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Foreword

This, the last in the series of Junior Computer Books, describes all the
software required to operate the complete system. Chapter 13 introduces
an extended version of the Printer Monitor program (PME)} which com-
bines the advantages of the original editor program with those of the
Printer Monitor. It selects the best of both worlds. As a result, program
entry and assembly can be accomplished quickly and easily.

Chapter 14 provides a detailed description of the Printer Monitor program
and the associated subroutines, while the extended version is fully de-
scribed in chapter 15. The software required for the cassette interface, the
Tape Monitor program, is explained in great detail in chapter 16.

As well as providing a complete run down on the various system routines,
Book 4 also contains detailed program listings of the PME, the TM and
PM software in the appendices at the back of the book. Finally, appendix 5
describes how BASIC may be run on the Junior Computer, a welcome
facility that puts the machine in touch with the rest of the world.
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13

Editing and assembling
at high speed

The PM Editor

Writing a program is great fun . . . until it has to be entered into
the computer. That is, unless the programmer has acquired a
certain degree of expertise and has discovered all sorts of short-
cuts to speed up the process. After all, the Junior Computer
was designed to provide enthusiasts with an educational, yet
enjoyable pastime — not forced labour!

The first step towards simple and efficient program entry was
taken with the introduction of the editor and assembler in
Book 2. Book 3 went a step further with full details of the
cassette interface which enables programs to be stored on tape,
so that they only have to be entered manually once. But, as this
chapter will show, the entire process can be accelerated con-
siderably with the aid of a high speed editor.

The computer’s ‘jump’ from the original monitor program to
the Printer Monitor was also described in Book 3. It is now time
for yet another leap forward: from the original editor to the PM
Editor (PME). As its name suggests, this is an editor program
based on the Printer Monitor. In other words, it involves the use
of the ASCIl keyboard and the results can be monitored on a
video screen or with the aid of a printer, instead of the hexa-
decimal keyboard and the seven segment displays. Nevertheless,
the system will still make use of hexadecimal labels for efficient
program entry.

Let us examine the number of new possibilities that are now
open to us. For one thing, there are more keys available, some
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of which already serve a variety of ‘new’, time-saving functions.
In addition, several instructions can now be displayed at the
same time. What is more, the actual number of key operations
can now be reduced by about 30% with respect to the original
monitor routine, so that the programmer is less liable to make
typing errors.

All this has come about with thanks to PME. Again, this very
useful feature will be explained in detail and will be illustrated
with practical programming examples wherever relevant. The
programs will involve PM subroutines such as the ones described
in chapter 12 of Book 3.

Reading this chapter and learning to work with PME is bound
to take a certain amount of time and effort, but the program-
mer will discover that in the end it will save him/her precious
hours . ..

Junior’s gaining stature

The computer completed its physical growth in Book 3. In Book 4 the
machine will be supplied with sophisticated software to update its mental
education.

Both the EPROMs containing the Tape Monitor and the Printer Monitor
have a vacancy for about % kilobytes of memory. Obviously, something
had to be done to ‘fill the gap’. PME was developed to occupy these (so
far) unused memory locations. Although the PM editor does not occupy a
great deal of memory space, this ‘investment’ provides a lot more room:
on the keyboard and especially on the video screen which now allows in-
struction sequences and various comments to be shown in an easy-to-read
manner. Therefore, the new editing feature is a real ‘eye-opener’ in every
sense of the word!

Of course, the statement that a new editor is required will make readers
wonder what was wrong with the old one, or rather, what advantages does
PME have over the original editor routines. The argument that there
happens to be sufficient room for PME in an existing EPROM is hardly
valid! After all, the memory space could have been filled with all sorts of
equally useful routine and/or interesting information!

What does PME have to offer?

Well, what did we have to start with? As you will remember from Book 2,
the original editor program had one very great advantage in that it enabled
the use of hexadecimal labels. The alternative is to use labels consisting of
words of up to six letters: labels similar to the ones found in the listings

8



at the back of Book 2 and at the back of this book. The thing is, such
listings are made with the aid of a large editor and assembler which occupy
a great deal more memory space than the %k taken up by PME. So, apart
from the extension memory (busboard EPROM), there just is not suf-
ficient EPROM available for word programming. in any case, the majority
of programmers would prefer to store programs on cassette tape rather
than run to the expense of filling up yet another EPROM. However, there
is another reason for not choosing a large extensive editor. )
This would require a fully documented user program, so that all the labels
are known and all the memory locations involved are assigned a name
beforehand (such as POINTL or BYTES), in other words, they have to be
‘declared’. The same thing refers to subroutines with a fixed address,
tables, etc.
Now, supposing an operator has thought of a program at four o‘clock in
the afternoon and wishes to know by five whether or not it works (so as
not to miss the train home!). The chances are, the program will need
brushing up here and there. Then it should be taken into account that:
a. a large editor/assembler requires a considerable amount of preparation
work beforehand;
b. more often than not, some of the preparations will be found to have
been superfluous.
Seen from that angle, it is preferable to have an editor that works with
hexadecimal labels like the original editor and PME of the Junior Com-
puter. Granted, the method mentioned above would have the program
entered by four thirty, but what is the point, if it takes another hour to
‘clean it up’?
Undoubtedly, hexadecimal labels make programming a lot easier. During
the ‘creative phase’ in particular, when a program is actually being devel-
oped, the hexadecimal system is indispensible. Furthermore, it saves
having to write a new assembler, as the existing version described in
chapter 9 of Book 2 is perfectly suited to its task.
There is only one (possible} snag in using hexadecimal labels: label
numbers may not be identical to the low order byte (ADL) of an absolute
address, in other words, an address which was established before the
program was edited and assembled. However, there are matters which the
operator will get to grips with soon enough, so it is hardly a disadvantage.
in any case, only about 80 labels are actually available which should avoid
confusion. Readers may think that this is a limited number, but they can
be assured that, even when relatively long programs are involved, 80 is
more than sufficient.
In spite of these advantages, the original editor routine needs to be re-
placed for the following important reasons:
® Firstly, the key functions on the main board of the Junior Computer
are very restricted and so is the six digit display.
® Error messages. The standard editor only features one type of error
message: ‘EEEEEE’ on the display. This is shown until the offending
key is released. Statistically, therefore, it is quite likely to escape the
operator’s notice altogether. Since it is always useful to be able to learn
from one’s mistakes, it might be helpful if the computer were to be a
little more explicit by providing



® more error reports. One large disadvantage in the original editor is the
fact that it gives no indication when the memory range defined by
BEGAD on the one hand and by ENDAD on the other is full after an
excessive number of instructions and labels have been entered. This
can be extremely annoying and is exactly what happens in the PLAY
program given in Book 2 (page 41). The available memory range,
0000 . . . BBED, is quite sufficient for the assembled version of the PLAY
program (labels are deleted), but not for the non-assembled version where
the labels are still included. As a result, the computer runs out of memory
space, so that the EOF character, 77, will be stored in location $QE3
(= BEGADH!) and the first instruction is overwritten. This can be
remedied by dropping the label 98¢ (PLAY), which is quite feasible since
the program does not actually jump to this label. Then there would be
room for the whole program (including all other labels) ... but there
would not be enough locations left to store the first label to be detected
during assembly (see figure 1). The solution is to store the PLAY program
on page 02, where there is plenty of room.
By the way, the extended version of the Junior Computer provides con-
secutive RAM from @200 . . . @7FF, amounting to 1% kilobytes, so there is
very little danger of running out of space.
® Less fingerwork. INPUT is by far the most commonly used key func-
tion, because more often than not an instruction has to be stored in the
memory location following the one currently on display. Thus, most of
the typing involves entering a consecutive series of labels and instructions.
Fortunately, PME avoids the need to depress the INPUT key for every
single instruction and label, as it will accept an automatic INPUT whenever
numeric data (@ ... F) is entered, unless another key function was chosen
which also requires numeric data to be typed in (such as INSERT or
SEARCH). The automatic INPUT mechanism saves a considerable amount
of typing.

Introducing PME

In the original editor program, the display alternates between showing
which key was depressed and the reaction by the Junior Computer. What
is missing is a ‘bird’s eye view’ of what is going on. As readers will re-
member from Book 3, a video screen allows far more information to be
packed into a single line and a total of sixteen lines to be displayed at the
same time. Thus, the operator has a clear idea of the complete pro-
gramming process. The ‘hardware echo’ feature inherent to the Elek-
terminal was also mentioned in Book 3. The echo enables any key that is
depressed to be displayed on the screen or printed on paper automatically
— without requiring a single byte of software.

Two columns can be printed on the video screen or via a printer. One
represents the key operations by the user and the other expresses the
reactions by the Junior Computer. Thus, one column tells the operator
what he/she did and the other prints the computer’s response.

The left-hand column is reserved for the reaction by the computer and the
right-hand one for the action by the user, the latter being on the line above
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the former. (As will be seen later on, labels form an exception to this rule
as they are printed across the full width of the screen.}

Computer messages During the discussion on PM several computer mess-
ages such as ‘JUNIOR’ or ‘WHAT?" were introduced. Similarly, PME
reports back providing either general information or error indications. The
error reports are specified, so that the user knows exactly what went~
wrong.

The addresses are also shown.

Now that there is plenty of printing space, the computer might just as well
go the whole way and print each instruction along with the address con-
taining its opcode. This is a very informative addition, as it enables the
user to keep track of how much memory has been used at any one time
and (more importantly?) how much memory is still available for the rest
of the program.

And much more . .. A faster and more convenient method of defining
BEGAD and ENDAD, four start addresses instead of two, many more key
functions, faster assembly, address information about labels etc. Sounds
intriguing? Read on for a closer acquaintance with PME!

PME: a thorough survey

A. General points

The PME system program is stored inside the PM program EPROM. This is
IC5 on the interface board. The PME program occupies memory locations
14F8 ... 17FD. Use is made of several of the PM subroutines, which
means that PME will have to be started by way of PM (choice of four start
addresses). |f it were to be activated by way of the monitor routine, the
input/output (I/0) parameters would not be correctly defined. ‘

B. Cold start entry

Start address: $ 1500

As in the case of the original editor program, the cold start entry into PME
occurs at the very beginning of the editing process. In other words, this
does not refer to a user program that has already been edited once, and
perhaps even assembled, and that needs to be edited again (there are other
start adresses for this, which will be dealt with later).

The procedure is to start up PM first:

RST 1 ® 6 ¢ GO RUBOUT (= RES)

which brings us into PM. Now for the cold start entry into PME:

1 50 @& SPR (SP = SPace bar, not ‘S’ followed by ‘R’).

That starts the PME routine and the computer answers:

BEGAD, ENDAD

As readers may have already guessed, this indicates that the first address,
BEGAD, and the last address, ENDAD, have to be entered to define the
memory range in which the program is to be stored. A cold start entry
always involves RAM.
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Now the process is similar to that of the M key in PM (hex dump listing).
First the address corresponding to BEGAD is entered, then the comma and
then ENDAD. Finally, CR (Carriage Return) is pressed. Again, leading
zeros do not have to be included. For example, the popular address range
@200 . . . 03FF becomes:

BEGAD, ENDAD: 208, 3FF CR

PM EDITOR

0200 77

When the text ‘PM EDITOR’ appears on the screen, this means that
instructions and labels can now be entered. The ‘77’ at BEGAD is identical
to the one in the original editor. It is none other that the EOF character
which moves up the address range as instructions and labels are typed in.
Not surprisingly, the first instruction after the cold start entry has to be
entered with the aid of the INSERT key: | (see point G, number 5).

All in all, the PME cold start entry is a lot faster than its original counter-
part, as all the business concerning the high and low order bytes of the
start and end addresses has been discarded.

N.B. If ENDAD turns out to be lower than BEGAD, the computer will
not report the error, unlike the M function in PM. It stands to reason that
ENDAD must be higher than BEGAD and therefore lower down in the
memory map.

C. Warm start entry

Start address: $ 1533

The warm start entry procedure will also be familiar from the original
editor. This allows the computer to return to the editor, during which the
following address pointers will be defined in accordance with the initial
editing process:

BEGAD: BEGin ADdress pointer

ENDAD: END ADdress pointer

CEND: Current END address pointer

CURAD: CURrent ADdress pointer. This is used to point to the address
location containing the opcode of the instruction currently on display. In
PME it points to the address location containing the opcode of the last
instruction to be printed by PME in the left-hand column on the video
screen or printer.

After the start address 1533 has been entered (via PM!) and the R key has
been depressed, the computer reports back by way of PME:

PM EDITOR

XXXXYY YY YY

Here X XXX represents the contents of CURAD and YY YY YY the in-
struction or label whose opcode is situated at the CURAD address.
Depending on the length of the instruction, only two, four, or all six
characters will be displayed. As opposed to the cold start entry (see B) the
EOF character 77 will not be stored at location BEGAD.
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D. Lukewarm start entry

Start address: $ 1667

This is new. As its name suggests, it is half way between ‘cold” and ‘warm’.
Rather like a cup of tea that has been standing for a few minutes. It is like
the ‘cold start’ in that first BEGAD and ENDAD have to be entered and
the first instruction {with its opcode situated at BEGAD) is displayed. On
the other hand, it is also similar to the ‘warm start’, as the EOF character
is not stored at BEGAD. During a cold start entry, the current end address
pointer (CEND) initially points to an address location which is one higher
than BEGAD. However, during a lukewarm start entry, the contents of the
CEND pointer are made equal to those of ENDAD.

The procedure is as follows:

16 6 7 SP R

BEGAD,ENDAD:1 C ® 0,1 F F F CR

PM EDITOR

1Co0 85

In the given example BEGAD was defined as 1C0@® and ENDAD as 1FFF.
That's funny...isn't that the address range of the original monitor

EPROM? It certainly is, for the lukewarm start entry is especially designed
to examine ready-made programs, whether they are located in RAM or
EPROM, and the key functions SP, Z, L, P and S (see point G) play a
significant role in this process. Thus, this type of entry into the PM Editor
is of vital importance during the learning process of the apprentice pro-
grammer, as he/she can now analyse his/ner own programs, bought or
borrowed software, system programs stored in EPROM, listings, etc.

E. The warm CEND start entry

Start address: $ 17C5

Chapter 11 of Book 3 discussed how user programs, including labels, could
be stored on cassette tape to great advantage. One method was to use the
TM program (which was designed specifically for this purpose), but there
is another way involving PM. In the latter case, not only must an identifier
(ID) be entered, but also a start address (SA) corresponding to BEGAD
and an end address (EA) corresponding to CEND. The address pointed to
by CEND can be found quite easily with PME, as this is equal to the
address that is one location higher than the one containing the EOF
character 77.

Right, imagine that a program is stored on cassette and we wish to ‘add the
finishing touches’ with the aid of PME. First of all, the program will have
to be re-entered from tape. This is done by way of PM (key G). Next, PME
is activated by way of a warm start entry. This means that BEGAD,
ENDAD and CEND will each have to have a value which corresponds to
those of the program that has just been retrieved. In addition, the CURAD
pointer should also have a suitable value. The complete procedure was
described in chapter 11 (Book 3). Quite a number of addresses had to be
noted down, etc., which proved to be rather long-winded.
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The solution is to activate PME by way of a warm CEND start entry.
Obviously, both iD and BEGAD will have to be known factors, but
ENDAD can be readjusted to allow extra instructions and labels to be
inserted into the program. The end address pointer also needs to be
modified if several edited programs are to be entered from.tape as one con-
tinuous sequence (remove all EOFs) with the aid of the ‘ID = FF trick’.
What happens after the warm CEND start entry of PME? Well, once the
pointers BEGAD and ENDAD have been defined (as in the cold and luke-
warm start entries), PME searches for the memory location containing
the pseudo-opcode, 77. As soon as this has been found, the address con-
taining this value is incremented by one and the CEND pointer is then
readjusted so that its contents are equal to this new address. The computer
reports:

PM EDITOR

XXXX 77

and CEND is pointing to address location XXXX + 1.

The warm CEND start entry can be implemented to re-edit programs (in-
cluding labels) which were stored on cassette, where SA = BEGAD and
EA = CEND. This is the prime objective of this method of entry into PME.
However, it also serves other purposes. For one thing, it can be used to
check whether the EOF character 77 is still included in the program once
it has been assembled. After assembly, in other words, after all the labels
have been removed, 77 will still act as the EOF character. it will now be
held in the memory location immediately following the one containing the
last instruction in the program. If for any reason an assembled program
needs to be re-edited (labels can always be replaced if necessaryl} the
warm CEND start entry into PME can be employed, provided the final
EOF character was included in the version stored on tape. Then it is
merely a question of selecting a location for EA (End Address) that is
one greater than the value of the address containing the last instruction
in the program. This is accomplished automatically in TM when the SEF
key is depressed.

For a warm CEND start entry into PME to take place, therefore, the
program will have to include an EOF character. If not, the text ‘PM
EDITOR’ will not appear on the screen and the program will ‘crash’. f
this does happen, depress the RST key, start up PM and choose another
method of entry into PME. A practical example of this type of start entry
is provided further on in this chapter (example 5).

F. The BREAK key

Interrupting the printout . . .

The BREAK key was mentioned during the discussion on PM. It was used
to interrupt the printing process of fairly long texts. Thus, it acted as a
kind of emergency brake. A similar thing occurs during PME as well.
Whereas in PM it often proved necessary to interrupt the function pro-
vided by the M key, which prints out the hex dump of a program, it is the
L key in the case of PME (see point G, number 8) which gives cause for
such a measure to be taken. The L key allows the programmer to examine
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a particular program at high speed. When a program section appears which
requires closer scrutiny, the user simply depresses the BREAK key and
then the P key once or twice (see point G, number 9). After this, the
computer will report ‘PM EDITOR’,

N.B. If PME is activated by way of a cold, lukewarm or warm CEND start
entry, the BREAK jump vector will still be defined by PM. If the com-
puter is interrupted while printing ‘BEGAD, ENDAD’ by way of the
BREAK key, the text ‘JUNIOR’ wiil appear on the video screen.

G. The key functions of PME
1. SP (space bar) (SKIP)

The ‘increment instruction’ key

This key is well known to us from its use in the original editor program.
Suppose that PME has printed an instruction in the left-hand column of
the video screen (or the printer). This will include the address containing
the opcode of the instruction. The cursor of the Elekterminal (or the
carriage of the printer) will be ‘pointing’ to the first position of the right-
hand column. It will be on the same line as the last instruction mentioned.
By depressing the space bar, SP, nothing will appear in the right-hand
column which is devoted to displaying key operations, as the SP key is an
‘invisible’ command. But something does happen, for the next instruction
in the program, or the next label (FF XX @@) is printed on the following
line in the left-hand column. The length of the previous instruction can
therefore be calculated from the address of the opcode of the following
instruction or label. This address will be one, two or three locations higher
than its predecessor.

Once all the instructions in a program have been run through, that is to
say, repeatedly depressing the SP key has brought us to the EOF character
77, SP is operated once more, thus:

XXXX 77 SP

DONE

YYYY (ZZ ZZ 2Z)

Before the new instruction is printed, the computer reports ‘DONE’ to
indicate that the CEND pointer has been passed. The address YYYY is one
location higher than XXXX, because the ‘instruction” having an opcode 77
(the EOF character) is assigned a length of one byte. The instruction
127 22 22" is more than likely quite meaningless. It depends on what
happened beforehand: the editor may well have been activated by means
of a cold start entry. In any case, the instruction ‘ZZ ZZ ZZ' is not part of
the program that the user is currently working on. The number of 'Zs’
depends on the length of the real/imaginary instruction. From the de-
scription of the subroutine OPLEN/LENACC (chapter 8 in Book 2) we
know that any combination of two hexadecimal numbers is assigned an
opcode.

N.B. If the space bar is depressed several times after skipping the EOF
character, the following ‘instruction” will be printed after the message
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‘DONE’. Thus the PME program does not ‘disable’ the process, but the
repeated ‘'DONE’ messages politely remind the user that it is unnecessary
to continue.

2. Z (BACKSPACE)

The ‘decrement instruction’ key

One great advantage of the Printer Monitor as compared to the original
monitor was the fact that it implemented a minus key in addition to
the plus key. Similarly, as opposed to the original editor, PME has a
DECREMENT instruction key in addition to the SKIP key (INCREMENT
instruction key). As an example:

@2AC FF 17 00 z (label 17)

02AB CA V4 (DEX)

82A9 A9 FF Z (LDA #FF)

02A6 20 14 09 etc.  {JSR-label 14)

If the Z key is depressed often enough, the instruction or label situated
at the BEGAD address will be reached, and depressing the Z key once
more will cause the first instruction or label to be printed again. After all,
there can not be an address below BEGAD!

3. K (DELETE)

Remove the label or instruction currently on display

This is a familiar operation. Pressing K causes the last instruction printed
to be deleted from memory, or rather, overwritten by the one immediately
following it. In other words, depending on the length of that instruction,
the program will be made shorter by one, two or three bytes. The fol-
fowing instruction is then printed. If the last instruction of a program is
deleted, the address CEND minus one and its corresponding data (77) will
be displayed. For example:

02A6 20 14 00 SP

02A9 A9 FF K
02A9 CA Sp
92AA FF 17 00 SP
02AD 77 SP
DONE

@2AE XX XX XX

As can be seen, the instruction CA and the label FF 17 8@ have moved
down two locations in the address range and the instruction A9 FF has
been removed from the program.

4. T (TOP OF FILE)

Back to the beginning
It can not be said that the operation performed by the T key is particu-
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larly spectacular, but it can come in very useful. When the T key is de-
pressed the instruction or label contained at the first address of the pro-
gram (BEGAD) is printed. This comes in handy when the program is to be
checked via the SP, L or P keys. For example:

@2AE XX XX XX T

0200 FF 10 00

From this it can be seen that the contents of BEGAD are equal to 0200
in this example and that the program starts with the label 10. With the
original editor program the start adress would be reached by using either
SEARCH FF 10 or by skipping through the program towards it. The PM
Editor introduces yet another method in the form of ‘S FF 10 00’ (see
point G, numbers 6 and 7), but simply depressing the T key saves a lot
of work — which is just fine for those of us who do not relish a lot of

typing!

5.1 (INSERT)

Inserting an instruction or a label

This key function is by no means new, as even the original editor makes
use of this operation. Depressing the | key followed by the numeric data
(belonging to the instruction or labe! to be inserted) causes the new in-
struction or label to be placed at a location in RAM which is immediately
in front of the location(s) occupied by the previous instruction to be
displayed. This only happens after the required number of numeric keys
are depressed that correspond to the length of the particular instruction to
be inserted. The previous instruction and its successor(s) are shifted higher
up in the memory range accordingly.

if after depressing | and before the instruction was fully entered
(= press two, four or six numeric keys), a different key is depressed (i.e.
not@...9or A...F)the computer will report the error:

ILLEGAL KEY ,

and the ‘last’ instruction to be displayed is printed once again. The user
may well have pressed a non-valid key quite by accident, but it could also
have been deliberate. For instance, the programmer may have realised that
the data entered was incorrect. The user must then start from scratch by
pressing |, since it is the INSERT function that is involved — not the
INPUT function.

Again, it is time for an example. Supposing the situation is like that in
point G number 3 where the instruction A9 FF is to be deleted. The CA
instruction will then be re-located at address @2A9. We wish to replace
A9 FF by A9 (@ and therefore delete A9 FF. This is accomplished by
depressing K. Then the keys 1, A, 9, @ and @ are pressed and the following

happens:

#2A9 CA i A9 @ 0
@2A9 A9 0¢ SP

@2AB CA SP

@2AC FF 17 0@
As can be seen, all the instructions following the LDA immediate instruc-
tion have moved up two places in memory. Did you notice that PME
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ensures that the bytes in an instruction are separated by a space when they
are displayed? This occurs in both the ‘user action’ column and the ‘com-
puter reaction’ column in order to give a much clearer representation.
Together with the INPUT key function (see number 10), the INSERT
function allows instructions and labels to be typed in to the computer.
In both instances, the memory range reserved for the program will be
extended. This ranges from the address corresponding to BEGAD up to
and including the address containing the EOF character 77, in other
words, from BEGAD to CEND.

Obviously, the available memory space will not be infinitely large. After
all, an ENDAD has been defined for a specific purpose. The end address
has no real value in the original editor mode, but it does have importance
in the assembler and in PME. We are now going to discuss an error mess-
age which is displayed whenever the available (= specified) memory range
is exceeded. This is quite a new feature.

As mentioned earlier, the assembler described in chapters 5 and 9 in Book
2 is also used for programs which are entered into the computer by way of
PME. During the first phase of assembly each label (opcode = FF) that is
found is stored on the symbol stack, along with the corresponding address,
and then deleted from the program. Thus, for every label that is removed
the program is shortened by three bytes. Before the first label can be
deleted it will have to be overwritten. Provided there is sufficient room for
it, there will automatically be room for the remaining labels in the
program.

The first label must be shifted to location ENDAD and the two memory
locations below that (lower address, but higher up in the memory map).
These locations may not be used to store instructions or labels belonging
to the program that is to be edited, nor for the EOF character, 77. This
means that the position of the CEND pointer, as shown in figure 1, is the
lowest possible one. CEND will then be pointing to the highest possible
address, its contents being at a maximum level.

(By the way, the minimum number of vacant memory locations men-
tioned on page 134 and page 181 in Book 2 is too large. Only four lo-
cations have to be reserved: three for the first label and one for the EOF
character. The address ENDAD is taken into account when the total
number of memory locations is determined).

Back to the space check. As soon as an instruction or a label has been
entered — by way of an INSERT or an INPUT operation — PME checks
to see whether the corresponding rise of the CEND pointer (since the
program is increasing in length) does not lead to a new CEND position
which is one location higher than that shown in figure 1. If this is so, the
computer reports back with the text ‘FULL’. The last instruction to be
entered is not stored in memory as there is no room for it. However,
instructions can still be printed after the ‘FULL’ message. In the case of
an INSERT operation, this will be the last instruction to be displayed
before the new one was entered via the | key — and ‘rejected’. In other
words, the current address pointer, CURAD, remains unchanged. If, on
the other hand, the INPUT function is used to enter an instruction and
this is rejected, CURAD will rise by the length of the last instruction to
be displayed. The full details of the difference between the INPUT and
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Figure 1. The ‘lower’ four memory locations — the top four addresses — of the
memory range defined by the pointers BEGAD and ENDAD can not be used to edit
programs. As soon as the contents of CEND are less than those of ENDAD minus
two, PME will report ‘FULL’. The traffic sign in the lower three memory locations
only refers to the situation during the editing process. After the first phase of
assembly the first label encountered is stored in these memory locations {in the
order: label number, ADH and ADL).

INSERT functions are shown in table 2.

N.B. After an entered instruction has been rejected due to lack of space,
the current end address pointer, CEND, will be raised according to the
fength of the rejected instruction. The EOF character, 77, will however,
remain where it is!

6.S (SEARCH)
7. Y (YES)

As you will probably remember from the original editor program, the
SEARCH function works as follows. Two bytes are typed in, which in-
volves depressing four numeric keys. The two bytes may represent either
a double-byte instruction or the first two bytes of a triple-byte instruction
or label. When the computer is searching for a particular two-byte pattern,
starting at BEGAD, it stops as soon as that pattern is found. In other
words, there is no way of checking whether the same pattern is repeated
anywhere else in the program. Imagine instructions such as A9 20, for
instance. Single-byte instructions could not be tracked down at all and
triple-byte instructions only had a 50% chance of being found, since the
computer only looks at the first two bytes.

It is high time this situation was remedied. The search function in the
PM Editor has two important new features.

Firstly: rather than working to a double-byte pattern, any length of
instruction (one, two or three bytes) can now be searched for. Thus, the
user is able to examine a particular program for any instruction he/she
likes.
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Secondly: The operator can now check whether a specific instruction

crops up more than once in the memory range defined by the pointers

BEGAD and CEND. Not only can we track down any instruction or label,

but also all the addresses at which the same instruction crops up on

separate occasions (it is important to ensure that each label only appears

once!).

What is the procedure?

a. Firstly, key S is depressed. This is printed in the right-hand column of
the display.

b. Next, the instruction we wish to find is entered. This is done by
depressing two, four or six hexadecimal keys. The number of keys de-

pressed will, of course, correspond to the length of the instruction or label

which is to be traced. Only after the complete instruction has been typed

in will PME start looking for it. This is printed after the S in the right-hand

column. The PM Editor produces spaces between the bytes. If a non-

numeric key is depressed after the S key, the computer will report

ILLEGAL KEY and the SEARCH operation will have to be resumed from

scratch, starting with the depression of the S key. An illegal key may be

operated by the user deliberately if he/she realises that they are entering

the wrong instruction.

c. The instruction has now been entered and PME will begin to look for
it starting at the lowest address in the memory range, BEGAD. One of

two things may now happen: either the sought instruction is indeed

present inside the memory range defined by BEGAD and CEND and the

computer reacts by printing the instruction and its address on the left-

hand side of the screen; or, the required instruction is not found in that

particular memory range whereupon the computer will report:

DONE

XXXX Z2Z2ZZ 22

Here XXXX stands for the address reached after the CEND pointer con-

tents have been passed and ZZ ZZ ZZ represents the instruction located

at that address {(this does not necessarily have to be three bytes long, as

the number of Zs may suggest).

d. The following key operations are only relevant if an instruction was
found during point c. This leads to two different possibilities:

1. The operator wishes to check whether the instruction appears else-
where in the memory range being examined. This involves depressing

the Y key. This is again displayed in the right-hand column. PME can

now report back to the user in one of two ways. If the sought after instruc-

tion is in fact duplicated it will be displayed, along with its address,

in the left-hand column. As to be expected, this address will be different

from the one corresponding to the first ‘discovery’ (see point c); in fact it

will be higher up the address range. Alternatively, the instruction con-

cerned may well only appear once in the program, in which case the com-

puter will report:

DONE

XXXX 222222

(see pointc).

Il. The operator does not wish to check whether the instruction appears
anywhere else. In this instance, any key on the ASCIi keyboard which
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will generate an ASCI! code, except for the Y key, can be depressed. The
computer will once again reply with:

DONE

XXXX 222Z2z222

where ZZZZ ZZ represents the instruction found in point c. and XXXX
represents the address where it was found.

In practice, the SEARCH feature involves a few important considerations:
® The SEARCH for an instruction can be interrupted at any moment.
Since the instruction concerned, together with its location {address),
is printed after the ‘DONE’ report, we can see instantly whether or not we
need to continue the SEARCH.
® The SEARCH routine will not be complete until both the ‘DONE’
report and the instruction concerned have been output by the
computer.
e The Y key acquires importance only after the S key has been depressed
and the instruction to be searched for has been entered in full. If the
Y key is operated before the S key or before the instruction has been
typed in, the computer will report ‘ILLEGAL KEY'.
® When a SEARCH action is interrupted, all the keys used by the PM
Editor, except the Y key, become fully operative once more and so no
‘ILLEGAL KEY' message will appear on the screen. Thus the original
functions of the keys {(including ‘S’ but excluding ‘Y’) are ignored while
a SEARCH operation is in progress. Other keys which normally have no
function at all, and so automatically cause an ‘|LLEGAL KEY’ message,
do have a purpose once the S key has been depressed and the instruction
has been found in at least one position in memory.
All this does sound rather complicated, but will be explained in full detail
in chapter 15, which is devoted to the description of the PME software.

It is now high time for a practical example. This will make use of the
computer printout listed in table 1. As can be seen in table 1, the PM
Editor has been activated by way of a lukewarm start entry. The address
pointers BEGAD and ENDAD have been chosen to select the full memory
range occupied by the original monitor EPROM on the main board of the
Junior Computer. After the Carriage Return key (CR) has been operated
(not shown in table 1), the computer outputs the text ‘PM EDITOR’
and the first address and the instruction contained therein is printed:
1C00 85 F3.

Let us see what happens when the instruction STAZ-POINTL is searched
for (this is accomplished by depressing the keys: — S, 8, 5, F and A. Do
not try to include spaces between the various characters — this must be
left to PME, as otherwise the text ‘ILLEGAL KEY’ will be displayed and
you will have to start all over again!

Well, the operator knows that this instruction must be contained in the
program, because memory location POFA constitutes the much used
display buffer POINTL. Not surprisingly, the computer comes across the
required instruction almost immediately at address location 1C@8.

By depressing the Y key eight times in succession the computer will
output another seven address locations where the particular instruction
can be found. Note that as we are moving up the address range, each
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Table 1. An example of the warm start entry into PME and how the SEARCH
function (key S) operates.

JUNIOR

1667

1667 20 R

BEGAD,ENDAD: 1C@4,1FFF
PM EDITOR
iC@go 85 F3
1C@8 85 FA
1C83 85 FA
1CBg 85 FA
1CDD 85 FA
1D3D 85 FA
1E37 85 FA
1FDA 85 FA
1FEA 85 FA
DONE

2000 oA
1CBF C8
1CEA C8
iD55 C8
1EQE C8
1E56 C8
1F76 C8
1FB6 C8
1FBF C8
1FC4 C8
DONE

2000 oA
1Co9 85 F3
1Ce2 68
1C@3 85 F1
1C@5 68
i1C@6 85 EF
1C@8 85 FA
1CPA 68
icegB 85 F@
i1CPD 85 FB
1COF 84 F4
1C11 86 F5
1C13 BA
1Ci4 86 F2
1C16 A2 01
1C1i8 86 FF
1C1A 4C 33 1C S8D 83 1A
1C1iF 8D 83 1A Y

DONE

2008 @A S8E 83 1A
DONE

2000 @A S8C 83 1A
DONE

2000 0A

KKK KD

Q ]
[+ wn
&

>

KKKKKK KK KW

o3
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‘discovery’ will be situated at a higher address location. After the Y key
has been depressed for the eighth time, all the locations containing the
searched for instruction will have been found and the computer will
acknowledge this fact by displaying the text ‘DONE’. This is followed
by an instruction appearing at address location 2000. This is because the
jJukewarm start entry made the contents of the CEND pointer equal to
those of ENDAD (= 1FFF).

Next in table 1, the instruction C8 is searched for. This is the opcode for
the instruction INY and appears no less than nine times in the monitor
program. By the way, the address locations containing the above men-
tioned instructions (STAZ-POINTL and INY) can be checked with the
aid of the source listing of the monitor program which can be found on
pages 194 . .. 203 of Book 2.

Let us continue with table 1. After depressing the T key, address location
1CO0 is displayed along with the instruction contained therein. The effect
of the P key is to print out a section of the contents of memory and will
be elaborated on later (see point G, number 9).

We will end the description of table 1 with a small piece of research. We
wish to know where and how the port B data direction register is affected
inside the original monitor EPROM. The address of PBDD is $ 1A83. This
register must be affected by a store instruction. There are only three
possibilities:

8D 83 1A STA-$1A83

8E 83 1A STX-$1A83

8C 83 1A STY-$1A83

First, we shall check to see whether the instruction STA-$ 1A83 appears
anywhere in memory. As can be seen, it does, once, at location 1C1F.
However, the other two instructions can not be found anywhere. Thus, the
only place where PBDD is affected is at an address which is part of the
RESET initialisation routine in the original monitor program,

Now for the next function utilised by the PM Editor.

8. L (LIST)

Printing the program

The Printer Monitor program introduced various print commands, such as
the hex dump. Up until now, we have been concerned with only those
PME functions which allow a single instruction to be printed, sometimes
followed by a message on the part of the computer. Key functions L and
P (see point G, number 9) on the other hand, enable several instructions
to be printed in sequence.

Depressing the L key results in a printout of all the instructions and labels
contained within the particular memory range defined by the pointers
BEGAD and CEND, starting with the first instruction or label situated at
BEGAD. They are listed in the left-hand column of the video screen or
printer. As soon as all the instructions have been output (the current
address pointer CURAD is updated as each new instruction is printed), the
computer reports the situation with the message ‘DONE’. Then the con-
tents of the CURAD pointer (and the corresponding instruction) after it
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has ‘passed” the value of CEND are output. The LIST function enables the
programmer to give a particular program a quick ‘once-over’ to see
whether everything is correct. If the user wishes to examine any section of
program at leisure, the BREAK key should be depressed {the computer
will report ‘PM EDITOR’) followed by the P key — for reasons we shall
describe now.

9. P (PRINT)

Printing program blocks

This key performs a very similar operation to that of the L key. Supposing
an instruction has just been displayed by PME. Exactly how is not relevant
here. This instruction is displayed in the left-hand column and then the
P key is operated. This appears on the same line, but in“the right-hand
column. Next, the following 15 instructions are output one below the
other, again in the left-hand column. Therefore, a total of sixteen address
locations and corresponding instructions, including the initial instruction,
are displayed. In the case of the Elekterminal, this will exactly fill the
video screen.

Obviously, the sixteen instructions must not contain the EOF character,
77, as this will cause the computer to halt the printing process as soon as
it has been displayed.

N.B. An example of the operation performed by the P key is shown in
table 1.

10. INPUT

Keys@...9andA...F

As mentioned earlier, the INPUT function is carried out automatically.
In other words, no function key has to be depressed before inputting
data by means of the numeric keys. The only other key functions which
require the entry of numeric data are INSERT (l) and SEARCH (S). This
means that as far as these operations are concerned, either the | key or the
S key has to be depressed before the numeric data can be entered.

The PM Editor may well be waiting for data keys to be depressed after
carrying out a particular function (this can be ascertained from the
position of the cursor on the video screen or the position of the printer
carriage. Both should be situated at the start of the right-hand-column. If,
after this, the required numeric keys are depressed, the INPUT function
will be activated automatically.

