(1IK RAM)
Page 1 $2000—3$3FFF(8K RAM)
Page 2 $4000—35FFF(8K RAM)

As an example, assume that the computer is in
TEXT mode, page 1. Then memory in the range
$400—3$7FF will be scanned approximately 60 times
a second and the data in that memory area will be
processed for video output. Part of display memory
is always being scanned while the computer is on.
The Apple Ile is designed so that this constant scan-
ning satisfies the refresh requirement of the dy-
namic RAM.

Page 1 and page 2 are primary and secondary
memory display areas that are switched via the
PAGE2 10U soft switch. Page 1 is normally selected
in all modes (PAGEZ2 soft switch reset), but use of
page 2 may suit the programmer’s purpose.

An important consequence of the Apple Ile dis-
play implementation is that the video display steals
memory from the user. The programmer must pro-
gram around the display areas if he intends to use
the associated displays.

SINGLE-RES displays are mapped in mother-
board RAM only. One byte of the display map is
processed for each cycle of the MPU, and 40 bytes of
the display map are scanned to process the dis-
played portion of a single horizontal scan of the
television or monitor. Based on the number of bytes
that make up the displayed portion of a horizontal
scan, the SINGLE-RES TEXT, LORES, and
HIRES modes will be referred to in this book as the
TEXT40, LORES40, and HIRES40 modes when
it is necessary to distinguish them from their
DOUBLE-RES counterparts. For the reason made
clear in the next paragraph, the DOUBLE-RES
TEXT, LORES, and HIRES modes will be referred
to as the TEXT80, LORES80, and HIRES80
modes.

DOUBLE-RES displays are mapped in mother-
board RAM and auxiliary card RAM. For every
MPU cycle, first one byte of the auxiliary card dis-
play map, then one byte of the motherboard portion
of the display map are processed to generate video.

18 Understanding the Apple lie

A total of 80 bytes of the overall display map are
scanned to process the displayed portion of asingle
horizontal scan of the television or monitor. If these
are numbered 0—79, the even bytes are stored in
auxiliary card RAM, and the odd bytes are stored in
motherboard RAM.

A RAM card must be installed in the auxiliary
slot to utilize the DOUBLE-RES modes of the Apple
Ile. A 64K auxiliary RAM card enables use of all
DOUBLE-RES modes, and a 1K auxiliary RAM
card enables use of only the TEXT80 mode (80-
column text).* Additionally, a 1K auxiliary RAM
card enables use of LORES80 mode if a wire is
connected between pins 50 and 55 of the 1K RAM
card’s edge connector.

Scanning for video output is not performed by the
MPU but by the I0U. Inside the IOU, there is a
counter whose outputs are used to make up the video
RAM address, a television sync signal, and other
video related signals. This counter synchronizes the
television scan to its addressing of RAM and can be
thought of as scanning RAM while it scans the tele-
vision (or video monitor) picture. Consequently, it is
referred to in this book as the video scanner.

The scanner accesses RAM in a way that is com-
pletely transparent to the MPU. During the first
half of every 6502 cycle period, the video scanner
accesses motherboard and auxiliary card RAM.
During the second half, the 6502 accesses mother-
board RAM, auxiliary slot RAM, or other device.
The scanner access to RAM is always a read access
and the data which comes from RAM during the
scanner access is saved and processed by the video
generator to make video. The 6502 access can be
either read or write and, on some cycles, the 6502
may not access RAM at all.

The programming method for controlling the
Apple IIe display is to select the display mode by
setting or resetting soft switches, and to compute or
look up the memory addresses of screen locations
and modify those addresses to achieve the desired
display. The video scanner scans the display area
determined by the display mode, and the resulting
memory data is processed as text or graphics as
determined by the display mode.

TEXT characters are represented in the RAM
display map as ASCIT(American Standard Code for
Information Interchange). In addition to ASCII,
code for normal display (white on black), inverse
display (black on white), or flashing display (alter-

*The DOUBLE-RES graphics modes are not available on Revi-

sion A motherboards.

nating normal and inverse) are stored for each text
character. One character is stored per byte of dis-
play memory. As text is scanned, the coded data
from memory is translated to 5 x 7 dot matrix video
in normal, flashing, or inverse format. There are 96
displayable upper case, lower case, numeric, punc-
tuation, and special text characters, all of which can
be displayed in normal or inverse format and 64 of
which can be flashed between normal and inverse
format. The TEXT display is 40 columns by 24 lines
in SINGLE-RES mode and 80 columns by 24 lines
in DOUBLE-RES mode.

The 80-column text capability of the Apple Ile is
implemented in hardware and in firmware so that
the Apple Ile emulates an Apple II with an 80-
column card installed in Slot 3. This emulation is
carried out to such an extent that the Apple Ileis, in
fact, a 40-column display computer with a pe-
ripheral 80-column capability. The Apple Ile pow-
ers in 40-column mode, and it will remain in that
mode up until a program, maybe or maybe not
guided by operator input from the keyboard, selects
the 80-column mode.

LORES graphics is a programmable display of
40 columns and 48 rows (SINGLE-RES) or 80
columns and 48 rows (DOUBLE-RES) of colored
blocks. Each block can be any one of 15 colors
including black and white. Apple claims 16 colors
but the two grays are identical in color and lumi-
nance. There are, however, 16 different LORES
patterns, even though they produce only 15 discern-
ible colors, and these will be referred to as the 16
LORES colors.

LORES is mapped in the same display area as
TEXT, so memory scanning is identical in the two
modes. In LORES, rather than converting ASCIIto
video, the video generator processes the bit pattern
directly into video. The code for each LORES block
requires four bits, so there is code for two blocks in
every byte of display memory. Also, thereisa direct
correspondence between the screen location of a
pair of LORES blocks and one text character as
shown in Figure 1.2.

HIRES40 graphics mode is a programmable
array of 280 columns and 192 rows of dots. Because
of the way video is generated in the Apple 1le, the
color of any dot is dependent on its horizontal posi-
tion. To draw a violet horizontal line, for instance,
every other dot in one row is turned on. To draw a
violet figure, only half of the columns of dots can be
turned on. This is also true of the other HIRES40
colors: green, orange, and blue. There is only 140 x
192 resolution when drawing these four colors.

The Apple lle—An Overview 19

Figure 12 TEXT and LORES Graphics.

White (the absence of color) and black (the absence
of luminance) can also be displayed. The 280 dots in
any row are divided into 40 groups of seven dots.
Each group of seven dots may be shifted together
horizontally one half of a dot position, changing the
colors of any colored dots in that group of seven.
Thus, there are 560 horizontal dot positions in each
row, but only 280 dots are independently program-
mable.

HIRES80 graphics mode is a programmable
array of 560 columns and 192 rows of dots. Each dot
in the array is independently programmable, and
the horizontal resolution is so fine that all 16 LORES
colors can be produced, and no shifting of 7-dot pat-
terns is required or available. Resolution is 560 x
192 in monochrome plotting, and varies from 140 x
192 to 560 x 192 in 16-color plotting depending on
color.

This brief statement of HIRES graphics capabili-
ties is probably just enough information to let the
reader know that the subject of HIRES is complex.
Full understanding is possible in the light of more
detailed analysis, and HIRES is covered in greater
detail in Chapter 8. For now, let the resolution of the
Apple Ile HIRES display be summarized as vary-
ing from 140 x 192 to 560 x 192 depending on color or
monochrome plotting and selection of HIRES40 or
HIRES80 mode.

The HIRES memory display area is much larger
thanthe TEXT/LORES area: 8192 bytes of mother-
board RAM for a HIRES40 display, and 8192 bytes
of motherboard RAM and 8192 bytes of auxiliary
card RAM for a HIRES&0 display. This is the hard-
Wware cost of high resolution.

The Keyboard

The keyboard is the primary human input to the
AppleIle (as opposed to storage media inputsuch as

cassette or disk). Virtually all human alphanumeric
input is via the keyboard. and the MPU of the Apple
Ile spends the majority of its life cycling through a
little firmware routine called KEYIN (or GETKEY
if the 80-column firmware is active). This routine
samples the keyboard to see if a key has been
pressed, while inecrementing a random number
counter and occasionally flashing the sereen cursor.
KEYIN checks the keyboard at a rate of about a 165
million times an hour, and if anyone asks you what
an Apple does, you can answer “mainly, it checks to
see if a key has been pressed.”

Enough silliness. The keyboard has 63 keys that
represent letters of the alphabet, numbers 0—9.
punctuation characters, symbolic characters, and
special functions. These keys are arranged like
those of the keyboard of an IBM Sefectric typewrit-
er. Anauto repeat function (mechanized in the IOU)
simulates rapid keypresses when a key is held down
constantly, and provisions exist for programs to
determine when a key is being pressed or when a key
has been pressed. Apple Ile keys “roll over”, mean-
ing that if one key is held and another is pressed, the
newly pressed key will be read by the controlling
program.

Most of the keys produce ASCIT which can be read
by a program, and most of the ASCII keys, inelud-
ing the alphabetic keys, produce shifted ASCII if
the left or right SHIFT key is held down simultane-
ously with the ASCII producing key. Since the key-
board input and text output are both ASCII, it is
fairly easy to output characters to the video display
as they are entered from the keyboard. This is done
by keyboard input and video output routines in the
Apple ITe firmware.

Special function keys on the keyboard are ESC,
DELETE, RESET, TAB, CONTROL, RETURN,
SHIFT, CAPS LOCK, open Apple, close Apple, left

1-10 Understanding the Apple lle

arrow, right arrow, down arrow, and up arrow.
CONTROL and SHIFT modify the ASCII produced
by other simultaneously pressed keys while CAPS
LOCK is a 2-position locking switch that forcgs
upper case ASCII from the alphabetic keys when it
is latched in the down position. RESET is tied to
Apple Ile RESET line, and if CONTROL and
RESET are pressed simultaneously, RESET' drops
low to reset the Apple Ile. Resetting the Apple Ile
consists of resetting the 6502, all MM U soft switches,
most IOU soft switches, and all peripheral cards
that respond to RESET".

ESC, DELETE, TAB, RETURN, left arrow,
right arrow, down arrow, and up arrow produce
ASCII which must be interpreted by the control-
ling program. The codes for ESC and DELETE are
unique, but TAB, RETURN, left arrow, right
arrow,downarrow, and up arrow produce code that
is identical to that of CONTROL-I, CONTROL-M,
CONTROL-H, CONTROL-U, CONTROL-J, and
CONTROL-K respectively.

The open Apple and close Apple keys are not asso-
ciated with other keyboard funetions. Instead, these
are connected to the PB0 and PBI serial inputs
described in the next section. Pushing open Appleor
close Apple is equivalent to pushing pushbutton Oor
pushbutton 1 on a paddle set or joystick, and these
keys are mounted on the keyboard only to provide a
convenient means of activating the PB0 and PB1
input lines.