Let us briefly recap on the operation of the INPUT function. This func-
tion stores the instruction or label entered by the operator in the memory
location{s) immediately following the one(s) containing the last instruc-
tion (printed in the right-hand column). In practice, the INPUT function
is very similar to the INSERT function in some respects, but very different
in others.

Again, the instruction or label is not stored in memory until its entry is
complete. Whenever a non-numeric key is depressed, either by mistake or
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on purpose, the computer will report ‘ILLEGAL KEY’. This means having
to re-enter the complete instruction. As before, the instruction and its
address are printed-in the left-hand column of the display on the following
line and again the PM Editor provides the spaces between the instruction
bytes in both columns. Therefore, do not try to add spaces as this will
only lead to an ‘ILLEGAL KEY’ message!

Since the INPUT function leads to a new instruction to be added to the
existing sequence, the EOF character and the contents of the CEND
pointer move up a higher address location. The number of locations they
move depends, of course, on the length of the instruction added.

As the memory range defined by the pointers BEGAD and CEND is
therefore extended, the chances are that the available memory will fill up
after a while. This is illustrated in figure 1 and explained in the text
describing the INSERT function. If there is no more room for any more
instructions the computer will report:

FULL

XXXX 22 22 27

where the address XXX X and the instruction ZZ ZZ ZZ correspond to the
contents of CURAD being incremented as a result of the ‘rejected” instruc-
tion. This is different to the {NSERT function, where the address XXXX
and the instruction ZZ ZZ ZZ belong to the last instruction printed before
the rejected instruction was entered.

In spite of the fact that the instruction is rejected by the computer
because of lack of memory, the current end address pointer (CEND) is
incremented by the corresponding length of the rejected instruction. As
before, the EQF character (77) remains where it is.

The two listings in table 2 provide a practical example of the difference
between INSERT and INPUT. In both cases a range of 17 memory lo-
cations is defined (BEGAD, ENDAD) and an imaginary program is in-
volved consisting of single byte instructions only. In the left-hand listing
the instructions are entered by means of the INPUT function — apart
from the initial instruction which has to be entered with the aid of the
INSERT function. The right-hand listing in table 2 shows the same se-
quence of single-byte instructions, but these are entered by means of the
INSERT function only.

In both instances the last instruction will be stored at location #20B.
Neither ‘program’ has room for the instruction 58 (CLI). Therefore, the
last available memory location is 82@0B, which proves the rule that the
pointer ENDAD must contain a value four locations greater than the
length of the program {since $OF — $0B is the same as 15 — 11 which
equals 4). Address location §20C contains the EOF character, 77, which is
also shown in table 2 following the instructions printed with the aid of the
P key. The three locations 020D, B20E and G20F are reserved for the first
label during the initial phase of the assembly procedure.

Table 2 also shows another clear difference between the INPUT and
INSERT functions as far as the order in which the instructions are actu-
ally stored in memory is concerned. To put it in a nutshell: the INPUT
and INSERT functions are not synonymous. In fact, the order is the
exact opposite. Quite a different sequence of instructions is printed after
the text ‘FULL'".
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Table 2. How to enter an imaginary program containing only single byte instructions
using the INPUT function, on the left-hand side, and the INSERT function, on the
right-hand side. Note the different order in which the instructions are stored in
memory.

JUNTOR

1503
1500

n2aa
d28a
d231
A242
233
3204
205
A205
3207
A20R
1209
203
3208
FULL
A2aC
A23a
A20 .
A202
02¢3
204
1235
A206
A207
A2a
aA206
22N
1208
3200

23 R
BEGAD, ENDAD:
PM EDITOR

77
CA
ER
ca
EA
AR
an
He
28
88
aa
if
D&

77
CA
ER
ce
EA
¥
a8
68
29

200, 20F

TCA
ER
C8
EA
49
an
AR
28
an
aa
iP
DR
58

T
P

JUNIOR

1589

1543 20 R
BEGAD,ENDAD: 2aa,20F
PM EDRDTITOR

a2aa 77 TCA
a2ea CA TER
3299 E8 ICR
a2a9 Ce TEA
3237 EA T4R
A243 48 iy
ILLEGAL KEY

#3289 48 08
3240 78 TAB
3203 »8 128
g2ad 28 188
A200 KR8 TaA
a20a Ja T18
32004 1R D8
1204 DR T5R
FULL

A200 DE T
32083 DR P
A235% 18

A2%2 AA

A2@3 08

204 2R

235 59

A206 I8

207 42

A28 EA

#2739 C°

320A ER

2@R CA

A2ac 77

Readers should also note that the right-hand column in the second listing
in table 2 deliberately called for the use of an ‘ILLEGAL KEY'. When 08
was being entered a ‘1’ was typed instead of an ‘I’. This was remedied by

depressing the ‘U’ key.
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11. X (EXECUTE)

Assembly

Like the original editor program, PME operates on the basis of hexa-
decimal labels. This means that the assembler we already know from Book
2 can be used as it stands to assemble programs edited by PME. In other
words, the labels can all be removed from the program once the corre-
sponding address information and label number have been noted down in
the label memory space which starts from ENDAD.

Another reason for keeping the original assembler is that it is a very
‘discrete’ program. During its execution no use is made of the display and
the operator does not have to press any keys. It is not until after the
assembly process that the display reports its completion.

The start address of the assembler remains the same as it was previously,
namely $1F51. Once a program had been edited by means of the original
editor program, the RST key had to be depressed, the start address of the
assembler routine entered and then the GO key had to be operated.
Alternatively, the NMI jump vector could be used to point to the start
address of the assembler which could then be started by depressing the
ST key. All this is now unnecessary as the PM Editor contains the X
function.

Once the X key has been depressed, the computer will jump to the start
of the assembler routine after a couple of preparatory measures have been
taken. One of these steps involves loading the NMI jump vector with an
address inside PME after which the program proceeds to the assembly
phase. Some time after the X key has been depressed (exactly how long
depends on the length of the program) the seven segment display will light.
The program will then be completely assembled. If the ST key on the
original keyboards is then depressed, a non-maskable interrupt is enabled
which will return the computer to the PM Editor.

What happens next is very interesting indeed . . .

All the labels are output either on the video screen or on paper via the
printer! This includes their label numbers and their corresponding
addresses. So an imaginary program containing five labels could well look
like this:

LAB $10: $0200 LAB $12: 9208 LAB $ 14: 620C LAB $ 13: 8213

LAB $ 15: 922B

PM EDITOR

XXXX 22222722

All this is possible as the labels are still stored in memory at the end of
the assembly process. Each label requires three memory locations and the
label memory range starts at ENDAD, each consecutive label having a
lower address.

As can be seen, up to four labels can be printed on a single line. The labels
are printed in the order they are discovered, noted down and deleted
during.the first phase of assembly. Thus, the addresses corresponding to
the labels increase as they are printed even though the label numbers
may jump around a bit. The reason for this was illustrated in chapter 9 of
Book 2, in the section discussing the assembler software. It is entirely up
to the programmer as to whether the label numbers and the addresses both
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increase in regular order. The programmer does not necessarily have to
stick to any particular label number order, although it is advisable for the
sake of clarity. In the example we have just given, the label numbers
appear in the order 10, 12, 14, 13, 15. There is no label number 11, per-
haps because the program has been modified since it was first con-
ceived.

Once all the labels have been printed (in this particular instance there are
no columns) the computer will report with the text ‘PM EDITOR’ on a
new line. Next, the first address and instruction of the assembled program
is printed on the following line, so address XXXX represents the contents
of the BEGAD pointer. After assembly and after all the labels have been
stored, a jJump was made to the warm start entry address of PME.

That covers all the key functions of the PM EDITOR... at last! It is
now time to deal with the practical aspects of programming the extended
version of the Junior Computer. Readers did get a glimpse of what is
involved in chapter 12 of Book 3, where certain PM subroutines were
experimented with.

Using the PM EDITOR

First, the operator (and the computer) should start by having a warming
up session:

1. Eight bit hexadecimal-to-decimal conversion

Pages 9 . .. 25 in chapter 5 of Book 2 were devoted to putting the original
editor program into practice with the aid of a concrete example. The
example used a routine called DISPLAY (together with various sub-
routines) which displayed the decimal value of an eight bit hexadecimal
number. The number was entered by depressing two hexadecimal keys.
The program itself, or rather its algorithm, was not discussed in detail at
the time and we do not intend to go into it here either, at least not until
point 2, where an extended version will be described. What we are con-
cerned with here is to point out the main differences between the pro-
cedures of the original editor program and the PM Editor.

Compare the listing on pages 23 and 24 of Book 2 with the one in table 3.
This starts with PM (the computer reports 'JUNIOR’). Next, the PM
Editor is activated by means of a cold start entry. The first ‘instruction’ is
label 1@ and is entered with the aid of the INSERT key. This is necessary
because otherwise the EOF character, 77, will remain at address 0200. It
makes no difference to the current end address pointer whether the first
instruction is entered by means of the INPUT or INSERT function; CEND
will always move to a higher address. However, if the program is started
with the ‘opcode’ 77 (0200 is also the start address!) the operator is asking
for trouble!

All the instructions and labels after this are entered by means of the
INPUT function, which is merely a question of pressing numeric keys. A
few lines further on in table 3 we find a ‘K’ in the right-hand column and
the following instruction is entered by way of the | key. This is because
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Table 3. Using the PM Editor to enter the DISPLAY program (see pages9 .. .25 in
Book 2 and example 1 in this chapter).

JUNIOR

1500

1500 20 R

BEGAD,ENDAD: 200@, 3FF

PM EDITOR

g200 77 IFF 10 00
9200 FF 10 00 A9 00
6283 A9 0@ 85 F9
2205 85 F9 85 FA
8267 85 FA 85 FB
#2909 85 FB FF 11 @4
#20B FF 11 00 28 6F 1D
g20E 20 6F 1D 10 10
¢211 i6 10 85 F9
@213 85 F9 85 F7
@215 85 F7 K

8215 77 185 D7
9215 85 D7 20 12 09
6217 20 12 @0 4C 11 @0
#21A 4C 11 00 FF 12 00
021D RF 12 00 20 14 @0
9220 20 14 @90 85 FA
0223 85 FA 84 D7
9225 84 D7 20 14 0¢
@227 20 14 00 A2 ¢4
g22A A2 04 FF 13 @90
#22C FF 13 0@ oA

@22F @A CA

#2306 CA D@ 13
#9231 DO 13 65 FA
9233 05 FA 85 FA
@235 85 FA 84 FB
@237 84 FB 60

8239 60 FF 14 690
#23A FF 14 @0 A¢ 09
823D AQ @0 84 D8
#23F 84 D8 20 15 @9
g241 20 15 040 i8

9244 18 A5 D7
3245 AS D7 69 oA
#9247 69 0A 60

3249 690 FF 15 @0
@24A FF 15 09 38

824D 38 A5 D7
@24E AS D7 E9 oA
#2594 E9 OA 85 D7

#252 85 D7 A5 D8



3254 A5 D8 E9 20

#256 E© a0 38 16
§258 30 16 fof:!

925A C8 4C 15 690
@258 4C 1i5 09 FF 16 20
@25E FF 16 080 69

4261 6@ X

LAB $10: $6280 LAB $1l: $@208 LAB $12: $02i7 LAB $13: $8223
LAB $14: $822E LAB $15: $023B LAB $16: $024C
PM EDITOR

3200 A9 @9 P
A202 85 F9

204 85 FA '
9206 85 FB

@208 20 6F 1iD

B20B 19 F3

#20D 85 F9

A20F 85 D7

p211 20 17 92

@214 4C @8 02

@217 20 2E 02

g21A 85 FA

$21C 84 D7

@21E 2@ 2E 02

@221 A2 04

0223 oA P
#224 CA

9225 DO FC

#3227 @5 FA

#3229 85 FA

922B 84 FB

d22D 60

G22E AC 9@

#2309 84 D8

3232 20 3B 02

9235 18

#3236 AS D7

9238 69 2A

g23A 60

Ad23B 38

#23C A5 D7 P
#23E E9 0A

#2406 85 D7

242 AS D8

3244 E9 A0

#3246 30 04

3248 C8

@249 4C 3B 42

@24C 60

@24D 77
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85 F7 was inadvertently entered instead of 85 D7, the operation of the
K key corrects this.

It is a matter of minutes before the entire program is well and truly stored
in memory. There is a much quicker way of checking for errors than
previously (when using the original editor program). After all, a total of
sixteen lines can be displayed at the same time on the Elekterminal and if
a suitable printer is available the programmer can run his/her eyes over the
complete listing.

The next phase in the operation involves depressing the X key to assemble
the program. After this, the display will light and the ST key (STOP, NM1)
on the original keyboard can be operated. As a result, PME will display
all the labels before reporting ‘PM EDITOR' and printing the first instruc-
tion of the assembled program.

To obtain a complete listing of the assembled program all that is required
is to depress the P key three times in succession {remember to wait while
the particular block of data is being printed before depressing the P key
the second and third times!). Once the programmer acquires the knack of
working with PME, a program such as that given in table 3 can be entered
and running in about five minutes. Of course, entering pre-recorded
programs from tape is even quicker.

2. Sixteen bit hexadecimal-to-decimal conversion

We now wish to write a program which will convert a sixteen bit hexadeci-
mal value into its decimal equivalent. Each {up to} four-digit hexadecimal
figure must be entered and printed at the beginning of a new line. The
Junior Computer must be informed when the hexadecimal value has been
completely entered by depressing the ‘:’ key. The decimal equivalent must
be printed on the same line after this colon. The computer must also be
able to deal with 4, 8 or 12 bit hexadecimal numbers. if more than four
numeric keys are depressed in a single row by mistake or on purpose, the
last four keys to be depressed must be processed. Now let us translate the
above into usable software.
The figure 1981 contains a single thousand. Thus, if we subtract two
thousand from it we are left with a negative result. Similarly, 1981 con-
tains nine hundreds, eight tens and one unit.
The highest possible 16 bit hexadecimal figure is $FFFF. This corresponds
to the decimal figure 65535. In other words, the highest contribution of
the decimal version of the figure is made by the ten thousands. There are
six of them. Thus:
10,000, corresponds to $2710
1,000, corresponds to $P3ES
100, corresponds to $0064
10,0 corresponds to $OG0A
The procedure is as follows. After a figure has been fully entered, the
value $271@ (ten thousand) is subtracted from it until the result becomes
negative. Then $2710 is added to this. The number of times that $2710
was subtracted without causing a negative result is recorded in the Y
register and is then printed. It is possible, of course, that the number of
ten thousands in the decimal figure will be zero.
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Next, the same procedure is repeated. but this time the value $03E8 is
subtracted from the remainder until the number becomes negative. The
new remainder is found by adding $@3E8 to the negative result. The
number of hundreds and then tens is calculated and printed in the same
way. At the end of the procedure, the remainder will be a value between
0 and 9 and is therefore printed without any need for further calcu-
lations.
Before describing the actual program, let us look at the PME subroutines
which are implemented:
I. CRLF Address $11E8. Two consecutive commands to enable data to
be printed at the start of a new line.
{l. RECCHA Address $12AE. This waits for a key to be depressed and
then stores the ASCI| value in the accumulator.
11l. HEXNUM Address $126F. This processes any hexadecimal key which
is depressed. After the ASCII code is converted into a data nibble, the
latter is shifted into the input buffer INL from right to left. The buffers
INH and INL contain data corresponding to the last four hexadecimal keys
to be depressed. A high order nibble is always ‘older’ than a low order
nibble. If any non-hexadecimal keys are depressed (G . . . Z etc.) the com-
puter reports the error with "'WHAT?".
tV. RESIN Address $ 1268. This clears the contents of the INH and INL
buffers.
V. PRNIBL Address $129B. This is the second half of the subroutine
PRBYT. It prints the low order data nibble of the contents of the
accumulator. For further details, readers are referred to chapter 14.
Now for the program. The main routine is called, appropriately, HEXDEC
and is shown in figure 2. To start with, the CRLF routine is used to make
sure that the new data is printed at the start of a fresh line and then the
computer waits for a key to be depressed. Then the computer checks to
see whether the depressed key was the colon or not. If so, the figure must
have been entered and the conversion and printing procedure described
earlier can begin.
First of all, however, let us see what happens if hexadecimal data is en-
tered instead of the colon. The branch instruction (BNE) leads the pro-
cessor to the label DATA and to the subroutine HEXNUM. If it was not a
hexadecimal key, HEXNUM reports ‘WHAT' and resets the Z flag. In that
case, the following branch instruction will make the program proceed to
the label NEW: the contents of the buffers INH and INL are cleared and
the computer returns to the start of the program. We then have to start
all over again by typing in a new hexadecimal figure.
if the computer does detect a hexadecimal key, the HEXNUM subroutine
makes sure that the corresponding data nibble is stored in the low order
nibble of INL. Buffer INH always contains the first two data nibbles to be
entered and INL contains the last two of the four hexadecimal keys to
be depressed. Thus a high order data nibble is always less recent than a
low order one. Unused nibbles are always zero.
What happens when the processor encounters a colon? See the section of
program following the left-hand BNE instruction in figure 2. Memory
jocations POWERL ($0000) and POWERH ($0001) are loaded with data
related to checking the number of ten thousands, thousands, hundreds and
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2 $ 0200

HEXDEC

-A9 LtDA # 19

85 STAZ — POWERL

A9 LDA#27

85 STAZ — POWERH
29 AMOUNT

A9 LDA #E8

85 STAZ - POWERL "

A9 LDA #93
a5 STAZ - POWERH

"
20 AMOUNT 10°

A9 LDA #64

8s STAZ —~ POWERL a0
A9 LDA # 09

85 STAZ — POWERH

o1

A LDA # @A

85 STAZ — POWERL »

A9 LDA # @@

85 STAZ - POWERH | 91
a5 e
29 1298 100

ac IMP — NEW @

JMP — HEXDEC

81912 2

Figure 2. The main routine, HEXDEC, in the program which enables a four digit
hexadecimal number to be converted into the corresponding decimal figure and the
result to be displayed.
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AMTEND

INY

20
ac JMP — AMNT @

@

81912 3a

b
3 CORPR @ 3c SUBTRA @

0

18 cLc 38 SEC

A5 | LDAZ - iNL F8 A5 LDAZ — INL F8
65 | Aocz—-pPowerL | ®

E5 SB8CZ — POWERL [ ]

85 STAZ — INL F8 85 STAZ — INL F8
AS LDAZ — INH Fo A5 LDAZ — INH F9
5 ADCZ — POWERL | #1 ES SBCZ — POWERH [
85 STAZ — INH 5] 85 STAZ — INH F9
98 TYA

.

'

81912 3b 81912 3¢

Figure 3. The subroutine AMOUNT in figure 3a determines how many times a certain
power of ten appears in the entered hexadecimal number and also sees to it that this
figure is printed. The subroutine makes use of two other subroutines, namely CORPR
{figure 3b) and SUBTRA (figure 3c).
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tens are contained in the input figure four times in succession. Subroutine
AMOUNT is also called four times in succession to calculate the number of
thousands etc. and to print this. After AMOUNT has been run four times,
the various amounts are known and are printed and the operator is left
with a remainder — a certain number of units. This remainder is stored in
INL and is printed by means of the PRNIBL subroutine. The computer
then jumps back to HEXDEC via NEW (clear buffers) to deal with the
next hexadecimal figure.

A few more details about subroutine AMOUNT. This is shown in figure 3a.
The subroutine begins by clearing the contents of the Y index register.
Then subroutine SUBTRA is called after the label AMNT. This subroutine
is shown in figure 3c. The value contained in locations POWERH and
POWERL is subtracted from the hexadecimal number (INH, INL). If the
result of the subtraction is either positive or zero, the carry flag will be
logic one. A negative result, on the other hand, will make it go low. The
carry business is very easy to remember:

carry = borrow and so borrow = carry.

If the result is negative, an amount will have to be borrowed, so the
borrow will be logic one and the carry logic zero. If the result is greater
than or equal to zero, nothing will have to be borrowed.

If the result is positive, the contents of the Y index register will be in-
cremented (INY) and another subtraction takes place — the program
jumps back to the labet AMNT. If this subtraction produces a negative
result, the computer proceeds to the label AMTEND. The value con-
tained in the Y register corresponds to the number of times the hexa-
decimal figure was decremented without leading to a negative result.

The rest of the AMOUNT subroutine can be explained in very few words.
After the label AMTEND the subroutine CORPR is called (shown in figure
3b). Firstly, the contents of locations POWERH and POWERL are added
to those of the buffers INH and INL, as a result of which the buffers
contain a value corresponding to the situation where the next/last figure
is to be calculated. The contents of the Y register are transferred to the
accumulator and the subroutine PRNIBL is called to print the number
that has just been calculated.

The routines in figures 2 and 3 are entered into the Junior Computer with
the aid of the PM Editor. Table 4 provides a ‘hard copy’ version of all the
key operations required and the corresponding reactions by PME. To
start with, PM is activated and PME entered by way of a cold start entry
then all the instructions and labels are typed in. The first label is entered
with the aid of the INSERT function as always. After pressing the X key
the program is assembled. Following this, the ST key on the main board of
the Junior Computer is depressed causing all the labels and their addresses
to be printed on the video screen or the printer. Then the text ‘PM
EDITOR’ will appear on the screen followed by the start address of the
program and the instruction held therein.

The program can now be executed, which means having to leave PME, as
this was activated by means of a warm start entry after the business with
the labels. Then RST, 1, 0, 8, ®, GO and RUBOUT (=RES) are operated
on the main keyboard, in that order, to start PM. This is necessary as the
HEXDEC program makes use of certain PM routines. The 1/0 parameters
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Table 4. Using the PM Editor to enter the HEXDEC program and its associated
subroutines (see also figures 2 and 3 and example 2).

SIXTEEN BIT HEXADECIMAL TO DECIMAL CONVERSION

HEXDEC

JUNIOR

1508

1584 20 R

BEGAD,ENDAD: 230, 3FF

PM EDITOR

g208 77 IFF 10 00
6200 FF 10 90 20 EB 11
#4203 20 E8 11l FF 1i @9
9206 FF 11 09 20 AE 12
#8209 28 AE 12 C9 3A
329C C9 3A D3 12
g20E DO 12 A9 ig
0218 AS 190 85 049
9212 85 @90 A9 27
@214 A9 27 85 o1
#2i6 85 Ai 20 14 09
#4218 20 14 0@ A9 EB8
#21B A9 ESB 85 99
@2iD 85 @0 A9 a3
@21F A9 33 85 a1
g221 85 @1 2¢ 14 08
3223 20 14 a0 A9 64
#5226 A9 64 85 990
9228 85 g0 A9 A0
#22A AS a0 85 01
@22C 85 01 20 14 @9
@22F 26 14 g9 A9 aA
#231 A9 A 85 20
$233 85 49 AS 30
#235 AS 29 85 01
$237 85 91 23 14 9090
9239 20 14 490 A5 F8
#23C A5 F8 29 9B 12
g23E 20 9B 12 4C 13 00
9241 4C 13 @9 FF 12 09
#244 FF 12 @0 28 6F 12
@247 24 6F 12 D3 13
¢24A DO 13 4C 11 99
#24C 4C 11 @90 FF 13 00
P24F FF 13 09 23 68 12
3252 20 68 12 4C 12 a4
9255 4C 1@ 00 FF 14 a0
g258 FF 14 @9 Ag a8
#25B AG 09 FF 15 4@
#25D FF 15 08 29 18 00
0260 20 18 Q0 9¢ 16
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#263 90 16 cs8

9265 C8 4C 15 96
g266 4C 15 40 FF 16 30
0269 FF 16 00 200 17 a9
g26C 20 17 09 69

A26F 60 FF 17 0@
9270 FF 17 00 i8

#273 1i8 A5 F8
9274 AS F8 65 00
@276 65 00 85 F8
#278 85 F8 AS FO9
#627A AS F9 65 01
g27C 65 @1 85 F9
g27E 85 F9 98

9280 98 20 9B 12
#281 2¢ 9B 12 69

0284 69 FF 18 0@
§285 FF 18 00 38

2288 38 A5 F8
P289 AS5 F8 ES5 @40
@288 E5 00 85 F8
328D 85 F8 A5 F9
@28F A5 F9 E5 @1
8291 ES @1 85 F9
2293 85 F9 60

9295 60

8296 77 X

IAB $i0: $8200 LAB $1l: $0203 LAB $12: $@23E LAB $13: $0246
LAB $14: $024C LAB S$15: $024E LAB S$16: $¢257 LAB $17: $025B
LAB $18: $026D

PM EDITOR

g200 20 E8 11

JUNTIOR

200

0203 28 R
FFFF:65535
FFF:084095
FF:00255
F:00015
ABCD:43981
1008:04096
T

WHAT?

CFl6:53014
14F8:085368
17FF:96143
1024:04132
2710:10000
@3E8:01000
f064:00100
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QAOA: 000108
: 00000

JUNIOR

153D

153D A9 R
PM EDITOR

7200
a203
3206
2208
3201
g20C
G20E
3210
9212
3215
9217
6219
821B
321D
3220
8222
8224
3226
#6228
6228
322D
B22F
#2331
#2233
@236
3238
#23B
#23E
@241
9243
#8246
3249
B24cC
B24E
8251
7253
8254
@257
325n
8258
a25¢C
#25E
0260
3262

38

29
29
Cc9
Dd
A9
85
A9
85
20
A9
85

E8
AE
3A
34
1a
2a
27
g1
4c
E8
ae
a3
g1
4C
64
o0
a0
21
ac
aA
{51
1)
21
4c
F8
9B
46
6F
g3
@3
68
20
{51
6D
wa

4E
58

F8
o0
Fg
F9

11
i2

a2

92

g2

a2
12
g2
12
82
12
a2

02

a2

3264
9266
0268
3269
326C
326D
#26E
8270
#272
8274
3276
3278
g27A
3278

g1
F9

98

F8
90
F8
F9
gi
F9

12



must be established accordingly, so the original monitor program must be
dispensed with here!

After HEXDEC is started, a number of hexadecimal numbers are keyed in
and their decimal equivalents are printed behind the closing colon. By
operating the colon key right away, the value @@0@@ will be printed.

So the program works correctly. To be absolutely sure that we know what
is going on, we would like to see the program in its assembled form. This
involves a warm start entry into the PM Editor. As table 4 shows, the start
address used is 153D instead of 1533. This is feasible as the program sec-
tion between 1533 and 153C is devoted to defining the BREAK jump
vector and to resetting the stack pointer (see chapter 15). Address 153D
can be used instead of 1533, because we do not intend to use the BREAK
key anyway (as this would bring the text ‘JUNIOR’ on to the display, in
other words, the computer would return to PM). This can also be seen in
the last section of table 4, where HEXDEC and its three subroutines are
listed in three and a bit blocks of instructions.

3. Decimal addition

The next example involves a program which is not particularly practical,
especially if you happen to own a calculator, but the important thing here
is to learn how to use PM and PME subroutines.
We wish to write a program which will add two decimal numbers together.
The first number can have a maximum of eight digits {(the resuit of a pre-
vious addition) while the second number (the one to be added) can only
have up to six digits. Once the addition has been performed, another
{(up to) six digit number can be added to the cumultative total — uptoa
maximum value of 99,999,999,
The first six digit number is entered by depressing up to six decimal keys
(0...9) followed by a full stop ".". Next, the operator indicates a number
of not more than six digits which has to be added to the previous one. This
is the procedure: first enter the number followed by ‘P’ (for plus). The P
key is used instead of ‘+' to avoid having to depress the shift key for each
addition as this can be somewhat of a bind! Any keys other than ‘0... 9",
** and ‘P’ (therefore including the hexadecimal keys A ... F) will auto-
matically lead to the error message ‘WHAT?'.
In practice, things will look like this:
123456.

123456
654321P
+ 654321
= 00777777

P

300001
= 99777778
The reaction by the Junior Computer is printed in bold characters as
opposed to the key operations performed by the operator which are
shown in normal type. As a matter of fact, the operations performed by
the user look a little different when they appear on the screen/printer
as a line ending in .’ or ‘P’ is overwritten by the first reaction from the

| 4+ = |
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computer. This means that the results cannot be printed out on a printer
as two lines will be printed one on top of the other. A video terminal such
as the Elekterminal presents no problems as each line is erased prior to
being overwritten on. If a paper printer is used, the hardware echo —
which prints the user operations — can be suppressed by switching from
the ‘half-duplex’ mode to the ‘full-duplex’ mode. The result is a clear
survey of all the various figures neatly listed.

The program is called DECADD and is shown in figure 4. Various memory
locations arg involved, so we will discuss these first:

INL address $90F8 entered figure 10° and 10!

INH address $00F9 entered figure 102 and 10°

POINTL  address $0OFA entered figure 10% and 10°

DECA address $0ODE  cumulative figure 10° and 10*

DECB address $OPDF  cumulative figure 10? and 103

DECC address SOPED  cumulative figure 10* and 10°

POINTH  address $@@FB  cumulative figure 10% and 107

As mentioned previously, the maximum result of the addition (= cumu-
lative figure) is 99,999,999.

The DECADD program and its associated subroutines make use of the
following PME routines:
1. CRLF, RECCHA: see example 2.
1. PRCHA Address $1334. This prints a character or produces a control
function provided the corresponding ASCII code is stored in the
accumulator.
111. PRSP Address $11F3. This simply prints a space . . .
IV. PRBYT Address $128F. This prints the high order nibble of the
accumulator contents followed by the low order nibble after con-
verting them into their respective ASCII codes.
V. MESSY Address $11D6. Despite its name, this is quite an orderly
subroutine, as it prints text obtained from a look-up table. The text
is defined by the initial value contained in the Y register and by the
position of the EOQT character $83 in the look-up table. More details
about this will be provided in chapter 14.
The DECADD program starts by clearing the three buffers so that a six
digit number can be entered. Then subroutine CRLF ensures that the
entered data is printed at the start of a new line and the program waits
during RECCHA for a key to be depressed. The keys ‘0...9", *." and
‘P’ are the only ones which mean anything to the program, all the others
are ignored.
Suppose that a key other than .’ or ‘P’ is depressed. The DECADD pro-
gram includes a section of program labelled DATA and the subroutine
DECNUM, which is very similar to the subroutine HEXNUM described
earlier. Only the keys 0...9 are processed into valid data. In all other
cases the computer responds with ‘WHAT?" and resets the Z flag. Any
key in the range O... 9 is processed into a nibble that is shifted into the
INL buffer from right to left, as a result of which all the existing nibbles
move up one place in the three buffers. Thus, POINTL, INH and INL con-
tain data corresponding to the last six keys to be depressed. A high order
nibble is always ‘older’ than a low order nibble. The original high order
nibble in POINTL is lost. If less than six keys were depressed, that is if
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DECADD

LDA #98

STAZ — INL

STAZ - INH

STAZ ~ POINTH

I RRE 2

CRLF

F8
F9
FA

11E8

NEXT

» RECCHA

co CMP #2E

yes

a9 LDA # 08

85 STAZ - POINTH

AS LDAZ — INL
85 STAZ — DECA
as LDAZ — INH

85 STAZ - DECB

AS LDAZ — POINTL

85 STAZ — DECC

A9 LDA # 8D

12AE

FB
F8
DE
Fo
DF

~cR"
1334 “CR"
1F3"U”
1MF3°U”

NF3“U”

PLUS
c9 CMP # 58
BNE G}
o
o8 @)
yos
» | SHOWA
8 SED
18 cLe
A5 LDAZ — DECA DE
P ADCZ — INL 8
8 STAZ - DECA | DE
A5 LDAZ — DECB DF
6 ADCZ - INH | F9
8 STAZ - DECB |DF
a5 LDAZ - DECC |ES

65 ADCZ — POINTL FA

8 STAZ — DECC  |E®

AS LDAZ — POINTH FB

) ADC #98

85 STAZ — POINTH FB

08 cLD
A9 LDA #3D o
% 1338 ="

PRBYT
JMP — DECADD

FB8

DATA

DECNUM

@

81912 4

yes

Figure 4. The main routine DECADD of the program which enables a six digit
decimal number to be added to an eight digit decimal number: the cumulative figure.
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the figure were less than six digits, the unused nibbles will be zero. After
the DECNUM subroutine the state of the Z flag informs the computer
as to whether the process should be repeated from scratch (after dis-
covering an error) or whether the computer can expect another data key,
in which case the processor jumps back to label NEXT.

When the plus key is operated, after the end of each figure entry, the
processor clears the contents of buffer POINTH — just in case the result
of the addition (cumulative figure) exceeds 999,999. Then the contents
of buffers INL, INH and POINTL are transferred to buffers DECA, DECB
and DECC respectively. Following this the program performs a few control
functions. The carriage return (CR) command takes the cursor back to the
beginning of the same line. Then three spaces are printed (three PRSP
operations). The SHOW subroutine simply prints out the figure that has
just been entered. After that, a return is made to the start of DECADD.
The subroutine SHOW is given in figure 5a and consists of three load
operations and calls subroutine PRBYT three times. All very simple!

Now let us see what happens when the P key is depressed, that is to say,
when the entered figure is to be added to the current cumulative figure.
The procedure starts with SHOWA (see figure 5b). Again, this subroutine

5a
A5 £ LDA ##D “cR”
2 128F "CR" 1334
. e
A5 LDAZ — DECA DE U 11F3
20 128F “U” 11F3
LDAZ - POINTL FA
PRBYT 128¢
] )
PREBYT 128F
LDAZ — INL F8
#1912 5a PREYT 128F
1E8
81912 5b

Figure 5. Subroutine SHOW (figure 5a) used by DECADD ({figure 4) enables the six
right-hand digits in the cumulative figure to be printed. Subroutine SHOWA

{figure 5b) prints a plus sign followed by two spaces followed by the new six digit
number to be added to the cumuiative figure, thereby producing a new cumulative
total.
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does nothing but print characters. Starting at the beginning of the same
line it prints a ‘+', two spaces and then the figure that has just been typed
in. This is followed by another jump to the CRLF subroutine so that the
cursor is placed at the beginning of the next line.

The figure just printed has to be added to the current cumulative figure
and the result then acts as the new cumulative figure. The state of the
carry flag determines whether the contents of the ‘overflow’ buffer,
POINTH, are modified or not. The addition is carried out in the decimal
mode; it starts with the instruction SED. Immediately after the addition
the computer reverts to the hexadecimal mode (CLD). This is necessary
because a number of PM subroutines will not function correctly if the D
flag is set. This was discussed at length in chapter 12 of Book 3.

After the addition the ‘equals’ sign (=) is printed on the next line. Then
the contents of POINTH are printed and the subroutine SHOW prints out
the contents of the other three buffers. Finally, the program returns to the
start of DECADD.

Now for subroutine DECNUM, which is shown in figure 6a. This starts off
by calling yet another subroutine namely ASCDEC (see figure 6b). The
ASCI| code of the depressed key is stored in the accumulator. The ASCHl
codes 30 ...39 correspond to the numbers @...9. The ASCDEC sub-
routine tests the validity of the depressed key. Essentially, the outcome
of the routine is that the N flag will be set and the Z flag therefore reset if
the depressed key was not valid. If a valid key is depressed, the instruction
AND # @F (after label VALID) converts the ASCIH codes 3@ .. .39 into
a data nibble with the value 80 . . . 09.

Back to DECNUM. The BMI instruction after the jump to the ASCDEC
subroutine leads the program to label NOTVAL if a non-valid key was
depressed. After printing the text 'WHAT?' (MESSY, where the contents
of the Y index register are 46 — see chapter 14) the N flag is set. This
means that the Z flag will be reset. A valid key entry means that the
contents of buffers INL, INH and POINTL have to be shifted four pos-
itions to the left and the data for the depressed key will have to be shifted
into INL. All this is accomplished during the DECNUM subroutine after
the label DCNMA. To complete the procedure the Z flag becomes set so
the N flag becomes reset.

It is now time to edit and then assemble the DECADD program and all
its subroutines. How this is done is shown in table 5. After the start of
PM (text report = ‘JUNIOR’) and the cold start entry into PME, all the
instructions involved in the program are entered into the computer, the
first one by means of the INSERT function. After depressing the X key
the program is assembled. Then the ST key on the main keyboard is oper-
ated and all the labels are listed and the program makes a warm start entry
into PME. The assembled version of the DECADD program is then listed
by depressing the P key the relevant number of times.

Since, as mentioned earlier, a user line is overwritten by the first reaction
line on the part of the computer, no examples of the running of the
DECADD program are shown in table 5. If required, user lines may be
preserved by replacing the two instructions in the program which ‘print’
a carriage return by the instruction JSR-CRLF. It is a useful exercise for
the user to know where these are and how to modify the not-yet-as-
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LDY #46
MESSY
LDY # FF

1106
11E8

6 ASLZ — INL F8

26 ROLZ — INH F9

26 ROLZ — POINTL |FA

LTS
%

ORAZ — INL
STAZ — INL F8

AS LDY # 08

81912 6s

sembled program with the aid of PME. The procedure for this will be
illustrated in example number 5 a few pages further on.

4. Decimal-to-hexadecimal conversion

Assuming that it is possible to write a program to convert hexadecimal
numbers to decimal numbers (see figure 2 and example 2), it must surely
be possible to write a program to convert decimal numbers to hexadecimal
numbers. This is in fact no problem as can be seen from the DECHEX
program given in figure 7. This looks remarkably similar to the program
given in figure 2. A number is entered (after iabel DATA in figure 7) with
the aid of the DECNUM subroutine (see figure 6a). This means that three
figure buffers are available giving us the possibility of entering a six digit
decimal number.