All ASCII produced by Apple Ile keypresses
comes from the keyboard ROM which is a standard
2K ROM. This ROM contains ASCII for a standard
keyboard layout and an alternate keyboard layout.
The alternate layout is a Dvorak layout* in Ameri-
can Apple Ile’s. In export versions, it is usually a
layout tailored to the requirements of the host coun-
try’s primary language. The alternate layout can be
selected by installing a switch assembly as shown in
an application note at the end of Chapter 7.

While there is no numeric keypad built into the
Apple Ile keyboard, there is a jack on the mother-
board which accepts a numeric keypad. Like ASCII
from the main keyboard, ASCII from this external
keypad comes from the keyboard ROM, so the keys
of akeypad can be defined as desired by installing a
customized keyboard EPROM on the motherboard.

Other /O
}/0. is Input/Output. Our point of reference for
this discussion is the motherboard, meaning that we

vaora_\k is_keyboard layout designed to permit faster typing than
is possible in the conventional QWERTY layout.

speak of input to the motherboard and output from
the motherboard. The peripheral slots give the
Apple ITe an extremely versatile I/O capability, but
there is a good deal of additional I/O circuitry built
into the Apple Ile. The keyboard input and videg
output are the most significant motherboard 1/0,
There are also some useful serial I/O ports.

Serial data is data on one line. This is opposed to
parallel data on more than one line (eight lines, for
instance). To transfer eight bits serially, each bit of
information is placed on the same line one after
another. This takes eight times as long as an 8-bit
parallel transfer, but requires only one connecting
wire. The keyboard is a parallel input. The video is
not a simple digital output but a mildly complex
signal output with a serial data component. In addi-
tion to these I/O eapabilities, there are eleven serial
I/O ports and four resistance sensitive timer
inputs.

The speaker output is a serial output port con-
nected toaspeaker through an audio amplifier. The
cassette input and output are serial data transmit-
ted via audio phone jacks on the motherboard
accessible from the back of the case. They are
designed to connect directly to the earphone output
and microphone input of a ecommon audio tape
recorder. Firmware routines in motherboard ROM
read and write cassette data in Apple’s storage
format.

Usage of 5 ! inch floppy disks is so prevalent that
cassette storage is rarely used by most Apple owners.
Floppy disk I/0 is not a built-in capability of the
motherboard, so the disk electronics are contained
in the drive and on a peripheral card called the disk
controller. Disk data is transferred in parallel
between the MPU and the controller, and serially
between the controller and the drive. Control of disk
I/0 requires an extensive program, and the most
commonly used program of this nature is DOS 3.3
(Disk Operating System, version 3.3), a product of
Apple Computer, Inc. A more recently developed
DOS, and the one which is the current focus of sup-
port by Apple, is called ProDOS.

The other serial I/0 signals are TTL (Transistor
Transistor Logic) compatible. TTL is a very com-
mon logic family of integrated circuits used for dig-
ital logic. The logic devices on the Apple Ile
motherboard are either TTL or interface directly to
TTL.* TTL devices operate with two voltages cor-
responding to the two states of digital logic. The

*Most TTL chips in the Apple Ile are LSTTL (Low Powered,
Schottky-Barrier diode clamped TTL). The 6502, ROM, RAM,
the MMU, the I0U, and the keyboard decoder are TTL compati-
ble MOS (Metal Oxide Semiconductor) chips.

The Apple lle—An Overview 4-41

" TTL low voltage is 0 to 0.8 volts, and the TTL high
voltage is 2.4 to 5 volts. These are the two voltage
levels which represent digital information through-
out the Apple Ile.

There is a 16-pin DIP (Dual In line Package)
socket on the Apple Ile motherboard which is gen-
erally called the game I/O connector. A set of two
paddles, a joystick, or a resistive graphics pad is
normally connected here, but there is a capability
for multiple uses. Four of the pins are annunciator
outputs. These are output lines which can be inde-
pendently switched toa TTL high or low level by the
controlling program. A fifth TTL output is called a
strobe. This output is high unless a program
triggersit. It then goes low for just 0.5 microseconds
(halfof a 6502 cycle), then returns to its normal high
state.

There are three TTL input ports on the game [/0
connector which can be read by a program. Two of
these, PB0 and PBI, are normally connected to
pushbuttons on the joystick, paddles, or graphics
pad. PB0 and PB1 are also connected to the key-
board open and close Apple keys respectively. Addi-
tionally, if the motherboard X6 jumper is soldered,
the SHIFT' line is connected to PB2 so that the left
and right SHIFT keys activate this third game /O
TTL input.

The paddles themselves are just potentiometers
(variable resistors). Joysticks are two potentiome-
tersmechanically linked so that the resistance of one
potentiometer represents horizontal motion and the
resistance of the other potentiometer represents
vertical motion. Game I/0 graphics pads consist of
X-ordinate and Y-ordinate resistive surfaces ar-
ranged and wired so that the X and Y resistances
vary with the point on the pad at which pressure is
applied.

Inaddition to the game I/0 socket, the four timer
(paddle) and three TTL (pushbutton) inputs are
connected toa game I/0 extension jack in the back
of the Apple ITe. This 9-pin jack provides a means of
connecting a paddle set, joystick, or other device to
the Apple Ile without lifting the cover. Further-
more, when a device is connected to this extension
jack, the game 1/0 lines which are not used by the
extension jack device are available at the game I/0
socket for connection to other devices.

The Power Supply

é'IOLlsehold power measures from 100 to 220 Volts
o ‘(Alte_rnatmg Currgnt), depending on the coun-
i Y 1}111 Which the house is located. Most of thecircuits
Il the Apple Ife, however, require +5 volts DC

(Direct Current) referenced to ground (0 volts).
Converting relatively high voltage, household AC
power to the required low voltage DC power re-
quired by the Apple Ile is the function of the power
supply.

The power supply in an Apple Ile is designed to
operate on the household power in the country in
which it issold. In any country, the Apple I1e power
supply generates +5, —5, +12, and —12 volts DC ref-
erenced to ground. These voltages are distributed
throughout the motherboard to any device that
needs them. Additionally, all four voltages and
ground are available at the peripheral slots to
supply power to peripheral cards, and +5 VDC and
ground are available at the auxiliary slot to supply
power to an auxiliary card.

SUMMARY

The Apple Ile is a single board, 6502 based micro-
computer with built-in memory and video genera-
tion circuitry. It is an improved version of the older
Apple IT computer. Enhancements include full
upper and lower case text handling capability, 80-
column text video display, and 128K of motherboard
and auxiliary slot RAM, as opposed to the upper
case only, 40-column, 48K Apple I1.

The Apple Ile circuit board contains seven pe-
ripheral slots and an auxiliary slot which hold
smaller boards, and it is therefore thought of as a
motherboard. The slots give the Apple Ile expansion
and [/O capabilities comparable to more expensive
card cage microcomputer designs.

The motherboard can be one of two versions—aone
which outputs video that is color compatible with
the NTSC television system used in America, or one
which outputs video that is color compatible with
the PAL television system used throughout western
Europe except in France. An Apple Ile in a given
country will contain the version of the motherboard
compatible with that country’s television system.
Additionally, the video and keyboard RAM will be
tailored to the requirements of that country’s lan-
guage or languages.

The 6502 in the Apple ITe operates at 1.0205 MHz.
IRQ’, NMI', RESET’, and READY signals to the
6502 are connected to the peripheral slots. The
DMA' signal enables peripheral cards to isolate the
MPU from the rest of the motherboard. Thisenables
control of the Apple Ile from secondary MPUs or
other DMA devices in the peripheral slots. MPU
control of the various hardware features is via
address decoding.

1-42 Understanding the Apple lle

The motherboard contains 65,536 bytes of dy-
namic RAM, and motherboard circuitry fully sup-
portsan additional 65,536 bytes of dynamic RAM in
an auxiliary slot RAM card. 16,128 bytes of firm-
ware include Applesoft BASIC and a system moni-
tor containing a number of important utilities.

In addition to the MPU, RAM, and ROM, there
are three important special purpose ICs that im-
plement Apple Ile motherboard logic functions. The
MMU controls the overall configuration of the
Apple ITe memory map; the IOU performs multiple
functions related to generation of the video display
and other I/0; and the timing HAL contains most of
the circuitry required for the generation of Apple
Ile timing signals. The controlling MPU program
manipulates overall memory configuration, the
video display mode, and some I/0 functions by set-
ting or resetting programmable MMU and 10U soft
switches.

The video output is compatible with a video
monochrome or color monitor. It can be used with a
home TV when connected through an inexpensive
modulator. Either single or double horizontal reso-
lution displays can be produced by programs, al-
though an auxiliary slot RAM card is necessary for
use of the DOUBLE-RES display modes. All
DOUBLE-RES displays are available with a 64K
auxiliary RAM card, but a 1K RAM card only
supports DOUBLE-RES text or, with a minor
RAM card modification, DOUBLE-RES LORES
graphics.

TEXT is upper and lower case, 5 x 7 dot matrix
representation ina 40 character by 24 line (SINGLE-
RES), or 80 character by 24 line (DOUBLE-RES)
display. There are 96 video text characters, all of
which can bedisplayed normally (white on black) or
inverted (black on white). Sixty-four of the text
characters can be flashed between normal and
inverse display. This includes numerals, punctua-
tion, and upper case alphabetic characters but
excludes lower case alphabetic characters.

Graphies modes include 40 x 48 (SINGLE-RES)
and 80 x 48 (DOUBLE-RES) LORES block modes
in 15 colors, 140 x 192 HIRES point mode in six
colors (SINGLE-RES), 280 x 192 HIRES point
mode in black and white (SINGLE-RES), 140 x 192
HIRES point mode in 15 colors (DOUBLE-RES),

140 x 192 to 560 x 192 HIRES point mode in 15
colors with color dependent resolution (DOUBLE-
RES), and 560 x 192 HIRES point mode in black
and white (DOUBLE-RES). Some capabilities exist
for mixing text and graphics.

The video display in all modes is mapped in cer-
tain areas of RAM, motherboard RAM in the
SINGLE-RES modes, and both motherboard and
auxiliary card RAM in the DOUBLE-RES modes.
10U circuitry continuously scans one of four possi-
ble areas in motherboard and auxiliary card RAM
while RAM output is processed to generate video.
RAM addressing is time shared between the system
address bus and the IOU video scanner. 65602 access
to RAM alternates with video scanner access so,
while the 6502 operates at 1 MHz, motherboard and
auxiliary card RAM are accessed at 2 MHz. In the
process of scanning RAM for video output, the RAM
is refreshed.

In addition to video output and the I/O capabili-
ties inherent with the peripheral slots, there are a
cassette input port, a cassette output port, a speaker,
four TTL control outputs, one .5 microsecond TTL
outputstrobe, four resistance sensitive timer inputs,
three TTL inputs, a keyboard, and a numeric key-
pad jack. Two of the TTL inputs can be activated by
pressing the open or close Apple switches on the
keyboard.

The keyboard contains 63 key switches arranged
like those on an IBM Selectric typewriter, and is
adequate for most text processing functions. Opera-
tional features include a CAPS LOCK key, n-key
rollover, and automatic simulation of rapid key-
presses when a key is held down (auto repeat). An
alternate keyboard layout is electrically selectable,
but a switch assembly must be installed to access the
alternate layout. Also, because of the versatile
nature of the motherboard keyboard circuitry, the
keyboard layout can be changed by simply replac-
ing a ROM on the motherboard.

The built-in Apple I1e power supply provides+12,
—12, +5, and —5 volts DC referenced to ground.
These voltages and ground (0 volts) are distributed
throughout the motherboard and to the seven pe-
ripheral card slots. +5 volts and ground are also
connected to the auxiliary slot.

There are many signals distributed throughout
the Apple Ile, but the most fundamental data
transfer takes place on the data bus, and the most
basic control information is distributed via the
address bus. To understand how the Apple Ile and
other microcomputers really work, it is very impor-
!;ant to understand the bus structure. Fortunately,
it's not that hard to understand. The basic concepts
of the bus structure are within the grasp of nearly
everyone who uses a microcomputer.

The bus structure is a natural starting point for
learning what really goes on inside the Apple com-
puter. Discussing the bus structure will lead natu-
rally to the discussion of the other miecrocomputer
elements that the bus is connected to. First, though,
we need to find out what a bus is and how it is used.

COMPUTER BUSES AND
THREE STATE LOGIC

Logic. signals in the Apple are distributed electri-
cally via conductive paths on the motherboard.
en a number of signals are grouped functionally
and distributed throughout a microcomputer, they

chapter 2

The Bus Structure of
the Apple lle

are collectively referred to as a bus. Physically,
then, a bus is an electrical distribution of multi-
line information. In the Apple, the address bus is
a sixteen-line electrically distributed information
group, and the data busis an eight-line electrically
distributed information group.

Some devices connected to a bus are strictly
receivers of information. ROM is like this in its con-
nection to the address bus. Receivers respond to the
high/low information on the lines of the bus without
appreciably affecting the bus information. Electri-
cally speaking, the receiver input presents a high
impedance to the bus which enables other devices to
bring the bus lines high or low. If impedance is a
new word to you, it may help to think of high imped-
ance as high isolation.

Some devices on a bus must be information
transmitters capable of bringing the bus lines high
or low. If more than one information transmitter is
connected to a bus, each transmitter must be able to
disconnect itself from control of the bus by present-
ing a high impedance to the bus. Only one device can
control the bus at a time. Instead of two state, the
outputs of these devices are said to be three state or

2-2 Understanding the Apple lle

tri-state. The three states are high voltage, low volt-
age, and high impedance. All information transmit-
ters to the data bus of the Apple are capable of
presenting these states to their bus connections. The
ROM output to the data bus is a typical three state
output.

A third type of device, capable of transmitting to
or receiving from a bus, is called a transceiver
(transmitter/receiver). The MPU, for instance,
receives (reads) data from and transmits (writes)
data to the data bus, so as far as the data bus is
concerned, the MPU is a transceiver. While the
MPU isreading, it presents a high impedance to the
data bus so the addressed device can place data on
the data bus. While the MPU is writing, it controls
the data bus.

Figure 2.1 shows a hypothetical 4-line bus. The
symbols shown are schematic representations of a
tri-state linedriver, aline receiver, and a line trans-
ceiver. A triangle represents a single line driver.
Triangles with a control line coming in from the side
are tri-state line drivers. A little circle at a control
input to a triangle means that the input is active
when its voltage is low. Here is a truth table for the
tri-state line driver shown in Figure 2.1:

OUTPUT
INPUT | ENABLE OUTPUT
Any Low High Impedance
High High High
Low High Low -

The control line either enables the high/low output
or forces the output to high impedance. The high/
low output, when enabled, follows the input.

It can be seen that the output enable controls of
the various information transmitters are the key to
cohesive control of the bus. For a bus with many
possible information transmitters, like the data bus
of the Apple, there has to be some intelligent man-
agement of the various tri-state output enables. We
will see shortly how this is accomplished. In the
following discussions, remember that when a device
like a ROM chip responds to an address prompt by
placing data on the data bus, this is accomplished
via an output enable to the tri-state outputs of the
ROM chip.

Figure 2.2 shows a highly simplified diagram of
the bus structure of the Apple Ile. There are two
distinet multiline signal paths: the addressbusand
the data bus. The R/W’ line (Read/Write control) is
shown separate and can be thought of as an exten-

sion of the address bus controlling the direction of
data flow on the data bus. Communication takes
place on every 6502 cycle between the MPU and an
addressed device. Data flows between the MPU and
the device in a direction determined by the R/W’
line. The MPU controls the R/W’ line and the
address bus.

Figure 2.3 shows the two types of bus access which
oceur in the Apple Ile. In a read access, the MPU
places an address on the address bus and reads the
data bus. In a write access, the MPU places an
address on the address bus and places data on the
data bus. This establishes a system of data bus con-
trol that had to be implemented in the design of the
Apple. The control system works like this:

1. When the R/W' line is low (write access), all
inputs to the data bus are disabled except the
MPU.

2. When the R/W’ line is high (read access), all
inputs to the data bus are disabled except the
device which is addressed.

Thissystem concept keepstraffic flow orderly and is
a basic feature of microcomputer design.

The only remaining points to be made about buses
involve semantics. The peripheral slots are some-
times referred to as the peripheral bus or the
Apple bus. In fact, the wiring of the slots fits our
description of a bus as a functional group of distrib-
uted signals. The slots are a bus whose distributed
signals include the address bus, the data bus, and
other signals. Up to this point, the discussions have
avoided calling the slots a bus only to aveid confu-
sion between the card cage bus and the more basic
address bus and data bus. The connections to the
RAM and ROM chips form two more distributed
signal groups that can be referred to accurately as
the RAM bus and the ROM bus. This book will
continue to use the word “bus” to refer to the address
bus, the data bus, and the extensions of these two
basic communications paths. The peripheral bus,
RAM bus, ROM bus, and other distributed signals
will be referred to using other terminology.

The lines of the various buses in the Apple are
referred to by one or more letters followed by a
number. For example, the lines of the Apple address
bus are referred to as AQ through A15. The largest
number, A15 in this example, refers to the line
which carries the most significant bit of informa-
tion. A list of bus terminology used in this book
follows here.

The Bus Structure of the Apple lle 2-3

ouTPUT
LINE DRIVER ENABLE
Information is transmitted — '

to the bus by a device
with tri-state outputs.

s
e

LINE RECEIVER

An information receiver
presents a high
impedance to the bus.

44&&?

DIRECTION

CONTROL
LINE TRANSCEIVER
A bidirectional _— < i
connection to the bus

must present a high
impedance to the bus
when in receive mode. -

f
1

5
Tt

Figure 24 A Hypothetical Four-Line Bus.

24 Understanding the Apple lle

DATA BUS

ADDRESS BUS
AND R/W'
= MPU
ROM
RAM
R/W
Figure 22 Basic Microcomputer Bullding Blocks.

The Bus Structure of the Apple lle 25

By this time the reader should understand the
concept of the bus as a communication path. We will
Now move on to how microcomputers in general and

Apples in particular perform their functions in a
bus environment.

THE PIGEONHOLE COMPUTER

There is an old analogy for understanding digital
computer operation which you don't see often enough
!0 bersonal computer instruction literature. It pos-
sibly is not that helpful for understanding BASIC

MPU MPU
ADDRESS DATA ADDRESS DATA
BUS BUS BUS BUS
ADDRESSED ADDRESSED
DEVICE DEVICE
A READ CYCLE A WRITE CYCLE
Figure 23 Communication on the Bus System.
programming, but it is very much like the way a
LINE microcomputer works.

NAME OF BUS TERMINOLOGY The analogy goes like this. A computer is like a
Address A0—A15 gigantic row of pigeonholes with pieces of paper in
Data' MDO—MD7* them. Each piece of paper has an instruction on it.
Mu1131plexed RAM address | RAO—RA7 There is a man who goes to each pigeonhole, one
{*,meary RAM data AUXD0—AUXD7 after the other, reading the instructions and doing
P’dPO data VIDO—VID7 what they say. The man always gets the next

eripheral slot data D0—D7 instruction from the next pigeonhole in the row

unless an instruction tells him to go to some other
pigeonhole.

That’s the pigeonhole computer. The man is exe-
cuting a stored sequential program. The man is the
microprocessor. The row of pigeonholes is computer
memory. The instructions are the prograin. The
microprocessor is smart enough to sequence through
memory and do what it's told, but it has to be told. It
has to have a program.

*MD in MDO—MD7 stands for the MOS Data bus. Apple chose
this nomenclature because most of the ICs connected to MDO—
MDT7 are MOS ICs.

26 Understanding the Apple lie

THE MPU, RAM, AND ROM

The microprocessor is the engineering marvel
which made all the home computers possible. The
6502 MPU is what executes the programs in the
Apple. Viewed from the outside, its capabilities
include manipulation of the address bus and R/W’
(Read/Write’) control, writing data to the data bus,
reading data from the data bus, logical and arith-
metic manipulation of data, and response to various
control inputs. All of these add up to execution of a
sequential program that comes from the data bus.

You see, the man from the pigeonhole computer
resides inside the MPU. The little guy has this con-
trol line called R/W’, and he can put any address
from 0 to 65535 on the address bus. He uses the R/W’
line to tell the outside world whether he'’s reading
from or writing to the data bus. He uses the address
bus to tell the world where he wants the read data to
come from and the write data to go to. There are
plenty of things this man can do, but his most favor-
ite thing in the whole world is to increment the
address bus and read the results on the data bus.
While he's reading, this little workaholic interprets
the data he reads as instructions. If there is an out-
sidedevice that is responding to his address prompts
with a valid sequential program, he will flat out
execute the program. This means that you can
exploit his insatiable reading appetite and get him
to do what you want if you're smart enough. That'’s
all any microcomputer designer ever really expects
from an MPU.

The key requirement above was an outside device
responding to the address prompts. This device is
memory: ROM or RAM. All of the addressing on the
Apple address bus is parceled out to various devices.
RAM gets addresses $0—$BFFF. ROM and high
RAM share $D000—$FFFF, although this range is
thought of as being primarily assigned to ROM. The
peripheral slots are controlled by $C090—$CFFF.
$C000—$CO8F is divided up among the keyboard
and cassette and all the other built-in devices. If the
6502 happens to be executing a program in the
$D000—3FFFF range with high RAM disabled,
then ROM is responding to the addressing with a
series of data which the 6502 is interpreting as a
program. If the ROM program tells the MPU to
store a byte of data at $400, the MPU takes a
microsecond to bring R/W' low, set the address bus
to $400, and place the pertinent data on the data bus.
Thedata is accepted by address location $400 which
is in RAM. That pigeonhole of RAM owns address

$400 just as sure as your mailbox has a unique mail-
ing address. Inside RAM, inside ROM, all along the
address bus, address decoding takes place every
6502 cycle to enable only one of 65536 possible
addresses.

The 6502 is continually executing a program
while power is applied. If it gets lost and tries to
execute a program where no program exists, it
interprets whatever jibberish is appearing on the
data bus as a program and executes it anyway. An
unstoppable program-executing machine like this
has to have a starting point when you turn the com-
puter on. It also needs a way to start from scratch
when it gets lost. This starting-point is the RESET'
input to the 6502.