However, in this instance we are only interested in decimal numbers from
zero up to and including 65,535 (= $FFFF). This is because the computer

a4



81912 6b

'Figure 6. Subroutines DECNUM (figure 6a) and ASCDEC (figure 6b) used by the
DECADD routine (figure 4) and used by the DECHEX routine (figure 7) process the
valid decimal numbers 0 . . . 9 stored in the buffers POINTL, INH and INL.

is unable to deal with hexadecimal figures containing more than sixteen
bits without increasing the complexity of the various subroutines.
The DECHEX program is virtually identical to the previously de-
scribed HEXDEC program. The computer has to determine {in subroutine
AMOUNT) how many times the figure 4096 (163 or $1000 appears in the
entered decimal number and then how many times the number 256 (162
or $100) appears and after that, how often 16 (16 or $10) appears. And
finally, the DECHEX program checks the number of units remaining in the
decimal figure (16° =1 =$1).
Any decimal figure which is equal to or greater than the value 65536
(16* = $10000) will cause problems in DECHEX as the computer will be
unable to detect the number of 65535 figures present in the entered
number. Instead, a number of 4096 figures in excess of 15 will be found.
Despite this warning, a preventive measure has been included in the
routine to save any damage being caused by any nonsense (in the event
where the entered number is greater than 65535). The high order nibble of
{continued on page 56 —>)
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Table 5. Using the PM Editor to enter the DECADD program and its subroutines {see
also figures 4 . . . 6 and example 3).

SIX DIGIT DECIMAL ADDITION
upP TO 99,999,999

DECADD

JUNIOR

i500

1560 28 R

BEGAD,ENDAD: 230, 3FF

PM EDITOR

@200 77 IFF 99 @40
32068 FF 99 00 A9 40
3203 A9 00 85 F8
@285 85 F8 85 F9
2207 85 F9 85 FA
2209 85 FA 20 E8 11
220B 20 E8 1i FF 98 00
@20E FF 98 00 20 AE 12
#2111 26 AE 12 C9 2E
3214 C9 2E DB 97
@216 D@ 97 A9 00
3218 A9 @0 85 FB
#21A 85 FB AS F8
#21C A5 F8 85 DE
#21E 85 DE AS5 F9
#22¢ A5 F9 85 DF
#3222 85 DF AS FA
@224 A5 FA 85 E®
7226 85 E@ A9 4D
#228 A9 @D 20 34 13
9227 20 34 13 20 F3 11
922D 20 F3 11 20 F3 11
7230 20 F3 11 20 F3 11
9233 20 F3 11 20 95 040
#236 20 95 00 4C 99 040
#3239 4C 99 0@ FF 97 090
@23C FF 97 @¢ c9 50
@23F C9 50 D@ 96
#241 D@ 96 20 94 949
2243 20 94 G0 F8

A246 F8 18

g247 18 AS DE
#3248 AS DE 65 F8
#24A 65 F8 85 DE
#24C 85 DE AS DF
#24E A5 DF 65 FO
#2506 65 F9 85 DF
#252 85 DF AS E@
#254 A5 EQ 65 FA
9256 65 FA 85 E@
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p258
#25A
825C
@#25E
3260
8261
2263
2266
3268
g268B
@26E
9271
8274
0277
8279
#278
P27E
9280
9283
#9285
09288
928A
328D
#28E
9291
8293
09296
3298
9298
g29E
9271
g2Aa3
B2A6
O2A8
@2AB
@2AD
g2B9Q
#2B3
7284
32B7
#2BA
B2BC
@2BE
g2C1
#2C3
@2C5
g2c7
g2C8
#2CA
g2cc
g2CE
¢2Dd

13

12
20

1Y)

00

17}

12

12

12

a0

i3

13

il

12

12

12
11

00

20

34 13

8F 12
95 09

96 00
93 00
95 00
8F 12
8F 12
8F 12
94 00
34 13
34 13
F3 11
8F 12
8F 12

8F 12
E8 11

93 0¢
90 @6

92 @¢
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?2D1 FF 9i @9 Ad 46

32D4 AQG 46 20 D6 11
92D6 2@ D6 11 20 E8 11
#2D9 20 E8 11 AQ FF
@#2DC AQ FF 60

#2DE 60 FF 99 g¢
@2DF FF 90 @0 C9 3¢
A2E2 C9 30 3¢ 89
@2E4 30 89 C9 3a
@2E6 C9 3A 30 88
@g2E8 30 88 FF 89 00
#2EA FF 89 090 A@ FF
#2ED A@ FF 60

A2EF 60 FF 88 @@
#2F@ FF 88 @9 29 OF
g2F 3 29 QF 63

@2F5 60

P2F6 77 X
LAB $99: $M200 LAB $98: $020B LAB $97: $0236 LAB $96: $0268
LAB $95: $@26F LAB $94: $027F LAB $93: $@2A2 LAB $92: $02A9
LAB $91: $P2B9 LAB $90: $#2C4 LAB $89: $@2CC LAB $88: S@2CF
PM EDITOR .

@200 A9 00 P

3202 85 F8

#2084 85 F9

6206 85 FA

9208 20 E8 11

6208 28 AE 12

@20E C9 2E

@210 DB 24

#212 A9 @0

§214 85 FB

@216 AS F8

@218 85 DE

#21A A5 F9

@21C 85 DF

@21E A5 FA

@220 85 E@ P

@222 A9 @D

@224 20 34 13

@227 20 F3 11

@227 20 F3 11

@22D 20 F3 11

0230 20 6F @2

@233 4C 00 02

#9236 C9 50

@238 D@ 2E

@23A 20 7F 02

@23D F8

623E 18

@23F A5 DE

@241 65 F8
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D@

i3
12
a2

@2
32

12

i2

12

i3

13
1i

12

12

11

g2

#2B8
#2B9
g2BB
A2BE
g2C1
g2C3
p2C4
g2Cé6
g2Ccs8
B2CA
g2cCC
B2CE
@2CF
#2D1
#2D2

46
D6
E8
FF

30
3a
a3
FF

oF

11
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7 $9200
‘ DECHEX ;

29 CRLF 11E8

? DATA
A8 LDA #96

@

85 STAZ-POWERL [ »

A9 LDA #49 E]E], no
85 STAZ-POWERH | 91 - @
A8 LDA # 56 AS LDAZ-POINTL FA
85 STAZ-POWERL o 29 AND # 97

A9 LDA # 82 ss| sTazeonTL FA
85 STAZ-POWERH o ac JMP-DCHX @
A9 LDA# 16

85 STAZ-POWERL [

A9 LDA # 68

85 STAZPOWERH |®1

A9 LDA # 91

8s STAZ-POWERL | 90

20 AMOUNT (e

ac MP-NEW @

figuur 81912 -7

Figure 7. The main routine DECHEX converts any decimal number less than 65536
into its hexadecimal equivalent. It is very similar to the HEXDEC routine (figure 2).
Subroutines DECNUM and ASCDEC are shown in figures 6a and 6b. Subroutine
AMOUNT is shown in figure 3a. The subroutines CORPR and SUBTRA, however,
will have to be modified slightly as shown in figure 8.
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Table 6. Using the PM Editor to enter the DECHEX program and its subroutines (see

also figures 3a, 6a, 6b, 8a and 8b and example 4),

JUNIOR

i50¢
L5

24

R

BEGAD,ENDAD:
P EDITOR

288
742049
203
206
#4209
328C
N23E
2.6
1252
2.4
w2.6
12.8
A2iB
32iD
J2.iF
225
3223
2226
228
B22A7
@22C
f22E
231
#4233
4235
238
1238
32 3E
#4241
#2433
%245
3247
7249
A24C
J24F
3252
3255
3258
#2543
A25D
254
3262
3263

77
FF
28
FF
24
co
Da
AQ
85
AQ
35
20
AQ
25
AQ
25
24
AQ
85
A9
85
24
AQ
25
243
ac
FF
29
Do
AS
29
85
4C
FF
24
4c
FF
A
FF
20
99
C8
ac

N3
E8
AE
3A
i2
95
a0
40
[N
id
56
g
a2
738
14
i6
ag
afd
AL
14
S5
5201
i4
23
12
a3
13
FA
a7
FA

Tt
+ 4

13
A8
0
14
a9

1
e

+8
i5

)

aa
NN
it
Ny

j51%}

¢a

[oXs]
(44
0]
g9

a9
an

3a
a0

i’}
a3

39

208, 3FF

IFF 16 a8

20
FF
28
co
D
A9
85
A9
as
29
AQ
35
A9
R5
29
A9
85
AQ
85
20
A9
85
20
4C
FF
20
D3
AS
29
85
4C
FF
20
ac
FF
AQ
FF
24
993
c8
4c
FF

E8
il
AE
3a
12
946
(514
4d
gL
14
56
ans
32

1
LY

i4
i6
23
a3

i).
a3
32

24

a3
3a
a0
(" 17]

0a
aa
aan
23
a9
20

aa
0o
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266
7269
a26C
326D
3279
A271
9272
f274
g276
3278
az27a
g27¢
327E
n28¢
J282
G284
1285
#1286
#3289
A28A
A28D
#28E
N28F
A291
#293
7295
@227
2299
7298
29D
A29F
G2A1
A2A2
fA2A3
226
2A9
A2AB
#2AD
#2890
32B2
g2B4
A2B4
a2B7
#2B9
A2BB
7A2BD
A2BF
a2Co
P2C3
g2Ccs
g2ce
#2CB

52

15
17

27

F8
ao
F8
Fo
31
Fo
FA
(1]
FA

°B

23
an

g

2

a0

oa
ag

ag

[
b

[

17

7

ie

F8
ag
F8
F9
F9
FA
Aa
FA

93
94
91
4
92
F8

FA
92

Fg
ap

Za

46
D6
EB
FF

ag

aa

12

a9

aa
aa

a0

[
[

3
—



A2CD
02CE
2D
@#32D3
32D5
32D7
32D¢
32DC
A2DE
22DF
A2E2
A2E4
A2ES

LAB S$10:
LAR S$i4:
LAB $18:
LAB $9a:

6
FF
Cco
34
ce
3@
FF
AQ
60
FF
29
68
77

D)
343
89
33
a2ge
8¢
FF

88
aF

$2a¢ LAB
$3249 LAB
$1272 LAB
SA2AA LAB

PM EDITOR

a200
n2a3
A206
238
200
n206C
A2J0E
2.0
(212
A215
#2217
A2.9
A21B
12iD
3220
n222
n224
N226
7228
?228
f22D
A22F
n232
3235
0238
323A
A23C
323E
3240

9243
7246
A24¢°
#248
A24E

29
20
c9
DY
AQ
85
A9
85
20
AQ
85
A9
85
20
A9
85
A9
85
20

ES
AE
3A
2B
94
A0
40
di
49
56
aa
32
(49
49
16
ae
Aa
0i
49

9

A7

a0

2

12

72

12

a2

1
2

a2

02

FF o0 aa
co 39
3% 89
Cc9 3A
32 88
FF €9 28
A%t FF

FF 88 10
29 AF

X

$i.: $0203 LAB $.2: $9235 LAB S13:
$.5: $@24B LAB $i6: 59254 LAB S.i7:
$93: $0288 LAB $92: S$328F LAB $9.:
$89: $7282 LAB $82: $O2B5

$n243
53258
$O29F
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12503
251
7254
3257
1258
259
B325A
#25C
A25E
n260
3262
A264
#4266
(268
A26A
A26C
26D
26E
275
3272
#273

7274 1

276
#2783
A27A
427C
N278
A281)
282
3284
(1285
3287
288
1288
328D
#28F
3291
#3293
0295
3296
7298
d29A
#29C
¢29E
329F
B2A1
32A4
B2A7
A2A9
3223
A2AC
A2AE

ce

%5}

2a

A0

4B
58

F8
A
Fe
Fo
F9
FA
a0
FA

98

a2
32

22

A2B0 34 93
42B2 AQ FF
2284 60
@2B5 29 AF
92B7 &9
22B8 77
JUNIOR

230

#5200 2d R
4996: 1707
256: 0530
8A92:2ﬂﬂﬂ
h5535: FFFF
10989: 2710
i203:73E8
10%;

WHAT?

13d:3064
4395: CFFF
255: 0QFF
15:00F
12345:30a39



8a CORPR ®

F8 SED
18 cLe
A5 LDAZ — INL 8

65 | apcz —powerL | 9
8s STAZ — INL F8

A5 LDAZ — INH F9
65 | ADCz — POWERH | #1

85 STAZ — INH F9

AS LDAZ — POINTL FA

69 ADC # 90

85 | sraz-poiNTL | FA
o8 cLD

98 TYA

29 PRNIBL 1298

60
31912 8
SUBTRA
£8 SED
38 SEC
A5 LDAZ - INL | rs

€5 SBCZ — POWERL |08

85 STAZ — INL F8

A5 LDAZ — iNH F9
ES SBCZ — POWERH | 91

85 STAZ — INH Fo

A5 LDAZ — POINTL | FA

E9 SBC #98
85 STAZ —POINTL | FA
D8 cLo

] RTS

81912 8b

Figure 8. With respect to figures 3b and 3c, subroutines CORPR and SUBTRA are
slightly modified for use in the DECHEX program.



buffer POINTL contains the number of hundred thousands contained in
the decimal figure. The low order nibble stores the number of ten thou-
sands. By masking the contents of POINTL with the value @7 after a key
has been depressed, the computer makes sure that the decimal figure
contains no hundred thousands and that the number of ten thousands does
not exceed 7.

The AMOUNT subroutine, which is used four times during the DECHEX
program, can be used in its original form here (see figure 3a). However,
the subroutine CORPR and SUBTRA called by AMOUNT do have to be
slightly modified for their task in DECHEX. This is why they look dif-
ferent in figures 8a and 8b. What is the reason for such changes? Well, a
decimal addition (CORPR) and a decimal subtraction (SUBTRA) have to
take place. Furthermore, the contents of POINTL also have to be modi-
fied, depending on the status of the carry flag (ADC # 00 in CORPR;
SCD # 08 in SUBTRA).

How the DECHEX program is edited and assembled is illustrated in
table 6. The various routines were entered in the following sequence:
DECHEX: labels 1@ ...13  (figure 7)

AMOUNT: labels 14 ...16 (figure 3a)

CORPR: label 17 {figure 8a)

SUBTRA.: label 18 (figure 8b)

DECNUM:  labels 93...91 (figure 6a)

ASCDEC: labels 90 ...88 (figure 6b)

The rest of the procedure should be familiar to everyone by now: assemble
{X), return to PME (ST) by printing out the labels, printing the assembled
program (P) and start the program after the return to PM. Finally, execute
the program for as long as you like. When the operator has had enough,
the RST key can be depressed and a return can be effected by starting PM.

5. The warm CEND start entry into PME and the cassette

In chapter 11 of Book 3 we mentioned the fact that TM could be used to
store a program on cassette before it has been assembled and tested.
Especially where extensive programs are concerned, it is no trouble to re-
enter the unassembled program — if the program needs to be modified
here and there — and then to restore it to its original state (before it was
stored on cassette) by means of a warm CEND start entry into PME. Next,
‘the actual debugging can take place and the same procedure can be re-
peated ad infinitum, or rather, for as long as is necessary.

Here is an example to illustrate the coming procedures. It is the ASCI|
program first described in chapter 12 of Book 3 — see figure 9. This pro-
gram is so short that it does not really need editing and assembling. Never-
theless, we wish to illustrate the principles involved with the aid of this
program as it saves reams and reams of listings etc. What is more, it gives
readers a clear insight into what is involved in a certain PME feature. Never
mind if the example is rather like using a sledge-hammer to crack a nut!
The complete program is listed in table 7. Each step will be dealt with in
turn:

@ The system program PM is started.
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TYA

20
29

11E8

12AE
A8

29 11F3

98

29

JSR — PRBYT
JSR — PRSP

STAZ — PREG

JSR — SHOWPR

20
98
85

29

81912 9

Figure 9. The ASCII program described in chapter 12 of Book 3 is used here to
illustrate how the warm CEND start entry into PME operates. The start address
(BEGAD) is now 920@. The text explains (see example 5) why this address is assigned
the label 10.

® Now a cold start entry into PME is made. The start address of the
ASCH program is $ 0200.

® The instructions are entered, starting by ‘inserting’ label 10 — see fig-
ure 9.

@® All the instructions are now entered and the complete program is listed
by depressing L.

® The not yet assembled program has to be stored on cassette tape. For
this to happen, a return has to be made to the PM program (report

‘JUNIOR'), the cassette machine is prepared for recording and then keys

g, g, 08, L2, e, e, Y, ‘2,1 and R are depressed in that order.

After starting the machine, the CR key is depressed. The complete pro-

gram is then stored and the computer reports with the text ‘READY’. The

cassette machine is stopped. The program number in this particular in-

stance is 88. The contents of SA are the same as those of BEGAD and the

contents of EA are the same as those of CEND, one address higher than

the one containing the EOF character, 77 (see listing for point 4).

® PME is then entered by means of a warm start entry.

® The program is assembled (press keys X and ST). There is only one
label in this case.

® The assembled program is printed out (P).

® A return is made to PM so that the program can be started and tested.
After entering the start address and following the start, the ASCIi code

of key A needs to be known. This is not a problem, which means that the

program must be working correctly . .. or is it? When we come to find out
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Table 7. Elaborating the ASC1) program while making use of a warm CEND start
entry into PME (see also figure 9 and example 5).

@ JUNIOR

@ 1500
1508 20 R
BEGAD, ENDAD: 204, 2FF
PM EDITOR

® o200 77 IFF 16 60
@200 FF 10 00 20 E8 11
@203 20 E8 11 20 AE 12
3286 20 AE 12 A8
0209 A8 20 F3 i1
@20A 20 F3 11 98
320D 98 20 8F 12
A20E 20 8F 12 20 F3 il
6211 26 F3 11 98
@214 98 85 Fl1
§215 85 F1 20 28 1
8217 26 28 12 ac 11 @0

@ 021A 4Cc i1 @0 L

3263 FF 10 99
@263 20 E8 11
P206 206 AE 12
@209 A8
@20A 26 F3 11
@200 98
@20E 20 SF 1
@211 20 F3 11
8214 98
@215 85 F1
@217 20 28 i2
@21A 4C 11 08
@21D 77
DONE
@21E E8

(® JUNIOR

S88,280,21E
READY
® 1533
1533 A9 R
PM EDITOR
@21E E8 X
LAB $18: $0200
PM EDITOR
@2A0@ 20 E8 il P
@203 20 AE 12
3206 A8
0207 20 F3 11
@26A 98
@20B 20 8F 12

58



#20E
0211
0212
0214
7217
@21
©® Junio

299

R

3208 23 R

A 4] (Gil000A9L6ABC

@ Junio

G88
READY

@y .7cs

R

17C5 28 R
BEGAD, ENDAD:
PM EDITOR

@ n21p
B21A
DONE
a21A
G21A
A21A

@ 02:p

LAB S

77
4c

4C
77
4C
77

1d:

AR
il
il

)

SA200

PM EDITOR

@200
233
3266
0207
@20A
#3208
#20E
p211
3212
6214
3217
A21A

20
29
A8

98

@ JUNIOR

239

#3200
43
42
43
44
3L
32
33
34
4B
5A

NRLSWN-DO® P

22

E8
AE

F3

8F

F3 1

Fi
28
30

R

1)

(1Y)

12
02

A10006a301
31000010
ALAAAALL
710006190
76110001
301100140
90110611
#3116100
21001011
910110190

2943, 2FF

S4C 11 a0
K

K
I4C 10 24

X
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the ASCII code for key 6, the 6 is not printed and the corresponding

ASCII code does not appear at all. So, what is going on here? What about

keys B and C? No, they do not produce the correct results either, there is

definitely something wrong here!

Well that is rather funny, for the program worked fine in chapter 12. After

a good look through the program once more, the problem is quite easy to

find. The single ASCII label was entered as 4C 11 B0 instead of 4C 10 00.

The label 11 was not entered and so after assembly and after running the

program once, the computer jumped to address location 3011. The ASCII

program then ‘crashed’.

How do we amend the fault? Well, first the program is re-loaded from

cassette, is modified and re-assembled etc.

@ After operating the RST key, PM is started. The ASCI! program is re-
entered from cassette in its unassembled form.

@ The PM Editor is then activated by means or a warm CEND start entry.
Locations BEGAD and ENDAD remain unchanged (ENDAD can be

modified if the programmer wishes to add a few instructions). Once CEND

has been changed back to its original value, that is before the program was

stored on cassette, the editing process can be continued.

@ The instruction that is to be modified is located by using the SEARCH
function and then the K key is depressed to delete that instruction

from memory. The correct instruction (4C 10 @) is then entered by

means of the INSERT function.

® The program is re-assembled.

® The assembled program is listed.

® The computer returns to PM and the ASCII program is restarted. This
time it works correctly!

A few general remarks

® During a cold, lukewarm and warm CEND start entry, keep an eye on
the following. During the initial phase, that is before the carriage return
key is depressed, the BREAK jump vector will still be defined as for PM.
If the BREAK key is operated while the text ‘BEGAD, ENDAD’, is being
printed, the text ‘JUNIOR’ will appear as soon as the BREAK key is
released and the processor returns to PM. If an error is made during the
entry of BEGAD and ENDAD, the computer simply asks “WHAT?’ and
then new data for these two pointers can be entered. The reasons for this
are explained in full detail in chapters 14 and 15. As mentioned previously,
there will be no error message if ENDAD is specified to be greater than
BEGAD.
® Something about entering address operands which have to be assembled.
In chapter 5 of Book 2, it was mentioned that the opcode (20 for a
jump to subroutine; 4C for a jump) must be followed by a label number
{to which the computer is to jump)} and by a second operand byte, the
limiter byte. The latter has been selected as 0@ throughout the Junior
Computer Book series, however this need not be strictly adhered to as can
be gathered from chapter 9 in Book 2.
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® Never choose a label number which is the same as the low order byte of
an absolute address {this does not need to be assembled). This should

be checked before the program is edited.

e Do not note down an absolute displayed value where jump instructions
are concerned, as this may well be a label number too — prior to as-

sembly.

® Use each label number once only. Although it is not at all compulsory,

it is advisable to arrange the label numbers in an ascending or descending

order (leaving out any prohibited numbers) and in the order in which they

are stored in memory during the editing process.

Most of this has, of course been mentioned earlier in chapter 5 of Book 2,
but the application of the various points discussed as far as PME is con-
cerned does take rather a lot of practice. The only aspect which is identical
in both editor systems is the method of using hexadecimal labels. We hope
that you will be able to benefit to the full from implementing PME and
that it will help you to develop useful and versatile programs.
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14
1.2 k bytes of PM software

The ‘Junior on TV’ program

Chapter 12 of Book 3 introduced the Printer Monitor system
program. Now that we are familiar with its operation, it is time
to describe the software involved in detail. Readers may wonder
why this should be necessary, considering that the program can
be used adequately without this knowledge. There are two
arguments in favour of analysing the PM software:
1. It will help the programmer to develop his/her own software.
2. Various PM subroutines (or parts of subroutines) can be
incorporated into user programs — see the examples used in
chapters 12 (Book 3) and 13 (Book 4).
This does not mean, however, that we are going to dwell on
each and every byte, for as can be gathered there are a total of
1268 bytes in all! In any case, after reading three (and a bit)
books on the Junior Computer, most readers should be
completely up-to-date with the 6502 machine language.

1 Any system program consists of a main routine as well as a number
of subroutines. The main PM routine is based on a well-known prin-
ciple: the computer waits for a key to be depressed and then checks to see
which key was operated. Next, the corresponding key function is executed
and the machine returns to a central ‘cross-roads’ in the program and waits
for another key to be depressed, thereby completing a circuit, so to speak.
An initialisation routine is only run occasionally, usually at the start of a
particular program, for instance. The Printer Monitor initialisation routine
is shown in figures 1a and 1b. It is very similar to the RESET routine of
the original monitor program and is run during the first and second starts
of PM (see chapter 12 of Book 3). The section of program after the label
LABJUN in figure 1b is also run after the BREAK key is depressed and
when the text ‘JUNIOR’ is to be output as an error message or otherwise.
The STEP routine (figure 1b) is run whenever an instruction has been
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INITPR

cLD c=4¢
SEI 1=1

LDAIM $67

STA  PBD

LDAIM 508

STA  PAD

LDXIM SFE

STX  CNTL CNTL <FE
INX X < FF

STX  CNTH CNTH «FF
TXS SP < FF

STXZ SPUSER | gpyseRr «FF

LDAIM S7F
STA PADD PA7 input
STA  PBDD P87 input
LDXIM $@82

STX STPBIT

LDAIM SF

STA BRKT 1A7C

LDAIM 10

STA BRKT+1 1A7D

LDAIM CF

STA NMI 1A7A

LDAIM 14

STA  NMI +1 | 1a78

® ®

{figure 1b) 81913 1a

Figure 1a. The first section of the PM initialisation routine. This starts at label
INITPR and ends at label STRTBT.

executed while the computer is in the STEP mode. Generally speaking,
this follows a non-maskable interrupt as well.

The Initialisation routine INITPR.

As can be seen from figure 1a, this routine starts by dealing with a number
of elementary matters. The computer is switched to the binary mode and
interrupt requests (IRQ) are disabled (SEl). The input/output (1/0)
parameters for the system are also established. By loading the data direc-
tion registers PADD and PBDD with the value $ 7F all the port lines except
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for PA7 and PB7 are programmed as outputs. In other words, port line
PB7 will be set to receive data from the cassette recorder, PA7 is prepared
to receive serial data from the keyboard and port line PB@ is ready to
transmit serial data. Since the value @@ has been stored in the port A data
register (PAD) the outputs PAG ... PAG will go low. This would cause all
the segments of the six displays to light (see chapter 7 in Book 2}, but this
is prevented by the fact that the value $67 has been stored in port B data
register (PBD). This means that port lines PB1 and PB2 are both logic one
and that port lines PB3 and PB4 are both logic zero. In turn, this means
that the unused output (3) of the decoder, IC7, on the Junior Computer
main board will be enabled (see figure 9 on page 119 in Book 2). By
making port lines PB5 and PB6 go high also, the two indication and relay
control circuits involved in the operation of the cassette will be disabled
(switched off — see the interface board circuit diagram in Book 3). In
addition, by making the output PBf go high the logic level of the RS 232
line will be low (inverted) whenever the Junior Computer is not transmit-
ting any characters.

Quite a few more preparations are also needed. The computer and user
stack pointers are loaded with the value @1FF. The memory location
STPBIT is loaded with the value §2 so that every ASCI| character trans-
mitted by the computer ends with two stop bits. Further to this, the
BREAK jump vector is loaded with the start address of LABJUN (figure
1b; *JUNIOR’ message) and the NM| vector is loaded with the start address
of the STEP routine (also figure 1b). All that is left to be done in figure 1a
is to load memory locations CNTL and CNTH with the values FE and FF
respectively. The reasons for this are about to be described.

Let us turn to figure 1b. The initialisation routine in figure 1a has

been run through completely from the first start of PM. The question
now is when to go ahead with the second start? As readers will remember
from chapter 12 {Book 3), the second start requires the RUBOUT (= RES)
key to be depressed. As a result, the corresponding ASCIi code, 7F, is
transmitted — together with the start bit. What happens next is illustrated
in figure 2. The section of program after the label STRTBT examines the
serial input line (PA7) with the aid of a BIT instruction. This instruction
performs an AND operation between a memory location and the accu-
mulator, but does not store the result of the AND operation in the accu-
mulator. The BIT instruction sets the N flag to the value of bit 7 of the
memory location being tested, the V flag to the value of bit 6 and the
Z flag is set if the result of the AND operation is zero. The BIT instruction
permits the examination of an individual bit without disturbing the value
in the accumulator.
In this particular instance the N fiag is set to the value of bit 7 of the port
A data register — PA7. The following BMI instruction then checks to see
whether this value is logic one or logic zero. As soon as a start bit is
detected (N =0} the processor jumps to subroutine COMTIM. This
subroutine is shown in figure 3. During the COMTIM subroutine the
computer waits for the start bit to pass, in other words, for port line PA7
to revert to a logic one level. This is because the serial data bits which are
to follow are also logic one, since the computer is to check whether the
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14CF

STEP

STAZ ACC

PLA

STAZ PREG

PLA

STAZ PCL

STAZ POINTL

PLA

STAZ PCH

STAZ POINTH

STYZ YREG
STXZ XREG
T8X

STXZ SPUSER

JSR PRBUFS

JMP RESALL

A—>ACC

P >PREG

PCL>PCL

PCL = POINTL

PCH ~>PCH
PCH > POINTH
Y > YREG

X > XREG

SP > SPUSER

*(PCHHPCLILI XX

{figure 1a)

STRTBT

has start
bit started?

PA7=N=0
JSR COMTIM|
LSR TIMH
ROR TIML
LDA TIML
STA CNTHL
LDA TIMH
STA CN‘!‘HH
LDXIM $98

JJSR DELHBT)
JSR RECD

IJSR JUNIOR
JSR CRLF

LDXIM S$FF

wait 1T

“JUNIOR™

TXS

STXZ

SPUSER

Figure 1b. The continuation of the initialisation routine shown in figure 1a and the

STEP routine.

RESALL
{figure 13a)

81913 1b
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JSR-COMTIM RTS-COMTIM
JSR-DELHBT 81913 2

Figure 2, The pulse diagram of a serially transmitted ASCH character. By waiting half
a bit period, the logic level of a data bit will always be detected in the middle of the
bit period concerned.

3 {CNTH,CNTL) = FFFE 12E0

4

CLC

LDA CNTL

ADCIM $61

STA CNTL incrament
(CNTH, CNTL)
LDA  CNTH by 1

ADCIM $@9@

STA CNTH

BIT PAD

start bit passed?

PA7=N=1
(TIMH,TIML}
LDA  CNTH (CNTH.CNTL)
STA  TIMH
+ 81913 3
RTS
1200 Baud:

(CNTH.CNTL) = 9918

Figure 3. The COMTIM subroutine indirectly determines the length of time the start
bit of a received ASCII character (7F) lasts. This establishes the bit period, T.

ASCII code 7F has arrived. This is also iliustrated in figure 2.

While the start bit is passing, the 16 bit number contained in memory
focations CNTH and CNTL is periodically incremented. This addition
takes a certain finite time. The initial combined value of these locations is
FFFE and is increased relative to the bit period T. The bit period is
determined by the clock transmission speed, which is the Baud rate. The
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Baud rate is produced by the clock generator and the UART situated
inside the peripheral device being used. The purpose of these locations
(CNTH and CNTL) is to allow the Junior Computer to transmit ASCII
characters at roughly the same speed as they are received from the periph-
eral device.

The Baud rate switch has been removed from the Elekterminal, see chapter
12 in Book 3, as there is a fixed rate of 1200 Baud. This corresponds to a
value of 0@ in location CNTH and a value of 1B in location CNTL. This
can be verified by examining address locations 1AFA (CNTL) and 1AFB
{CNTH) after starting PM. These two locations enable the Junior Com-
puter to adapt itself to a wide range of Baud rates produced by the periph-
eral equipment connected to it. Everything will be just fine as long as the
contents of CNTH do not exceed FF, in other words, as long as the Baud
rate is sufficiently fast. At the end of the COMTIM subroutine the final
value contained in locations CNTH and CNTL are copied into locations
TIMH and TIML respectively.

Immediately after the COMTIM subroutine the contents of locations

TIMH and TIML are altered. All the bits pertaining to the final count
are shifted one place to the right. This is accomplished by shifting (LSR)
all the bits in TIMH to the right and rotating (ROR) all the bits in TIML to
the right. As a result, the figure then stored in locations CNTHH and
CNTHL is approximately half the value contained in locations CNTH and
CNTL. This is not quite correct where odd numbers are concerned. Lo-
cations CNTH and CNTL contain a figure corresponding to the bit period,
T and the contents of CNTHH and CNTHL correspond to the half bit
period, %T. The reason for this is explained in the next point.
(N.B. to be continued in point 6).

Before we continue with the rest of the initialisation routine for the

PM program — the rest of figure 1b — let us have a small BREAK and
look at the subroutines DELHBT and DELBIT in figure 4. Assuming that
the bit period situation is as stipulated in point 3, subroutines DELHBT
and DELBIT ensure that the computer waits for either half a bit period
(%T) or a full bit period (T). These delays are spent as follows:
Memory locations TIMH and TIML are loaded with either the contents of
tocations CNTHH and CNTHL or with the contents of CNTH and CNTL,
depending on whether the computer is to delay half a bit period
(DELHBT) or one full bit period (DELBIT) respectively. The section of
program after label CNTDN (countdown) simply subtracts one from the
value contained in locations TIMH and TIML until such time as this value
becomes negative (FFFE). When this is the case the computer no longer
branches back to the label CNTDN, but returns to the main routine from
the delay subroutine.
The contents of locations TIMH and TIML are now the same as the initial
contents of locationsCNTH and CNTL (= FFFE) (see point 2). This means
that if we make sure that the programi section between label CNTDN and
the BCS (branch on carry) instruction takes the same amount of time to
execute as the program section between label COMTIM and the BPL
(branch on result positive) instruction (figure 3), the computer will auto-
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4 1303 1312

o " ' @

LDA  CNTHL LDA  CNTL
STA  TIML STA  TIML
(TIMH,TIML) (TIMH, TIML)
LDA  CNTHH = LDA  CNTH . = (CNTH,CNTL)
(CNTH,CNTHL)
STA  TIMH STA  TIMH
JMP  CNTDN
L CNTDN
SEC
LDA  TIML
SBCIM $@1
d
STA TIML (TIMH, TIML)
by 1
LDA  TIMH
SBCIM $8@
STA TIMH
NOP
4,48
last jump: NOP
(TIMH,TIML) = 3090

81913 4

Figure 4. Subroutines DELHBT and DELBIT ensure that the computer waits for half
a bit period or a full bit period respectively.

matically wait for a half bit period {label DELHBT) or a full bit period
(tabel DELBIT).

The aforementioned section of the COMTIM subroutine takes 29 us to
execute once. Excluding the two NOP (no operation) instructions between
the CNTDN label and the BCS instruction, this section of program takes
25 ps to execute once. If the two NOP instructions are included in the
subroutine, the execution time is increased to 29 Ms, which is why these
seemingly superfluous instructions have been added to the program.

The final value of §@1B contained in locations CNTH and CNTL men-
tioned earlier {point 2) means that the contents of these locations have
been incremented a total of 29 times after the initial value of FFFE. This
took 29 x 29 = 841 ys. Calling subroutine COMTIM takes another 6 us and
the leading edge of a start bit is unlikely to be detected at exactly the same
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instant each time (the wait loop is interrupted by the BIT - PAD instruc-
tion after the label STRTBT (figure 1b). Thus, the fixed bit period will be
around 850 us. On the other hand, we have an incoming Baud rate of
1200, or 1200 bits per second. This corresponds to a bit period of 833 us,
which is very close to the mark. Fortunately, the PM program is not
affected by a difference of a few microseconds.

5 Now for another BREAK, this time to discuss the subroutine
RECCHA shown in figure 5. This subroutine detects the transmission
of an ASCI| character to the Junior Computer and stores the relative bit
pattern in the correct order in the accumulator. Such a character will corre-
spond to a certain software key operated on the ASCI| keyboard. Since the
computer features a hardware echo (see chapter 12 in Book 3), the charac-
ter will also be displayed on the video screen or printed on paper at the
same time.
The RECCHA subroutine starts with a wait loop consisting of the instruc-
tions BIT - PAD and BM! (branch on result minus). The computer will stay
in this loop until such time as a start bit (PA7 = @) is detected. The sub-
routine continues by storing the contents of the X index register in lo-
cation TEMPB. In the lower right-hand corner of figure 5, just before the
RTS (return from subroutine} instruction, we can see that the process is
reversed so that the X index register assumes its original contents. Thus,
the contents of the X register are not lost during the RECCHA subroutine.
During the subroutine the X index register is used as a bit counter. It is
joaded with an initial value of 98, the number of bits in an ASCII charac-
ter. After this, the computer waits for a half bit period before reaching
jabel RECA where it waits for a further full bit period. Consequently, the
computer will have reached the time when the first bit, b@, of the ASCH
character is received — see figure 2. The machine then checks via the
instructions BIT - PAD and BPL to see whether the bit in question is logic
one or logic zero and then acts accordingly. The value of the carry flag is
made the same as the bit value, after which it is shifted from left to right
in location CHA by way of the instruction ROR (rotate right). The con-
tents of the X index register are then decremented and if this value is not
equal to zero the computer branches back to label RECA. As the contents
of location CHA are shifted one position to the right before the X register
is decremented, this location assumes the following status:
When the contentsof X=08: bf x x x x X
When the contents of X =97: b1 b x x x X
When the contentsof X =06: b2 b1 bd x x x
When the contents of X =05: b3 b2 bl bf ' x x
When the contents of X = §4: b4 b3 b2 bl bf x
When the contentsof X = §3: b5 b4 b3 b2 bl bD x
When the contents of X = #2: b6 b5 b4 b3 b2 bl bp x
When the contents of X = §1: b7 b6 b5 b4 b3 b2 b1 b0
All the bits are now correctly positioned in location CHA. Now for the
finishing touch. After the label RECC the computer waits for a full bit
period — the duration of the first stop bit. The contents of location CHA
are then copied into the accumulator and masked by the value 7F. This
clears the parity bit sent by the UART. As you will have gathered from

X X X X X
X X X X X

x
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5 12AE

RECCHA

start bit
started?