The RESET' input to the 6502 goes low when the
RESET key is pressed, when a peripheral card
makes it go low, or when the computer is turned on.
Any one of these occurrences makes the 6502 stop
what it’s doing, load the address of the next program
step from locations $FFFC and $FFFD, and start
executing at that address. The contents of $FFFC
and $FFFD are the low and high bytes of the reset
vector.*

The $FFFC/$FFFD reset vector comes from
motherboard ROM since the high RAM is disabled
for reading by the reset sequence. In Apple Ile
ROM, the contents of $FFFC/$FFFD is $FA62, the
address of the firmware reset routine. There are
several important aspects of this routine that de-
termine features of the Apple IIe, but the important
point here is that the Apple has a power-up routine
in ROM. This is an essential feature of microcom-
puter design. You might say it guarantees that the
6502 always gets out of bed on the right side.

Another routine which a microcomputer always
has in ROM is a routine to load data from a storage
device into RAM so that execution of saved pro-
grams is possible. The Apple Ile, however, has much
more than the bare necessities in its 16K of ROM
space. The naked Apple is a cassette based system in
which BASIC in ROM and a system monitor in
ROM prevent unnecessary user aging while wait-
ing for the computer to become operational at turn
on. Additionally, firmware diagnostic routines are
available to confirm correct operation or aid in fault
isolation in case of hardware failure.

*Two 8-bit RAM locations sre required to store a 16-bit 6502
address. The 6502 fetches a 16-bit address from an adjacent pair
of memory locations. The less significant byte of the address is

fetched frpm the lower memory location, and the more signifi-
cant byte is fetched from the higher memory location.

The Bus Structure of the Apple lle 2-7

RAM ADDRESSING AND
DATA DISTRIBUTION

While Figure 2.2 adequately depicts the funda-
mental MPU access to RAM, it does not show many
details of the layout of RAM in the Apple. In fact,
there is some complexity to RAM access. This is due
to the nature of the dynamic RAM chips, the dual
access to RAM from the MPU and the video scanner,
and the multifaceted bank switching of RAM that
occurs in the Apple Ile. Figure 2.4 is the partial
diagram of the Apple Ile’s bus structure, expanded
from Figure 2.2 to show more of the details of
address and data distribution to RAM. The thick
black and dark gray lines in Figure 2.4 represent
the multiple lines of the address bus and the data
bus, respectively. R/W' is considered to be distrib-
uted with the address bus. The MPU, as before, is in
control of the address bus.

A 64K RAM card is shown installed in the auxil-
iary slot in Figure 2.4. This reflects the fact that the
Apple Ile design supports 128K of RAM and an
80-column text display. Eighty columns of text and
128K of RAM are fully implemented in timing, con-
trol, and bus structure. They just forgot to mount the
auxiliary RAM on the motherboard.

Figure 2.4 also shows some secondary buses which
carry address information or data. These buses are
not connected directly to the address bus or data
bus, but they can be thought of as extensions of the
address bus or data bus. The light gray buses are
extensions of the data bus, and the medium gray bus
is the multiplexed RAM address bus, an extension
of the address bus.

The Multiplexed RAM Address Bus

The multiplexed RAM address bus is a solution to
acommon problem in VLSI (Very Large Scale Inte-
gration) IC packaging. The problem is that you can
pack such complex and extensive logic functions
Into a small IC that there are not enough pinson the
IC to input and output all the information required
to support the logic functions. The solution is to
multiplex (switch, share) the information. In the
case of Apple RAM, this means multiplexing the
information of the sixteen lines of the address bus
onto the eight lines of the RAM address bus.

_ Wedon't want to get too steeped in RAM address-
Ing right now, but the basie situation is that there
are not enough pins on a 64K dynamic RAM chip to
address 64K memory cells simultaneously.* The

RAM is addressed with a one-two punch. First, half
of the address information is input to RAM where it
is saved. Then the second half of the address infor-
mation isinputand the data access takes place. Both
the first half and the second half of the address are
input on the same eight pins of RAM, so sixteen bits
of information from the address bus must be multi-
plexed onto eight lines to effect the one-two punch.
This multiplexing is accomplished in the MMU,
and the multiplexed MPU address is distributed
from the MMU to all RAM chips on the mother-
board and auxiliary card via the 8-line multiplexed
RAM address bus (RA0O—RAY7).

The two halves of dynamic RAM addressing are
referred to as the ROW address and the COLUMN
address. This refers to conceptual rows and columns
of memory cells inside the RAM chips.

The RAM addressing would be complex enough,
but in the Apple, the RAM address lines are doubly
multiplexed. Both the MPU and the video scanner
in the IOU must access RAM, so the multiplexed
RAM address is connected to the I0U as well as the
MMU and the RAM chips. During every 6502 cycle,
first the video scanner output, then the address bus
contents must be switched on to the multiplexed
RAM address bus. Each access is accomplished in
two halves (the one-two punch). The RAM address
multiplexing is cyclical, resulting in the following
repeating pattern of access to the multiplexed ad-
dress bus:

T1 —Video ROW address (IOU)
T2 —Video COLUMN address (IOU)
T3 —MPU ROW address (MMU)
T4 —MPU COLUMN address (MMU)

The IOU connection to the multiplexed RAM
address busis bidirectional. While the video scanner
is addressing RAM, the 10U transmits the video
ROW address then the video COLUMN address to
the RAM address bus. While the MPU is addressing
RAM, the IOU monitors the RAM address bus and
receives MPU address information. More specifi-
cally, the IOU latches (saves) RAO—RAG6 of the
MMU ROW address and thus monitors A0—A5and
AT of the address bus without direct connection to
the address bus. By this sleight of hand, the need for
seven pins on the IOU is eliminated.

*Throughout this book the word “cell” will be used to refer to a
unit of memory that stores one bit of data. The word “location”
will be used to refer to eight associated memory cells that hold
one byte of data in the Apple Ile.

2-8 Understanding the Apple lle

ADDRESS BUS (A0-A15)
AND R/W'

-—

TIMING
GEN.

f

RAD-RA7

¥ vIDO-7

AUXILIARY
64K RAM
CARD

DATA BUS
MDO-MD7

R=+— W

|———— VIDEO

ENBO'
FROM MMU

!

OF'

1

I /DDRESSBUS

B RAM ADDRESS BUS
B 0217 BUS

T DATABUS EXTENSION

Figure 24 Bus Diagram: RAM Addressing and Data Distribution in the Apple lle.

The Bus Structure of the Apple lle 29

Video Scanning

The video scanner is not connected to the address
bus and is therefore not controllable by the MPU.
The scanner is a free running counter inside the
I0U, completely isolated from program control,
that shares RAM on an equal footing with the 6502.
Thescanner is like a second MPU, but much simpler
than an actual MPU. In mierocomputer jargon, it is
a built-in DMA device performing simultaneous
direct memory access with the MPU.,

Video scanner access to RAM is a read access as
opposed to a write access, but it is of a different
nature than MPU read access. The MPU reads data
from RAM, meaning that the MPU addresses RAM,
and data from RAM comes back to the MPU. In
contrast, when the video scanner addresses RAM,
the data from RAM does not come back to the
scanner. The data goes out, instead, to the video
generator for video processing and, in the case of
motherboard RAM when R/W’ is high, to the peri-
pheral slots via the data bus. As a result, this book
does not refer to the video scanner as reading data
from RAM. Instead, the video scanner is said to
drive data out of RAM to the video data latches and
the peripheral slots.

Other than the fact that the video scanner and
MPU both address RAM, their only operational tie
is timing. Just as the 6502 executes a machine cycle
once every microsecond, the video scanner changes
its memory address, and accesses RAM once every
microsecond. Logically enough, the timing for the
video scanner and MPU originate from the same
source. In fact, all timing on the motherboard origi-
nates at the same source. The timing involved in the
sharing of RAM is quite elaborate and is covered in
the chapters on timing generation, RAM, and video
generation (Chapters 3, 5, and 8).

The output of the video scanner is used in the IQU
for other tasks besides addressing RAM. It is used to
make up a number of IOU outputs required in video
generation. This includes the sync portion of the
VIDEO signal, so the television scan is syncronized
with the scanning of RAM. Video scanner outputs
are also used in Apple timing generation, MIXED
mode switching between GRAPHICS and TEXT,
switching between normal and inverse video to
create flashing text on the screen, simulating re-
peated keypresses for the keyboard auto-repeat
funetion, and timing out the power-up reset.

RAM Data Distribution

_The 65,536 bytes of motherboard RAM consist of
eight 64K dynamic RAM chips. Each RAM chip is

organized 64K x 1, meaning thateach RAM chip has
65,536 1-bit memory cells, one data input line, and
one tri-state data output line. 6502 microprocessor
structure requires that memory be organized for
8-bit parallel data transfer, so eight chips provide
65,536 8-cell memory locations in a 6502 system.

Each of the eight motherboard RAM chips is
associated with one line of the data bus. The input
and output lines of one chip are tied to MD7, the
inputand ouput lines of another are tied to MD8, etc.
The eight RAM chips can thus be thought of as a
single 64 kilobyte memory device with eight input/
output lines connected directly to the data bus. The
R/W’ line is gated to the RAM chips when it is time
to pass data to or from the MPU, so the RAM chips
are able to receive data on MPU write cycles and
transfer data on MPU read cycles. The RAM read/
write control line is always forced to read when the
video scanner is accessing RAM, so the videosecanner
always reads, never writes.

There is a device connected to the data bus which
does not communicate with the MPU. It is the
motherboard video latch. This latch receives data
from the data bus at a point in time when data from
the video scanner access to RAM is on the bus. In a
sense, then, the data busis multiplexed. Data travels
between the MPU and RAM during MPU access,
and data travels from motherboard RAM to the
motherboard video latch during video scanner
access.

The latched video data is routed, via the video data
bus, to video generation circuitry both internal
(VID6—VID7) and external (VIDO—VID5) to the
[OU. It is processed there to produce the dot pat-
terns that make up the Apple Ile display. VID7 is
also routed to the timing generator where it is used
to determine whether or not groups of seven HIRES
dots are slightly delayed.

Auxiliary RAM data paths are similar to mother-
board data paths with one big difference. The auxil-
iary RAM data inputsand outputs are not connected
directly to the data bus. They are isolated from the
data bus by a bidirectional bus driver that only
enables data transfer when the MPU is reading
from or writing to auxiliary RAM. This creates an
auxiliary RAM data bus (AUXDO—AUXDT)
which is an extension of the motherboard data bus.
During video scanner access to auxiliary RAM, the
motherboard data bus is isolated from the auxiliary
RAM data bus.

There is a latch connected to the auxiliary RAM
data bus which saves the data resulting from the
video scanner access to auxiliary RAM. Like the
motherboard latched video data, the auxiliary

2.40 Understanding the Apple lle

latched video data is routed on the video bus to the
video generator for processing to make up the
VIDEO signal of the Apple. Both the motherboard
latch and the auxiliary latch have tri-state outputs
to the video bus, and Apple timing is such that the
two latches alternate in controlling the video bus.

The timing involved in seanning RAM for video
output is too complex to cover in this chapter. But
you should be able to get the general picture from
Figure 2.4. In the first half of the MPU cycle, before
it is time for the MPU to communicate with the data
bus, the video scanner performs a read access to
RAM. This access is performed simultaneously in
motherboard RAM and auxiliary RAM, and the
motherboard dataand auxiliary data aredrivenout
together. Atamoment when the video data is known
to be valid on both the motherboard databusand the
auxiliary RAM data bus, the videodata is latched in
the motherboard and auxiliary video latches.* For
the following half-mierosecond, the auxiliary video
data is present on the video bus for processing by the
video generator. Following that, motherboard video
data is present on the video bus for one half-micro-
second. At the end of the second half-microsecond, a
new set of video data is latched in the pair of data
latches. If the Appleisina DOUBLE-RES display
mode, the video generator processes auxiliary and
motherboard videodataatone half-microsecond per
video eycle. If the Apple isina SINGLE-RES dis-
play mode, the video generator ignores the auxiliary
data and processes the motherboard data at one
microsecond per video cycle.

ADDRESS DECODING

Inside RAM and ROM, some pretty sophisticated
address decoding goes on so that data communica-
tion is with the correct memory location. Each RAM
chip in the Apple Ile has a capacity of 65536 indi-
vidually accessible bits of information, and each
ROM chip has a capacity of 8192 individually
accessible bytes of information. Needless to say,
much of the circuitry in the memory chips is devoted
to decoding the address input.

Like memory, but on a much smaller scale, the
Apple must decode addresses to control its various
functions. As has been stated previously, the address

“'f&g. will be seen in Chapters 3, 5, and 8, this moment is PHASE 0
rising. Peripheral cards can also latch the motherboard video
data using PHASE 0 rising.

bus and R/W' line are the way in which the 6502
commands the Apple devices to do things. Thereare
logic circuits in the MMU, the 10U, and some
smaller ICs on the motherboard that detect certain
addresses or address ranges, then perform control
funetions or output control signals to various func-
tional areas of the Apple. The following types of
control are performed by address decode:

1. Gating (enabling) of information to the data
bus, including data from serial inputs, periph-
eral slots, ROM, RAM, the MMU, and the IQU *

2. Direct control of serial output lines.

3. Control of peripheral slots.

4. Control of display mode soft switches in the
10U.

5. Control of memory management soft switches
in the MMU.

Control by address decode gives cohesion to the bus
structure.

The address and control functions of the address
bus are not separate entities but different ways of
looking at the same thing. Addressing memory loca-
tion $95FF can be thought of as controlling that
memory location. Similarly, control of the cassette
output line may be thought of as addressing it. The
address bus could be called the control bus.

Figure 2.5 is a partial diagram of the Apple Ile’s
bus structure highlighting the address decoding
motherboard devices. Please refer to this figure
during the following discussion.

The primary address decoding circuitry of the
motherboard is in the MMU. It alone, of the address
decoding elements, monitors all 16 lines of the
address bus. The MM U monitors the entire $0000—
$FFFTF 6502 address range, and activates the other
address decoding elements via various control sig-
nals. Each ROM chip, for example, is capable of
decoding a range of 8192 addresses, but the MMU
must tell the ROM chip that it is enabled and an
address in its particular range of 8192 addresses is
on the address bus. Because it receives an enabling
input from the MMU, ROM does not have to monitor
all 16 lines of the address bus. It just monitors A0—
A12 which is enough to decode a range of 8192
addresses. Similarly, other address decoding ele-
ments such as the peripheral decoding circuits and

*When a digital signal controls the passage of information ina
logic device, it is said to gate that information. Gating of infor-
mation is like opening or closing the gate of a fence to control
passage through the gateway.

The Bus Structure of the Apple lle 2-11

ADDRESS BUS
AND R/W' DATA BUS

-
- =

— CASEN' (MOTHERBOARD RAM)

—~ EN8O' (AUXILIARY RAM) DATA

L~ ROMEN1' (C1-DF ROM) BUS

= ROMEN2' (E0-FF ROM) GATES
L~ KBD' (KEYBOARD)

L~ MD IN/OUT' (PERIPHERAL DRIVER DIRECTION)

F e ot B R S

CXXX (1/0 ENABLE)

1/0 STROBE'
SEVEN I/0 SELECTS'
PERIPHERAL SEVEN DEVICE SELECTS
ApDES CO4X' (C040 STROBE)
L~ CO6X' (SERIAL INPUT)
L CO7X' (TIMER TRIGGER)

COXX' (I0U DECODE ENABLE) . ‘\

| S ——— A0-A5 and A7
e DR S R E : are tr'ansmitted
,OU [— SPKR TO SPEAKER AMP from the MMU to
—= CSSTOUT TO CASSETTE OUTPUT the 10U on the

L~ ANO-AN3 TO GAME 1/0 SOCKET e

e

B A DDRESS BUS
B RAM ADDRESS BUS

I 0ATA BUS

Figure 25 Bus Diagram: Address Decoded Signals in the Apple lle.

212 Understanding the Apple lle

the IOU do not have to monitor the full address bus
because they receive enabling inputs directly or
indirectly from the MMU. The Apple management
signals, decoded from the address bus and output
from the MMU, are listed here.

SIGNAL FUNCTION

CASEN’ Enable data transfer
between motherboard RAM
and MPU

EN8(0 Enable data transfer
between auxiliary card
RAM and MPU

ROMEN1' Enable C1—DF ROM

ROMENZ2' Enable EO—FF ROM

CXXX Enable I/O address decoding

KBD’ Enable kevboard

MD IN/OUT’ | Control direction of
bidirectional peripheral data
bus driver

Other address decoding takes place in the MMU
which does not directly manipulate these control
signals. This includes setting and resetting of mem-
ory configuration soft switches and enabling the
status of soft switches to MD7 of the data bus for
reading by the MPU. For example, $C082 on the
address bus is decoded inside the MMU to reset the
HRAMRD (high RAM read enable) soft switch.
With this soft switeh disabled, an MPU read to
address $F000 will result in the MPU bringing
ROMENZ2’ low and subsequent transfer of data
from the EO—FF ROM to the data bus. The func-
tional details of the MMU soft switches are not of
primary interest here but are asubject of Chapter 5.
The important concept here is that the controlling
6502 program manipulates the memory configura-
tion of the Apple by address bus commands decoded
in the MMU to set or reset soft switches. Then the
MMU, guided by the status of the soft switches,
monitors the address bus and enables various fune-
tional areas of the Apple via the control signals
listed above.

All of the MMU management signals except MD
IN/OUT' and CXXX enable the selected device to
control the data bus during a read cycle or, in the
case of RAM, to receive data from the data bus
dgring a write cycle.* MD IN/OUT' controls the
direction of a bidirectional peripheral data bus

*Some terminology examples—$CXXX is the address range
$COOOﬁ§CFFF. CXXX is a signal which goes high when an
address in the $CXXX range is on the address bus. CO§X’ isa

signal which goes low when an address in the $C06X range ison
the address bus.

driver as described in the next section. CXXX en-
ables further address decoding in the $CXXX range
in the peripheral address decoding circuitry.
The signals output by the peripheral address decod-
ing circuitry are

e an I/0 STROBE' signal to the seven pe-
ripheral slots,

¢ an I[/O SELECT' signal to each of the
peripheral slots,

¢ a DEVICE SELECT signal to each of the
peripheral slots,

¢ the C040 STROBE' output,

¢ the CO6X’ serial input enable signal,

e the CO7X’ timer trigger,

o and the COXX' signal to the IOU.

The IO STROBE’, I/O0 SELECT’, and DEVICE
SELECT' signals are used by the peripheral slotsin
a variety of ways described in Chapters 6 and 7. In
many instances, the effect is to enable data bus
communication with a peripheral card. The C040
STROBE' is a game I/0 socket output that goes low
for one half of a microsecond when $C04X is on the
address bus. C06X' enables one of eight serial inputs
to MD7 of the data bus during a read cycle. CO7X’
triggers the four timers whose durations depend on
settings of paddles, joysticks or other variable resis-
tors. The COXX' signal enables further address dec-
oding in the I0OU.

Addressdecoding in the IOU is not as extensive as
itisin the MMU. The IOU only monitors partsof the
$C000—$CO5F range to set or reset some video con-
figuration soft switches, to gate the status of various
IOU flags and soft swithches to MD7 of the data bus
for reading by the MPU, and to directly control
some serial outputs. The serial control signals which
come from the IQU are

o ANNUNCIATORS 0—3 to the game I/O
socket,

* SPKR to the speaker amplifier,

e and CASSO to the cassette output voltage
divider.

Figure 2.5 shows that the only line of the address
bus connected to the IOU is A6. Even with the aid of
the COXX' input, the IOU needs more addressing
inputs to perform its decoding functions. It needs to
monitor A0 to distinguish between a switch on and
switch off function. It needs to monitor A3 to distin-
guish between a video soft switch command and an
annunciator command. In fact, to perform all of its
decoding functions, the IOU needs to monitor A0—
A7 of the 6502 address in addition to monitoring the
COXX' line. However, with the exception of A6, it

The Bus Structure of the Apple lle 243

Table 24 Apple lle Master Address Decode Table (1 of 2).