PA7 =0
STX  TEMPB save X
LDXIM $@8 read in 8 bits
JSR DELHBT wait 5T

JSR  DELBIT
o8 -
figure 1b
sorial PA7 =9
data bit RECB
tor#?
SEC c=1 CLC c=¢
ROR  CHA ROR  CHA
DEX next bit DEX next bit
all 8 no e
ASCII bits BNE ASCII bits
dealt with? dealt withi
yos
RECC

JSR DELBIT wait T

LDA  CHA A< CHA
ANDIM $7F b7 <4
LDX  TEMPB restore X
RTS
81913

Figure 5. Subroutine RECCHA detects any ASCII character transmitted to the Junior
Computer, in other words, any keys depressed on the ASCI| keyboard.
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chapter 12 in Book 3, we are not interested in this particular bit.

The label RECD in figure 5 may seem a little superfiuous, but the com-
puter jumps to this label during the initialisation routine (see figure 1b and
point 6). When this occurs, the start bit has already been detected and the
contents of the X index register are 08.

6 (continued from point 3) Now it is time to examine the remainder of
the second half of the PM initialisation routine (figure 1b). After the
start bit has passed and the various bit period locations have been filled
with the correct data, the value 08 is stored in the X index register, the
computer waits for a half bit period and then jumps to the section in the
subroutine RECCHA which reads in all the data concerned with the
ASCI| character after the start bit (see figure 5 and point b). Once that has
all been taken care of, the computer checks to see whether the ASCII
character received has the code 7F. In other words, if the key RUBOUT
(= RES) was depressed to indicate that it is time for the second start of
PM. If so, the computer continues from the label LABJUN. If not, it
returns to the start of the initialisation procedure (INITPR - figure 1a).
Bringing the procedure to a close after the label LABJUN involves printing
the message ‘JUNIOR’ and making sure that any following data is printed
at the start of a new line. The two subroutines, JUNIOR and CRLF, will
be discussed in detail later on (see points 11 and 12).
Considering the fact that the program also jumps to the label LABJUN
when the BREAK key is depressed, the stack is quite likely to ‘overflow’,
with disastrous consequences. For this reason the stack pointer and
location SPUSER have to be kept under control (loaded with the value
$ EF). This then completes the discussion of the PM initialisation routine
and brings us to label RESALL, which is the central point in the main
routine of the PM program.

7 A second initialisation routine belonging to the PM program is the
STEP routine shown in figure 1b. This is executed once the machine
returns to PM after a single instruction has been processed in the STEP
mode. Generally speaking, this will also be the case after a non-maskable
interrupt. During the (INITPR) initialisation routine, the start address of
the STEP routine is loaded into the memory location reserved for the NMI
jump vector (see figure 1a).
The STEP routine is identical to the SAVE routine contained in the
original monitor program. The contents of all the various registers are
saved in the well-known memory locations (see chapter 3 in Book 1 and
chapter 7 in Book 2). The routine ends by calling subroutine PRBUFS,
which we will consider at length in point 10. For the moment it is suf-
ficient to know that the contents of the program counter {(=PCH, PCL)
are printed at the start of a new line followed by a space and then the
contents of the address location concerned. This will be found to be the
current work address together with the data contained therein. When a
program is executed in the STEP mode, that particular memory location
will contain the opcode belonging to the next instruction to be executed.
(This instruction is carried out by depressing the R key).
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The STEP ‘entry’ into PM can also be used to jump to PM after the BRK
instruction or after a hardware IRQ. In that case, the IRQ jump vector will
have to be defined by the operator.

That just about covers the initialisation routines performed by the PM
program. Several PM subroutines have also been dealt with ‘en passant’,
Before we go on to consider the main routine, the time has arrived to
examine a few more PM subroutines. These all have something to do with
the printing process.

1334

N ED

STX TEMPA save X

STA CHA A—>CHA
LDA PBD
ANDIM S$FE

PB# =9

LDXIM $@7 bit counter: 7

LDA  PBD LDA  PBD
ORAIM $01 ANDIM $FE
STA  PBD PBO =1 STA  PBD PEO =9
Jup  PRB
81913 6a
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Whereas the subroutine RECCHA is the main ASCII receiving

routine, the subroutine PRCHA is the main ASCII character trans-
mission routine. The flowchart for the PRCHA subroutine is shown in
figures 6a and 6b. This subroutine prints the ASCII character correspond-
ing to the code contained in the accumulator.
To start with, the contents of the X index register are copied into location
TEMPA. Again, just before the RTS instruction in figure 6b, the previous
value of the X register is restored. Therefore, once again, the contents
of the X register remain unaltered during this subroutine. As with the
RECCHA subroutine, location CHA plays an important part in the pro-
cedure; the contents of the accumulator are copied into this location.
Next, port line PBD is made logic zero by ANDing the contents of PBD
with $ FE. Then the computer waits for one full bit period — the start bit
has now been transmitted. After this, the contents of the X index register,
which acts as a bit counter, are made equal to 7.

6b o
BD

LDA P!
ORAIM $91
STA PBD PB# =1

BRKTST

81913 &b

Figure 6. The PRCHA subroutine is devoted to the actual transmission of an ASCII
character by the Junior Computer to the video terminal (or printer). The complete
flowchart is shown in figures 6a and 6b.
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Foliowing this, the value of the carry flag is made to be the same as the
value of the transmitted bit (after label PRA in figure 6a). This is ac-
complished by the instructions LSR - CHA and BCC (branch on carry
clear). Port line PBO is assigned the value of the carry bit; all other port
lines, PB1. .. PB7 remain unaltered.

The procedure is as follows:

Start of PRCHA D b6 bS5 b4 b3 b2 bl bPp: C=x

when X = 07 : 0 O b6 b5 b4 b3 b2 bl: C=bd
when X = 06 O 0 O b6 b5 bd b3 b2: C=bl
when X = 05 O 0 0 O b6 b5 b4 b3: C=b2
when X = 04 0 0 0 O 0O b6 b5 bd: C=b3
when X = 03 O P 0 0 0 O b6 b5: C=b4
when X = p2 9 0 0 0 O O O b6: C=bb
when X = 91 O 0 0 0 0 O O O: C=bb

As you can see, blt 7 is zero before the start of the data transmission and is
therefore not sent by the computer. This is quite correct, for there is no
parity bit involved in the PM program and only seven bits are used for the
ASCII code.

This brings us to figure 6b, the transmission of two stop bits. The value §2
is held in the memory location STPBIT (see figure 1a) and is now trans-
ferred to the X index register. Next, the computer waits for two consecu-
tive bit periods while port line PB@® is made logic zero.

The actual transmission of the ASCII character is now complete and the
remainder of the routine in figure 6b affects the BREAK key. As readers
know from chapter 12 (Book 3}, the character output process performed
by the Junior Computer can be halted by depressing the BREAK key. After
the ASCII character being dealt with at that moment has been transmitted,
the computer checks to see whether or not the BREAK key was operated.
If not, the computer will return to the main routine after restoring the
contentsof the X index register. |f the BREAK key was operated, however,
the computer waits for it to be released and then performs an indirect
jump (shown in figure 6b as the unofficial JMI instruction). The effective
jump address is defined in locations $1A7C (BRKT) and $1A7D
(BRKT + 1). This effective jump address is that of the label LABJUN {see
figure 1a). After depressing (and releasing) the BREAK key, the computer
reports "JUNIOR’.

The PRBYT subroutine — prints out eight bit data held in the

accumulator. This is shown in figure 7a. The data is transmitted in
the form of two ASCII characters; one for the high order nibble and one
for the low order nibble. This means that each nibble has to be translated
into its corresponding ASCII code before transmission. (For instance, if
the data 20 were not converted into the ASCI| codes 32 and 30, the com-
puter would simply acknowledge it as the ASCII code for a space.) For
this reason, the subroutine NIBASC shown in figure 7b must be executed.
The ASCI codes for numbers @ .. .9 (hexadecimal and decimal numeric
keys) are $30 ... $39. The ASCII codes for the characters A . . . F (hexa-
decimal numeric keys) are $41... $46 (see Appendix 7 in Book 3). Let
us suppose that the accumulator contains the value @X, where X =@ .. . F,
prior to the start of NIBASC. Either the value $3@ will have to be added
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7a 128F 7b 12A4

PRBYT A = XXXXYYYY NIBASC

PHA CMPIM $@A

LSRA cLeC

LSRA

LSRA
LSRA A = 999OXXXX

TXXXX

A= XXXXYYYY

ANDIM $8F | A =seeevvYY
ISR NIBASQ
JsR PRCHA [l »yyyy~

81913 7b

819137a

Figure 7. Subroutine PRBYT {figure 7a) prints a data byte in the form of two data
nibbles. Each data nibble must first be converted into its corresponding ASCII code.
This is accomplished by the subroutine NIBASC in figure 7b.

to the contents of the accumulator to produce the ASCII codes for the
numbers @ ... 9, or the value $37 will have to be added to produce the
ASCII codes for the letters A ... F. This is exactly what happens during
the NIBASC subroutine. The instructions CMP {compare) immediate and
BMI (branch if minus) determine whether the contents of the accumulator
are equal to or greater than $0A. If the value in the accumulator is be-
tween 00 ... 09, the NIBASC routine adds $30 to it. If the value is
between DA ... 0OF, $07 is added followed by $30, making the required
total of $37.

Back to the PRBYT subroutine in figure 7a. This starts by storing the
contents of the accumulator in the stack (PHA). Then the contents of the
accumulator are shifted to the right four times in succession. As a result,
the previous low order nibble is replaced by the high order nibble and the
new high order nibble becomes zero.

Now the program calls subroutine NIBASC (figure 7b); the original high
order nibble is translated into its correct ASCIl code. This is then dis-
played on the video screen or printer via the subroutine PRCHA (see
point 8 and figures 6a and 6b). After this, the original contents of the
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accumulator are restored (PLA} and the program moves on to label
PRNIBL to display the ASCI| equivalent of the original low order nibble.
This section of the routine can be used on its own to print a single nibble.
By masking the high order nibble, the contents of the accumulator are
prepared for processing by the subroutines NIBASC and PRCHA. After
the low order nibble has been printed the computer returns to the main
routine.

10 The subroutine PRBUFS (see figure 8) is devoted to printing the

current ‘work address’. This address information is held in the
buffers POINTH (high order address byte) and POINTL (low order address
byte). Not only is the actual work address printed, but also the contents of
that address location. The PRBUFS subroutine can be explained in very
few words. The computer always starts to print at the beginning of a fresh
line (subroutine CRLF, see point 12). Then the high order address byte
(ADH) of the current work location is printed by means of the subroutine

11F8

(llliiiiiill"

JSR CRLF

LDAZ POINTH

Js PRBYT
LDAZ POINTL

R
JSR PRBYT
SR PRSP
SR
SR

“ADH" (work addrass)

“ADL" (work address)

g

A < work dats

LDAIY POINTL
PRBYT
J PRSP

J
LDYIM $08
J

*XX"* { work data )

gy

81913 8

Figure 8. Subroutine PRBUFS is used to print the current work address and its
corresponding work data.

PRBYT which we are already familiar with. The same procedure occurs for
the low order address byte (ADL). Then a space is ‘printed’ via the subrou-
tine PRSP (see point 12). The contents of the memory location defined by
the buffers POINTH and POINTL are then loaded into the accumulator by
means of post indexed indirect addressing (where the contents of the
Y index register are §0). Finally, the two data nibbles are displayed via the
PRBYT subroutine and another space is printed.
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LDA MESS,Y

CMPIM $63
BEQ MESEND
JSR PRCHA
RTS
INY
JMP ME

l 81813 9a

9b

1246 124F 1254
o
LDYIM $07 LDYIM $@E
JMP  JUN JMp  JUN

' 1

..... 81913 9b

Figure 9. Subroutine MESSY (figure 9a) prints a computer message; in some
instances this constitutes an error report. Subroutines JUNIOR, EDITOR and
ASSEM in figure 9b use subroutine MESSY to report the texts ‘JUNIOR’, ‘EDITOR’
and ‘ASSEMBLER’, respectively. (The last two reports do not apply during the

PM routine.)
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1 The subroutine MESSY, shown in figure 9a, allows a ‘string’ of text
to be displayed, in other words, a message such as ‘JUNIOR’ or
'WHAT?' etc. The text concerned is stored in ASCII coded form in a
number of consecutive memory locations in the look-up table MESS,
starting from address $13BD and ending at $141D (see the listing at the
back of this book). One memory location is reserved for each ASCII
character. The value contained in the Y index register determines how
many locations from the start of the table (13BD) that the particular text
string begins. A text string ends with the ‘end-of-text’ {(EOT)} character
$03. Effectively, what happens is that initially the contents of the Y index
register correspond to the start address of a particular message and are
then incremented until the EQT character is detected.
The subroutine MESSY (figure 9a) starts by calling the subroutine CRLF
{see point 12). This positions the cursor {or printer carriage) to the start of
a new line. Then the instruction LDA MESS, Y loads the ASCI! value of
the first/next character in the message into the accumulator. The initial
value of the Y index register must be established before the jump to
MESSY. The computer then checks to see whether the EOT character (03)
has been reached, for this would end the subroutine (RTS). If not, it
continues to print the rest of the string. In some instances the rest of
MESSY after the label ME is used as a subroutine. This means that the
printing does not start at the beginning of a new line.
Here is an example of how MESSY is used: subroutines JUNIOR, EDITOR
and ASSEM in figure 9b. Further on in the chapter a lot more examples
are given. First, a particular value is loaded into the Y index register, then
subroutine MESSY is called and the relevant text ("JUNIOR’, ‘EDITOR’ or
‘ASSEMBLER'’) is printed followed by a carriage return and line feed

11F3

PRSP

LDAIM $0D LDAIM $28

JSR PRCHA JMP CLEND
LDAIM $6A

81913 10

Figure 10. Subroutines CRLF (start afresh from the beginning of a new line) and
PRSP (print a space).
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(CRLF) to ensure that any further data etc. is printed on a new line.
N.B. Subroutines EDITOR and ASSEM are not used in PM.

12 Subroutines CRLF and PRSP (see figure 10) are used frequently to

provide clarity and legibility. The subroutines are extremely
straightforward. It is simply a question of loading the ASCII code of the
required command into the accumulator and ‘printing’ it with the aid of
the PRCHA subroutine. The carriage return (CR) command (= back to the
start of the same line} has the ASCIl code §D and the line feed {LF)
command (= move to the same position on a new line) has the ASCIl code
PA. The space routine (PRSP) is also straightforward: load the ASCI| value
20 into the accumulator and jump to label CLEND, leaving a space.

13 The subroutine HEXNUM (figure 11) plays an important role in
determining whether an ASCI| character received by the Junior
Computer belongs to a hexadecimal key or not. If indeed a hexadecimal
key was depressed, the data is added, after translation from the ASCII
code, to the contents of the data buffers INH and INL. if not, the com-
puter asks ‘WHAT?’ (short for ‘what is going on?’).

Before dealing with the subroutine HEXNUM in detail, let us consider this
subroutine ASHETT (figure 12), which establishes whether hexadecimal
data is involved and if so distills the data out of the received ASCII code.
Looking at figure 12, let us assume that the particular ASCII code is stored
in the accumulator, codes 30...39 (keys®...9) and codes41...46
(keys A ... F) are valid; all other codes (and keys) will be considered
non-valid. The ASHETT subroutine contains four consecutive compare
instructions, each followed by a branch instruction. These determine
whether the incoming ASCII code is valid or not. The non-valid ones are
filtered out, so to speak. Once a non-valid character is detected, the N flag
is set and the Z flag is cleared before the computer returns to the
HEXNUM subroutine.

The ASCII code of a valid character has to be transiated into the corre-
spanding data nibble before it can be used by the Junior Computer. This is
accomplished after the label VALIT in the ASHETT subroutine. The
ASCIl characters 30...39 can be translated to 0@ ...09 simply by
masking the high order nibble of the accumulator contents (AND # @F).
Where the ASCIIl characters 41 ... 46 are concerned, however, the value
@9 has to be added to the accumulator contents first, before the masking
process. At the end of the ASHETT subroutine, the high order nibble of
the accumulator contents will always be zero and (nine times out of tenl)
the low order nibble will not be equal to zero. This means that both the
N flag and the Z flag will be reset after the return.

Now to continue with the HEXNUM subroutine (figure 11). This starts by
calling the ASHETT subroutine (figure 12) which we have just discussed.
This is followed by a BMI instruction to test the status of the N flag. A
non-valid ASCI! character leads the computer to the label HNUB, which is
where the text ‘"WHAT?’ is dealt with. Firstly, the value 46 is loaded into
the Y index register. Then subroutine MESSY is called (see point 11 and
figure 9a). After the error message ‘'WHAT?’ has been printed, the cursor is
positioned at the beginning of a new line via the CRLF subroutine. Before
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"

HEXNUM

non valid

N=6@ valid
LDYIM $46

LDXIM $04
JSR  MESSY
JSR  CRLF e
LDYIM $FF

AsLz INL

ROLZ INH

DEX

ORAZ IRL

STAZ INL

LDYIM $08

81913 11

Figure 11. Subroutine HEXNUM processes the data nibbie corresponding to a hexa-
decimal key. This data nibble is stored in the data buffers INH and INL.

returning to the main routine, the value FF is loaded into the Y index
register. This means that the N flag will be set and the Z flag will be reset.
if a valid hexadecimal ASCII character was received, the corresponding
data nibble is ‘set aside’ in the data buffers INH and INL. This is done by
shifting and rotating the bits in these buffers to the left four times. The
way in which this is accomplished is identical to similar operations in the
original monitor program (see Book 2). For this reason we only require a
brief summary here:
® The low order nibble contained in buffer INL is the same as the data
nibble just received.
® The high order nibble in buffer INL is the same as the previous low
order INL nibble.
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141E

ASHETT

CMPIM $30

12

CMPIM $3A

3.3 ([ ...[3)
yes

CMPIM $49

81913 12

Figure 12. Subroutine ASHETT is called during the HEXNUM subroutine {(figure 11}
to check the validity of a supposedly hexadecimal key. If a non-valid key is
depressed, the error message ‘WHAT?’ is displayed.

® The low order nibble in buffer INH is the same as the previous high
order INL nibble.

® The high order nibble in buffer INH is the same as the previous low
order INH nibble.

® The previous high order INH nibbie has disappeared.

in other words, the contents of buffers INH and INL always correspond to
the data belonging to the last four hexadecimal keys to be depressed,
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unless the buffers were cleared in the meantime (subroutine RESIN, see
point 14). If subroutine HEXNUM is called less than four times in suc-
cession, the unused nibbles will be zero.

Just before the end of the HEXNUM subroutine, the Y index register is
loaded with the value 80. As a result, the Z flag will be set and the N flag
reset, which is exactly the opposite of what happens when a non-valid
ASCII code is received.

14 The main PM routine and the remaining PM subroutines will now
be dealt with. The complete flowchart is shown in figures
13a... 13c. The central point of the main routine is constituted by the
subroutine RESALL {top left-hand corner of figure 13a). Following this
label the computer calls subroutines RESPAR and RESIN (figures 14a and
14b respectively). The subroutine RESPAR has the task of clearing the
two address buffers PARA and PARB (both 16 bits), while the RESIN
subroutine performs the same function for the data buffers INH and INL.
This occurs as soon as the contents of the buffers have become superfluous
after a particular key operation has been performed. The next label,
READCH, constitutes another important part of the main PM routine,
during data processing in particular (for instance, the entry of a work
address or work data). Straight after the READCH label the PM routine
jumps to subroutine RECCHA: the computer waits for a {new) key to be
depressed. Then, the routine tests the various possibilities:

Is it the ‘+* key? If so carry out the ‘+' key routine. If not, is it the —!
key? If so, carry out the ‘—’ key routine. |f not, check to see whether it
was the space key, etc. etc.

15 The PLUS key routine; the sequence of instructions in figure 13a

following on from the PLU label. As mentioned in chapter 12, the
work address has to be incremented and the new work address together
with the data contained therein has to be printed on a new line. To start
with, the subroutine INCPNT is called {see figure 15a). The current work
address is indicated by the address pointer POINTH and POINTL. In-
crementing this pointer by one (INCPNT, figure 15a) is carried out in the
usual manner. After this, the new work address and the corresponding data
is printed (subroutine PRBUFS, see point 10 and figure 8) and the
program returns to the label RESALL.

16 The MINUS key routine; the sequence of instructions following the

MINUS label in figure 13a. Here, the current work address has to
be decremented by one; the new work address and the inherent data has to
be printed. This is very similar to the PLUS key routine described in point
15. The only difference being that the subroutine DECPNT is called rather
than the subroutine INCPNT. In this instance the contents of POINTH and
POINTL are decremented by one, otherwise everything else is the same as
before.

17 The SPACE key routine; the sequence of instructions following the

SPACE label in figure 13a. A work address is entered and displayed.
The address data is entered by previously depressing up to four hexadeci-
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13a

(figure 1b)

RESALL

| Jnd address buffers

JSR RESPAR

data buffers

yes
LDAZ INL LDXzZ SPUSER
STAZ POINTL TXS restora SP
JMP  RESALL LDAZ INH LDAZ POINTH
STAZ POINTH PHA sestors PCL
LDAZ POINTL
JMP  RESALL PHA restore PCH
LDAZ PREG
PHA restore P-reg.
LDXZ XREG restore X
LDYZ YREG restore Y
LDAZ ACC restors A
axecuts program
RTIL starting at
E? 7 (PCH,PCL)
JMP  RESALL STAIY POINTL
JSR  INCPNT
JSR  PRBUFS
JMP  RESALL
81913 13a
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13b

(¢ RESALL)

{aq READCH)

84

CMPIM 4C

BNE

LDYIM $1

JSR MESSY
LDAZ ACC

JSR PRBYT

LDYIM $1A

JSR MESSY

“ACC: "

XX {=A)

4R THE

PC

CMPIM 50

yes

LDAZ PCL

STAZ POINTL

JMP

RESALL

LDAZ YREG'
PRBYT
LDYIM $24

MESSY
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SR MESSY
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S
>
N

PRBYT
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LDAZ PCL
SR PRBYT
LDYIM $2C
SR MESSY
LDAIM $O1
PRBYT
LDAZ SP!

JSR PRBYT
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JSR MESSY
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LDYIM $38
MESSY
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SR PRSP

JIMP

o
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>
e
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"XX“{= Y}

XU

XX (= X}

“pCU:LI”

“XX” (= PCH)

"XX" (=PCL)

- JUHE g

g1

XX {=SP)

“PRLI:LY"

“IHUULINV LIBDEZC”

MATRIX

(figure 17a)
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(H)—
{«RESALL)

{4 READCH)

VALNUM

JSR HEXNUM

non valid

RESALL

JMP

JMP RESALL

JIMP RESALL

JMP LABJUN

{figure 1b} 81913 13¢

"JUNIOR™

Figure 13. The main PM routine which processes the various key functions can be
split up into three sections. These are shown in figures 13a, 13b and 13c. Since the M
key routine contains so many instructions, it is shown separately in figures 17a and
17b.
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14a 1259 14b 1268

RESPAR RESIN

()
()

LDYIM $90@ LDYIM $0¢
STY PARAL STYZ INL
STY PARAH STYZ INH
STY PARBL
STY PARBH

RTS

811913 14b

811913 14a

'

Figure 14. Subroutine RESPAR (figure 14a) makes sure that the address buffers
PARA and PARB are cleared for the entry of the first and last address, respectively.
Subroutine RESIN (figure 14b) clears the data buffers INH and INL.

15a 1213 15b 121A

INCPNT

INCZ POINTL

10

SEC

LDAZ POINTL

SBCIM $01

STAZ POINTL

LDAZ POINTH

SBCIM $20

INCZ POINTH

STAZ POINTH

RTS

81913 15b

81913 15a

Figure 15. Subroutines INCPNT (figure 15a) and DECPNT (figure 15b) serve to
increment or decrement the contents of the address pointer POINT, respectively.
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mal keys and is stored in the buffers INH and INL. The contents of INH
and INL are then copied into POINTH and POINTL. The work address is
now established and can be printed. For this subroutine PRBUFS is
called (see figure 8 and point 10). Following that the program returns to
RESALL.

18 The FULL STOP key routine; the sequence of instructions in
figure 13a following the PNT label. Data is loaded into a previously
specified work address. One of the keys +', '~ or ‘space’ is implemented.
The contents of the data buffer INL. are first copied into the accumulator,
buffer INH is not required here as only one data byte is concerned. If
more than two data keys are depressed, the two most recent ones will
comprise the work data.
Once the work data is stored in the accumulator, it is transferred to the
location reserved for the work address by means of the instruction STA -
POINTL, Y. Afterwards, the work address is incremented by one (sub-
routine INCPNT) and displayed together with the data contained therein
{subroutine PRBUFS). This makes preparation for the following work
data entry.

19 The R key routine; all the instructions following the RUN label in

figure 13a. This routine is identical to the one belonging to the GO
key in the original monitor program (see figure 5a on page 108 of Book 2).
During the STEP routine (see figure 1b) the contents of all the registers
were stored away. During the RUN routine the original register contents
are restored. The RTI {return from interrupt) instruction which ends the
RUN routine ensures that a program is carried out from the start address
specified by the contents of locations PCH and PCL, or, if the program is
being executed in the STEP mode, that the following instruction is carried
out. The opcode of this instruction is stored at the address specified by
PCH and PCL (PC = program counter).

2 Before discussing the L key routine, let us consider a special
subroutine, SHOWPR {see figure 16), which is used during a
program listing to make sure that the contents of the status (P) register are
printed bit by bit.
The SHOWPR subroutine starts by copying the contents of the status
register (PREG) into location PRTEMP. In addition, the X index register,
which acts as the bit counter, is loaded with an initial value of 8. The
position of the various flags in the status register can be seen from figure
1b on page 61 of Book 1.
After the label SPRA in the SHOWPR subroutine the contents of location
PRTEMP are shifted to the left eight times in succession by means of the
instruction ASL - PRTEMP. This means that initially bit 7 is shifted into
the carry flag. Depending on whether the carry bit is now logic one or
logic zero, either a 1 or @ will be printed by the subroutine PRNIBL (see
point @ and figure 7a). After this the next {and subsequent) bit is prepared.
The process is repeated until the contents of the X index register are zero.
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1228

LDAZ

16

PREG A < PREG

STA PRTEMP A—> PRTEMP

LDXIM $@8

B bits

ASL

PRTEMP

LDAIM $09
JSR PRNIBL,

yes

LDAIM $81
JSR PRNIBL|

Figure 16. Subroutine SHOWPR is called during a certain phase of the L key routine
and prints the contents of the status register bit by bit (the state of the various flags).

« X" (=b7) >

< nextbit >

Slibis
desit with?

81913 16

This is what happens:

when X = 08 : the value of the N flag is printed;
when X = @7 : the value of the V flag is printed;
when X = 06 : arandom value is printed;

when X = 05 : the value of the B flag is printed;
when X = 04 : the value of the D flag is printed;
when X = @3 : the value of the | flag is printed;
when X = 02 : the value of the Z flag is printed;
when X = 01 : the value of the C flag is printed.

2-‘ The L key routine; the section of program following the LIST

label in figure 13b. The task of this subroutine is to print the
memory contents in an orderly manner. The LIST routine is made up of a
whole series of instructions and many jumps to other subroutines. This
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subroutine can be dealt with rapidly by looking at a practical example
(see chapter 12 in Book 3). The text that is printed during a certain phase
is shown in inverted commas. The inverted commas themselves, however,
are not printed! How a space is symbolised is also shown in figure 13b. All
the subroutines that are called by the LIST routine have been discussed
earlier: MESSY in point 11, PRBYT in point 9, SHOWPR in point 20 and
PRSP in point 12.

22 The P key routine; the sequence of instructions following the
label PC in figure 13b. Depressing the P key causes the contents
of the program counter (PCH and PCL) to be copied into the current work
address. The function of the P key is identical to that of the PC key of the
original monitor program. This key routine can again be explained in very
few words.
The contents of location PCH and PCL are copied into locations POINTH
and POINTL. This gives a new work address, which is printed via the
subroutine PRBUFS.

2 The M key routine: the large number of instructions following
the label MATRIX in figure 13b. In fact, there are so many that
they require extra space: figures 17a and 17b; Figures 13b and 17a are
joined via ‘junction’ @®.
At the top left-hand corner of figure 17a, the routine starts by printing the
message ‘HEXDUMP:’. This is accomplished by loading the Y index
register with the value $ 52 and calling the MESSY subroutine. This brings
us to the subroutine INPAR which we will describe now (the subject of
the M key routine is continued in point 25).

2 The INPAR subroutine (see figure 18) is either partially or
completely run during the routines associated with the M, G and
S keys. These keys are used to enter certain parameters, as you will re-
member from chapter 12. The INPAR subroutine controls the parameter
setting:
enter first K enter last address CRK
addressdata 02 “®Y data or ID ’ ey
The INPAR subroutine starts by waiting for a key to be depressed via the
subroutine RECCHA. The question now is: is it the comma key? If not,
either valid (hexadecimal} data or non-valid data (all other keys except *,’)
must have been entered. The HEXNUM subroutine (see point 13 and
figure 11) processes valid hexadecimal data in the buffers INH and iNL.
As soon as the comma key is depressed (label IPA in figure 18) the first
data entry will be complete. This information is then transferred to the
address buffers PARAH and PARAL for the first address. In the case of
a hex dump this memory location will contain the first data to be printed
(see point 25) or it will be the first address of a data block which is to be
stored on cassette (subroutine SAID - see point 28). Next, the data buffers
INH and INL are cleared (subroutine RESIN).
This brings us to the label IPB in figure 18. Again, the computer waits for
a key to be depressed and then checks to see whether it was the carriage
return key. if so, it means that all the data has been entered. If not, it
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1 7a i) (figure 13b)

LDYIM $52 “HEXDUMP :
3SR MESSY

JSR INPAR

N=® SEC

LDA PARBL

SBC PARAL

LDA PARBH

SBC PARAH

MATD

o
u
-

JMP LABJUN
c=1

(figurs 1) JSR  CRLF
LDXIM $86

X u”
MATG

JSR PRSP s

LDYIM $09

MATH

TYA

JSR PRNIBL "X (=6{...F}

JSR PRSP e

JSR PPSP u
INY

CPYIM $10

LDA PARAL

STAZ POINTL

LDA PARAH

STAZ POINTH

é (figurs 17b} 81913 172

Figure 17. Apart from the first two instructions (see figure 13b) all the instructions
pertaining to the M key routine are shown in figures 17a and 17b.
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17b

JSR CRLF

LDXIM $10

LDAZ POINTH

JSR PRBYT

LDAZ POINTL

J. PRBYT

LDYIM $17

o %)
x

ME

SEC
LDA PARBL

SBCZ POINTL

LDA  PARBH

SBCZ POINTH

LDYIM $060 yes

LDAIY POINTL A < data

JSR PRBYT (data)” JSR  CRLF vy
-~
JSR PRSP “ur JMP  LABJUN
JSR  INCPNT POINT +| POINT + 1
“JUNIOR"

DEX

(figure 1b)

no
BNE

complets row?

ves

U

PARB > POINT?|

PARB —
POINT

81913 17p

must have been more data and the procedure just described above is
repeated. If on the other hand, it was the CR key, the second data entry
will have been completed and the program will have reached the label IPC.
This is where the last data to be entered is stored in locations PARBH and
PARBL. In this instance the buffers INH and INL are not cleared, unlike
when the comma key was detected. Finally, the contents of the Y index
register are cleared, which sets the Z flag and resets the N flag.
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1387

{IPBRES
figure 19¢)

J— (GETIO

figure 19a)

JSR  RECCH
CMPIM $6D

N=1,Z2=¢

LDAZ INH

STA  PARBH

LDAZ INL

STA  PARBL

LDYIM $60

81913 18

Figure 18. Subroutine INPAR is of vital importance to the M, G and S key functions,
in other words, those requiring certain parameters to be input.
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2 The M key routine continued — back to figure 17a. After the end
of the INPAR subroutine {point 24) the state of the N flag
determines what happens next. If non-valid data was entered during the
INPAR subroutine, the program moves on to label MATD and from there
to the LABJUN label (figure 1b} where the computer reports ‘JUNIOR’.
Following this, the central label in the PM main routine, RESALL, is
reached. We can now try again by depressing the M key. If, however,
correct data was entered, the program jumps to label MATF. The next
sequence of instructions checks to see whether anything has gone wrong.
The 16 bit number contained in locations PARBH and PARBL is sub-
tracted from the 16 bit number contained in location PARAH and PARAL.
If the result is negative, the carry flag will be reset and the program will
jump to label LABJUN via label MATD to report ‘JUNIOR’. The reason
for this is that the last address (PARB) should never be lower than the first
address (PARA). This is true of both a hex dump listing and of a data
transmission to cassette (key S; see point 28).
If the addresses are all right (carry flag = 1) the listing of the hex dump can
be started. The instructions between labels MATG and MATH in figure
17a make sure that six spaces are 'printed’ one after the other from the
start of a new line. This is for the sake of clarity. After the spaces have
been output, the numbers @...F are printed above the hex dump
columns. Each figure is separated from the next by two further spaces. At
the end of figure 17a the contents of the work address buffers POINTH
and POINTL are made the same as those of the first address — the contents
of locations PARAH and PARAL. That completes the first half of the
M key routine.

26 Now to continue with the second half, which brings us to figure
17b. After the label MATJ, the data to be dumped is printed
from the start of a new line (CRLF). Initially, the start address {the
contents of POINTH and POINTL) is printed at the beginning of a new
line. Once the address has been printed, a colon and a space are produced
via the subroutine ME. This is similar to the MESSY subroutine, except for
the initial carriage return and line feed (see figure 9a and point 11). in
addition, the X index register {initial value = 10) is used to keep a track of
the amount of data to be printed in a particular row.
The instructions after label MATK check whether all the data in the hex
dump has been printed. This can be deduced from the value in the address
pointer (POINT) when compared to the contents of the last address buffer
PARB. The state of the carry flag determines which path the computer is
to take. If the POINT address has not yet exceeded the contents of buffer
PARB, the relevant data is fetched from the current POINT location and
printed (label MATL). Then a space is produced {subroutine PRSP), the
value in POINT is incremented (subroutine INCPNT; see point 15 and
figure 15a) and the contents of the X index register are decremented to
prepare for the next print operation. The state of the Z flag (the instruc-
tions BNE and BEQ) determines whether the next lot of data is to be
printed on the same line or on a fresh line. If the contents of the X register
are not yet zero then the following data has to be printed on the same line.
If the contents of the X index register are zero then the computer jumps
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back to label MATJ to print out the next address and then the next line of
the hex dump.

Once all the data in the hex dump has been printed {the contents of PARB
are less than those of POINT), the computer jumps to the CRLF subrou-
tine and then to label LABJUN, to output the text ‘JUNIOR’. Since
subroutine CRLF is called just before the jump to label LABJUN and the
text ‘'JUNIOR’ is also printed at the start of a new line (see subroutine
MESSY and JUNIOR) a gap of one line is left between the last line of the
hex dump and the ‘'JUNIOR’ message.

N.B. If the amount of data to be printed is a factor of sixteen, in other
words, if the hex dump is made up only of complete lines, the last address
to be printed will belong to a ‘fictional’ row of data. This is because the
computer does not ‘know’ that it has reached the end of the hex dump
until after label MATK. This means that although the address will be
printed, the data contained therein will not be printed.

2 As far as the G key routine is concerned, we can leave figure 13b
and turn to the third section of the main PM routine. This section
is shown in figure 13c. The G key routine consists of all the instructions
following the label GETTAP. Most of the work in this routine is ac-
complished by the subroutine GETID which is shown in figure 19a.
Following the label GETID (figure 19a) the program jumps to subroutine
IPB. This is not a new subroutine, but the closing stages of subroutine
INPAR which was dealt with in point 24 and figure 18. When a program is
being entered from cassette, data must be input (the program number, ID)
the G key must be depressed followed by the CR key. (The situation
where ID = FF will be considered later.) At the end of the IPB (= INPAR)
subroutine the state of the N flag will dictate whether the whole procedure
went smoothly and correctly, or not. If something went wrong the N flag
will be set and the BM! instruction after the IPB subroutine has ended
causes the computer to branch to label GA and from there return to the
main section of GETTAP.
If an acceptable 1D was entered, the contents of the accumulator are
stored in location ID (see chapter 16). Prior to the end of the IPB subrou-
tine, the accumulator is loaded with the contents of the low order data
buffer INL. By the way; subroutine IPB is not exited from (unless some-
thing went wrong) until the CR key has been operated. The detour by way
of the subroutine IPBRES is required to-clear the contents of buffers INH
and INL. Alternatively, the computer could have jumped to the instruc-
tion JSR - RESIN immediately before the IPB label in figure 18.
If everything went fine after the second jump to the IPB subroutine, the
contents of locations INH and INL are copied into locations SAH and SAL
respectively (see chapter 16). The program then proceeds to label GB so
that the actual read from cassette operation can take place. Subroutine
RDTAPE will be discussed in detail in chapter 16. During the RDTAPE
subroutine the input/output parameters are re-defined. This is why the
subroutine RESTTY (figure 19b) is called immediately afterwards. Here,
the 1/O status is restored to that shown in figure 1a. The computer then
reports with the text 'READY’ and the Z flag is set and the N flag is reset
before the end of the subroutine GETID.
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Back to the G key routine in figure 13c. If the N flag was set during the
GETID subroutine, the program continues to label LABJUN via the label
GETERR to report ‘JUNIOR’. If, on the other hand, the N flag is reset,
the entire process will have been a success and the computer returns to the
focal point RESALL in the main PM routine.

2 The S key routine consists of all the instructions following the
label SAVID in figure 13c. Again, the lion’s share of the work is
carried out by the subroutine SAID, which is shown in figure 20. We shall
describe this subroutine first. When the S key is depressed, the following
parameters have to be met:
S key - first data - comma - second data - comma - third data - CR key
where:
the first data represents an ID (00 . .. FF)
the second data represents the start address, SA
the third data represents the end address, EA (= LA + 1, see chapter 11 in
Book 3).
The SAID subroutine starts by checking to see whether a comma key was
operated. |f not, the first data is not yet completely entered. This involves
the subroutine HEXNUM: valid hexadecimal data sets the N flag thereby
making the program jump to label SIB. As soon as the comma key is
depressed, the program jumps to label SIC. Here, the contents of buffer
INL are stored in location ID and the computer checks to see whether the
programmer has inadvertently entered the value @@ or FF for the ID. In
this case the program will make a quick error exit via the label SIA, where
the N flag is set and the Z flag is reset.
The second and third data entries and the final CR entry are processed by
calling the subroutine INPAR which is shown in figure 18 and described in
point 20. Before this, however, the data buffers INH and INL are cleared
via the subroutine RESIN.
As soon as the CR key is depressed, the computer can start with the actual
storage of the data being received from the cassette. The start address
buffers SAH and SAL are loaded with the contents of buffers PARAH and
PARAL for the first address. Similarly, the end address buffers EAH and
EAL are loaded with the contents of locations PARBH and PARBL for the
last address. The computer then jumps to the cassette subroutine DUMP
which will be discussed in detail in chapter 16. As with the RDTAPE
subroutine (point 27) the input/output parameters are altered during the
DUMP subroutine. Therefore, the subroutine RESTTY is called after the
end of subroutine DUMP.
After the end of the program entry the computer reports ‘READY’ and
the contents of the Y index register are cleared, thereby setting the Z flag
and resetting the N flag.
Back to the S key routine in figure 13c. After the SAID subroutine has
been executed, the state of the N flag indicates whether all the data arrived
safely or not. If so, the computer returns to the main cross-roads in PM
(label RESALL); if not, the computer reports the error ‘JUNIOR’ via
labels GETERR and LABJUN.
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148A

{figurs 18)

STA ID

CMPIM SFF

RDTAPE!

JSR

“READY"”

JSR MESSY

JSR IPBRES

STA SAL
LDAZ INH
STA SAH
JMP GB

LDYIM $5C

81913 19a

Figure 19. Subroutine GETID makes up most of the G key routine (figure 19a).
Subroutine RESTTY (figure 19b) restores the input/output parameters to their

origin

INH and INL during part of the INPAR subroutine.
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exacuted. Subroutine IPBRES (figure 19¢) clears the contents of the data buffers
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LDAIM $67 LDAIM $08
STA  PBD STAZ INL
LDAIM $0¢ STAZ INH
STA  PAD :_‘"'m Jup  IPB
LDAIM $7F 1a v
STA  PADD figure 18
STA  PBDD
RTS 81913 19¢

81913 19

29 Finally, the data key routine. This involves all the instructions
which follow the label VALNUM in figure 13c. The main routine

will now have reached the stage where any keys that mean something to

PM have been filtered out. These are:

(point 15) .

{point 16)

{point 17)

{point 18}

(point 19)

{point 21)

{point 22)

(points 23, 25 and 26}

(point 27)

{point 28)

Any keys not mentioned above will not have been filtered out. These are

either non-hexadecimal keys — usuaily pressed by mistake — or hexa-

decimal keys. In the case of the latter, this concerns information per-

taining to the entry of a work address or work data. Key information

which is part of the routines relating to the key functions M,Gand S is

not dealt with by the main PM program loop.

The subroutine HEXNUM (figure 11) processes the hexadecimal data. This

was discussed in point 13. Any non-valid keys produce the error message

‘WHAT?. In this case the program jumps back to the central label

RESALL. When a valid key is depressed, the associated data nibble is

processed inside the buffers INH and INL. Next, the program jumps to

label READCH (see figure 13a). In this instance the data buffers INH and

INL are not cleared as the data entry may well not be complete.

That covers all the software concerning the PM routine, but a word should

be added about the BREAK key routine.

VOO YvIr>D %| +
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CMPIM $09

CMPIM SFF

LDYIM SFF JSR RESIN

JSR  INPAR

JSR  MESSY

JSR  CRLF “READY"
LDYIM $60
N=9.2Z=1

N=12Z=8¢

81913 20

Figure 20. Subroutine SAID performs the lion’s share of the S key routine. Among
other things, it contains a jump to the cassette routine DUMP to allow a program to
be stored on cassette.

98



30 As already mentioned (see chapter 12 in Book 3 and point 8}
depressing the BREAK key will only be effective during a print-
ing session involving the subroutine PRCHA. In practice, however, it will
be seen that this key can fead to a ‘JUNIOR’ report, even while the com-
puter is waiting for a key to be depressed (subroutine RECCHA). Thus,
the behaviour of the computer will be identical to that during the
LABJUN routine in figure 1b (see points 1 and 6).
How this is possible can be explained as follows:
If the BREAK key is depressed for at least nine bit periods in a row, the
ASCII code @@ is transmitted. Since this code is incomprehensible to the
Junior Computer, it reports ‘WHAT?". At least that is what it is supposed
to do in theory. In fact, as soon as the error message starts to be printed,
the computer will find out that the BREAK key is still depressed and so
will report “JUNIOR’ . . . but not before the BREAK key has been released!
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15
The PME software

766 bytes of text editor

The new PM Editor was introduced in chapter 13. Now that we
know how to ‘drive’ the new software, it may be interesting to
take a good look ‘under the bonnet’ to find out how the ‘engine’
works — byte by byte. The program is based partly on existing
subroutines and partly on totally new subroutines which, as
always, can be incorporated into user programs.

Although the PME program contains relatively few bytes com-
pared to the rest of the software in this book, each routine will
be dealt with and fully explained in turn,

1 Let us start by looking at PME in general. As an aid to this, a block
diagram has been drawn and is illustrated in figure 1.
PME is structured as follows:
The main routine is preceded by an initialisation routine which is only
run now and again. As can be seen from the flowchart, PME originates
from three sources, much in the same way as a river is formed by the
convergence of a number of brocks and streams. The three sources are: the
cold, warm CEND and lukewarm start entry routines. A fourth ‘“tributary’,
the ASSEND routine, should really be considered as an intermediate
routine which is instigated by the depression of the ‘ST’ key on the main
keyboard.
Normally, any use of PME will lead to its main routine, which is every-
thing after the WARM label in figure 1. The procedure carried out by this
main routine should be very familiar by now. Once a depressed key has
been detected, the program carries out an interrogation procedure to find
out which key was depressed: was it the ‘A’ key? If so, carry out the ‘A’
key routine. if not, was it the ‘B’ key? If so, execute the ‘B’ key routine. If
not,was it the ‘C’ key? etc. After executing the corresponding key routine,
the program returns to the central label WARM of the main PME routine,
where the computer waits for a new key to be depressed and then the
subsequent key operation is carried out, and so on.
Sometimes the computer will return to the WARM label via a ‘half-way’
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Figure 1. The block diagram of the PME system program.

stage, after a ‘DONE’, ‘ILLEGAL KEY’ or ‘FULL’ report. In the case of
the ‘X’ key routine, however, the computer will not return to the WARM
label, but will jump to the assembler. The WARM label is reached by
means of a detour (label ST, fabel ASSEND, label EDITW). The latter part
of the ‘1" key routine (from label MEM) constitutes the final section of
the INPUT routine.

Now let us take a much closer look at the subroutines involved in the
PME program.

The subroutine MESSA is shown in figure 2. This is used by PME to

print a text. The subroutine is virtually identical to MESSY, which
was described in chapter 14. The only difference is that the first address of
the look-up table is TXT, rather than MESS. The following texts are stored
in the look-up table: ‘BEGAD, ENDAD:’, ‘ILLEGAL KEY’, ‘FULL’,
‘DONE’, ‘PM EDITOR’, 'LAB$’ and “:$'. The particular text to be
printed depends on the value contained in the Y index register just before
the jump to subroutine MESSA.

3 The subroutine PRINS is shown in figure 3 and has the task of

printing an address, the instruction contained in that address and a
number of spaces. The number of spaces is determined by the length of
the printed instruction —for a single byte instruction, 12 spaces are
printed; for a double byte instruction, 9 spaces are printed and for a three
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MESSA

TXT = $ 1750
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Y=1F4F 4E 45 @3

D 0 N E EOT
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P M LI E D 1 T (o] R EOT

Y-26 «@c) 41 42 28 24 #3

L A B U $ EOT

v=3 «(3) 20 20 @3

U $ EOT

81914-2

Figure 2. The PME subroutine MESSA is virtually identical to the PM subroutine
MESSY, except that a different look-up table is required for the various PME reports.

byte instruction, 6 spaces are printed.

Firstly, which instruction is printed? After all, there are quite a few! An
instruction is printed when its opcode is contained in the address pointed
to by the current address pointer CURAD. It is wise to remember that
CURAD is always pointing to the first address of the last instruction
to be printed in the left-hand column of the video screen (or the printer
paper),

The PRINS routine starts by calling the CRLF subroutine. This was dis-
cussed in point 12 of chapter 14. This subroutine starts the printing oper-
ation at the beginning of a new line, which is of course the beginning
of a line in the left-hand column. Following this another subroutine is
called: OPLEN. This routine was mentioned frequently during the dis-
cussion of the original editor routines. It is described on page 165 in
Book 2 (chapter 8). The opcode of an instruction is stored in the accumu-
lator and the computer checks to see whether the instruction is one,
two or three bytes in length. The length of the instruction is stored in
location BYTES. Next, the X index register is loaded with the contents of
location BYTES. Therefore, the computer knows how many bytes are to
be printed. However, prior to the instruction itself being printed, the com-
puter first outputs the address of the instruction opcode, namely the
contents of CURADH and CURADL. This is accomplished with the aid of
the subroutine PRBYT (see point 9 in chapter 12), Then the value @F is
loaded into address location LABELS. This value determines the number
of spaces to be printed after the instruction has been dealt with.
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CRLF

OPLEN

LDAIM $0F

STAZ - LABELS

X < instruction length
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XX {ADL)

first

LDYTM $60

the op code

LDACURADL)Y
SEC

LDAZ - LABELS

SBCIM $03

STAZ - LABELS

INY

<>
D

DEX
ves
SP
PRSP
DECZ - LABELS

Figure 3. The PRINS subroutine prints the instruction indicated by the CURAD
pointer along with the address of the opcode. A number of spaces are also printed

depending on the length of the instruction.

“XX" (opcode or operand-byte}

3 spaces less

{att} bytels) printed?

have all spaces been dealt with?

81914-3
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This brings us to the whole section between the labels PRT and SP in
figure 3. This section of the PRINS routine is run one, two or three times
depending on the initial value contained in the X index register — the
length of the instruction. When this section of program is reached, the
initial value contained in the Y index register is zero. The routine follow-
ing the PRT label starts by printing a space (PRSP, see point 12 in chapter
14). Then the contents of the address location pointed to by the CURAD
pointer plus the value in the Y index register {®@) is printed. In other
words, the opcode of the particular instruction. Again, the actual printing
is accomplished by the PRBYT subroutine. The next few instructions cause
the contents of location LABELS to be decremented by three. This effec-
tively reduces the number of spaces to be printed later by a factor of three
so that the total output, when the right-hand column is also printed, is
nice and neat. The contents of the Y index register are then incremented
by one and the value in the X index register is decremented by one. If the
contents of the X index register are not yet zero, another byte has to be
printed and the program loops back to the PRT label.

The final section of PRINS, everything after the label SP, is carried out
once the contents of the X index register are zero — all the bytes in the
instruction have been printed. This final section is concerned with printing
a number of spaces after the instruction. The amount of spaces printed
will depend on the final contents of location LABELS, that is:

15 (the original value in LABELS) minus three multiplied by the number
of times the routine between the labels PRT and SP was run.

Therefore, 12 spaces are printed after a single byte instruction, 9 after a
double byte instruction and 6 after a triple byte instruction. Once all the
spaces have been printed, the program returns to the main routine.

4 What happens after a cold start entry into PME? The instructions
contained in the initialisation routine given in figure 4a are executed.
The instructions between the labels EDITC and BRK are only executed
during a cold start entry into the PME, whereas those following the BRK
label are executed in certain other instances as well. We shall return to
these later.
Immediately following the EDITC label, the subroutine RESIN is called.
We first encountered this subroutine in point 14 of chapter 14. It clears
the data buffers INH and INL. Following this, the contents of the Y index
register are made zero and subroutine MESSA is called, so that the com-
puter reports ‘BEGAD, ENDAD:'. Strictly speaking, this is not a state-
ment, but a request for information. The operator is asked to indicate the
BEGAD and ENDAD addresses. As you will remember, this involves
entering the data for the start address, then a comma, then the data for the
end address and finally depressing the carriage return (CR) key. The com-
puter then disposes of another already present subroutine {INPAR) to
deal with this information. The INPAR subroutine, which was previously
used during the M key routine in the PM program (hex dump), was con-
sidered in detail in point 24 of chapter 14. If anything went wrong during
the data entry, the N flag will be set and the Z flag will be reset at the end
of INPAR. The following BMI instruction causes the program to branch
back to the start of EDITC if wrong data was entered. This means that the
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LDA - PARAH
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$ 1533 BRK F
from figure 10
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from figure ®
(LABLST)

EDITOR"
LDXIM $FF
TXS

WARM
{tigure 4b}

Figure 4a. The initialisation routines EDITC and SEMIW, including a common
section following the BRK label.
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whole procedure has to be repeated, so that ‘BEGAD, ENDAD:’ appears
on the screen once again. In a number of cases the computer also reports
"WHAT?' This is because the subroutine HEXNUM is called at two places
during the INPAR routine (see figure 18 of chapter 14). If a non-hexa-
decimal key is depressed, an error report will follow.

As far as the HEXNUM subroutine is concerned, you are referred to figure
11 and point 13 in chapter 14. Once the BEGAD and ENDAD addresses
have been correctly defined, the contents of the first address buffers
PARAH and PARAL are transferred to memory locations BEGADH and
BEGADL, respectively. The contents of the second address buffers PARBH
and PARBL are then transferred into locations ENDADH and ENDADL,
respectively. At the same time, locations CENDH and CENDL are loaded
with the contents of BEGADH and BEGADL + 1, so that the current end
address pointer points to one location higher than the initial (BEGAD)
address in the current memory range. This is necessary because the EOF
character 77 is to be stored at BEGAD. As instructions and labels are
added to the program, the EOF character and the CEND pointer will move
up to a higher location and point to a higher address, respectively. If, on
the other hand, instructions or labels are deleted, the EOF character and
the CEND pointer move down the memory range.

Before the EOF character is stored at BEGAD, the current address pointer
must also point to the start address. This is accomplished during the sub-
routine BEGIN, which was first introduced in chapter 8 of Book 2. After
the PME initialisation routine in figure 4a has been run, the first instruc-
tion in the program will be printed. The opcode of the instruction will be
held in location BEGAD, therefore, straight after a cold start entry, this
will be the single byte ‘instruction’ with the pseudo-opcode 77.

A warm start entry into PME. The second part of the PME in-

itialisation routine in figure 4a is sometimes run after a warm start
entry into PME. A warm start entry begins at label BRK, If this method
of starting PME is chosen, the contents of locations BEGAD and ENDAD
will have already been established (during the initialisation routines
SEMIW, SEACND or the intermediate routine LABLST — see later on for
details). In any case, the BRK jump vector will have to be defined im-
mediately after a warm start entry. For prior to the start, the computer
was in the PM mode where the BRK vector points to the label LABJUN
causing the text ‘JUNIOR’ to be printed (see chapter 14).
It is not surprising, therefore, that immediately after the BRK label in
figure 4a, the BRK jump vector is loaded with the address $153D. This
address pertains to the label EDITW, where we have just arrived. This label
is followed by a few instructions which cause the text ‘PM EDITOR" to be
printed and the stack pointer to be reset to FF. The latter is useful after
pressing the BREAK key, as it is possible that not only does the printing
process have to be stopped, but the stack may be ‘full’. {The so-called
‘overflow’ state is not possible where the stack is concerned. As soon as
the highest location {@1@@) is reached, the process automatically continues
from the next lowest location in the stack, which in this case is @1FF.)
N.B. A warm start entry could also take place at address $153D (label
EDITW) instead of at address $1533 {label BRK). This means that the
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BRK jump vector will be defined according to the PM program and will
remain so unless altered by the user. Furthermore, the BRK jump vector
will be determined by PM during the execution of the instructions up to
the BRK label. This includes the various initialisation routines. Therefore,
if the BREAK key is depressed while the computer is in the process of
printing out ‘BEGAD, ENDAD:’ or while the INPAR subroutine is being
run, the message ‘JUNIOR’ will appear on the screen as opposed to the
expected ‘PM EDITOR'. The latter will only be printed if the section of
program following the BRK label has been run previously.

The main PME routine. It is now time to discuss the main PME

routine, which is shown in figure 4b, starting with the ‘K’ key
routine. This involves the instructions immediately following the central
WARM label, at the top left-hand corner of figure 4b. First an instruction
is printed. Which instruction is determined by the contents of the current
address pointer CURAD. The printing is accomplished with the aid of the
PRINS subroutine which was described earlier (see figure 3). This is
followed by the subroutine RECCHA, during which the computer waits
for a key to be depressed. As soon as this occurs, the computer stores the
ASCI| code of the depressed key in the accumulator. The RECCHA sub-
routine was described in point 5 and figure 5 of chapter 14.
When the depressed key is a ‘K’, the UP routine is called. This is an original
editor routine and causes the current instruction (the one pointed to by
the current address pointer) is deleted from memory and that subsequent
instructions and labels are shifted down the address range by the number
of bytes corresponding to the length of the deleted instruction. The
program or user file will now be one instruction shorter. After the UP
routine, another original editor subroutine, RECEND is called. This
decrements the contents of the current end address pointer by the value
held in location BYTES. This is because focation BYTES contains the
length of the instruction just deleted.
Location BYTES is also used during the UP routine. Subroutines OPLEN
and LENACC do not have to be called, as the deleted instruction is the last
to have been printed and the value held in BYTES corresponds to its
length. The UP subroutine was described in figures 17 and 18 of chapter 8
in Book 2, while RECEND can be found in figure 14 in chapter 8 of
Book 2.
At the end of the ‘K’ routine, the computer jumps back to the central
label WARM belonging to the PME main routine. Every requirement has
now been met; the last instruction has been deleted from memory. Since
the contents of the CURAD pointer remain unchanged, the instruction
immediately following the one just erased is printed after the return to the
WARM label.

The ‘L’ key routine. This routine consists of all the instructions

starting at the LIST label in figure 4b and ending with the computer
report ‘DONE’. This key routine sees to it that all the instructions in the
current program are printed out. The printing procedure must stop as soon
as the current end address pointer CEND and the current address pointer
CURAD contain the same value.
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(continued onp. 117)

Figure 4b. The first section of the main PME routine consists of the key routines for

the ‘K’, ‘L', "SP’ (space bar), ‘I’ and ‘S’ keys.
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When the computer detects that the ‘L’ key has been depressed, the
BEGIN subroutine is called. Firstly, the initial instruction, indicated by
the contents of BEGAD, is printed. The remainder of the ‘L’ key routine
is taken up by the program loop around the label LST. This involves
subroutines PRINS and NEXT and the BMI instruction. The NEXT
subroutine is yet another one which is ‘borrowed’ from the original editor
and is also described in chapter 8 of Book 2. Readers are invited to refresh
their memories as far as this subroutine is concerned, it is described on
page 151 and in figure 10 of chapter 8. The contents of the current
address pointer CURAD are incremented by the value related to the last
figure held in location BYTES, that is the length of the last instruction
to be printed during the PRINS routine. The final section of the NEXT
subroutine checks to see that the contents of the current address pointer
do not exceed those of the current end address pointer, or rather, that
the contents of CURAD are smaller than or equal to the contents of
CEND.

During this final section, the contents of CEND are subtracted from the
contents of CURAD. Thus if:

CEND>CURAD N=1andC=0

CEND<CURAD N=@andC=1

The status of the N flag is valid provided the result of the subtraction is
not less than —127, in other words, provided the most significant bit in the
result is.one.

Once the EOF character has been printed (this is stored at a location equal
to one less than the address pointed to by CEND) and the NEXT sub-
routine has been run again, the contents of CURAD are made equal to
those of CEND (the instruction length of the pseudo-opcode 77 is one). As
a result, the N flag will be reset and so the program loop around the LST
label will be interrupted.

The instruction concerning the printing of the ‘DONE’ message is next on
the list. During the MESSA subroutine the Z flag is set (because the
accumulator contains the EOF character), therefore the computer returns
to the central WARM label in the main PME routine. During the sub-
sequent PRINS routine, the opcode of the instruction stored at the lo-
cation indicated by the CEND pointer is printed. This is unlikely to be an
instruction entered by the operator, but more likely a ‘random’ instruction
which was ‘entered’ when the computer was switched on. In any case, the
last instruction to be printed is clearly not part of the current program as
it is held in an address indicated by the CEND pointer.

The ‘SPACE’ key routine. The ‘SPACE’ key routine consists of all

the instructions following the SKIP label in figure 4b. Depressing
the SPACE bar causes a print-out of the instruction stored in memory
immediately after the last one to be printed. In other words, the routine
is similar to the ‘L’ key routine, but one instruction is printed at a time.
The instruction to be printed is determined by the contents of the current
address pointer CURAD. It is not surprising that this routine involves the
NEXT subroutine. This is followed by the two instructions BMI and BPL,
which both react to the status of the N flag. The computer will, therefore,
either branch back to the central label WARM, or branch to the DONE
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tabel. The latter will only occur when the contents of CURAD exceed
those of CEND, as in the case of the LIST routine.

The READIN/READ subroutine. Before examining the ‘I key

routine, let us take a BREAK and look at three other PME sub-
routines. First of ali, the READIN/READ subroutine is shown in figure 5.
This has a similar function to the RDINST subroutine contained in the
original editor program (see page 153 and figure 11 in Book 2). The
purpose of the READIN/READ subroutine is to process any instruction
that the operator enters into the computer memory banks. It is used during
the INSERT, SEARCH and INPUT key routines.
Just as the GETBYT subroutine was called once, twice or three times,
depending on the length of the instruction, during RDINST, the BYTIN/
BYT subroutine is called once, twice or three times during the READIN/
READ subroutine.
The BYTIN/BYT subroutine is shown in figure 6. As the name of the
latter suggests, two hexadecimal key operations are processed into a high
order nibble and a low order nibble, which are then joined together to
form a data byte. This is then stored in the accumulator. The BYTIN/BYT
routine starts by calling the RECCHA subroutine, where the computer
waits for a key to be depressed. During the subroutine ASHETT following
the BYT label, the ASCIl code of the depressed key is converted into a
corresponding data nibble. If it was not a hexadecimal key the N flag is
reset and the subroutine is exited from. The ASHETT subroutine was
described in figure 12 and point 13 of chapter 14.
If the N flag is set after the ASHETT routine, the data nibbie will be held
in the low order position in the accumulator. Four successive shift oper-
ations in the accumulator cause the nibble to be moved to the high order
position. This is then temporarily stored in location NIBBLE. Then the
computer jumps to the subroutines RECCHA and ASHETT once again to
wait for and subsequently process the next key to be depressed. Provided
that the second depressed key is also hexadecimal, the second data nibble
is ORed with the first to provide the complete data byte. The computer
will then return to the READIN/READ subroutine.
If, for any reason, a non-hexadecimal key was depressed during BYTIN/
BYT the subroutine in exited from with the N flag set and the Z flag
reset.
N.B. The BYT subroutine is very similar to the BYTIN subroutine, except
that the computer does not wait for the first hexadecimal key to be de-
pressed. The BYT subroutine is called during the INPUT key routine.
Now back to the READIN/READ subroutine in figure 5, which starts by
calling the BYTIN/BYT subroutine. The first two data nibbles, thus the
opcode of the entered instruction, are held in the accumulator. At least,
this is the case if hexadecimal keys were depressed. |If not, the computer
will proceed directly to the RTS label.
Following the label READ, the opcode of the instruction is stored in
location POINTH. Subroutine LENACC then sets to work to find out the
Jength of the instruction, and therefore how often, if at all, to keep calling
the BYTIN/BYT subroutine (the contents of the Y index register after the
end of LENACC). The iength of the instruction is transferred to memory
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Figure 5. The subroutine READIN/READ examines an instruction and is used during
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* and INPUT key routines.
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Figure 6. The BY TIN/BYT subroutine combines the data nibbles of two depressed
keys. This subroutine is called at least once during the READIN/READ routine.

locations TEMPX and COUNT. If the instruction turns out to be two or
three bytes long, a space (PRSP} is printed and the computer waits for the
entry of the first (or only) operand byte (BYTIN). This byte is then
transferred to the data buffer POINTL. If the instruction is three bytes
long this procedure is repeated and the second operand byte is stored in
the data buffer INH. Last but not least, the contents of the X index
register are made zero: As a resuit, the Z flag will be set and the N flag will
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be reset. If a non-hexadecimal key was detected in any of the above pro-
cedures, the routine is exited from with the N flag set and the Z flag reset.
Whatever happens, the subroutine always ends with the RTS instruc-
tion.

N.B. Apart from waiting for the first data byte (the opcode) to be entered
(the first call to subroutine BYTIN)}, the READ subroutine is identical to
READIN. The READ subroutine is called during the INPUT key routine.

1 The CHECK subroutine. The CHECK subroutine performs the task
of ascertaining whether or not there is sufficient memory space
available for a new instruction to be INPUT or INSERTED. As you will
remember from chapter 13, four memory locations are required at the end
of a user program. Three locations for the first label to be dealt with
during assembly and one for the EOF character. This means that the
lowest possible position for the CEND pointer to indicate is two locations
below the address indicated by the ENDAD pointer. If the contents of
CEND drop below this, due to the length of the new instruction, the
instruction will not be accepted for storage.
At the end of the CHECK routine, the status of the carry flag will indicate
whether or not there is sufficient memory space available. The CHECK
subroutine is shown in figure 7 and starts by calling the subroutine
ADCEND, which is contained in the original editor routine. It was de-
scribed on page 155 of Book 2 and in figure 13 of chapter 8. The current
end address pointer CEND is incremented by an amount corresponding
to the length of the instruction. We may assume that, just prior to the
jump to the CHECK routine, the contents of location BYTES corresponds
to the length of the instruction that needs to be stored. Subsequently, the
carry flag is assigned a value according to the result of the subtraction:
the contents of ENDAD minus $02 minus the contents of CEND.
Depending on the result, the computer will either branch directly to the
end of the subroutine or continue. If the carry flag is reset, a borrow oper-
ation must have been necessary during the subtraction. This means that
the contents of ENDAD are less than the sum of the contents of CEND
and $02. This concludes that there is no room for the instruction.
If, on the other hand, the subtraction leads to a zero or positive result,
the contents of CEND will still be above the danger level and the instruc-
tion can be stored. Therefore, before the return instruction, the sub-
routine RECEND is executed. This is the opposite of ADCEND and was
described on page 159 and in figure 13 of chapter 8 in Book 2. The
contents of the current end address pointer CEND are temporarily re-
stored to their previous value, since the instruction is ‘registered’ straight
after the CHECK routine (see the discussion on the ‘I’ key routine).
Firstly, however, sufficient room has to be reserved in the memory banks,
which is why the CEND pointer has to be restored to its previous value for
a moment.
N.B. Note that if the CHECK routine is left when the carry flag is reset,
the CEND pointer will not be adjusted by means of the RECEND routine.
As a result, the EOF character 77 will stay where it is (no instruction is
added as there is no room for it) and at the same time the contents of
CEND will be incremented. As soon as there appears to be no more room
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Figure 7. The CHECK subroutine is used to determine whether or not there is
sufficient room in the memory area specified by the values contained in BEGAD and
ENDAD for any extra instructions.

for further instructions, the CEND pointer will no longer indicate an
address which is one location higher than that where the EOF character
is situated. This situation can be remedied and will be explained later.

1 The ‘I’ key routine. Now that we are familiar with the subroutines
involved, we can go on to describe the ‘I’ key routine. This consists

of all the instructions following the INSERT label in figure 4b. As soon as

the computer detects that the ‘I’ key has been depressed, the READIN

subroutine is called. This subroutine is exited from in two ways:

when N =@ and Z = 1 where:

the opcode of the instruction being inserted is held in the data buffer

POINTH;

the first, or only, operand byte of the instruction to be inserted is held in

data buffer POINTL;

the second operand byte, if any, is held in data buffer INH.

when N =1 and Z = @ where:

a non-hexadecimal key must have been depressed during the entry of the

instruction.

In the latter case, the program will branch to the label ILLKEY and the
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computer will report ‘ILLEGAL KEY’, followed by a return to the central
label WARM.

If the instruction is entered in the correct manner, the sequence of instruc-
tions following the MEM label will be processed. The subroutine CHECK is
called to see whether or not there is sufficient room for the instruction
being inserted. If not, the computer branches to label FULL and the com-
puter reports the corresponding message. If there is sufficient room,
however, the FILLWS routine is called and the instruction is inserted into
the sequence already held in memory.

The FILLWS subroutine is a well known original editor routine and is
described in figure 12 of chapter 8 in Book 2. It ensures that sufficient
space is reserved for the new instruction {the DOWN subroutine). After
the current end address pointer CEND has been adjusted, one, two or
three memory locations are loaded with the contents of POINTH (opcode},
POINTL (first operand)} and INH (second operand), depending on the
length of the instruction. Since the Z flag will be set at the end of the
FILLWS routine, the computer will once again return to the centrai
WARM label. The contents of the CURAD pointer remain unchanged, so
the instruction that has just been inserted is printed.

N.B. The section of the ‘I’ key routine following the MEM iabel also con-
stitutes the second part of the INPUT key routine.

1 The ‘S’ key routine. There are quite a number of instructions
concerned with the SEARCH routine, as can be seen from the
right-hand column in figure 4b. When the computer detects that the ‘S’
key has been depressed, the subroutine READIN is called. In other words,
the instruction to be searched for is specified in location POINTH (opcode)
and, depending on the length of the instruction, in locations POINTL and
INH as well. If a non-valid key is depressed during the instruction entry,
the processor branches to the |LLKEY label and the message ‘ILLEGAL
KEY'is printed.
Provided the instruction was entered correctly, the search procedure will
take place, starting at the label SCAN. First, the opcode of the instruction
concerned is loaded into the accumulator and the length of the instruc-
tion is deduced via the subroutine LENACC. The length of the instruction
is stored in location BYTES. By the way, just before the SCAN label the
contents of the current address pointer are made the same as those of
BEGAD by means of the BEGIN subroutine, so that the search operation
starts at the first instruction in the program. The opcode of that instruc-
tion is loaded into the accumulator and is then compared with the opcode
of the instruction being searched for, in other words, the contents of
POINTH. If the two opcodes are different, the instruction can be ignored
whereupon the computer will branch to the AGAIN label to examine the
next instruction in the program.
By decrementing the contents of BYTES by one and testing the result
with the aid of a BEQ instruction, the computer can determine whether
or not the instruction being searched for (not the one being examined!)
is a single byte instruction. Note that this only takes place if the two
opcodes are the same. If the searched for instruction is in fact one byte
long, the program will branch to the label FOUND, where the instruction
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is printed along with the address where it was found. If not, the next byte
is fetched from memory. This does not necessarily have to be the first (or
only) operand of the instruction being examined, because the previously
found opcode could well have been data of a different kind.

What does happen is that the next memory byte is compared to the first
operand of the instruction being searched for. Again, one of two things
may occur. If the two bytes are different the program will branch to the
label AGAIN. If they are the same, the computer checks to see whether
the instruction being searched for is two bytes long. If so, the program
branches to the FOUND label, if not, the next byte is retrieved from
memory and compared to the second operand byte of the instruction
being searched for. If these two bytes are also identical, the program
branches to the FOUND label.

The section of the ‘S’ key routine following the SCAN label could well
have been structured differently. After ascertaining that the two opcodes
were the same, the two instruction lengths could have been compared and
the program would branch to AGAIN if they were different. The problem
here is that although this method would save a certain amount of time, it
would require quite a lot of memory space.

Following the label FOUND, the PRINS subroutine is called: the instruc-
tion being searched for has now been found and is printed along with its
corresponding address. The flowchart shows quite clearly that the search
operation starts at the beginning of the program: see the BEGIN sub-
routine just prior to the SCAN label.

In chapter 13 we described how the same instruction can be searched for
further on in memory. For this the ‘Y’ key had to be depressed. As can be
seen, the subroutine RECCHA follows the PRINS routine. Therefore, the
computer waits for a key to be depressed. If the 'Y’ key is depressed at
this stage, the computer will branch to the label AGAIN to continue the
search. If any other key is depressed, the program will branch to the
DONE label, where the message ‘DONE’ is printed to complete the ‘S’
key routine,

Following the label AGAIN, the subroutine OPLEN is calied, which
determines the length of the last instruction to be examined. Then the
NEXT subroutine is called to adjust the contents of the CURAD pointer
so that it points to the opcode of the next instruction in the program
being examined. The status of the N flag at the end of the NEXT subrou-
tine informs the computer whether or not there is another instruction to
follow. This matter was discussed in detail during the explanation of the
‘L’ key routine. I there are no more instructions in the program, the
processor proceeds to the DNE label to print the message ‘'DONE’ and
from there it will move back to the central WARM label. As can be seen
from figure 4b (page 108), the only exit from the ‘S’ key routine is via the
DNE label, as illustrated in chapter 13. Therefore, every search routine has
to end with the message ‘DONE".

13 The ‘Z’ key routine. The ‘Z’ key routine consists of the relatively

small number of instructions following the BACK label in figure 4c.
When the computer establishes that the ‘Z" key has been depressed, the
contents of the address pointer TABLE are made the same as those of
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Figure 4c. The second section of the main PME routine consists of the key routines
for the “2*, ‘T’, ‘P’ and ‘X" keys and also the INPUT routine (hexadecimal keys).

BEGAD. The TABLE pointer has only been used in the assembler mode
until now (see chapter 9 in Book 2), but its services are required here as
an auxiliary address pointer. When the length of an instruction is being
determined, this location points to the address directly in front of that
belonging to the last instruction to be printed. The length of the instruc-
tion must be known so that it can be subtracted from the contents of the
CURAD pointer, and so enable the previous instruction to be printed after
the jump to the WARM label. This corresponds to the ‘decrement instruc-
tion’ function which is executed by means of the ‘2’ key.

As soon as the contents of TABLE and BEGAD are the same, the com-
puter determines whether or not the contents of TABLE are also the same
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as those of CURAD. In other words, whether the first instruction in the
program was the last to be printed. If this is the case, then there can be no
‘previous’ instruction and the program returns to the WARM label via the
label BCKB. As a result, the first instruction in the program is printed
again (since the contents of CURAD remain unaltered).

Things are totally different when the CURAD pointer does not point to
the first address in the program (BEGAD). The program loop following the
BCKA label is run a number of times depending on the length of the
instruction concerned. This effectively increments the contents of TABLE
by an amount equal to the instruction length until the contents of TABLE
are the same as those of CURAD. Then the CURAD pointer has to be
decremented by the value equal to the last contents of location BYTES.
This is why the opcode of the instruction being examined is entered into
the accumulator immediately after the label BCKA. The length of the
instruction is determined by the subroutine LENACC. The contents of
TABLE are then incremented by an amount equal to the instruction
length. This is accomplished during the subroutine INCTAB, which is
shown in figure 8b.

Once the contents of TABLE have been incremented, the computer checks
to see whether they are already the same as those of CURAD. If not, the
program returns to the label BCKA where the next round in the search
commences. If, on the other hand, the contents of TABLE and CURAD
are the same, the program jumps to the DECURA subroutine, which is
illustrated in figure 8a. Here, the last contents of location BYTES are
subtracted from the contents of the CURAD pointer. This will be the
same value that was added to the contents of TABLE to make them equal
to those of CURAD. All that remains is to jump back to the central label
WARM. On the way, the computer passes through the section of program

8a $ 1692 8b $ 160
SEC CLC
LDAZ - CURADL LDAZ — TABLEL
SBCZ - BYTES ADCZ - BYTES
STAZ ~ CURADL STAZ - TABLEL
LDAZ - CURADH LDAZ - TABLEH
SBCIM $0¢ ADCIM $00
STAZ - CURADH STAZ - TABLEH
RTS RTS
81914-8a 81914 8b

Figure 8. The subroutines DECURA (figure 8a) and INCTAB (figure 8b) are used
during the ‘2’ key routine (the instruction ‘backspace’ function).
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following the BCKB label, so that the previous instruction is printed after
the label WARM.

1 The ‘T’ key routine. The description of the T’ key routine can be

very brief. It consists of the instructions following the label TOF
in figure 4c. When the computer detects that the ‘T’ key has been de-
pressed, the BEGIN subroutine is called. This simply makes the contents
of the CURAD pointer the same as those of BEGAD. The computer then
returns to the WARM label via the label TOFEND, whereby the first
instruction (or label) in the program is printed.