HEX DECIMAL DECIMAL
FUNCTION RW RANGE RANGE COMPLEMENT
RESET/SET 80STORE W | $C000/$C001 | 49152/49153 | —16384/—16383
RESET/SET RAMRD W | $C002/$C003 | 49154/49155 | —16382/—16381
RESET/SET RAMWRT W | $C004/$C005 | 49156/49157 | —16380/—16379
RESET/SET INTCXROM W [$C006/$C007 | 49158/49159 | —16378/—16377
RESET/SET ALTZP W [$C008/$C009 | 49160/49161 | —16376/—16375
RESET/SET SLOTC3ROM W | $CO0A/$CO0B | 49162/49163 | —16374/—16373
RESET/SET 80COL W | $CO0C/$CO0D | 49164/49165 | —16372/—16371
RESET/SET ALTCHRSET W | $COOE/$COOF | 49166/49167 | —16370/—16369
READ KBD/KEYSTROBE R | $C00X 49152—49167 | —16384 TO —16369
RESET KEYSTROBE RW | $Co10 49168 —16368
RESET KEYSTROBE W | $Co1X 49168—49183 | —16368 TO —16353
READ KBD/AKD R $C010 49168 —16368
READ KBD/HRAM BANK2 R $Co11 49169 —16367
READ KBD/HRAMRD R $Co12 49170 —16366
READ KBD/RAMRD R $C013 49171 —16365
READ KBD/RAMWRT R | $C014 49172 —16364
READ KBD/INTCXROM R $C015 49173 —16363
READ KBD/ALTZP R $C016 49174 —16362
READ KBD/SLOTC3ROM R $C017 49175 —16361
READ KBD/80STORE R $C018 49176 —16360
READ KBD/VBL/ R $C019 49177 —16359
READ KBD/TEXT R $Co1A 49178 —16358
READ KBD/MIXED R $CO1B 49179 —16357
READ KBD/PAGE2 R $Co1C 49180 —16356
READ KBD/HIRES R $C01D 49181 —16355
READ KBD/ALTCHRSET R $CO1E 49182 —16354
READ KBD/80COL R $CO1F 49183 —16353
TOGGLE CASSETTE OUT | RW | $C02X 49184—49199 | —16352 TO —16337
TOGGLE SPEAKER RW | $C03X 49200—49215 | —16336 TO —16321
C040 STROBE' RW | $C04X 49216—49231 | —16320 TO —16305
RESET/SET TEXT RW | $C050/$C061 | 49232/49233 | —16304/—16303
RESET/SET MIXED $C052/8C063 | 49234/49235 | —16302/-16301
RESET/SET PAGE2 $C054/8C055 | 49236/49237 | —16300/—16299
RESET/SET HIRES $C056/8C05T7 | 49238/49239 | —16298/—16297
RESET/SET ANO $C058/3C059 | 49240/49241 | —16296/—16295
RESET/SET AN1 $C05A/$C05B | 49242/49243 | —16294/—16293
RESET/SET AN2 $C05C/$C05D | 49244/49245 | —16292/—-16291
RESET/SET AN3 $CO5E/$CO5F | 49246/49247 | —16290/—16289
READ CASSETTE IN R $C060,8C068 | 49248,49256 —16288,—16280
READ PBo R $C061,3C069 | 49249,49257 | —16287,—16279
READ PB1 R $C062,$C06A | 49250,49258 —16286,—16278
READ PB2 R $C063,$C06B | 49251,49259 | —16285,—16277
READ TIMERO R $C064,3C06C | 49252,49260 | —16284,—16276
READ TIMER1 R $C065,$C06D | 49253,49261 —16283,—16275
READ TIMER2 R $C066,$CO6E | 49254,49262 —16282,—16274
READ TIMER3 R $C067,$CO6F | 49255,49263 —16281,—16273
TRIGGER TIMERS RW | $C07X 49264—49279 | —16272 TO —16257

244 Understanding the Apple lle

Table 24 Apple lle Master Address Decode Table (2 of 2).

HEX DECIMAL DECIMAL
FUNCTION RW| RANGE RANGE COMPLEMENT
ANK2
Hv{f((}:glf"{ f%’fw}%,a RW | $C080,$C084 | 49280,49284 | —16256,—16252
WCNT+1R’ R |$C081,.$C085 | 49281,49285 | —16255,—16251
WCNT = 0.R’ W | $C081.C085 | 4928149285 | —16255,—16251
WCNT = 0.W',R’ RW | $C082.$C086 | 49282,49286 | —16254,—16250
WCNT+1,R R |$C083,$C087 | 49283,49287 | —16253,—16249
WCNT = 0,R W |$C083,$C087 | 4928349287 | —16253,—16249
HIGH RAM, BANK1
WCNT=0,W'R RW | $C088,$C08C | 49288,49292 | —16248,—16244
WCNT+1R’ R [$C089,$C08D | 49289,49293 | —16247,—16243
WCNT = 0.R’ W |$C089,8C08D | 49289,49293 | —16247,—16243
WCNT = 0.W',R’ RW | $COSA.$COSE | 49290,49294 | —16246,—16242
WCNT+1,R R |$COSB.SCOSF | 49291,49295 | —16245-16241
WCNT = 0,R W |$C08B,SCOSF | 49291,49295 | —16245-16241
DEVICE SELECT' SLOT 1 | RW |$C09X 49296—49311 | —16240 TO —16225
DEVICE SELECT' SLOT 2 | RW |$C0AX 49312—49327 | —16224 TO —16209
DEVICE SELECT' SLOT 3 | RW |$COBX 4932849343 | —16208 TO —16193
DEVICE SELECT' SLOT 4 | RW |$C0CX 49344—49359 | —16192 TO —16177
DEVICE SELECT' SLOT 5 | RW |$C0ODX 49360—49375 | —16176 TO ~16161
DEVICE SELECT' SLOT 6 | RW |$COEX 49376—49391 | —16160 TO —16145
DEVICE SELECT' SLOT 7 | RW |$COFX 4939249407 | —16144 TO —16129
1/0 SELECT' SLOT 1 RW | $C1XX 49408—49663 | —16128 TO —15873
1/0 SELECT’ SLOT 2 RW | $C2XX 49664—49919 | —15872 TO —15617
1/0 SELECT’ SLOT 3 RW | $C3XX 49920—50175 | —15616 TO —15361
1/0 SELECT' SLOT 4 RW [$C4XX 50176—50431 | ~15360 TO ~15105
1/0 SELECT' SLOT 5 RW | $C5XX 50432—50687 | —15104 TO —14849
1/0 SELECT' SLOT 6 RW | $C6XX 50688—50943 | —14848 TO —14593
1/0 SELECT' SLOT 7 RW [$C7XX 50944—51199 | —14592 TO —14337
1/0 STROBE’ RW [$C800—S$CFFF | 51200—53247 | —14336 TO —12289
SET INTC8ROM RW [$C3XX (INTC3)| 49920—50175 | —15616 TO —15361
RESET INTCS8ROM RW | $CFFF 53247 ~12289
LOWER 48 RAM ACCESS | RW | $0000—$BFFF | 00000—49151 | —65536 TO —16385
HIGH RAM ACCESS RW | $D000—$FFFF | 53248—65535 | —12288 TO —00001
INT/SLOT ROM ACCESS | RW [$C100—$CFFF | 49408—53247 | —16128 TO —12289
HIGH ROM ACCESS R |$D000—$FFFF | 53248—65535 | —12288 TO —00001

does not receive these low order address inputs
directly from the address bus. It receives them from
the MMU via the multiplexed RAM address bus as
described in the previous section.

The control functions of various addresses are
fundamental operational features of the Apple Ile
computer. For easy reference, Table 2.1 contains a

complete list of the address decoded functions of the
Apple Ile.

I/O (INPUT/OUTPUT)

Thg 1/0 capability of the Apple Ile is as versatile
as microcomputer bus architecture. We have seen

how the video scanner shares RAM, the RAM
address bus, and the data bus to drive a video map
out of RAM for video generator processing. The
other I/0 features require more direct manipula-
tion from the MPU.

Apple I/O is memory mapped. This computer
lingo is used to describe a system where the I/0
devices have assigned addresses just like memory.
The addresses assigned to I/Q in the Apple are in the
$CXXX range. This includes the built-in I/0 devices
as well as the peripheral slots.

Figure 2.6 is a busdiagram of the Apple Ile high-
lighting I/0 capabilities. As you would suspect ina
memory mapped I/O system, the address bus is

The Bus Structure of the Apple lle

2415

ADDRESS BUS (A0-A15) DATA BUS
AND R/W' MDO-MD7
< W

CK

oma' —>o— GATED 40
$1

DMA =——=DMA’ AD-A15

DISK (FROM MMU)
SL40T UFRTVE SLOT| MDINJOUT

sLOT 7 |
5

SLOT| |SLOT SLOT
1 2 3

e AD-A2
1
L 1/0 STROBE' PERIPHERAL PADDLE0 — -
— L 1/0 SELECTS' -:ONTRTOL PADDLEf —QUADL J.
PERIPH |—= DEVICE SELECTS' PADDLE2 —TIMER }—=1 weuT BUTTONO
ecopel— C04X (C040 STROBE') PADDLE3 — wux [+ BUTTON!
Ad-A11 - coxx'TO 10U Co7X' _J |+— BUTTON2
——— — 06X =— CASSETTE IN
o o .
CXXX
— — MD7
MM U
AD-A15
I HAOjRQ_.)
CoXK — EEmEEEEEEEE RAM
—
* louf—— : i
— ANO
— AN1
— AN2
S AN
CASSETTEOQUT
SPEAKER OUT
— AD-A12
ROM
B /\DDRESS BUS
" ADDRESS BUS EXTENSION
B DATA BUS
- DATA BUS EXTENSION

Figure 24 Bus Diagram: Input/Output in the Apple lle.

2.46 Understanding the Apple lle

directly or indirectly distributed to all of the 1/O
devices. Additionally, most of the I/0 devices are
connected to the data bus.

Hardware control of the /O devices is viaaddress
decoding. In other words, when the MPU addresses
an 1/0 device, circuitry on the motherboard must
detect that address on the address bus and generate
signals which control that device.

The response of a device to its control signals will
depend on the nature of the device. Addressing the
speaker makes the speaker diaphragm tense or
relax. Addressing the cassette output causes the
cassette output line to toggle high or low. Address-
ing the keyboard causes the ASCII of the last key-
press to be placed on the data bus. Addressing a
peripheral slot causes the card in the slot to do what-
ever it was designed to do when its control signals
are activated.

Keyboard Input

The Apple Ile keyboard circuits include the key-
board, a keyboard encoder IC, and a 2K x 8 ROM.
The keyboard and encoder combine to latech ASCII
for keys that are pressed. The 2K x 8 ROM givesthe
Apple Ile a versatile keyboard code translation ca-
pability and provides a tri-state connection to
MDO0—MD6 of the data bus. Since the keyboard code
is latched, the controlling program can make the
MPU read the code of the last keypress at any time or
any number of times before the following keypress.

The MPU reads the keyboard input via a read
access to $C000. Any read access in the 3C00X range
can be used for this purpose, but the programming
convention is to use $C000. When the MM U detectsa
read to $C00X on the address bus, it pulls the ena-
bling KBD' signal low*. This results in the transfer
of the 7-bit ASCII of the last keypress from the
keyboard ROM to MD0—MD6 of the data bus.
Additionally, the IOU detects the read to $C00X and
places the state of its KEYSTROBE soft switch on
MD7 of the data bus. The MPU thus reads the state
of KEYSTROBE and the latched ASCII of the last
keypress with a single access to $C00X.

The KEYSTROBE soft switch is set by the
KSTRB signal which goes high momentarily any
time a matrix key is pressed. KSTRB is output by

*KBD also goes low when a read is made to $C01X although
Apple doesnot document this feature. Daring programmers may
exploit this capability to read the keyboard ASCII simultane-
ously with AKD or other I0U or MMU {flags. Before you write
routines like this, please note that AKD becomes valid before
keyboard ASCII as described in Chapter 7.

the keyboard encoder and processed inside the IQU,
The strobe soft switch is reset when the MPU makes
a read access to $C010 or a write access to $C01X.
This provides programmers with a means of detect-
ing a keypress and distinguishing between multiple
keypresses. The program polls $C000 until it finds
the MSB high (KEYSTROBE). Then it resets
KEYSTROBE, processes the ASCII, then resumes
polling $C000.

If a key is held down continuously for .5to .8
seconds (32 to 48 television scans), the 10U will start
setting the KEYSTROBE soft switch 15 times every
second (onee every four television scans). To the pro-
gram, this looks as if someone is pressing a key 15
times per second, and the result is the auto-repeat
feature of the keyboard.