15 The ‘P’ key routine. The ‘P’ key routine consists of all the instruc-
tions following the SXTEEN label in figure 4c. When the computer
detects that the ‘P’ key has been depressed, the value $@F (decimal 15) is
stored in memory location COUNT. This location acts as an instruction
counter. This means that in addition to the instruction already printed on
the display another 15 instructions will be listed. This gives a total output
of sixteen instructions. In fact, the first instruction has already been
printed before the ‘P’ key is depressed. Fourteen instructions are printed
during the program loop starting at label LINES and the sixteenth in-
struction is printed when the computer returns to the central WARM
label.
Following the label LINES, the subroutine OPLEN is called to establish
the length of each instruction to be printed. The contents of the cur-
rent address pointer CURAD are incremented accordingly by means
of the NEXT subroutine. Then the value contained in location COUNT
is decremented by one. If this brings the value in COUNT to zero, the
computer returns to the WARM label via the intermediate TOFEND
label. As a result, the sixteenth instruction is printed. If the contents of
COUNT are not yet zero, the computer checks to see whether the EOF
character 77 has been reached. This would mean that the final instruction
in the program had been reached, in which case this is the last ‘instruction’
to be printed after the return to the central label WARM via the label
TOFEND.
tf the EOF character has not yet been reached, the computer calls the
PRINS routine to print the instruction and then returns to the label
LINES. The first four instructions following this label are executed 15
times, unless the EOF character is encountered, because the contents of
location COUNT have to be decremented 15 times before they wiil be
zero. The remainder of the program following the label LINES is only
executed 14 times (again, unless the EOF character is encountered). On
the 15th run the computer will branch back to the WARM label at the
first BEQ instruction.

1 The ‘X’ key routine. The ‘X’ key routine consists of the instruc-

tions following the ASMBLR label in figure 4c and also those
instructions after the IOCORR label. This key routine is directly con-
cerned with assembling the program. When the computer detects that the
‘X’ key has been depressed, it specifies the NM| jump vector as being the
address where the ASSEND label is held ($1647). After the program has
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been assembled and the ST/NMI key on the main keyboard has been
depressed, the computer will return to PME by way of ASSEND.

When the NMI vector is defined the program jumps to the label IOCORR.
Port B data direction register is then loaded with the same value as at the
end of the RESET initialisation routine in the original monitor program,
namely $1E (see chapter 7 in Book 2). The rest of the input/output para-
meters do not have to be modified. There is now no reason why the pro-
cessor cannot jump to the assembler. The assembly procedure was fully
described in chapter 9 of book 2.

17 After assembly. The program will now be almost ready to run. As
soon as the program is completely assembled at the instigation of
the ‘X’ key, the six displays will light. The operator must now depress the
ST key. This enables a non-maskable interrupt which informs the com-
puter to execute the instructions following the ASSEND label.
Firstly, the RESTTY subroutine is called. This subroutine is used by the
PM program to restore the input/output status to its original condition
once the cassette subroutines DUMP or RDTAPE have been dealt with.
Again, this is all old hat and readers are referred to figure 19b and points
27 and 28 in chapter 14. Really, only port B data direction register needs
to be restored, but that would take up more memory bytes than simply
calling the RESTTY subroutine.
As we already know, all the labels appearing in the program that has just
been assembled are printed out. This is accomplished during the label
print routine LABLST, which is shown in figure 9. During this routine, the
address pointer TABLE, which was ‘borrowed’ earlier for an auxiliary
address counter, is used for its intended purpose, which is to act as a table
end address pointer.
Right at the start of the first assembly phase, location TABLE is loaded
with a value equal to the current value in the ENDAD pointer minus
$FF. The initial value stored in location LABELS is $FF. The table
pointer TABLE + LABELS establishes at which location a label number is
stored — including its high and low order address bytes. Initially, the table
pointer indicates the same address as ENDAD. When a label has been
processed (found and stored), the contents of LABELS are decremented
by $03. That is quite enough about chapter 9. Readers who feel they
should brush up on the assembly procedure should take another look at
chapter 9 in Book 2.
The LABLST routine in figure 9 copies the intermediate values held in
location LABELS into the Y index register. Thus, the routine starts by
making the contents of the Y index register equal to $FF. The contents
of TABLE are, of course, equal to those of ENDAD minus $FF. The
instructions after the label LBLSTB serve to print the various components
of the labels in the correct order, so that the contents of the Y index
register are decremented by one whenever a label parameter is encoun-
tered.
However, before the program reaches the label LBLSTB, two instructions
under the label LBLSTA are executed. The CRLF subroutine is called so
that the printing process starts at the beginning of a new line and the
X index register, which is used as a label counter is loaded with an initial
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Figure 9. The “print label’ routine LBLST is executed after the program has been
assambled and after the ST/NMI key on the main keyboard has been depressed.
Up to four addresses and label numbers are printed on one line.
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value of $04: a maximum of four labels can be printed on any one line.
Following the label LBLSTB the contents of the Y index register are stored
in location TEMPX. This is necessary as the routine uses the Y index
register for two separate tasks. For the computer to report ‘LAB $, the
Y index register is loaded with the value $2E. Then the MA subroutine
(which is part of the subroutine VIESSA) is called to print the message.
After this, the number of the (first/next) label to be found and stored
during the first phase of assembly is loaded into the accumulator. There-
upon, the label number is printed with the aid of the subroutine PRBYT.
The computer then reports “: $’ and the high and low order address values
of the label are printed. Subsequently, a space is printed (PRSP) to separ-
ate the labels on one line from each other. The computer then checks to
see whether or not there are any more labels to be printed. If there are, the
contents of the X index register are decremented by one. The value in the
X index register indicates the number of labels which can be printed on
the same (current) line. Next, the processor returns to the label LBLSTA
to continue the printing on a new line, or returns to LBLSTB to continue
on the same line.

Once all the labels have been printed, the computer branches to the label
LBLSTC. After the current address pointer has been loaded with the
address of the first instruction in the assembled program (BEGIN), the
processor jumps back to label EDITW ({see figure 4a). Then the text
‘PM EDITOR’ is printed, followed by the first instruction in the program.

18 The INPUT key routine. The INPUT key routine consists of the
instructions following the label INPUT in figure 4c. As mentioned
in chapter 13, no non-hexadecimal key (function key) has to be depressed
before this routine is carried out. This means that the computer will accept
the instruction entry if at least two hexadecimal keys are depressed one
after the other. The INPUT routine starts by calling the BYT subroutine,
which is similar to BYTIN except for the first jump to the RECCHA sub-
routine. The latter is omitted as it comes into the picture after the central
WARM label (see figure 6).
After the BYT subroutine, the opcode of the instruction being input is
held in the accumulator. The status of the N flag informs the computer
whether a non-hexadecimal key has been depressed, in which case the
computer branches to the label ILLKEY via the label WRONG and will
then report ‘ILLEGAL KEY".
If a hexadecimal key was depressed, the READ subroutine will be ex-
ecuted. This is almost identical to the READIN subroutine except for the
fact that the first two instructions of the latter are missing (see figure 5).
The READ subroutine starts by storing the opcode of the instruction just
entered into address buffer POINTH. Next, the rest of the instruction is
read. Again, the program will branch to ILLKEY if a wrong key is de-
pressed.
Then it is the turn of the familiar OPLEN routine followed by the equally
familiar NEXT routine. The contents of the CURAD pointer are in-
cremented by a factor corresponding to the length of the input instruction.
Location BYTES (as ever) contains the length of the new instruction once
the value contained in TEMPX has been copied therein. As soon as this has
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happened, the program jumps to the MEM label. The remainder of the
INPUT routine is exactly the same as the latter section of the ‘I’ key
routine.

One further remark. The contents of the CURAD pointer will be in-
cremented regardless of whether or not there is sufficient room for the
extra instruction.

1 The lukewarm start entry initialisation routine. The lukewarm
initialisation routine consists of all the instructions foliowing the
SEMIW label in figure 4a (page 105). This routine starts off in exactly the
same way as the EDITC routine. In other words, the data buffers are cleared,
the message ‘BEGAD, ENDAD :’ is printed and the operator defines the
start and end addresses of the program (INPAR subroutine). If anything
went wrong during the entry of the start and end addresses, the computer
will return to the SEMIW label and start again. If everything was carried
out correctly, the correct information is transferred to the address locations
BEGADH, BEGADL, ENDADH, and ENDADL. Furthermore, the con-
tents of the current end address pointer CEND are made the same as those
of ENDAD and the contents of CURAD are made the same as those of
BEGAD. The latter is accomplished with the aid of the BEGIN subroutine.
Following the jump to the BRK label in figure 4a, the BRK jump vector is
specified and the computer goes on to report ‘PM EDITOR’. The program
then proceeds to the central WARM label in the main PME routine.
The lukewarm start entry procedure is used to examine a ‘finished’ pro-
gram, whether it be stored in RAM or in EPROM. The ‘SP’, ‘'S’, ‘L’ and
‘P’ keys then have a very important function. When we described these key
functions earlier in this chapter, we saw that the processes stop as soon
as the address pointed to by the CEND pointer is reached. Well, one main
advantage of the lukewarm start entry into PME is that the contents of
CEND are made the same as those of ENDAD — chosen by the operator!
Therefore, the computer user can specify exactly how much of the
finished program he/she wants to examine. By the way, this type of entry
was discussed in chapter 5 of Book 2 (original editor program). Only there,
a whole series of data buffers had to be loaded ‘by hand’ to start with.

2 The warm CEND start entry initialisation routine. This is the final
point to be discussed in this chapter. The warm CEND start entry
into PME consists of the initialisation routine following the iabel SEACND
in figure 10. Again, the program starts off in exactly the same manner as
does EDITW and SEMIW, so there is no need to discuss this procedure
further and we can move straight on to the SCNDA label. Once the
contents of the current address pointer are made to indicate the first
address in the program (BEGAD; by means of the BEGIN subroutine), the
opcode of the instruction being examined is loaded into the accumulator
and the computer tests to see whether it is the pseudo-opcode 77 (the EOF
character). If so, the processor executes the sequence of instructions fol-
lowing the SCNDB label; if not, the contents of CURAD are incremented
by the length of the last instruction and the next instruction indicated by
the CURAD pointer is examined via the subroutines LENACC and NEXT.
As soon at the EOF character is detected the computer branches to the
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$17C5
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LDYIM $00

LDA4CURADL), Y

CMPIM $77

LENACC

JMP - SCNDA

Figure 10. The initialisation routine SEACND is run when the PME program has been
started via a warm CEND start entry. The contents of the current end address pointer

"BEGAD,ENDAD :"

LDAZ - CURADL

CLC

LDAZ-CVRADL

ADCIM $¢1

STAZ - CENDL

LDAZ — CURADH

ADCIM $¢¢

STAZ - CENDH

JMP - BRK

BRK
$1533

CEND:=CURAD+1

81914-10

CEND are restored to their original value, provided the program contains an EOF

character 77.

label SCNDB where the contents of the CURAD pointer are incremented
by one. This new value is then allocated to the current end address pointer
CEND. The processor then moves on to the BRI label in figure 4a, the
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BRK jump vector is defined and the message PM EDITOR' is printed.
We are now back at the central WARM label in the main PME routine. The
original contents of BEGAD and ENDAD are restored to the program read
from cassette. The value contained in the ENDAD pointer does not necess-
arily have to be the same as the original, because at the beginning of the
warm CEND start entry into PME the user can specify a higher end address
if he/she wishes to provide plenty of space for an extra section of program.
If this is not done, the computer will most likely report ‘FULL’ when
extra instructions are entered,

After dealing with the instructions shown in figure 10, the final value
contained in the current address pointer CURAD will be that location
containing the EOF character 77. Not, in other words, the current end
address. Figure 10 also shows what happens if the program does not con-
tain an EOF character: the program loop starting at the label SCNDA is
executed ad infinitum.

The warm CEND start entry is also applied when there is sufficient room
for extra instructions in the memory area, but the computer has reported
‘FULL'. Using the warm CEND start entry the contents of the ENDAD
pointer can be altered while those of the BEGAD pointer remain the same.
This means that the contents of the CEND pointer and the location of the
EOF character will be correct for further instruction entries.
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16

The cassette software

Data storage on magnetic tape

What is required in the way of software to enable the Junior
Computer to store data on and retrieve data from ordinary
magnetic tape? How is the Tape Monitor routine structured?
These are just two of the many questions which will be answered
during the course of this chapter. The two main sections of the
cassette software are the DUMP routine which transfers infor-
mation from the microcomputer to the cassette tape and the
RDTAPE routine which does exactly the opposite. These sub-
routines can be called by either the Printer Monitor or the Tape
Monitor routines and can also be included in user programs.

Firstly, this chapter will examine the DUMP routine and its associated
subroutines (or rather, sub-subroutines!) in points 1 to 9. This will be
followed by a detailed description of the RDTAPE routine and its sub-
subroutines in points 10 to 19. This will bring us to the discussion of the
main section of the Tape Monitor program and its subroutines in points 20
to 28. The chapter concludes with a brief discourse of the PLL test soft-
ware in points 29 and 30. However, before you can retrieve data from
cassette tape you must be able to store it . . .

The DUMP routine. The complete flowchart for the DUMP routine
1 is shown in figures 1a (first half) and 1b (second half). By far the
best idea seems to start at the very top of figure 1a! In other words, with
the section of program between the fabels DUMP and DUMPT. As can be
seen, a total of four memory locations, HIGHER, LOWER, FIRST and
SECOND, are first loaded with specific data. These locations play an
important part in determining the bit time and the relative durations of
the 2400 Hz and 3600 Hz tones — the time taken for a data byte or an
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ASCII character code to be transferred to tape. This aspect will be con-
sidered in greater detail in points 3 and 4.
Following the DUMPT label in figure 1a the processor programs the input/
output ports of the PIA. Readers may be forgiven for thinking that this
should have occurred sooner. However, the four memory locations have
to be defined first, because the subroutine is not only called during the
PM and TM programs, but can also be included in user programs. There-
fore, if the operator wishes to alter the bit time (the baud rate) he/she
only has to modify the first group of instructions and then call the routine
starting at the DUMPT label (not DUMP!). In point 9, for instance, the
baud rate is modified to suit the KIM system.
The first nine instructions after the label DUMPT are used to define the
input and output parameters, so that data transfer from computer to
cassette can take place. How is port B affected? Ail eight input/output
lines belonging to port B are programmed as outputs. Furthermore, the
value $47 is loaded into port B data register. As a result:
® port line PB7, which is used as the cassette data input and output, will
be logic zero.
® port line PB6, which acts as a relay control output, will be logic one.
This means that transistor T2 of the cassette interface circuitry will be
turned off, the INPUT relay will not be activated and the green INPUT
LED (D4) will be unlit {see figure 2 on page 13 of Book 3).
® port line PB5, which also acts as a relay control output, will be logic
zero. This means that transistor T3 of the cassette interface circuitry
will conduct, the OUTPUT relay will be activated and the red OUTPUT
LED (D5) will be iit.
® the data presented to port lines PB4, PB3, PB2 and PB1, the DCBA
inputs of the keyboard and display decoder (see IC7 in the circuit dia-
gram on pages 14 and 15 of Book 1 and figure 9 on page 119 in Book 2),
will be @011, respectively. This means that the unused output {3) of the
decoder is selected and the displays, regardless of the information pre-
sented to the segment drivers via port A, will all be turned off and the
depression of any key will have no effect. This is why the display is unlit
(only the red OUTPUT LED is lit) and the main keyboard is disabled while
data is being transferred to cassette tape.
® port line PB@, which is the usual serial data output line, is held at logic
one. Since the only peripheral device being used at this particular moment
is the cassette recorder, the RS232 line remains in the quiescent state,
Any data transmitted by the computer takes place by way of port line
PB7, not PBO.
Now for port A. Port lines PA@ . . . PAG, which correspond to the segment
data, are programmed as outputs and port line PA7 is programmed as an
input, as usual. Since the value $0@ has been loaded into port A data
register, all the segments should be lit (as far as port A is concerned). How-
ever, this is prevented by the information being held in port B data register.
Provided no characters are transmitted by any peripheral equipment, port
line PA7 will be logic one. This corresponds to the quiescent state of the
serial data line. In any case, any characters sent by peripheral devices are
totally unintelligible as far as the DUMP routine is concerned.
To continue with the description of the DUMP routine, it should be noted
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1a

Figure 1a.

$9ODF

LDAIM $7D

STA RIGHER § 3600 Hz detay period

LDAIM $C3

STA LOWER 2400 Hz delay period

LDAIM $03

STA FIRST number of 3600 Hz half periods

LDAIM $82

STA SECOND [ number of 2400 Hz half periods
DUMPT $ 99F3

LDAIM $47

LDXIM $FF PB7 PB6 PBS

STA PBD 19809111

STA GANG

STX PBDD PBS ... PB7 output

LDAIM $08

LDXIM S$7F

STA PAD PAD <8

STX PADD PA@ . . . PAB output; PA7 input

STA CHKL CHKL «<#8

STA CHKH CHKH <U$

LDA SAL

STAZ POINTL {pOINTL < SAL

LDA SAH

STAZ POINTH {POINTH +SAH

LDXIM $FF

STX SYNCNT ]SYNCNT <« FF (256)

LDAIM *' A<S$16

JSR

DEC

OUTCH

SYNCNT

(to figure 1b)

the computer to ordinary cassette tape.
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The first section of the DUMP/DUMPT routine, which transfers data from



1b

{from figure 1a}

A < SAL contents
SAL > cassette
A < SAH contents

A<$2A
“e” > cassette
A < 1D contents

10 > cassette

SAH > cassette

DATATR

LDAZ POINTH

CMP EAH
POINTH = EAH? no
yos
LDAZ POINTL
CMP EAL

POINTL = EAL? no —~< HEXDAT ’
LDAIM '/ A<S$2F

LDYIM $82
JSR OUTCH

LDA CHKL

“{" = cassette

LDATY POINTL

A “contents CHKL data

JSR  OUTBTC
JSR  OUTBT JCHKL —cassotte > cassette
INCZ POINTL

LDA CHKH

JSR OUTBT

LDAIM ' A<S94

A < contents CHKH

CHKH > cassette POINTL + 88

JSR OUTCH EOT — cassotte
LDAIM ' A<$@4 INCZ POINTH

JSR  OUTCH [JE0T — cassette JMP  DATATR

81915 1b

Figure 1b. The second section of the DUMP/DUMPT routine.
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that address location GANG is loaded with the same information as port B
data register. The purpose of this particular memory location will be ex-
plained in detail in point 2. Memory locations CHKH and CHKL,, used for
calculating the status of the control bytes, are initially assigned a value of
zero. This brings us to the actual preparations involved in transferring data
from the machine to the tape recorder. The contents of memory locations
SAH and SAL, to provide the first address of the data block to be trans-
ferred, are copied into the buffers POINTH and POINTL, respectively. The
last two instructions prior to the label SYNCS cause the value $FF (hexa-
decimal = 255 decimal) to be loaded into memory location SYNCNT. This
location is used as a counter for the synchronisation characters which
precede a tape recording. The remainder of the DUMP routine is described
in point 7. We now move on to discuss some of the subroutines involved
in transmitting bits, bytes and characters which are called during the
DUMP routine.

2 Various methods of data transmission were described in Book 3. As
far as the software is concerned, the relative procedures to generate
the bit period and the high and low signal frequencies are as follows:
® Port line PB7 acts as the ‘doorway’, through which the data signal is
passed from the Junior Computer to the cassette recorder.
® A data bit is encoded into a squarewave signal which always starts with
a frequency of 3600 Hz and which always ends with a frequency of
2400 Hz.
® The signal at the output (port line PB7) consists of a mixture of the
two frequencies — the ratio is determined by whether the data bit being
transmitted is logic zero or logic one.
® A high bit (logic one) will produce a signal consisting of three half
periods of 3600 Hz followed by four half periods of 2400 Hz.
® A low bit (logic zero) will produce a signal consisting of six half periods
of 3600 Hz followed by two half periods of 2400 Hz.
Now for the subroutines!
a. The HIGH subroutine is shown in figure 2a. This provides an output
signal which is made up of three half periods of 3600 Hz.
b. The LOW subroutine is shown in figure 2b. This provides an output
signal made up of two half periods of 2400 Hz.
It can be seen that for a logic one bit to be transmitted, the HIGH sub-
routine has to be called once, after which the LOW subroutine is called
twice. In order to transmit a logic zero bit, on the other hand, the HIGH
subroutine has to be called twice, after which the LOW subroutine is called
once. Furthermore, it should be noted that the HIGH and LOW sub-
routines always alternate during the transmission of an ASCI| character,
regardless of the logic level of the bit in question.

What exactly happens in the HIGH subroutine in figure 2a? The computer
has to wait for three half periods of 3600 Hz during which the logic level
on port line PB7 is inverted three times. The number of wait periods is
stored in location FIRST the contents of which are copied into the X
index register at the beginning of the HIGH subroutine.

The interval timer belunging to the PIA (peripheral interface adapter) is
put to good use during the HIGH and LOW subroutines. During the HIGH
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$ $ACS

2a

X <83

LDX FIRST (DUMP)

BIT RDFLAG

time up?
N = timer flag
=0

LDA HIGHER }7D (DUMP}
STA CNTA +1;n0 IRQ
LDA GANG
EORIM $890 invert PB7
STA PBD
STA GANG

DEX

next
half period?

81915 2a

Figure 2a. The HIGH subroutine provides the 3600 Hz period of a data bit
transmission.

subroutine, the timer is started by loading the value $7D into location
CNTA. This provides a division factor of one and ensures that a time out
does not enable an interrupt request. As soon as a time out occurs, the
wait loop consisting of the instructions BIT-RDFLAG and BPL in figure 2a
will be terminated. The timer is restarted almost immediately after a time
out. Following this, the logic level present on port line PB7 is inverted.
This brings us back to location GANG.

Being a true Exclusive-OR (see page 656 in Book 1), the instruction
EOR # 80 causes bit 7 of the accumulator contents to be inverted, whereas
the other seven bits remain unchanged.

Then why not

L.DA - PBD

EOR #80

STA-PBD

instead of
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LDA - GANG

EOR #80

STA-PBD

STA - GANG ??

Well, the reason is quite simple. When a port line which has been pro-
grammed as an output is read, the computer will always ‘see’ a logic one,
which is not what we want! This is why a ‘shadow’ memory location
{GANG) has to be included and why the STA - PBD instruction is always
accompanied by a STA - GANG instruction.

The instructions following the HIG label in figure 2a are executed a total
of three times, since the initial value in the X index register is three — the
contents of location FIRST. The contents of the X index register are
decremented by one just before the BNE instruction. The latter causes the
processor to branch back to the HIG label if the contents of the X index
register are not yet equal to zero.

What about the delay times? At the start of the countdown the interval
timer is loaded with the value $7D. In other words, 7 x 16 + 13+ 1 =
126 us go by until a time out occurs. There is of course a slight delay
between starting the timer and inverting port line PB7. This delay is
10 us, the time taken to execute the instructions LDA - GANG,
EOR #80 and STA - PBD. However, the time duration between success-
ive PB7 inversions is just as long as that between successive timer starts.
The actual delay between successive inversions is 126 us plus the time
needed to execute the instructions LDA -HIGHER and STA -CNTA
(8 us) plus the duration of the loop around the BIT - RDFLAG/BPL
instructions (7 us). Therefore, the total time delay is somewhere between
134 and 141 us. Since a full period of 3600 Hz corresponds to 277.8 us,
a half period corresponds to 138.9 us. As can be seen, the difference
between the theoretical value and the value obtained in practice is quite
marginal.

Not much needs to be said about the LOW subroutine (figure 2b)

as it is virtually identical to the HIGH subroutine. Only now two
half periods of 2400 Hz are involved, which is why the X index register is
loaded with the value $02 (the contents of location SECOND) at the start
of the subroutine. The program loop BIT - RDFLAG/BPL is terminated
as soon as a time out occurs. It is important to note that this could be
caused by either a previous execution of the HIGH subroutine or the LOW
subroutine, as both routines are exited from before the final time out.
Following this, about 8 to 15 us later (allowing the computer up to 7 us
to detect a time out), the interval timer is started yet again. Another 10 us
later the logic level on port line PB7 is inverted. The contents of the
X index register are then decremented and the process is repeated once
more. However, the computer does not wait for the time out resulting
from the last timer start, but proceeds to the RTS instruction. Thus, the
time out is not detected until the program loop BIT - RDFLAG/BPL of
the next HIGH or LOW subroutine.
The interval timer is initially loaded with the value $C3, this being the
original contents of memory location LOWER. In other words, 12x 16 +
3+ 1us pass by before a time out occurs. In addition, the computer spends

132



2 b $ GAES

LDX SECOND

BIT RDFLAG

time up?
N = timer flag
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LDA  LOWER }C3(DUMP)
STA CNTA +1;no IRQ
LDA GANG
EORIM $886 invert PB?
STA PBD
STA GANG

DEX

next
half period?

81915 2b

Figure 2b. The LOW subroutine provides the 2400 Hz period of a data bit
transmission.

about 8 us executing the instructions LDA - LOWER and STA -CNTA,
which brings the current total up to 204 us. Again, assuming the computer
to be about 7 us late in detecting a time out, the total will rise to around
211 us. A full period of 2400 Hz is 416.7 s, therefore a half period would
be 208.3 us. Again, we can see that the practical value is pretty close to
the theoretical one.

4 A few general remarks about the HIGH and LOW subroutines.

First of all, the important thing to note about the HIGH and LOW
subroutines is that the logic level present on port line PB7 is inverted
every half period. The precise logic level is irrelevant, as what is critical
is the frequency information, in other words, the time duration between
successive inversions.
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The HIGH subroutine is always followed by either another HIGH sub-
routine or a LOW subroutine. This is because the process of transmitting
a data bit to cassette always starts with at least one HIGH subroutine
and ends with at least one LOW subroutine. This means that after the
final 3600 Hz half period, the computer waits for a time out in the
BIT - RDFLAG/BPL loop of the following HIGH or LOW subroutine.
Things are slightly different in the case of the LOW subroutine. As soon as
the last LOW subroutine has been dealt with, the last 2400 Hz half period
has to be processed. The corresponding time out will be detected during
the next BIT - RDFLAG/BPL loop, that is, the subsequent HIGH sub-
routine. The computer will spend less time in this loop, as in between loops
the computer deals with the instructions pertaining to the next bit (label
ONE in figure 3, see point 5), data nibble {label NIBOUT) or ASCI| charac-
ter {label OUTCH) to be transmitted. Clearly, the execution time of these
instructions must not be longer than the interval between time outs. Thus,
the computer has about 200 us to deal with these instructions, which
should be long enough to process about 50 instructions each taking around
4 us. Plenty of time in fact, so there is nothing to worry about.

Now let us see how the bits, bytes and ASCII characters are transmitted to
the cassette tape sequentially.

The NIBOUT/OUTCH subroutine is shown in figure 3 and is devoted

to transmitting all eight bits of an ASCIl character, the code of
which is stored in the accumulator, to the cassette deck. The task is carried
out by the instructions following the label OUTCH. In some instances the
section of routine following the NIBOUT label is also executed. 1t may be
an idea therefore, to examine this section in detail before we go any
further.
A data byte is in fact split up into two nibbles before it can be transmitted
to the tape recorder. These data nibbles have to be translated into their
equivalent ASCII characters. Prior to the jump to the NIBOUT label, the
contents of the accumulator are a hexadecimal number between @ ... F.
The reason for this is explained in point 6 and is illustrated in figure 4 (the
OUTBTC/OUTBT subroutine). The ASCII code for numbers @...9 are
30 ...39 and the ASCII code for numbers A. .. F are 41...46. In the
first instance, therefore, the hexadecimal value $30 has to be added to the
contents of the accumulator and in the second instance the value $37 has
to be added. In other words, the contents of the accumulator are always
incremented by at least $30 and sometimes as much as $37. The instruc-
tion CMP # QA is used to separate the ‘goats’ (@ ...9) from the ‘sheep’
(A...F)L
The OUTCH section of the subroutine starts by loading the value $08 into
memory location BITS, which is used as a bit counter. This means that the
program from label ONE onwards is executed a total of eight times in
succession. Each time a single bit of the ASCII character is transmitted to
the cassette tape. All the bits in the accumulator are shifted one position
to the right with the aid of the instruction LSRA. The extreme right-hand
bit is shifted into the carry position. After this, the shifted contents of the
accumulator are temporarily stored on the stack (the instruction PHA).
The computer is now ready to transmit the data bit. The state of the carry
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Figure 3. The NIBOUT/OUTCH subroutine converts a data nibble to its
corresponding ASCII character and takes care of the transmission of the ASCII

character.



flag and the instruction BCC determine the direction in which the pro-
cessor is to move next. If the bit to be transmitted is logic one, the pro-
cessor runs the HIGH subroutine once and the LOW subroutine twice. If,
on the other hand, the bit to be transmitted is logic zero, the HIGH sub-
routine is executed twice and the LOW subroutine is executed once
{following label ZERO). In either case, the computer ends up at the label
ZRO where the previous accumulator contents are restored by the instruc-
tion PLA. The contents of location BITS are then decremented and the
result determines whether or not more bits are to be transmitted. If the
result is not zero, more bits are to be transmitted and the processor
branches back to the label ONE so that the data in the accumulator can be
shifted along one place again. The subroutine is exited from when the
contents of location BITS turn out to be zero (all eight bits have been
transmitted).

The OUTBTC/OUTBT subroutine is shown in figure 4 and performs
6 the operation of splitting the data byte to be transmitted into two
data nibbles so that they can in turn be converted into ASCII. This task is
in fact carried out by the sequence of instructions following the fabel
OUTBT. In some instances, however, something else has to be taken care
of first. The 8 bit number constituted by the data byte has to be added to
the 16 bit number contained in locations CHKH and CHKL so that a
check-sum operation can be performed during retrieval from tape to see
whether the data obtained is correct or not. The addition is carried out
between the labels OUTBTC and OUTBT, as shown in figure 4.
Now let us assume that the data byte to be transmitted is stored in the
accumulator just before the OUTBTC subroutine is called. The data byte
is immediately copied into the Y index register (the instruction TAY).
After the carry flag has been cleared, the data byte is added to the number
contained in memory locations CHKH and CHKL using ordinary 16 bit
addition. After restoring the original accumulator contents (the instruc-
tion TYA) the OUTBTC section of the program is complete.
The OUTBT section of the subroutine also starts by temporarily storing
the contents of the accumulator in the Y index register. Then four LSRA
instructions follow, as a result of which the original high order nibble
moves into the low order nibble position and the original low order nibble
is lost. The high order nibble now becomes zero. The contents of the
accumulator (the original high order nibble) is then transferred to tape
during the NIBOUT subroutine (see point 5 and figure 3)}. After this, the
original contents of the accumulator are restored (the instruction TYA)
and are masked by the value $8F. This means that the original low order
nibble of the data byte can now be transferred to tape (again using the sub-
routine NIBOUT). This, of course, brings us to the end of the OUTBTC/
OUTBT subroutine.

The DUMP routine continued (see point 1). Our previous discussion
of the DUMP/DUMPT routine led us as far as the SYNCS label in
figure 1a. This is where 255 synchronisation characters were transmitted
to the cassette tape. In other words, the accumulator is loaded with the
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@ A: contents M = XY

TAY A—Y

ADC CHKL

STA CHKL CHKL <CHKL +M

LDA CHKH

ADCIM $0¢
STA  CHKH CHKH < CHKH +C

TYA YA
$0Aas8 » A: contents XY

TAY A-Y
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LSRA

LSRA

LSRA A=0X

JSR NIBOUT [g hinibble —> cassette

TYA YA

ANDIM $8F A=0Y
JSR NIBOUT B io nibble — cassette

Figure 4. The OUTBTC/OUTBT subroutine transmits a data byte to cassette in the
form of two data nibbles and, if necessary, updates the contents of locations CHKH
and CHKL.

81915 4

code for the ASCII character SYN ($16) 255 times and this character is
transferred to the tape recorder via the subroutine OUTCH a total of
255 times (see point 5 and figure 3). The contents of memory location
SYNCNT are decremented by one a total of 256 times. The last time this
happens the following BNE instruction causes the computer to leave the
program at the bottom of figure 1a and continue from the top of figure 1b.
As you will remember from chapter 11 in Book 3, the synchronisation
characters are followed by the ‘start-of-data transmission’ character ‘+’.
Not surprisingly, therefore, the accumulator is loaded with the value
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$2A, the ASCIHi code for ‘+’, at the top of figure 1b. After this the pro-
gram calls the subroutine OUTCH. Next, the program number (ID) and
the memory locations corresponding to the beginning of the data block
to be transmitted, SAH and SAL, are transferred to cassette. In all three
cases a data byte is transmitted, which calls for the subroutine OUTBT
to be executed. However, the start address (SAH and SAL) has to be
included in the check-sum process, which is why the OUTBTC subroutine
is called (see point 6 and figure 4).

8 The final section of the DUMP routine consists of the instructions
following the label DATATR in figure 1b. As its name suggests, this
stands for ‘data transfer’. For the moment has come for the computer to
transfer the data block. In other words, all the data between the start
address (SA) and the end address (EA), or rather, up to and including the
last address {LA) where LA = EA — 1. The familiar address buffer POINTH
and POINTL is used to keep track of the data being transmitted. In
figure 1a (see point 1) the contents of POINT were made the same as the
start address SA.
The instructions following the label DATATR check to see whether the
contents of POINT are the same as those of EA (the end address). If so,
the data transmission proceeds with the ‘tail end’ of the program. More
about this later. If not, the processor branches to the label HEXDAT.
Here the contents of the location indicated by POINT are loaded into
the accumulator and, once the contents of locations CHKH and CHKL
have been modified, they are transferred to the cassette tape, via the sub-
routine OUTBTC. After this, the contents of POINT are incremented so
that they indicate the next memory location from which data transfer is
to take place and the program returns to the label DATATR for the next
data byte to be transmitted.
As soon as the entire data block has been transferred to tape, the contents
of POINT and those of EA are the same, the program moves on to the tail
end. Transmission of the data block is terminated with the ‘end-of-data’
character ‘/* {ASCII code $2F), the final contents of locations CHKH and
CHKL and two ‘end-of-transmission” (EOT) characters (ASCII code $04).
This brings us to the end of both the data transfer and the DUMP routine,
except for one small item . . .

As we mentioned previously, the DUMP subroutine may also be

utilised in user software. If the transfer speed (Baud rate) required
is the same as that for the Junior Computer, all that needs to be added is
the instruction JSR - DUMP.
If, on the other hand, a different baud rate is required, the contents of at
least two of the four locations HIGHER, LOWER, FIRST and SECOND
need to be modified. Basically, what happens is that all four locations have
to be re-defined and the program has to jump to the DUMPT (not the
DUMP) routine.
Readers wishing to work with speeds similar to those of the KIM computer
should use the values given in the DUMKIM routine which is shown in
figure 5. Firstly, the four memory locations are defined and then the
computer jumps to the DUMPT routine, which has already been discussed
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at length.

It can be seen that the contents of locations HIGHER and LOWER remain
unchanged. This is because the signal frequencies associated with the data
transfer are the same in both the KIM and the Junior Computer (see fig-
ure 6 on page 86 in Book 3). However, the contents of locations FIRST
and SECOND are six times greater, as the transmission speed of the KIM
computer is six times slower than that of the Junior Computer.

10 The RDTAPE subroutine is the opposite of the DUMP routine in
that it allows the user to load a program into the computer from a
cassette tape. The flowchart of the RDTAPE routine is shown in figures 6a
and 6b. The first section of the program (the instructions between the
iabels RDTAPE and SYNC in figure 6a) serve to establish the input/output
parameters of ports A and B. The value $32 is loaded into port B data
register while the value $7E is loaded into port B data direction register.
This means that:
® port line PB7, which is used as the serial data input/output line, is pro-

5 (=

LDA #7D0

STA — HIGHER

LDA #C3

STA — LOWER

LDA #12

STA — FIRST

LDA #0C

STA — SECOND

JMP — DUMPT

DUMPT

see figure 13
and figure 1b

RTS

81915 5

Figure 5. The DUMKIM routine is similar to the DUMP routine, but the baud rate
has been adapted to suit the KIM computer.
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RDTAPE

6a

!