A second flag related to the keyboard is the AKD
(any key down) flag, read at $C010. The AKD signal
is routed from the keyboard encoder to the 10U and
relayed to MD7 when the IOU detects a read to
$C010. This gives programmers a little more versa-
tility in interpreting keypresses. Note that reading
the AKD flag also resets the KEYSTROBE soft
switeh.

Peripheral Slots

The seven peripheral slots are connected to all of
the lines of the address bus and, through a bidirec-
tional driver, to all of the lines on the data bus. The
primary purpose of the driver is current amplifica-
tion. In other words, the driver helps motherboard
data bussignal suppliers indriving peripheral card
signal receivers and vice versa. Timing and control
signals to the driver are such that it doesn’t isolate
the peripheral slots from data bussignals... with one
exception. The driver does prevent video data from
motherboard RAM from reaching the peripheral
slots during MPU write cycles. This seems to have
been done for compatilbility with the Apple ITand IT
Plus. I can see no other reason to deny video data to
the peripheral slots during write cycles.

The MMU controls the direction of the peripheral
data bus bidirectional driver via the MD IN/OUT'
control line. The state of the address bus, R/W’, and
the DMA’ and INHIBIT' lines are used to determine
the correct direction for the driver. Direction is in to
the data bus when MD IN/OUT’ is high and out
from the data bus when MD IN/OUT’ is low.

I/0 SELECT’ (3C100—$C7FF), DEVICE
SELECT’ ($C090—$COFF), and I/O0 STROBE'
($C800—$CFFF) signals decoded on the mother-
board inform a peripheral card when it is being

The Bus Structure of the Apple lle 2-17

accessed at one of its assigned addresses. But the
slots are not restricted to response to $C090—
$CFFF addressing. The INHIBIT' line allows any
slot to disable motherboard and auxiliary slot re-
sponse to $0000—$BFFF and $C100—$FFFF ad-
dressing. With full connection to the address bus
and data bus, peripheral cards can take advantage
of this capability in any number of ways.

The peripheral slot and auxiliary slot connections
are different from each other in nature. The auxil-
iary slot is integrated into the Apple’s timing and
control scheme as an 80-column video card, and
connection to the multiplexed RAM address bus,
data bus, and video data bus make the auxiliary slot
ideal for expansion RAM and 80-column cards.
Other connections make the auxiliary slot an ideal
diagnostic port for production testing or fault isola-
tion in malfunctioning motherboards. The periph-
eral slots, on the other hand, are meant to hold any
variety of I/0, memory expansion, or system con-
trolling device. To this end, the peripheral slots are
supported by full connection to the address bus and
databus, fixed address assignments, and connection
to 6502 control lines and Apple timing signal lines.

Disk I/O

Disk I/O operations are an example of the flexibil-
ity that the peripheral slots give to the Apple. With
no peripheral cards plugged in, the Apple Ile has
only an anitiquated cassette interface for loading
and saving memory data. This goes back to the bad
old days when built-in cassette I/O was a noteworthy
convenience. But everybody knows that the primary
means of loading and saving memory data in the
AppleIleis with 51 inch floppy disks. The Apple is
thought of as a disk based computer, and when a
disk controller is installed in a peripheral slot, it is
fully integrated into the Apple, just as if it were a
motherboard device.

The data transfer path for disk output is from
RAM to the MPU to the disk controller to the disk
drive, and the data input path is the reverse of the
output path. Data is loaded from the transfer source
into the MPU, then stored at the transfer destina-
tion from the MPU. Data transfer between the MPU
and the controller is via the data bus.

Thedisk controller resides in a peripheral slot and
responds to the address bus/data bus environment
much like RAM. During disk input, the controller
responds to a read access from the MPU by placinga
byte of data on the data bus. During disk output, the
controller responds to a write access by accepting a

byte of data from the data bus. The addresses of the
input port and output port depend on which slot the
disk controller is in. If, as is normally the case, the
disk controller is in Slot 6, the input port address is
$COEC and the output port address is $COED.
Besides $COEC and $COED, other address com-
mands perform the functions of motor control, drive
selection, read/write configuration, and head posi-
tioning. These commands are decoded on the moth-
erboard and controller. The motherboard eircuits
detect the $COEX range on the address bus and
activate the Slot 6 DEVICE SELECT’ signal to tell
Slot 6 it is being accessed. The controller decodes
A(0—A3 of the address bus to determine which of 16
possible commands it is being given.

The actual programming of disk I/0 is very com-
plex, requiring timed intervals, data encoding, and
extensive software housekeeping. Regardlessof this,
all MPU control of the disk is via 16 address com-
mands on the address bus, and all data transfer is
over the data bus.

There is no motherboard ROM routine to load
programs from a disk drive when the Apple is first
turned on. A 256-byte program does exist on the
controller card, accessible at addresses $C600—
$C6FF (assuming Slot 6), which loads the extensive
Disk Operating System (DOS) from disk to RAM.
After power up, the motherboard firmware turns
control over to this controller firmware to get the
DOS up and running.

DMA and the MPU

As Figure 2.6 shows, the MPU address and R/W’
lines are connected to the address bus via a 17-bit
tri-state line driver. One purpose for this device is to
enable the MPU to drive (supply required signal
voltages to) all the circuits on the address bus,
including a possible variety of peripheral cards. A
second purpose of the address driver is to give the
MPU a tri-state connection to the address bus. This
is necessary to isolate the MPU from the address bus
during DMA operation, because the 6502 address
and R/W' outputs are not tri-state. DMA (Direct
Memory Access) is achieved from a peripheral
card when the card pulls the DMA’ line low. This
DMA capability is actually a direct bus access
which gives the peripheral card command of the
entire Apple. Pulling the DM A’ line low forces the
17-bit line driver to high impedance, stops the clock
tothe MPU, forces the MPU data terminals to input
mode, and affects the MMU read/write control of
the peripheral data bus driver.

248 Understanding the Apple lle

Unless it is stated otherwise, the discussions in
Understanding the Apple Ile assume that no periph-
eral card is performing DMA. This means that the
normal situation exists in which the MPU controls
thedata bus during write cycles and always controls
the address bus.

The Serial Input Multiplexor

In addition to the keyboard input and any periph-
eral card inputs to the Apple, there are four paddle
inputs, three pushbutton inputs, and the cassette
input. Each paddle input is tied to a timer which,
when triggered, outputs a high TTL level for a
period of time determined by its paddle setting. The
four timer pulses, three pushbutton inputs, and the
processed cassette input are all applied to the serial
input multiplexor.

When an address in the $C06X range is on the
address bus, the serial input multiplexor places one
of itseight inputson D7 of the peripheral data bus as
follows:

ADDRESS | INPUT
$C060/3C068 | Cassette input
$C061/$C069 Pushbutton 0
$C062/$CO6A Pushbutton 1
$C063/$C06B Pushbutton 2
$C064/$C06C Timer 0
$C065/$C06D Timer 1
$C066/3CO6E Timer 2
$CO67/$CO6F Timer 3

The MMU brings MD IN/OUT’ high when a read
is made in the $C06X range. This causes the serial
input data to be passed from D7 of the peripheral
bus through the bidirectional driver to MD7 of the
data bus. The combined response of the serial input
multiplexor and the bidirectional driver toa read to
$C06X allows the MPU to read the serial inputs like
memory.

Theserial input mechanization is similar to ROM.
A device responds to its address on the address bus
by placing data on the data bus. In this case, how-
ever, data is placed on only one line of the data bus.
The MPU receives data from the data bus as it does
when reading data from memory, and the control-
ling program ignores everything but MD7. The
program processes the MD7 information, extracts
the transfer data, and stores it in RAM.

The Serial Outputs

In addition to the video output and any peripheral
card outputs, there are seven serial outputs from the
Apple motherboard. These outputs are operated by

address decoding. They are direct or indirect out-
puts of the I0OU, with the exception of the C040
STROBE' which is an output of the periphera)
address decoding circuitry. The serial outputs and
their controlling addresses are

CONTROL

ADDRESS SERIAL OUTPUT
$C02X Cassette output toggle
$C03X Speaker toggle

$C04X C040 STROBE’
$C058/3C059 | ANNUNCIATOR 0 off/on
$C05A/$C05B | ANNUNCIATOR 1 off/on
$C05C/$C05D | ANNUNCIATOR 2 off/on
$C05E/$CO5F | ANNUNCIATOR 3 off/on

A very interesting point about the serial outputsis
that serial output data is not transferred on the data
bus. Most of us would expect a serial output to be
written out on one of the lines of the data bus as if we
were writing to memory. But addressing a serial
output port merely performs a control function on
the output line. For example, addressing the cassette
output port toggles the cassette output line, mean-
ing it changes the high/low state of the output line to
the opposite state. In other words, the programmer
does not write data to the cassette by sending data
over the data bus to an output line. Instead, he either
tells the line to change states or refrains from telling
the line to change states at a timed interval.

Other serial output is similar to the cassette out-
put., The output port is addressed, and the control
function—toggle, strobe, level high, or level low—
is performed. Speaker, annunciator, and C040
STROBE' output lines are controlled directly by
address decode in a process which ignores the data
bus. The speaker is a toggle output like the cassette
output. The programmer can toggle the high/low
state, but he never knows whether the state is high
or low. The annunciators are on/off outputs which
can be brought high or low. For example, $C058
makes ANNUNCIATOR 0 go low, and $C059 makes
ANNUNCIATOR 0 go high. The C040 STROBE’
simply goes low for half a microsecond any time
$C04X is on the address bus, then returns high.

Reading or writing to a serial output port is a
control access as opposed to a data access. The MPU
reads from the data bus or writes to it on every 6502
cycle, even in a control access. The programmer
performs a control access with a normal read or
write instruction, but the data that is read or writ-
tenisirrelevant and ignored. This is why statements
like “SPEAKER=PEEK(-16336)” are made in
BASIC to control the speaker and the data is

The Bus Structure of the Apple lle 219

ADDRESS BUS DATA
AO-ATb. /W OO 7

DMA' > '
(FROM SLOTS) T i =k .

PERIPHERAL
SLOTS

SLOT
1

SLOT SLOT sLoT sLot SLOT SLOT
2 3 4 5 6 7|

MD IN/OUT
FROM MMU

== 1/0 STROBE

|, PERIPHERAL SLOT

-~ LEC A -
EXT - DFVIE CONTROL ' —] QuAD
A0D ﬁ[utg_%r“. 8 TIMER serintl o KEY- -
REss: [GO0 STROGE OU Neutl P BOARD
DECODE[— COXX" TO 10U CO7X TIMEX TRIGGER I TTONG— Ty EERI-
= - M1 MUX cuiTs
T | COBX SERIAL INPUT ENABLE

CXXX
y MD7 —

= M RAM RAM e BOARD -
om0 [0 [2] [% oo

CASEN
KBD'

MD IN/OUT
COXX' ——

= VIiD0—7
=— VIDE. VIO VIDEOL—+ vipeo Ena
GEN FROM MMU

‘ | B4K AUXILIARY RAM CARD
CONTROL :

a'EI'E]I;\WH : ! i RAM RAM RAM RAM
RAQ 10 DO D1 02 D3
CLRGATE 1

Gl

B0VID
SPKR
GSSTOUT
ANO—3

AUXD—7 -—

RAM) RAM RAM RAM
04 D5 D6 D7

ADDRESS BUS

ADDRESS BUS EXTENSION cacey
DATA BUS Lo T |
W DATA BUS EXTENSION aarengh | CENER- [~ locks
e

Figure 2.7 The Apple lle Bus Structure.