LDAIM $32
STA  PBD

STA GANG

LDAIM $7E
STA PBDD PB84@ snd PBY input

LDAIM $7F

STA PADD PAS . .. PA6 output

LDAIM $00
STA CHKL CHKL + 88

STA CHKH CHKH <98

0

LDAIM S$FF
STA CHAR

SYNCA

g

JSR RDBIT HMbit—>C

ROR CHAR

LDA  CHAR
JSR  BTWEEN f§ "™
-
CMPIM ' -
sync? no
yos
LDYIM $9A
10 successive
STY  sY syoes

yos | o 115yncs attopather
were detected
- 81915 6a
(from figure €b) {figure 6b)
{to STAR}

Figure 6a. The first section of the RDTAPE routine, which reads data previously
stored on cassette into memory.
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JSR
CMPIM
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tx

g
0

warp Drape 11D

LDA D
CMPIM $00

?
1= RDSA
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CMPIM SFF F
JSR RDBYT WRSAL—>A

no JSR CHKSUM BICHK : = CHK + SAL

IDZFF
STAZ POINTL JSAL—>POINTL

%9

hbid JSR  RDBYT [ san-a
3SR RDBYT lsaL—a

JSR CHKSUMM CHK : = CHK + SAL

JSR CHKSUM I CHK : =CHK + SAH

STAZ POINTH |SAH ~>POINTH
ISR RDBYT B SAH—>A

JSR CHKSUM[l CHK : = CHK + SAH
LDA SAL

staz  poINTL 345

%0

LDA  SAH JSR  RDBYT Russ—a
STAZ POINTH | SpawTH
JMP  FILMEM N=1
valid data?
p=s
e
Z=1 end of data
vor character?
no
F CHK : =
JSR RDBYT ] cHKL—>A ISR CHKSUM MCHK ¥ oy

CMP CHKL LDYIM $8¢
byts
STAIY POINTL | [ipqiny)

no

SYNVEC CHKLS equal? INCZ POINTL

yes

JSR  RDBYT [JCHKH A
EP P ssr__rosyr |
CMP  CHKH
INCZ POINTH "o+t
ne CHKHs
equal?
yes
RTS JSR VU Di5 +-> Di6

JMP FILMEM

81915 6b

Figure 6b. The second section of the RDTAPE routine.
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grammed as an input and is held at logic zero.
® port line PB6, which is used as a relay control output, is held at Ioglc
zero. This means that transistor T2 of the cassette interface circuitry
is turned on, the INPUT relay is activated and the green INPUT LED is lit.
e port line PB5, which is used as a relay control output, is held at logic
one. This means that the transistor T3 of the cassette interface circuitry
is turned off, the OUTPUT relay is de-activated and the red OUTPUT LED
is unlit.
® the data presented to port lines PB4, PB3, PB2 and PB1, the DCBA
inputs of the keyboard and display decoder (see point 1), will be 1001,
respectively. This means that output 9 is active and that display 6, at the
far right, is enabled. As you wili remember from chapter 11 in Book 3,
display 5 also lights up. More about this in point 15, where we will take
a look at the CHARVU/VU routine.
® port line PBO, which is used a serial data input, is programmed as an
output here and so it can be considered as being switched off.
Now for port A. The value $7F is loaded into port A data direction regis-
ter, which means that port lines PA@ . . . PAG are programmed as outputs.
These lines form the segment ‘data bus’ as usual. The function of port line
PA7 has not been altered either, it still acts as a serial data input. However,
the RDTAPE routine is not interested in any characters transmitted from
peripheral devices, only in the information being relayed from the cassette
recorder.
The start of the RDTAPE routine may look a little odd, as it does not con-
tain an instruction to load port A data register. The reason for this is quite
straightforward: the data register is not assigned any particular value until
the computer executes the BTWEEN subroutine (see point 16) or the
CHARVU/VU subroutine {see point 15). As we will see later, the infor-
mation held in port A data register does not remain constant.
Before we delve too deeply into the RDTAPE routine, let us take a look
at all the subroutines used by the program.
Note: the rest of the RDTAPE routine will be deait with in point 17.

1 The RDBIT subroutine is one of the most elementary subroutines
called by RDTAPE and is shown in figure 7. The RDBIT sub-
routine reads a data bit from the cassette and sets or resets the carry flag
depending on whether the input bit was logic one or logic zero. Now for
the details. Unfortunately, there are quite a few details to consider, as the
procedure is rather a complicated one.
To understand the RDBIT subroutine a little better, let us take a look at
the pulse diagrams given in figures 8a . . . 8f. Figures 8a (logic zero bit) and
8d (logic one bit) should look familiar. In fact, they were first introduced
in chapters 10 and 11 of Book 3. In both cases, part of the phase-locked
loop (PLL) output signal is involved. Unfortunately, the PLL output
suffers from a little ‘jitter’ and therefore the more likely signals are re-
presented in figures 8b and 8e. The PLL jitter is indicated as slight fluc-
tuations between the high and fow logic levels, very similar to contact
bounce where keys or switches are concerned. In reality, things are slightly
more complicated, but the main thing to note here is that the signal level
fluctuates and that the fluctuations have nothing to do with the end of a
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3600 Hz period
7 has already started sé8C2

has 3600 Hz

N=0=pPB7 period passed?
moment t ——————p Y8 N =1=PB7
start of 2400 Hz
period LDA RDTDIS | A < final count ~3600 Hz
LDYIM S$FF
STY CNTC start timer — duration 2400 Hz
LDYIM $14 W
> wait 99 us
moment t — g -
2400 Hz period
end of jitter
BIT PBD
has 2400 Hz period
passed?
moment t3 c————-p-
ond of 2400 Hz N=PB7 =0
period, start of SEC
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SBC RDTDIS
LDYIM S$FF
STY CNTC start timer —> 3600 Hz period
LDYIM $87 —W

L wait 34 us

-/
moment tq ———
3600 Hz period
jitter passed
81915 7

Figure 7. The RDBIT subroutine reads in a data bit from cassette. The logic level of
the bit is reflected by the status of the carry flag.
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Figure 8. The output signals from the PLL during a low bit transmission a . . . ¢, and
a high bit transmissiond .. . f.

2400 Hz or 3600 Hz period.

Before the PLL signal reaches port line PB7, which acts as the serial input,
it is inverted, which explains the requirement for figures 8c and 8f. The
resultant input signal presented to port line PB7 combines parts of fig-
ure 8c with parts of figure 8f. The ‘bit train’ is related to the logic levels of
the consecutive bits being read from the tape. Whatever the bit train looks
like, the 3600 Hz (first phase) and 2400 Hz (second phase) signals always
alternate. This is the basic principle behind the RDBIT routine.

Now let us take a closer look at the RDBIT routine by examining figure 7.
The routine starts with a wait loop consisting of the instructions BIT - PBD
and BPL. The computer sits in this loop until such time as the N flag, bit 7
in port B data register (PB7), becomes logic one. From figures 8c and 8f
it is quite apparent that port line PB7 becomes logic one at the end of
3600 Hz period preceding a 2400 Hz period. At that point the computer
will be terminating the first phase of the bit and starting the second.
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This occurs at moment t;. Immediately afterwards, the instruction
LDA - RDTDIS is executed. This instruction loads the accumulator with
the current value contained in the interval timer resistor.

Obviously, there is no point in reading the value of the interval timer
unless the timer has been started at some time or another. Well, in fact it
was. At moment t; the contents of the timer were read immediately after
the end of a 3600 Hz period. Before that, the timer was started at the
beginning of the 3600 Hz period, at moment to. This happened prior to
the jump to the RDBIT subroutine, during the last phase of the previous
RDBIT routine. Whenever this routine is executed, a data bit is read and
stored in the carry flag. During the last phase of RDBIT the next RDBIT
is prepared, the first RDBIT phase being prepared during the last phase of
the previous RDBIT. This is because the bit train has regular 3600 Hz -
2400 Hz - 3600 Hz intervals etc.

Back to figure 7. After the last 3600 Hz signai has been read, the interval
timer is started again. The instructions LDY # FF and STY - CNTC ensure
that the contents of the timer register are decremented from their initial
value of $FF (255) every 64 us. No interrupt request occurs after a time
out. This procedure was described in detail in chapter 6 of Book 2.

We have now reached the label RDBA. The computer waits in the loop
DEY/BNE until the period of PLL jitter {asa result of the transition from
3600 Hz to 2400 Hz) has definitely passed. In other words, the computer
waits until moment t, in either figure 8c or figure 8f has arrived. The
computer has to do this, as otherwise the next wait loop (the loop starting
at label RDBB, which determines when the 2400 Hz period has passed)
will be terminated prematurely, with disastrous results.

As soon as the 2400 Hz period is over, moment t3, the BMI instruction
causes the computer to continue with the final section of the RDBIT
routine. This brings us to the interesting SEC and SBC - RDTDIS instruc-
tions, which we will examine separately in point 12. At this stage all you
need to know is that following these instructions the status of the carry
flag is the same as the logic level of the data bit just read from tape. After
this has been done, the interval timer is started once again to prepare the
way for a new jump to the RDBIT subroutine.

The final instructions in the RDBIT subroutine (DEY and BNE) provide
a short delay loop to ensure that any PLL jitter has ceased before the
computer moves on to the next stage of the program. In other words, the
computer does not enter the first delay loop of the next RDBIT sub-
routine until moment t4.

1 Now for the instructions SEC and SBC - RDTDIS which we en-
countered in the RDBIT subroutine. The SEC instruction simply
ensures that the carry flag is set before the subtraction, so the borrow is
reset (zero). As a result of the instruction SBC- RDTDIS, the current value
in the timer register is subtracted from the contents of the accumulator
when the 2400 Hz period has ended. Earlier on, the accumulator was
loaded with a value relative to the timer register contents at the end of
the 3600 Hz period (the instruction LDA - RDTDIS).
The timer is loaded with the value $FF both at the beginning of a 2400 Hz
period and a 3600 Hz period. The count is decremented every 64 us.
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Obviously, the longer a 2400 Hz or 3600 Hz period lasts, the lower the
timer count will be.

Going back to the subtraction instruction; if the value in the interval timer
register is less than or equal to the contents of the accumulator prior to
the subtraction being performed, the result will leave the carry flag set
(C=1). This is because nothing had to be borrowed, so that the borrow
flag is still zero (carry = borrow). If, on the other hand, the value in the
interval timer register is greater than the contents of the accumulator prior
to the subtraction being performed, the result will reset the carry flag
(C=0).

If the contents of the accumulator are greater than those of the timer
register (C=1), the 3600 Hz period must have been longer than the
2400 Hz period. This means that a logic one bit was involved (see figure 8).
It follows, therefore, that when the carry flag is reset (C = @), a logic zero
bit was involved, Thus,

when C = 1 a logic one bit was received and

when C = @ a logic zero bit was received.

As an analogy, take a look at the two towers, A and B, in figure 9. Both
towers are made up of 2565 ($FF) building blocks. During the final phase
of a 3600 Hz period, one brick is removed from tower A every 64 us. The
same happens to tower B during the final phase of a 2400 Hz period.
When both periods have passed, tower A will be higher than tower B if a
fogic one bit was received (A — B = positive) and tower A will be smaller
than tower B if a logic zero bit was received (A — B = negative). Note that
the PLL jitter wait loops have no effect on the two timer counts whatso-
ever.

The nominal ratios of 3600 Hz signal to 2400 Hz signal are either 2: 1 or
1:2, so the result of the subtraction is always either clearly positive or
clearly negative, even if the PLL is not spot on tune (for instance, because
of a slightly different tape speed). For more details, read chapter 11 of
Book 3.

The total duration of a complete bit can be calculated to be about 1250 us:
a logic zero bit = 833 us of 3600 Hz + 417 us of 2400 Hz

a logic one bit = 417 us of 3600 Hz + 833 us of 2400 Hz. )
A bit period of 1250 us corresponds to a baud rate of 800 bits per second.
Since the timer is decremented every 64 us, about 13 decrements will
occur in the space of 833 us and 6 decrements in the space of 417 us. This
means that there is never a risk of the timer contents reaching zero, as the
initial value was 255 (= $FF). In other words, the towers in figure 9 will
never be totally demolished. It also means that the system can be used to
read in tapes recorded on a KIM computer, which is a factor of 6 times
slower. 1t makes no difference whether 13 or 6 x 13 is subtracted from
255, the result of the subtraction will always be positive.

One aspect of the RDBIT subroutine still has to be clarified. The first bit
to be read from cassette tape is not preceded by a RDBIT subroutine to
detect the start of a 3600 Hz period. However, this does not matter in the
least, since the first bit corresponds to the first synchronisation character
to be read from cassette. Even if things go terribly wrong with the first bit
or the entire first synchronisation character, the computer still has another
254 opportunities to detect one!
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Figure 9. The tower model illustrates how the RDBIT subroutine works. Tower A is
higher than tower B in the case of a logic high bit, but lower in the case of a logic
zero bit.

Finally, a remark along the lines of point 4. Clearly, the time it takes to
carry out the instructions before the following RDBIT subroutine must
not exceed the 3600 Hz period. There are roughly 400 us available for the
last four instructions {including the RTS) of the RDBIT subroutine, plus
the instructions preceding the next run of the RDBIT subroutine.

13 The RDCH subroutine is shown in figure 10. This routine performs
the operation of reading in an ASCII character, in other words, a
series of eight bits in succession.
During the discussion on the DUMP routine, we discovered that the least
significant bit of the data byte (b@) is transferred to the cassette first, the
most significant bit (b7) being transmitted last. This is illustrated in
figure 3 and was also explained in the paragraph on the OUTCH subroutine
in point 5. Therefore, if eight data bits are read from the cassette in suc-
cession, all of course belonging to the same ASCII character, bit @ will be
the first data bit to arrive and bit 7 the last.
The RDCH subroutine starts by loading the value $08 into the X index
register. This register is used as bit counter during the RDCH subroutine.
The processor then performs the instructions JSR - RDBIT (read data bit
from cassette), ROR - CHAR ({shift all the data bits in location CHAR one
position to the right and copy the status of the carry flag into the b7
position), and DEX (prepare for the next bit).
When all the data bits in the byte have been read in, the instructions
ROL - CHAR and LSR - CHAR are executed. As a result, bit 7 in location
CHAR is made logic zero. Bit 7 could well be used as a parity bit, but we
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bit >C

JSR  RDBIT
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all bits

no
read in?
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CHAR
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DEX
ROL

LSR CHAR b7 =4

LDA CHAR A < character

RTS

81915 10

Figure 10. The RDCH subroutine reads an ASCII character from cassette.

have already discovered that the Junior Computer does not use b7 for
parity. (During transmission of the ASCI! character to cassette, bit 7 was
made logic zero.) The final two instructions in the RDCH subroutine
simply copy the contents of memory location CHAR into the accumulator
(LDA - CHAR) and end the routine (RTS).

14 The RDBYT subroutine. Now that we know how a data bit and an
ASCI! character are read into memory from cassette (points
11...13), it seems quite logical to find out how a data byte (two ASCi|
characters) is read in. This requires the RDBYT subroutine which is shown
in figure 11,

During the DUMP routine the high order nibble of the data byte was trans-
mitted to cassette first, followed by the low order nibble, see point 6.
Therefore, when the information is read back from tape, the high order
nibble will obviously reach the computer first, followed by the low order
nibble.

The RDBYT subroutine starts by calling the RDCH routine, which we
have just dealt with. We should all know by now what the latter routine
does — an ASCI| character is read from cassette tape and stored in the
accumulator. The ASCII character could either be a coded data nibble, or
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RDBYT

JSR  RDCH
CMPIM '/

ond of
data character
{ASCII tode §2F)

JSR ASCHEX

data nibbie?

ASLA

ASLA
STA BYTE

CMPIM '/

ond of
data character

no

ASCHEX

JSR

data nibble?

ORA BYTE

LDYIM $@1

81915 11
RTS

Figure 11. The RDBYT subroutine reads a data byte from cassette by reading a data
nibble (ASCII character) twice in succession.

it could be the ‘end-of-data’ character ‘/’. In the second instance, the
RDBYT subroutine will be exited from immediately as the Z flag will be
set. In the first instance, the computer will proceed to label RBB and call
the subroutine ASCHEX, which is illustrated in figure 12.

If the ASCII code of a data nibble is involved, this will have to be con-
verted back to the corresponding hexadecimal number. This does not
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ASCHEX

CMPIM $30

12

no
NOTVAL
LDYIM $FF

N=1,Z2=9

819156 12

Figure 12. The ASCHEX subroutine converts an ASCI| character code back to its
hexadecimal value.

happen however, until the computer is absolutely sure that the ASCI! code
of a data nibble is involved.

Hexadecimal numbers @ . .. 9 are coded 3@ . . .39 in ASCII and the num-
bers A ... F are coded 41 ... 46. |f the ASCII character is not one of the
values mentioned here, this will be ‘reported’ by the status of the N flag,
whereupon the processor will exit from the ASCHEX and RDBYT sub-
routines.

The ASCHEX subroutine starts with a ‘question-and-answer’ game con-
sisting of four compare (= CMP) and four branch (= BMI) instructions.
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ASCI! codes not belonging to a hexadecimal character lead the processor
to the label NOTVAL where the N flag is set and the routine exited from.
ASCII codes which do represent a hexadecimal character, however, lead
the processor to the VALID label where the ASCII character is ‘re-struc-
tured’ to provide the correct data.

As far as the numbers @ . .. 9 are concerned, all that is required is for the
high order nibble of the ASCI| character to be made zero. This is ac-
complished with the instruction AND # @F. Where the numbers A ... F
are concerned, however, the value @9 needs to be added to the contents
of the accumulator first. This ‘masking’ process also ensures that the N flag
is reset before the processor exits from the ASCHEX subroutine.

Back to the RDBYT subroutine and figure 11. The BMI instruction fol-
lowing the first jump to subroutine ASCHEX instruction (label RBB) will
cause the processor to exit from the RDBYT subroutine if the ASCII
character just read was not a hexadecimal number (the N flag is set). If it
was a hexadecimal number, four shift left (= ASLA)} instructions are
executed — the hexadecimal value is moved up to occupy the high order
nibble of the accumulator contents. This value is then copied into location
BYTE. The computer then jumps to subroutine RDCH to read in another
ASCII character. Again, if this turns out to be the end-of-data character ‘/*,
the computer will leave the RDBYT subroutine (label RBA) after setting
the Z flag. If it is not the end-of-data character, the ASCHEX subroutine
is called again to ascertain whether or not a hexadecimal value is con-
cerned. If so, the contents of location BYTE are ORed with the second
data nibble to form the complete data byte. Just before the end of the
subroutine, the Y index register is loaded with the value $@1. This causes
both the N flag and the Z flag to be reset.

15 It is now time for a few RDTAPE subroutines which help to dis-
play the state of affairs during a read from cassette. These sub-
routines provide the three indications given in figure 7 of chapter 11 on
page 89 of Book 3. Let us examine the CHARVU/VU subroutine in fig-
ure 13 first of all. In most instances all of the instructions between the
labels CHARVU and RTS are executed, but in one instance (see the
BTWEEN subroutine in figure 14) only the instructions following the VU
label are carried out. This happens when a data block is being searched for,
is found and is entered into memory.

The CHARVU subroutine starts by saving the contents of the accumulator
on the stack. Next, bits @. .. 6 in the accumulator are inverted using the
instruction EOR #7F. This is then stored in port A data register to be-
come the new segment code for the displays. Now that we have mentioned
segment codes, figure 15 contains the 128 different segment code possi-
bilities. Codes belonging to a particular row all share the same high order
nibble value, whereas those belonging to a particular column all share an
identical low order nibble value. The reason for the inversion of the
accumulator contents will be given in point 17, during the further dis-
cussion of the RDTAPE subroutine. After port A data register has been
loaded the contents of the accumulator are restored to their previous value
by means of the instruction PLA. The contents of the accumulator must
be saved as the ASCII character needs to be further processed. However,
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PHA save A

EORIM $7F invertb6 ... bo
STA PAD A->PAD

PLA restore A
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LDA GANG
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STA PBD DiS > Di6

STA GANG

PLA restore A
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81915 13

Figure 13. The CHARVU/VU subroutine inverts the bit data and passes it on to the
display segments. The VU section ensures that dispiays 5 and 6 are ‘muitiplexed’.

1 4 $9BES

BTWEEN

PHA save A
LDAIM $36
STA PAD
PLA restore A
JSR. VU Di5 <> Di6
RTS
81915 14

Figure 14. The BTWEEN subroutine is used to display the ‘search’ pattern of three
horizontal bars when a data block is being looked for on a cassette tape.
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before that can be done the ASCII character must report to the display
{in inverted form).
For the same reason, the first instruction after the VU label also pushes
the accumulator contents onto the stack. The accumulator is then loaded
with the current contents of location GANG, which are the same as those
of port B data register. The logic level at port line PB1 is then inverted by
means of the instructions EOR#@2 and STA-PBD (the result is also
stored in location GANG). Let us examine this a little closer:

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB@
A=PBD: @ ) 1 1 @ ] 1 0
EOR#02: ¢ © © o0 o 0 1 (']
result: @ 0 1 1 @ 0 0 0
(zero if bits are the same, one if not)
Port B data register contained an initial value of $32, which was established
at the beginning of the RDTAPE routine. As a result of this, display 6 was
enabled — see point 10. The EXOR instruction causes the logic level at
PB1 to be inverted. This means that display 5 is enabled and display 6 is
disabled. In other words, the information presented to the display jumps
from Di6 to Di5. If, on the other hand, display 5 was enabled before the
VU subroutine was called, it will be disabled and Di6 enabled after the
EXOR instruction. Thus, every time that the VU subroutine is run, one
display is enabled and the other disabled. Provided subroutine CHARVU
or subroutine VU is called a number of times (as will happen when data
is being read from tape) then it will appear that both displays are lit at the
same time. This is due to the multiplexing principle which we first en-
countered in chapter 7 of Book 2.

1 The BTWEEN subroutine is shown in figure 14 and is called when-
ever the ‘between’ character (three horizontal bars) needs to be
displayed. This occurs when the tape passing the playback head contains
no data. In other words, between data blocks {see page 89 of Book 3).
The BTWEEN subroutine starts by saving the contents of the accumulator
on the stack. The code for the three horizontal bars ($36) is then loaded
into the accumulator and from there passed on to port A data register. The
accumulator contents are then restored and the subroutine VU is called to
switch between displays 5 and 6. This situation continues until an ASCII
character is read from tape and a different segment code is passed on to
port A data register.

17 The RDTAPE subroutine continued. Now let us continue with the
discussion of the RDTAPE routine which we left in point 10. We
had got as far as the SYNC label in figure 6a. The routine continues by
loading the value $FF into memory location CHAR. This location was
discovered in point 13 when the RDCH subroutine was discussed. The
initial contents of location CHAR were not established at the beginning
of the RDCH subroutine, nor did they need to be. The reasons why they
need to be established now will be explained a little further on.
After the label SYNCA, the computer reads in the very first data bit from
the tape. It accomplishes this with the aid of the RDBIT subroutine (see
points 11 and 12). As soon as a bit is detected it is shifted into bit 7 of the
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accumulator by means of the instructions ROR - CHAR and LDA - CHAR.
The subroutine BTWEEN is then called to display the three horizontal
bars (see point 16). Then the accumulator contents are compared with the
value $ 16 to see whether a synchronisation character has been received yet
($16 is the ASCII code for the synchronisation character).

At this particular moment the computer cannot possibly have detected a
synchronisation character as the RDBIT subroutine has only been run
once. After the instructions following the SYNCA label have been
executed once the value contained in location CHAR will be either
61111111 or

11111111 depending on the value of the detected bit.

Compare this with the hexadecima! code for the synchronisation charac-
ter:

00010110.

The initial value contained in location CHAR (=$FF) prevents a synchron-
isation character from being detected until at least eight bits have been
read in succession.

When a synchronisation character is at last detected, the value $0A is
loaded into memory location SY. The processor has now reached the {abel
TENSYN. At least ten synchronisation pulses have to be read in from tape
without being interrupted by a different character. As soon as this happens
the computer interprets it as the beginning of a data block to be entered
into the memory banks. If the detected character is not a synchronisation
character, the computer will branch back to the SYNC label to repeat the
procedure.

During the program loop around the TENSYN label, the jump to RDCH
subroutine instruction is followed by a jump to CHARVU subroutine
instruction. This means that something is going to happen to the display.
Unless a different character is read in during the RDCH subroutine the
value $16 will be held in the accumulator. By inverting bits @ . . . 6 in the
accumulator (see point 15) port A data register is loaded with the value
$69. As can be seen from figure 15, the second situation in figure 7 of
chapter 11 will be displayed to indicate the fact that a synchronisation
character is being read. As the subroutine CHARVU is called repeatedly,
during both the loop around the TENSYN label and the loop around the
STAR label (see top of figure 6b), displays 5 and 6 will be alternately
enabled continuously and wili therefore both appear to be ‘on’ at the same
time.

Once the computer has detected ten synchronisation characters in
1 a row (eleven in ali, as one was detected before the label TENSYN
was reached), the processor arrives at label STAR at the top of figure 6b.
The program loop around this label is not terminated until all the other
synchronisation characters (as many as 255 — 11 = 244) have been re-
ceived. There are two ways in which the loop can be terminated. One way
is if the start-of-data character '+’ is detected. The processor will then
continue from the label STARA. The secand method is if a character other
than a synchronisation character or a start-of-data character is detected.
If this second instance should occur then something has gone wrong and
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the whole procedure has to start all over again . . . back to the label
RDTAPE.

Therefore, the label STARA is reached as soon as the start-of-data charac-
ter has been read in from tape. The ASCI| code for this character is $2A.
During the CHARVU subroutine this value is inverted and stored in port A
data register. This provides the segment code $55, which corresponds to
the third situation in figure 7 of chapter 11. This means that the computer
is reading the specified data block.

During the next section of the RDTAPE routine the computer checks to
see whether the next data byte to come along (the label identifier) corre-
sponds to the contents of location ID. In other words, whether the ID
entered by the operator is the same as the ID written on the tape. If so,
the processor continues with the instructions following the RDSA label.
If, on the other hand, the two numbers are not the same, the computer
checks to see whether the operator entered a ‘special’ ID (0@ or FF).

If the operator entered an |D other than 0@, FF or that stored on the tape,
the processor jumps back to the start of the RDTAPE routine via the label
SYNVEC. We have now come to the conclusion that the data block
encountered on the tape was the wrong one and we shall have to wait
until the correct data block comes along. Obviously, it all depends on what
is stored on cassette. In between the jump to subroutine CHARVU (label
STARA) and jump to subroutine BTWEEN (label SYNCA) instructions,
the segment code for the third situation in figure 7 of chapter 11 will
appear on the displays very briefly. This indicates that the processor has
returned to the start of the RDTAPE routine (see figure 6a).

Apart from the |D being the wrong one, there are three other possibilities:

1 6 $#cas

CHKSUM

PHA save A

ADC CHKL

STA CHKL CHKL : =CHKL + A

LDA CHKH

ADCIM $00 CHKH:=CHKH +C

STA CHKH CHK:=CHK + A

PLA restare A

81916 16

Figure 16. The CHKSUM subroutine adds the value of the current data byte to the
16 bit contents of locations CHKH and CHKL.
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A. An identifier between 01. .. FE has been found. The processor moves
on to execute the instructions between the labels RDSA and FILMEM.
As a result, the low order start address (SAL) is read in to the computer
via the RDBYT subroutine. The CHKSUM subroutine is then called, see
figure 16. This routine simply saves the contents of the accumulator, adds
this current value to the 16 bit number held in locations CHKH and CHKL
and restores the previous accumulator contents. Upon the return from the
CHKSUM routine the accumulator contents are stored in the address
buffer POINTL. The high order byte of the start address is dealt with in
the same manner and the result stored in address buffer POINTH. Effec-
tively, the address buffer POINT now contains the start address of the data
block being received and the value contained in location CHK has been
updated.
B. The operator entered an ID of 80. The processor once again finds itself
at label RDSA and continues as above. This is correct, as when an ID
of 0D is entered, the identifier on the tape is ignored and the first data
block to come along is stored in memory.
C. The operator entered an ID of FF. In this instance the values of the
high and low order bytes of the start address stored on tape are added
to the contents of location CHK. Then the start address previously entered
by the operator is copied into the address buffer POINT. This is once again
correct as both the identifier and the start address on tape are ignored
when an ID of FF is entered. However, the high and low order bytes of
the start address have to be added to the contents of CHK so that the final
checksum operation produces the correct result. In all cases we have now
reached the label FILMEM.

19 The instructions following the FILMEM label in figure 6b read in
the entire data block previously recorded on tape and enter it into
the computer memory. The process once again starts with the RDBYT
subroutine, which was described in point 14 and is illustrated in figures 11
and 12. If, at the end of the RDBYT subroutine, the data concerned is
invalid (N = 1), the computer will return to the start of the RDTAPE sub-
routine. If, on the other hand, the processor encounters the end-of-data
character ‘/’, it will proceed to the label CHECK. However, if the data
concerned is still valid, the contents of location CHK are processed once
more (JSR - CHKSUM). After this, the data that has just been read in is
entered into a memory location determined by the current contents of the
address buffer POINT. As mentioned previously, the initial contents of
POINT correspond to the start address of the data block being entered
into memory from cassette.
Once the data has been stored in memory, the contents of POINT are
incremented, which brings us to the label FMA. Here, the subroutine VU
is called. This routine was described in point 15 and illustrated in figure 13.
It causes the two displays, Di5 and Di6, to be enabled and disabled alter-
nately. By the way, the segment code which was loaded into port A data
register during the CHARVU subroutine foliowing the label STARA will
still be displayed. The last instruction in this particular program section
simply causes the processor to jump back to the label FILMEM so that
the next data byte can be processed.



To end the discussion of the RDTAPE routine we will take a quick look
at the final instructions after the CHECK label in figure 6b. When the
processor encounters the end-of-data character, ‘/’, the contents of mem-
ory location CHKL which were stored on the cassette are loaded into the
accumulator via the RDBYT subroutine. This value is then compared to
the contents of location CHKL which has just been calculated from the
data being received by the computer. If the two values are not the same,
an error has occurred somewhere and the process will have to be repeated,
so the computer branches back to the start of the RDTAPE routine, via
the SYNVEC label. If, on the other hand, the two final values are the
same, the processor will move on to test whether the two values for CHKH
are also the same. If they are, the processor exits from the subroutine via
the RTS instruction. If they are not the same, the processor branches back
to the start of RDTAPE once again.

If either the two values for CHKL or the two for CHKH are different, the
data block (albeit somewhat corrupted) is stored in computer memory,
but the RDTAPE subroutine is not exited from. This can be seen on the
displays, as the third situation in figure 7 of chapter 11 will be followed by
the first situation. Normally speaking, the display will be unlit when the
computer leaves the RDTAPE routine after a successful data storage
procedure. In addition, the Printer Monitor program informs us of the fact
by reporting the text ‘READY’. When called by the Tape Monitor pro-
gram, the computer again informs us that it has finished reading in a data
block from cassette by reporting ‘id xx’ on the displays. This particular
aspect will be dealt with later on in this chapter.

20 The main routine of the Tape Monitor program. The flow chart of
the main section of the Tape Monitor {TM) program is illustrated
in figures 17a... 17c. The structure of the routine is very similar to that
of the other system programs for the Junior Computer. To start with,
there is an initialisation routine consisting of the instructions between the
labels TPINIT and TPI, and the following instructions between the labels
TPI and TPTXT. The latter label also acts as a focal point: the central label
of the main TM routine. The computer returns to this label at the end of
the PAR key routine (see point 24), once the various parameters (ID, SAH,
EAH, EAL, BEGADH, BEGADL, ENDADH and ENDADL) have been set
up. After the GET key routine (see point 22} and the SAVE routine (see
point 23), the computer runs the second section of the initialisation
routine, starting at label TMI, before returning to the TPTXT label. After
the SEF and EDIT key routines (see point 25) the TM program is exited
from completely and the computer enters the editor mode.

Straight after the central TPTXT fabel, the name of the particular memory
location is displayed, along with its current contents. The computer then
waits for a key to be depressed. Depending on which key is depressed, the
computer will execute either a key routine or, if a hexadecimal key was
depressed, the data key routine.

Upon close examination of the TM program software it will become
apparent that the memory location DISCNT has a very important part to
play in the proceedings. The value contained in this location determines
which of the nine parameters have to be displayed and/or altered. There-
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1 7a ‘ $ 0810

TPINIT
LDXIM $@@
STX iD iD <%
STX  SAL saL <99
STX  SAH saH <o
STX  EAL EaL <99
STX  EAH Eak <00 CMPIM $10 —®)
SAVE| ?
331
(23>
JSR DUMP
STX  DISCNT |Xx«# P P
o
LDAIM $06 JMP TPI is restored
STA  PBD dispiay
‘off’
LDAIM $1E
PB1 ...PB4|
STA PBDD output

TAPDIS

now key INC  DISCNT
depresed?

LDYIM $89

DISCNT
DISCNT

key still
depressed?
find key LDYIM 500

GETKEY [} vaue key
depressed STY  DISCNT D"':"T

‘ {TPTXT)
GETA
JSR RDTAPE
LDXIM SFF

POINTL
CPX  ID apjenT REGAT
LDAZ POINTL
ID FF? ves STA  SAL
LDAZ POINTH
sa=
ne STA  SAH EA-1
=LA
JMP  GETB
GETB
INX x=98

81916 172

Figure 17a. The first section of the main Tape Monitor program.
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17b &—

SAL < BEGADL

SAH < BEGADH

EAL < CENDL|

£AH < CENDH

CURAD = BEGAD

restora 1/0

SP <FF

([col 2y
LDAZ BEGADL
STA  SAL
LDAZ BEGADH
STA SAH
LDAZ CENDL
STA  EAL
LDAZ CENDH
STA EAH
JSR DUMP
JSR BEGIN
LDAIM $lE
STA PBDD
LDXIM SFF
TXS
JMP WARMST
WARMST =
CMND
$1CCA

31915 17b

CMPIM $13

CMPIM $11

yos

JMP COLDST

COLDST =
EDITOR
$1CBS

{ 4TPTXT)

ASLZ INH
ASLZ INH
ASLZ INH
ASLZ INH
ORAZ INH
STAZ INH
LDYIM $06
cpy DISCNT
-+ A= INH
? no
DISCNT = o8
yos
STA ID
“id XX”'| JMP TPTXT
INY
CPY  DISCNT
DISCNT o
ln
yos
STA  SAH
SAH
JMP  TPTXT |30
INY
CPY  DISCNT
DISCNT no
?
vos
STA  SAL
JMp  TPTXT ['SAL XX~

Figure 17b. The second section of the main Tape Monitor program.
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{4TPINIT)

17c ©

{ 4TPTXT)

STEAH

.

INY
cpY DISCNT
DISCNT
les
yes
STA EAH
JMP TPTXT

STEAL

na

“EAH
XX

D

DISCNT

INY

CPY DISCNT
yes

STA EAL

JMP TPTXT

"EAL
1XX"

STBEGH

0
o

.

STBEGL

INY
cpY DISCNT
DISCNT
los
yes
STAZ BEGADL
JMP TPTXT

STENDH

0

INY
CPY DISCNT
DISCNT
lm
yes
STAZ ENDADH
JMP TPTXT

“BEGL
XX

“ENDH
XX

STENDL

INY INY
CPY  DISCNT CPY  DISCNT
DISCNT no DISCNT
?
z =88
yes yes
STAZ BEGADH STAZ ENDADL
JMP  TPTXT "iégﬂ JMP  TPTXT
TPVEC
81915 17¢

Figure 17¢. The third and final section of the main Tape Monitor program.
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fore, depending on the actual contents of location DISCNT (between 00
and 08), one of the nine parameters will be displayed. Thus:

DISCNT= @@ : display/alter ID

DISCNT = @1 : display/alter SAH

DISCNT = @2 : display/alter SAL

DISCNT = @3 . display/alter EAH

DISCNT = @4 : display/alter EAL

DISCNT= @5 : display/alter BEGADH

DISCNT= @6 : display/alter BEGADL

DISCNT = §7 : display/alter ENDADH

DISCNT = @8 : display/alter ENDADL

This gives us a general impression of what the Tape Monitor program
actually does — now for the finer details.

2 The TM program initialisation routine. The main TM routine starts
by loading the value $00 into the five locations associated with the
cassette procedure; ID, SAL, SAH, EAL and EAH. Following the label TPI
the parameter counter location DISCNT is also loaded with the value $00.
This point can be reached from three different routes and in each case the
value $00 is held in the X index register. Therefore, whenever the program
is executed from the TPI label onwards, the message ‘id xx’ will appear on
the display.
The next part of the procedure is to load port B data register with the
value $06 and port B data direction register with the value $1E. This
means that port lines PB1 . .. PB4 are programmed as outputs and that the
display is switched off. Following the TPTXT label the processor calls the
TAPDIS subroutine twice in succession. This routine determines which of
the nine messages are to be displayed. This routine is described in point 27
and is illustrated in figure 19. The GETKEY subroutine is then executed
to obtain the value of a depressed key. Therefore, by the time the processor
reaches the label GET, the value of the depressed key will be held in the
accumulator. Depending on which key was depressed, either a specific key
routine will be executed or the data key routine will be run.

22 The GET key routine consists of all the instructions following the
GET label at the bottom left-hand side of figure 17a. When the
computer detects the fact that the GET key has been depressed, the
RDTAPE subroutine is called. This routine was described in detail in points
10...19. All the data that is received from cassette is stored in memory.
Following the RDTAPE subroutine, the computer checks to see whether
the ID of the data block was FF. If not, the processor proceeds to label
GETB where the contents of the X index register are made zero and the
processor returns to the central label TPTXT, via the label TPI. The mess-
age ‘id xx’' then appears on the display. The slight detour by way of the
TPI iabel was necessary in order to correct the input/output situation. The
input/output status was changed during the RDTAPE routine.

Where the entered ID was FF, the processor carries out the instructions
after the GETA label before reaching the GETB label. The first of these
instructions call the subroutine ADJPNT, illustrated in figure 18, which

162



1 8 $9C72

ADJPNT

SEC c=1

LDAZ POINTL
SBCIM $91
STAZ POINTL {POINTL:=POINTL-1

LDAZ POINTH

SBCIM $0¢

STAZ POINTH |POINTH: =POINTH-C

RTS
81915 18

Figure 18. The ADJPNT subroutine decrements the contents of the address buffer
POINT and is called during the execution of the GET key routine.

performs the simple operation of decrementing the contents of address
buffer POINT. The reason for this is that location POINT indicates the
address of the most recent data byte to be read from tape during the
RDTAPE routine. At the end of the RDTAPE routine the contents of
POINT are incremented by one. Therefore, when the complete data block
has been read in to memory, location POINT indicates an address which is
one higher than the address of the last byte in the data block. In other
words: POINT=EA =LA + 1.