2.20 Understanding the Apple lle

ignored. The programmer is making a control
access to -16336 ($C030, the speaker port), and the
data is irrelevant.

THE COMPLETED BUS STRUCTURE

The discussion of the bus structure of the Apple
IIe is now complete. This chapter has presented a
series of diagrams of the bus structure, building in
complexity and completeness as we progressed
from basic ideas to detailed structure. Figure 2.7 is
the final diagram in this series. The author feels that

study of this diagram is very important in the effort
to understand the Apple Ile computer. It is hoped
that the reader can become comfortable with the
concepts of information flow within the bus strue-
ture, because this chapter is the foundation upon
which all that follows is built.

The remaining chapters are devoted to a more
detailed discussion of the various functional areas of
the Apple Ile, beginning with the important subject
of timing. Understanding these detailed discussions
will be much easier if the reader attempts to visual-
ize how each area performs its functions within the
bus structure.

-
]

]

-I-I-I-I-IiIiI-

Most operational aspects of the Apple Ile have
now been discussed within the context of the bus
structure. However, this discussion has left out one
of the Apple’s most important operational aspects—
timing, Timing synchronizes everything that goes
on in the Apple. To discuss it, we must get into real
nuts and bolts detail about computer operation.

Up to this point, the subject matter of Under-
standing the Apple IIe has been of a general nature.
Noattempt was made in Chapters 1and 2 toexplain
the finer points of Apple Ile operation. Having
gained understanding of the Apple’s bus structure,
youare largely aware of the methods of communica-
tion and control that take place in this computer.
The following chapters will build on this foundation
of understanding, examining and discussing the
tIiIetai]ed features of all functional areasof the Apple

e.

The perceptive reader is probably getting the
message that the going is about to become stickier.
This book attempts to explain as much as possible
about the operation of the Apple in understandable
English. There comes a point, however, beyond
which clear illustration is achieved only with such

chapter 3

Timing Generation

and the Video Scanner

technical tools as timing diagrams, truth tables,
logic diagrams and schematic diagrams. One of the
goals of Understanding the Apple Ile is to assist
those readers who desire to do so to analyze the
operation of the Apple Ile in depth. For this reason,
some technically oriented analysis aids are pre-
sented in this chapter and succeeding chapters.
These technical aids will be accompanied by techni-
cal language. Every person reading these words is
capable of understanding the technical sections, but
some readers may not wish to, and others will find it
a struggle. Every effort has been made to assist all
readers in achieving fullest possible understanding
from the least possible effort.

By way of warning, the details of some functional
areas are just plain difficult, but most of the areas
are pretty painless.* In particular, much of the
complexity of the Apple is concentrated in RAM and
its associated circuitry. Some other complicated

*Even though it is not part of the motherboard eircuitry, disk I/0
is the subject of a chapter of Understanding the Apple Ie. Read-
ersintrepid enough to tackle this chapter will find disk I/Otobe a
complex but interesting area of study.

32 Understanding the Apple lle

cireuitry, like the internal workings of the MPU,
will not be discussed at all. Besides the RAM cirCU}t-
ry, the most difficult topics probably are the details
of timing and video generation. Timing comes next,
so put on your overshoes—we’re going wading.

TIMING OVERVIEW

The important timing signals in the Apple Ile all
originate at a small group of circuits called the tim-
ing generator. You should appreciate this when
studying the Apple, because it makes a difficult job
easier. Interrelated digital timing originating from
multiple sources can scramble your brains. With a
single timing source we can assimilate the timing
sequences and then apply them to the various func-
tional areas in the following chapters.

Timing signals are distributed to all areas of the
Apple, but the Apple’s timing requirements are
determined primarily by RAM usage. RAM is
accessed alternately by the 6502 processor and the
video scanner. Executing a stored sequential pro-
gram and generating a color television video signal
are two entirely different tasks, but the two tasks
are synchronized in the Apple. As we shall see, exe-
cution of thisdouble task dictates certain facts of life
about Apple timing.

The timing generator controls the timing and
affectsall areas of the Apple Ile. Some of these areas
also affect timing generation (see Figure 3.1). The
external influences are as follows:

1. One of the timing signals, CAS’, is enabled or
disabled by CASEN' from the MMU.

2. VID7 of the video data bus and the display mode
affect the generation of the LDPS’ and VID7TM
video timing signals.

3. Anauxiliary card working in coordination with
a Slot 1 peripheral card can disable all of the
timing signals and substitute alternate signals.
Thisis not normally done in operational Apples,
but it is a capability.

4. Feedback from the video scanner elongates one
system clock period toward the end of each
horizontal television scan.

The elongation referred to in item 4 above is
necessary to keep colors consistent from scan to
scan. It alsomeans the clock period of the 6502 is not
constant but is elongated on every 65th cycle. This
book will refer to this elongated machine cycle as the
long cycle. Because of the feedback from the video
scanner to the timing generator, the two areas are
covered in this single chapter.

Apple timing originates with a 14.31818 MH;
crystal oscillator. The output of the oscillator,
referred to as 14M, isa voltage which switches from
low to high and back very close to 14,318,180 times
every second. The reason for using 14.31818 MHz
instead of 14 MHz is that 14,318,180 Hz divided by
four is 3,579,545 Hz, the exact frequency at which
color information is passed in a television set, All of
the distributed timing signals are clocked by low to
high transitions of the 14M clock, so the exact fre-
quencies at which events occur in the Apple are
determined by a television signal specification. The
approximate frequencies at which some funetions
occur are:

APPROXIMATE
FUNCTION FREQUENCY

6502 Cycle 1 MHz
Video Scanner Increment] 1 MHz
Address Bus Access 1 MHz
RAM Access 2MH:z
COLORREFERENCE 3.5 MHz
Video Output 7 MHz max.

All of these frequencies are determined by outputs
of the timing generator.

The timing generator circuits consist of a 14.31818
MHz oscillator, a pair of divide-by-two flip-flops,
and a HAL (Hard Array Logic) IC. The HAL is a
special type of IC whose logic functions can be pro-
grammed within the constraints of a format. The
format of the Apple Ile timing HAL is a 20-pin IC
with eight registered (clocked) outputs driven by
eight external inputs. This HAL, programmed to
Apple’s specifications, performs much of the work
in generating timing signals for the Apple Ile.

THE TIMING SIGNALS

This section is a very brief description of the tim-
ing signals which are the outputs of the timing gen-
erator. All these signals are described in detail later
in this chapter.

PHASE 0 is the 1 MHz clock input to the 6502. It
also is used as a general timing reference in the
MMU and IOU and throughout the motherboard.
PHASE 0 defines when an MPU address is valid,
and whether the MPU or the video scanner is
a]ddressing RAM. It is available at the peripheral
slots.

PHASE 1is PHASE 0 inverted or PHASE (. It
isinverted and gated by DM A’ to provide the 1 MHz
clock input to the 6502. PHASE 1 is used as a timing
reference by several motherboard devices and is
also available at the peripheral slots.

Timing Generation and the Video Scanner 33

- JUUDYS OBPIA PUD IOjDIgUSD Bujwi) au) (woiboig |puoiouni K'e ainbiy4

OH

¢+H9
JQIN08 -
g93s M—Hd.
CWLQIN %
nol _
I C_gdE) Je——— IOO_;EE
_ (O]
........ TR
D ARYITIXNY
(8%]
a1 HOLV]
03IA
) T D) (uvog
HINNYOS (R~ HOLYHINI9 ELLAL
03QIA ONINIL
0)
A —wO)
T ,NISVD DS_E
D
13514SvH
C svd)

34 Understanding the Apple lle

COLOR REFERENCE is a 3.5 MHz clockpulse
which is used to make up the color burst portion (_)f
the video output. The color of any Apple video is
determined by its phase relationship with the
COLOR REFERENCE signal. COLOR REFER-
ENCE is available at peripheral Slot 7.

7M isa 7 MHz clock used only in the generation of
other timing signals. It is also available at the pe-
ripheral slots.

14M is the output of the Apple’s 14 MHz clock-
pulse oscillator. It is used in timing generation and
in the shifting of video patterns in the video genera-
tor. As mentioned in the timing overview section,
14M is the ultimate source of Apple timing.

RAS’ (Row Address Strobe) clocks ROW address
information to RAM, and serves as a timing refer-
ence in the IOU and MMU. Among other things,
RAS' defines RAM ROW address time, and RAS'
rising during PHASE 1 causes the video scanner to
increment. RAS’ occurs twice every 6502 cycle—
once for MPU access and once for video scanner
access.

CAS' (Column Address Strobe) clocks COLUMN
address information to motherboard RAM. CAS' is
gated by CASEN' from the MMU during PHASE 0
toenable or disable motherboard RAM. CAS' always
falls during PHASE 1 and fallsduring PHASE 0 if
CASEN'is low.

Q3isa2MHzsignal used asatiming reference in
the MMU and IOU. 1t is also available at the pe-
ripheral slots.

LDPS’ (LoaD Parallel in/Serial out register) is a
video timing term that defines a video cycle. Picture
patterns are loaded while LDPS' is low and shifted
out to the VIDEO output line when LDPS' is high.
LDPS’ occurs once every 6502 cycle in SINGLE-
RES display modes and twice every 6502 cycle in
DOUBLE-RES display modes.

VID7TM is a video timing signal that enables the
14M clockpulse of the video shift register. It enables
shifting every other 14M in TEXT40 and HIRES40
display modes and shifting every 14M in the other
display modes. It also may be delayed or undelayed
in HIRES GRAPHICS mode to control the shifting
of 7-dot groups.

APPLE FREQUENCIES

It is very hard to make precise statements about
the frequencies of some signals in the Apple. This is
because of the clockpulse elongation which occurs
every 65th 6502 cycle. 14M, 7M, and COLOR REF-

ERENCE are not affected by this elongation,
PHASE 0, PHASE 1, Q3, RAS’, and CAS' are
affected.

If not for the long cycle, the frequencies of all
timing signals could be computed by dividing
14,318,180 by 14,7, 4, 2, or 1. In actuality, this works
for computing the fixed frequencies. 14M occurs at
14.31818 MHz; 7M occurs at 7.15909 MHz; COLOR
REFERENCE occurs at 3.579545 MHz, The 1 MHz
and 2 MHz signals are less straightforward.

The period of time required for a 14.31818 MHz
signal to go through a complete high/low cycle is
1/14318180 seconds or about 69.8 nanoseconds (69.8
billionths of a second). All synchronized durationsin
the timing generator are multiples of this time
period which