The end address is not directly defined on cassette, but is deduced from
the start address (either on tape or entered manually) plus the number of
bytes in the data block plus one.

Upon the return from the ADJPNT subroutine the contents of location
POINT indicate the final address (LA) of the data block that has just been
read in. And for a very good reason. The four instructions following the
jump to the ADJPNT subroutine instruction cause a new start address to
be defined. This applies when a number of data blocks belonging to
unassembled sections of the same program have to be ‘giued’ together, so
that the end-of-file characters have to be removed. The trick of entering an
ID of FF was discussed in some length in chapter 11 of Book 3. It may be
an idea to take another look at figure 11 of that chapter as well.

From the software of the GET key routine it can be seen that no data
needs to be entered before the next data block is read in to memory. After
all, the start address has been defined automatically and the contents of
location ID will still be FF. All that has to be done before depressing the
GET key is to make sure that the next data block on the cassette tape is
the correct one!
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23 The SAVE key routine consists of all (1) the instructions following
the label SAVE in figure 17a. When the computer detects that the
SAVE key has been depressed, the DUMP subroutine is called (see points
1...9). A previously defined data block is then stored on cassette. Before-
hand memory locations 1D, SAH, SAL, EAH and EAL must have been
loaded with the correct information.
At the end of the DUMP subroutine the contents of the X index register
are cleared. This means that the message 'id xx’ will be displayed at the
end of the procedure, when the processor reaches the central label TPTXT
via the TP! label. As in the GET key routine, the section of program after
the TP label has to be executed to restore the input/output parameters.

24 The PAR key routine consists of all the instructions following the
PLUS !abel in figure 17a. When the PAR key is depressed, the
contents of the parameter counter DISCNT are incremented by one. I
the result turns out to be $09, the value $00 is loaded into location
DISCNT. Therefore, depressing the PAR key simply causes the contents
of the next of the nine parameter locations to be displayed. The order in
which the nine parameters are presented was given in point 20. After the
message ‘ENDLxx’ and a subsequent PAR key operation, the message
‘id xx" is displayed.

25 The SEF key routine consists of all the instructions foilowing the
FILES label in figure 17b. When the SEF key is depressed, the
contents of location BEGAD are stored in location SA (start address} and
the contents of CEND are copied into location EA (end address). CEND is,
of course, the current end address of the (as yet) unassembled program
which is to be stored on cassette. Obviously, the 1D must be defined before
the SEF key is operated.

After the DUMP routine has been executed the Tape Monitor program is
exited from and a warm start entry is made into the editor mode. However,
before this can happen, the BEGIN subroutine is executed: the current
address pointer CURAD is loaded with the contents of location BEGAD
which also acts as the start address. Furthermore, port B data direction
register is updated. Finally, the contents of the stack pointer are set to
$FF, after which the processor makes a warm start entry into the editor.
The EDIT key routine consists of the instructions after the DAT label in
figure 17b. All that happens when the EDIT key is depressed is that the
processor makes a cold start entry into the editor.

2 The data key routine. By this time all the non-hexadecimal keys
will have been filtered out, which leaves us with the data keys
@ ... F. This involves the remainder of the main Tape Monitor program —
the data key routine. This consists of all the instructions following the
SHIFT label in figure 17b and overflows into figure 17c.
A hexadecimal key is processed into the new low order nibble of the data
buffer INH. The previous low order nibble becomes the new high order
nibble. There should be no need to go into too much detail here as all this
has been described before.
The modified contents of the buffer INH must be stored in one of the nine
parameter locations. Which one depends on the contents of the parameter
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counter DISCNT. The data is stored in location

ID {label SHIFT)  if DISCNT = 0@
SAH (label STSAH) if DISCNT = 01
SAL (label STSAL) if DISCNT = 02
EAH (label STEAH) if DISCNT =03
EAL (label STEAL) if DISCNT = 04

BEGADH (label STBEGH) if DISCNT = @5

BEGADL (label STBEGL) if DISCNT = @6

ENDADH (label STENDH) if DISCNT = @7

ENDADL (label STENDL) if DISCNT = @8

Once the particular parameter has been entered, the processor returns to
the central label TPTXT to display the result.

This just about ends the discussion of the main Tape Monitor program.
Only one subroutine and one sub-subroutine still need to be mentioned.

27 The TAPDIS subroutine is illustrated in figure 19. This subroutine
has the job of making sure that one of the nine parameter mess-

ages appears on the display. Displays 1...4 indicate the parameter

location while displays 5 and 6 show its contents. We will briefly recap on

part of chapter 7 (Book 2) to see that the next display to be lit depends on

the value contained in the X index register:

when X = @8 display 1 will be enabled

when X = @A display 2 will be enabled

when X =@C display 3 will be enabled

when X = QE display 4 will be enabled

when X = 1@ display 5 will be enabled and

when X = 12 display 6 will be enabled

Immediately after the TAPDIS label in figure 19, port lines PA@ ... PA6

are programmed as outputs. These port lines will contain the segment data

to be displayed. Following the label SID the value $88 is loaded into the

X index register. This means that display 1 is enabled (during the TDISP

routine which follows shortly). However, before the TDISP routine is

called, the computer must know which location to display. This in turn

depends on the contents .of memory location DISCNT. A form of ‘in-

terrogation’, similar to that for the key routines, is then carried out to

determine the value held in location DISCNT. The Y index register is used

as the ‘interrogator’ initially, but when the computer has discovered which

memory location is to be displayed, the Y index register assumes a different

role. It then serves as an index for the look-up table which is used during

the TDISP routine.

When the label COMPNT in figure 19 is reached (this is when the TDISP

subroutine is called), the following situation arises:

DISCNT = §0; contents of ID stored in INH; index = 0@
DISCNT = @1, contents of SAH stored in INH; index = 04
DISCNT = 92; contents of SAL stored in INH; index = (8

DISCNT = @3; contents of EAH stored in INH; index = 8C
DISCNT = @4; contents of EAL stored in INH; index = 10
DISCNT = @5, contents of BEGADH stored in INH; index = 14
DISCNT = @6; contents of BEGADL stored in INH: index = 18
DISCNT = @7, contents of ENDADH stored in INH; index = 1C
DISCNT = #8; contents of ENDADL. stored in INH; index = 2@
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Figure 19. The TAPDIS subroutine establishes which of the nine parameter locations

are to be displayed and/or modified.

28

iHustrated in figure 20 and has the task
of one of the nine parameter locations
In addition, the routine checks whether

The TDISP subroutine is

of displaying the name

along with the data held therein.

another key was depressed or not.
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20 $991B

TDISP

LDAY TLOOK

STA PAD Di1 Di2 Di3 D4
STX PBD X =98,0A,6C, OE
TYA pattern index > A
LDYIM $7F

DELY

DEY wait a whila
TAY restore pattern index
INX

next display
INX
INY next segment pattern
CPXIM $10

Di’s turn?

yes
JSR LDAINH@S 1DA7

81915 20

Figure 20. The TDISP subroutine is used to enable each of the displays in turn and
also checks to see whether a new key has been depressed.

One execution of the program loop starting at the TDISP {abel can be com-
pared with the CONVD subroutine in the original monitor program (see
figure 14 in chapter 7 in Book 2). First of all, the accumulator is loaded
with data derived from the look-up table TLOOK. The data selected
depends on the current contents of the Y index register. The data from the
look-up table acts as the segment code and is therefore stored in port A
data register. The Xindex register is used to determine which particular
display is to be enabled and its contents, therefore, are transferred to
port B data register.
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CONVD

SCAND

->
LDAINH

($1D0A7)

<

-
Ay
g
I
2

Di2

Ny

Di3

Di4

e
x|

Di5

r
‘)
N\,

Di6

81915 21 RTS

Figure 21. The LDAINH subroutine is part of the subroutine SCAND/SCANDS
contained in the original monitor program.

After saving the contents of the Y index register in the accumulator (the
instruction TYA), the Y index register is used for a short delay loop. The
length of the delay determines for how long each display is actually lit.
After the delay the previous contents of the Y index register are restored
whereupon the value in the X index register is incremented twice to enable
the next display and the value in the Y index register is incremented by
one to index the next segment code to be loaded from the jook-up table.
When the value held in the X index register is $10 (it is time to enable
display 5), the processor terminates the loop and calis the LDAINH
subroutine.
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22 S 9298

LDA #7D
STA — HIGHER 3600 Hz delay period
LDA #C3
STA — LOWER 2400 Hz delay pariod
LDA #93
STA — FIRST number of 3600 Hz half pariods
LDA #02
STA — SECOND number of 2400 Hz half pariods

LDA #47

LDX # FF

STA - PBD

STA — GANG

STX — PBDD PBY ... PB7 output

LDA % 0

LDX # 7F

00 DUMP STA —PAD PAD @8

STX — PADD PAJ . .. PAG output; PA7 input

LDA # DD

STA ~CTL CTL <DD

STA -~ CTH CTH <DD

SYNOUT

cLc

LDA #01

ADC -~ CTL

STA-CTL CTL:=CTL+1

LDA #0908

ADC - CTH

STA - CTH CTH:=CTH+C

C=1; yes

CTH = #?

JMP — SYNOUT

$ 1C10

JMP-MONITOR

81915 22

Figure 22. The DUMCHK routine can be used to record a series of synchronisation
characters on to tape so that the PLL can be calibrated correctly.
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The LDAINH subroutine is new, but not totally unfamiliar {see figure 12
on page 122 of Book 2 and address $1DA7 in the listing at the back of
this book). As can be seen, the processor jumps to the middle of the
SCAND/SCANDS subroutine in the original monitor program. From
figure 21 (which is identical to figure 11 in chapter 7), it is apparent that
the SCAND/SCANDS subroutine is called when the contents of the data
buffer INH have to be displayed.

Once the subroutine LDAINH (alias SCAND/SCANDS) has been executed,
the contents of the accumulator will reveal whether or not another key has
been depressed. This comprises the final section of the routine in figure 21
following the label AK.

This brings us to the end of the discussion on the Tape Monitor program
and almost to the end of this chapter.

29 In chapter 11 of Book 3 we described two methods for calibrating
the phase-locked loop (PLL) of the cassette interface. In both
instances a test program is required. If the PLL is calibrated with the aid of
the display, both a read and a write operation are required. If, on the other
hand, an oscilloscope is used, data need only be stored on cassette before-
hand. To recap on the details, see pages 101... 108 in chapter 11 of
Book 3.

When using the display to calibrate the PLL, a series of un-interrupted
synchronisation characters have to be written onto the cassette tape. This
is accomplished with the aid of the DUMCHK program given in figure 22,
Readers have already seen the hex dump for this in the first half of table 2
on page 102 of Book 3. The start address is 0200.

The first few instructions of the DUMCHK routine are identical to those
of the DUMP routine (see figure 1a). It is not until three instructions
before the SYNOUT label that the routine differs. Here, the locations CTL
and CTH are both loaded with the value $DD. The 16 bit figure contained
in locations CTH (high order byte) and CTL (low order byte) is in-
cremented each time the processor has executed the program loop around
the label SYNOUT. As long as the result of the addition does not generate
a carry, the computer continues to produce synchronisation characters
(the instructions LDA # 16, JSR - OUTCH and JMP - SYNOUT). However,
should the addition generate a carry, the computer will branch to the
EXIT label from whence it will return to the original monitor program.
The start address (3208) will then appear on the display.

The carry flag is set when the contents of memory location CTH become
zero: in other words, after the addition when both CTH and CTL contain
the value $FF. Just before the processor reaches the label SYNOUT for
the first time, locations CTH and CTL were both loaded with the value
$DD, giving a 16 bit figure of $DDDD. This means that a total of

$10000 - $DDDD = $2223 = 8739 (decimal)

synchronisation characters are generated. As each character contains 8 bits
and each bit lasts 1250 us (see point 3) the total duration of the recording
is 1250 x 8 x 8738 us = 87 seconds, or 1% minutes.

As would be expected, the opposite of the DUMCHK routine has the task
of reading the synchronisation characters from the cassette and is called
RDCHK. This subroutine is shown in figure 23. Again, the hex dump can
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Figure 23. The RDCHK routine can be used to read a series of synchronisation

$0251

LDA #32

STA — PBD

STA — GANG

LDA #7E

STA — PBDD

PB¢ and PB7 input

LDA #7F

STA — PADD

PA@ ... PAB output

—¢

LDA #FF

STA - CHAR

CHAR < FF

CHARVU
CMP # 16

bit >C

81915 23

characters from tape so that the PLL can be set up_accurately.
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LDA #7D

STA — HIGHER 3600 Hz delay period

LDA #C3

STA — LOWER 2400 Hz delay period
LDA #03

STA — FIRST number of 3600 Hz half periods
LDA #G2

STA — SECOND number of 2400 Hz half periods

LDA # 47

LOX # FF

STA - PBD

STA — GANG

STX — PBDD P8¢ ... PB7 output

LDA #00

LDX # 7F

STA — PAD PAD < #8

STX — PADD PAD . .. PAG output; PA7 input

bit 1

bit ®

- _J

JMP — INFNIT

81915 24

Figure 24. The SAVE routine transfers a continuous stream of alternating ones and
zeros to cassette so that the PLL can be set up using an oscilloscope.

be found on page 102 of Book 3. The first few instructions, between the
labels RDCHK and SYB are virtually identical to those of the RDTAPE
subroutine between the labels RDTAPE and TENSYN. Therefore, let us
move straight on to the instructions following the SYB label. A character
is read in by means of the RDCH subroutine and the ASCI! code for that
character is held in the accumulator. Next, the computer checks to see
whether or not it was a synchronisation character. If so, the processor re-
turns to the SYB iabel. If not, the processor returns to the label SYNCHK.
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The programs given in figures 22 and 23 are intended purely for calibrating
the PLL by way of the display. The question is: what can be seen and
when? This depends on two instructions in figure 23. Immediately after
the return from the BTWEEN subroutine the ‘search’ pattern, three
horizontal bars, appears on the display. After the CHARVU subroutine has
been executed, the ASCII code for the synchronisation character is in-
verted and passed on to the segments of the display. The indication that
the computer is reading synchronisation characters will remain on the
display for as long as synchronisation characters continue to be read,
provided of course that the PLL has been correctly calibrated. If any other
pattern appears on the display, then there could be a gap on the tape
where no synchronisation characters have been recorded, or the PLL is
incorrectly adjusted. However, this will only happen for a very brief period
indeed before the display reverts to the search pattern or the synchronis-
ation pattern.

3 The SAVE routine in figure 24 is part of the auxiliary software
required when the PL.L is calibrated with the aid of an oscilloscope.
Again, the hex dump has already been given on page 103 of Book 3.
The SAVE routine transmits a series of alternating ones and zeros. Not
surprisingly, the instructions between the labels SAVE and INFNIT are
identical to those of the DUMP/DUMPT routine. Also, there is an infinite
program loop around the label INFNIT, as a result of which a bit train
consisting of alternate ones and zeros is generated. The latter is simply a
question of calling the HIGH and LOW subroutines the right number of
times and in the right order. The infinite loop can, of course, be exited
from if the RST key is depressed.
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Appendix 1

The complete listing of the PME system program

The following pages contain the complete listing of the PME system
program. Each book page corresponds to a single assembler page consisting
of 56 lines.

Assembler page 12 contains the instructions belonging to the BINAR and
PMBINA routines which are required to switch back to binary arithmetic.
See appendix 4 for further details.

A few addresses are well worth noting:
$1500 : EDITC

$1533 : BRK

$153D : EDITW

$1667 : SEMIW

$17C5 ;. SEACND

$17F6 : BINAR

$17FA: PMBINA
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0001:
00602:
0003:
0004 :
0005:
0006:
2007:
0008:
0009:
0010:
0011:
0012:
0013:
0014:
0015:
001¢:
0017:
0013:
0019:
0020:
0021:
0022:
0023:
0024:
0025:
0026:
0027:
00238:
0029:
0030:
0031:
0032:
0033:
0034:
0035:
0036:
0037:
0038:
0039:
0049:
0041:
0042:
0043:
0044:
0045:
0046:
0047:
0048:
0049:
0050:
0051:
0052:
0053:
0054:
0055:
0056:
0057:
0058:
0059:
0060:
0061:
0062:
0063:
0064:
0065:
0066:
0067:
0068:

14F8

14F8
14F8
14F38
14F8
14F8
14F8
14F8
14F8
14F8
14F8
14F8
14F8
14F8
14F8
14F8
14F8
14F38
14F8

14F8
14F8
14F8
14F8
14F8
14F8
14F8
14F8
14F8

14F8
T14F8
14F8
14F8
14F8
14F8
14F8
14F8
14F8
14F8

SOURCE LISTING OF THE PM EDITOR

WRITTEN BY G.

DATE

THE PM EDITOR USES HEXADECIMAL LABELS

Ak kA kkhkhkkhkkhkhhhrhkhkhhhkh Ak kk*

POINTERS AND TEMPS IN PAGE ZERO

kkkhkhkhkkhkhhhhkhhhkhhxkkhkhk xhkkhk

BEGADL
BEGADH
ENDADL
ENDADH
CURADL
CURADH
CENDL
CENDH
TABLEL
TABLEH
LABELS
BYTES
COUNT
INH
POINTL
POINTH
TEMPX
NIBBLE

AhkKkkRhkhkhkhhhhhhhkhhkhhkhkkkhk Ak khkk kb kkk

PME'S POINTERS AND TEMPS IN PAGE 1A
Kk kkkkh Kk ko khkhhkk Ak khkkkkkhhkkdh

PARAL
PARAH
PARBL
PARBH
NMIL
NMIH
BRKTL
BRKTH
PBDD

kkkkhhkhk Ak khkhdhhhkrhkkrkkkhhkhi

ADDRESSES IN THE STANDARD EPROM
2222222 T RSS2SR s s

SAVE
BEGIN
OPLEN
LENACC
ADCEND
RECEND
up
FILLWS
NEXT
ASSEMB

ORG

25 JUNE

* ook b % % k% F % % ¥ ok b ¥ % X F %

EE N A N

X % Ok % k% H X ¥ H

$14F8

NACHBAR

$00€2
$00€3
$00€4
$00€5
$00E6
$00€E7
$00€8
300€9
$00€eC
$00ED
$00EE
$00F6
$00F7
$00F9
$00FA
$00F8B
$00FD
$00FE

$1463
$1A64
$1A65
$1A66
$1A7A
$1A78
$1A7C
$1A7D
$1A83

$1C00
$1ED3
$1E5C
$1€60
$1EDC
$TEEA
$1E83
$1€47
$1EF8
$1F51

1981

175



0069:
0070:
0071:
0072:
0073:
0074:
0075:
0076:
0077:
0078:
0079:
0080:
0081:
0082:
0083:
0084:
0085:
0086:
0087:
0088:
0089:
0090:
0091:
0g9z:
0093:
0094:
0095:
0096:
0097:
0098:
0099:
0100:
0101:
0102:
0103:
0104:
3105:
0106:
0107:
0108:
0109:
0110:
0111:
0112:
0113:
0114:
0115:
0116:
0117:
0118:
0119:
0120:
0121:
0g122:
0123:
0124:
0125:
0126:
0127:
0128:
0129:
0130:
0131:
0132:
0133:
0134:
0135:
0136:
0137:
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14F8
14F8
14F8
14F8
14F8
14F8
14F8
14F8
14F8

14F8

14F8
14FA
14FD

1500
1503
1505
1508
1508
1500
1510
1512
1513
1515
1517
151A
151¢
151€
1520
1523
1525
1528
1524
1520
152F
1531

1533
1535
1538
153A

153D
153F
1542
1544

A9
80
4¢C

20
AD
20
20
30
AD

18
69
85
AD
85
69
85
AD
85
AD
35
20
A9
AQ
91

A9
8n
AS
8D

AQ
20
A2
9A

1€
83
51

68
00
3€
87
k3
63
E2

01

64
E3
00
E9
65
E4
66
ES
D3
77
0o
£6

30
7C
15
70

24
3E
FF

1A
1F

12

17
13

1A

1A

1A

1E

1A

17

kkhdhkhkkkkhkkkhkdkkkk

SUBROUTINES IN PM
Kk kk kA RKkA K KR XK KRR

INPAR * $1387
RECCHA * $12AE
PRCHA * $1334
PRBYT * $128F
PRSP * $11F3
ASHETT * $141E
CRLF * $11€E8
RESIN * $1268
RESTTY * $148BC
STEP * $14CF

I0CORR: ADAPTS THE PBDD T
PRIOR TO ASSEMBLING

IOCORR LDAIM $1E
STA PBDD PBO I
JMP ASSEMB ASSEM

EDITC: COLD START ENTRY O

EDITC JSR RESIN RESET
LDYIM $00
JSR Messa  "BEGA
JSR INPAR GET P
BMI EDITC TRY I
LDA PARAL LOAD
STAZ BEGADL
cLce
ADCIM 301
STAZ CENDL CENDL
LDA PARAH
STAZ BEGADH LOAD
ADCIM 300
STAZ CENDH CENDH
LDA PARBL
STAZ ENDADL LOAD
LDA PARBH
STAZ ENDADH LOAD

JSR BEGIN PRINT
LDAIM 877 EQUAL
LDYIM $00

STAIY CURADL EOF 7

BRK: WARM START ENTRY OF
CATION OF THE BRK JUMP VE

BRK LDAIM $3D
STA BRKTL
LDAIM %15
STA BRKTH

EDITW: MAY BE USED AS A W
PROVIDED THE BRK JUMP VEC
BEFOREHAND.

EDITW LDYIM $24

JSR MESSA "PM E
LDXIM SFF
TXS RESET

THE CENTRAL LABEL "WARM"
WITH THE K-KEY ROUTINE

0 THE VERSION D SITUATION,

S INPUT
BLE THE PRCGRAM

F PME

INPUT BUFFERS
D,ENDAD:"
ARAMETERS

T AGAIN, IF NOT DONE PROPERLY
BEGADL

= BEGADL*1
BEGADH
= BEGADH+AARRY

ENDAD

ENDADH

POINTER CURAD

S BEGAD

7 ON FIRST ADDRESS BEGAD

PME, INCLUDING THE SPECIFI-
CTOR

ARM START ENTRY OF PME
TOR HAS BEEN SPECIFIED
DITOR"

STACK POINTER

OF PME STARTS STARTS



0138:
0139:
0140:
0141:
0142:
0143:
0144
0145:
0146:
0147:
0148:
0149:
0150:
0151:
0152:
0153:
0154:
0155:
0156:
0157:
0158:
0159:
0160:
0161:
0162:
0163:
0164:
0165:
0166:
0167:
0168:
0169:
0170:
0171:
0172:
0173:
0174:
0175:
0176:
0177:
0178:
0179:
0180:
0181:
0182:
0183:
0184:
0185:
0186:
0187:
0188:
0189:
0190:
0191:
0192:
0193:
0194:
0195:
0196:
0197:
0198:
0199:
0200:
0201:
0202:
0203:
0204:
0205:
0206:

1545
1548
1548
154D
154F
1552
1555

1558
1554
155¢
155F
1562
1565
1567
1569
156¢

156€
1570
1572
1575
1577
1579
1578
1570
1580
1582
1585
1587
158A
158¢C
158E
1590
1592

1594
1596
1598
1598
159D
15A0
15A2
15A5
1587
15A9
15A8
1540
15AF
1581
1582
1584
1586

20

c9
DO

20
4c

c9
D0
20
20
20
30
AQ
20
FO

c9
00
20
30
10
c9
b0
20
30
20
90
20
FO
AD
D0
AQ
00

c9
D10}
20
30

AS
20
AD
81
[
bli]
cé
FO
c8
B1
c5
b0

08
AE
48
09
83
EA
45

4c
12
03
08
F8
F8
1F
3€
b7

20
07
F8
CE
EE
49
17
c9
0A
Fé
09
47
B89
O€E
D9
1A
DS

53
40
c9
EF
b3
FB
60
00
E6
FB
20
Fé
12

E6
FA
15

1E
1E
15

1€
17
1E

17

("DELETE")

WARM JSR
JSR
CMPIM
BNE
JSR
JSR
JMP

PRINS
RECCHA
'K
LIST
up
RECEND
WARM

PRINT CURRENT INSTRUCTION

WAIT FOR A DEPRESSED KEY

IS IT THE K-KEY?

CONTINUE IF NOT

ADAPT WORKSPACE

ADAPT CURRENT END ADDRESS POINTER
READY

LABEL LIST: L-KEY ROUTINE

LIST CMPIM
BNE
JSR
LST JSR
JSR
BMI
DONE LDYIM
MESS JSR
BEQ

LABEL INSERT:

SKIP CMPIM
BNE
JSR
BMI
BPL
INSERT CMPIM
BNE
JSR
BMI
MEM J SR
B(CC
JSR
BEQ
ILLKEY LDYIM
BNE
FULL LDYIM
BNE

'L L-KEY DEPRESSED?
SKIP IF NOT CONTINUE
BEGIN START AT BEGAD
PRINS PRINT CURRENT INSTRUCTION
NEXT ADAPT INSTRUCTION POINTER
LST
$1F
MESSA PRINT "“DONE"
WARM READY
LABEL SKIP: SPACE BAR KEY ROUTINE
I1-KEY ROUTINE
' SPACE BAR DEPRESSED?
INSERT CONTINUE IF NOT
NEXT ADAPT INSTRUCTION POINTER
WARM READY
DONE PRINT "DONE"™ IF NO FURTHER INSTR.
'1 I-KEY DEPRESSED?
SEARCH IF NOT CONTINUE
READIN READ NEW INSTRUCTION
ILLKEY PRINT "ILLEGAL KEY" IF NEW ISTR.
CHECK
FULL PRINT "FULL"™ IF MEMORY IS FULL
FILLWS LOAD NEW INSTR. IN MEMORY
WARM READY
$0E
MESS PRINT "ILLEGAL KEY"
$1A
MESS PRINT "FULL"
S-KEY ROUTINE

LABEL SEARCH:

ANY BYTE PATTERN (INSTRUCTION) MAY BE SEARCHED FOR.
IF THE INSTRUCTION SEARCHED FOR IS FOUND,

ONE MAY SEARCH FOR THE SAME INSTRUCTION ON A HIGHER
ADDRESS, BY PRESSING THE KEY "Y', THE SEARCHING PRO-
CESS ALWAYS HAS TO BE CONCLUDED BY THE MESSAGE "DONE"
THIS OCCURS EITHER BECAUSE ALL OR NO INSTRUCTIONS ARE
FOUND, OR BY PRESSING AN ARBITRARY SOFTWARE-KEY (I.E.
A KEY GENERATING AN ASCII CODE WHEN DEPRESSED),

WITH THE EXEPTION OF THE 'Y'-KEY.

SEARCH CMPIM
BNE
JSR
BMI
JSR

SCAN LDAZ
JSR
LDYIM
LDALY
CMPZ
BNE
DECZ
BEQ
INY
LDAIY
CMPZ
BNE

's
BACK
READIN
ILLKEY
BEGIN
POINTH
LENACC
$00
CURADL
POINTH
AGAIN
BYTES
FOUND

CURADL
POINTL
AGAIN

S~-KEY DEPRESSED?
IF NOT CONTINUE
READ INSTR. TO BE SEARCHED FOR

AVAILABLE

"ILLEGAL KEY" IF NOT PROPERLY DONE

START AT BEGAD
GET OPCODE OF SEARCH INSTR.
GET LENGTH OF SEARCH INSTR.

GET OPCODE OF THE CURRENT INSTR.

COMPARE IT AGAINST OPCODE OF THE SEARCH

IF NO MATCH THEN NEXT INSTR.
CONTINUE, IF INSTR. LENGTH IS 2 0
GET NEXT BYTE IN MEMORY

COMP. IT AGAINST 1ST OPERAND BYTE
IF NO MATCH NEXT INSTR.

R 3
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0207:
0208:
0209:
0210:
0211:
0212:
0213:
0214:
0215:
0216:
0217:
0218:
0219:
0220:
0221:
0222:
0223:
0224:
0225:
0226
0227:
0228:
0229:
0230:
0231:
0232:
0233:
0234
0235:
0236:
0237:
0233:
0239:
0240:
0241
0242:
0243:
0244:
0245:
0246:
0247:
0248:
0249:
0250:
0251:
g252:
0253:
0254:
0255:
0256:
0257:
0258:
0259:
0260:
0261:
0262:
0263:
0264:
0265:
0266:
0267:
0268:
0269:
0270:
0271:
0272:
0273:
0274:
0275:

178

1588
15BA
158C
158D
158BF
15C1
15¢C3
15C6
15C9
15¢CB
15¢C0
1500
1503
15D5

1508
1SDA
150¢C
15D€E
150
15€2
15€4
15E6
15€£8
15EA
15EC
1SEE
15F0
15F2
15F4
15F7
15FA
15FC
15FE
1600
1602
1604
1606
16G9

160¢
160E
1610
1613
1616
1618
161A
161¢C
161E
1621
1624
1626
1628
1624
162¢C
162E
1630
1633

1636
1638
163A

cé
FO
c8
B1
€5
00
20
20
9
D0
20
20
30
4C

[
PRt}
A5
85
AS
85
c5
Do
A5
s
b0
]
AQ
B1
20
20
AS
c5
D0
A5
c5
00
20
4C

c9
D0
20
4C
c9
Y]
A9
85
20
20
6
FO
AQ
B1
c9
FO
20
4¢

c9
b0
A9

Fé
07

£6
f9
oA
]3]
AE
59
08

r
C

F8
cB
67

5A
30
£2
EC
E3
ED
E7
08
E2
€6
02
19
00

60
AQ
Eé
EC
FO
E7
ED
EA
92
45

54
g6
D3
45
50
1C
OF
F7
S¢
F8
F7
EB
00
E6
77
E3
[1]:]
1€

58
13
47

17
12

16
15

1E
15

1€
1E

17
16

DECZ
8EQ
INY
LDAIY
MpPZ
BNE
FOUND JSR
JSR
CMPIM
BNE
AGAIN JSR
JSR
BMI
DNE JMP

BYTES
FOUND

CURADL
INH
AGAIN
PRINS
RECCHA
'y

DNE
OPLEN
NEXT
SCAN
DONE

CONTINUE IF LENGTH OF CURR. INSTR. IS 3

GET NEXT BYTE IN MEMORY

COMP., IT AGAINST 2ND OPERAND BYTE
IF NO MATCH NEXT INSTR.

PRINT OUT THE SPECIFIED INSTRUCTION
WAIT FOR A DEPRESSED KEY

Y-KEY DEPRESSED?

IF NOT PRINT "DONE"

GET LENGTH OF THE CURR. INSTR.
ADAPT INSTR. POINTER

CONTINUE SEARCH IF STILL INSTR. AVAILASBLE
ELSE PRINT "DONE"

LABEL BACK: Z-KEY ROUTINE

BACK CMPIM
BNE
LDAZ
STAZ
LDAZ
STAZ
CMpz
BNE
LDAZ
CMpPZ
BNE
BEG

BCKA LDYIM
LDALY
JSR
JSR
LDAZ
CMPZ
BNE
LDAZ
CMPZ
BNE
JSR

BCKB JmMp

'

TOF
BEGADL
TABLEL
BEGADH
TABLEH
CURADH
BCKA
BEGADL
CURADL
BCKA
BCKB
$00
TABLEL
LENACC
INCTAB
CURADL
TABLEL
BCKA
CURADH
TABLEH
BCKA
DECURA
WARM

7-KEY DEPRESSED?
IF NOT CONTINUE

TABLE:=BEGAD
TABLEH:=CURADH?
IF NOT INCREASE TABLE

TABLEL:=CURADL?
IF NOT INCREASE TABLE
ELSE PRINT FIRST INSTRUCTION

GET LENGTH OF INSTR. AT
WHICH POINT IS POINTED
INCREASE POINT BY BYTES

TABLEL:=CURADL?
IF NOT INCREASE TABLE

TABLEH:=CURADH
IF NOT INCREASE TABLE
DECREASE INSTRUCTION POINTER BY BYTES

LABEL TOF: T-KEY ROUTINE

LABEL SXTEEN:

TOF CMPIM
BNE
JSR
TOFEND JMP
SXTEEN CMPIM
BNE
LDAIM
STAZ
LINES JSR
JSR
DECZ
BEQ
LDYIM
LDAILY
CMPIM
BEQ
JSR
JMP
LABEL ASMBLR:

P-KEY

'
SXTEEN
BEGIN
WARM
P
ASMBLR
$OF
COUNT
OPLEN
NEXT
COUNT
TOFEND
$00
CURADL
$77
TOFEND
PRINS
LINES
X-KEY

ROUTINE

T-KEY DEPRESSED?

IF NOT CONTINUE

INSTR. POINTER = BEGAD
READY

P-KEY DEPRESSED?

IF NOT CONTINUE

45 INSTR. TO BE PRINTED

GET LENGTH OF CURRENT INSTR.
ADAPT INSTR, POINTER

READY IF 15 INSTR. HAVE BEEN PRINTED

READY IF OPCODE IS 77
PRINT INSTRUCTION
NEXT INSTRUCTION
ROUTINE

LABEL ASSEND: RESTORE I1/0 AFTER ASSEMBLING

ASMBLR CMPIM
BNE

'X
INPUT

X-KEY DEPRESSED?
IF NOT CONTINUE

LDAIM ASSEND SPECIFY NMI JUMP VECTOR



0276: 163C 8D 7A 1A STA NMIL

0277: 163F A9 16 LDAIM ASSEND /256

0278: 1641 8D 7B 1A STA NMIH

0279: 16464 4C FB8 14 JMP IOCORR PREPARE I/0 PRIOR TO ASSEMBLING
0280: 1647 20 BC 14 ASSEND JSR RESTTY RESTORE I/0: PM SITUATION
0281: 1644 4C 88 17 JMP LABLST LIST THE HEXADECIMAL LABELS
0282:

0283: LABEL INPUT: I~KEY ROUTINE

0284 NOTE: NO NON-NUMERICAL KEY HAS TO BE DEPRESSED
0285: PME AUTOMATICALLY ASSUMES THE INPUT KEY FUNCTION
0286: HAS BEEN QPTED FOR AS SOON AS THE DATA BELONGING
0287: TO THE NEW INSTR. HAS BEEM SPECIFIED

0288:

0289: 164D 20 B1 16 INPUT JSR BYT GET THE 2ND NIBBLE OF THE 1ST BYTE
0290: 1650 30 12 BMI WRONG

0291: 1652 20 CE 16 JSR READ GET THE OTHER BYTE(S)

0292: 1655 30 0D BML WRONG

0293: 1657 20 5C 1€ JSR OPLEN GET LENGTH OF THE CURRRENT INSTR.
0294: 165A 20 F8 1E JSR NEXT ADAPT INSTR. POINTER

0295: 165D A5 FD LDAZ TEMPX GET LENGTH OF NEW INSTR.
0296: 165F 85 Fé6 STAZ BYTES AND STORE IT IN BYTES

0297: 1661 4C 82 15 Jmp MEM LOAD MEMORY WITH NEW INSTRUCTION
0298: 1664 4C 8C 15 WRONG JMP ILLKEY PRINT "ILLEGAL KEY"

0299:

0300: END OF THE PME MAIN ROUTINE

0301:

0302:

0303:

0304: SEMI WARM START ("LUKE WARM") ENTRY OF PME

0305: FOLLOWING THE SPECIFICATION BY THE USER

0306: OF BEGAD AND ENDAD THE INSTRUCTION POINTER

0307: CURAD IS POINTED AT BEGAD AND THE CURRENT

0308: END ADDRESS POINTER CEND IS POINTED AT ENDAD.
0309: AFTER THIS PME IS ENTERED BY THE WARM START ENTRY
0310:

0311:

0312: 1667 20 68 12 SEMIW JSR RESIN RESET INPUT BUFFERS

0313: 166A A0 00 LpYIm $00

0314: 166C 20 3 17 JSR MESSA "BEGAD,ENDAD:"

0315: 166F 20 87 13 JSR INPAR GET BEGAD AND ENDAD

0316: 1672 30 F3 BMI SEMIW TRY IT AGAIN IF NOT DONE PROPERLY
0317: 1674 AD 63 1A LDA PARAL

0318: 1677 85 E2 STAZ BEGADL

0319: 1679 AD 64 1A LDA PARAH

0320: 167C 85 E3 STAZ BEGADH

0321: 167E AD 65 1A LDA PARBL

0322: 1681 85 E4 STAZ ENDADL

0323: 1683 85 E8 STAZ CENDL

0324: 1685 AD 66 1A LDA PARBH

0325: 1688 85 ES STAZ ENDADH

0326: 168A 85 E9 STAZ CENDH CEND = ENDAD

0327: 168C 20 p3 1E JSR BEGIN CURAD = BEGAD

0328: 168F 4C 33 15 JMP BRK JUMP TC WARM START

0329:

0330:

0331:

0332: KRXAKRKKERKIA KKK KA KK

0333: SUBROUTINES OF PME

0334 Ak AkARARAAKA R Ak Ak kK

0335:

0336:

0337: DECURA

0338: THE INSTRUCTION POINTER IS DECREASED BY THE
0339: NUMBER OF BYTES - BEING THE LENGTH OF THE

0340: INSTRUCTION =~ WHICH PRECEEDS THE CURRENT

0341: INSTRUCTION IN MEMORY.

0342:

0343: 1692 38 DECURA SEC

0344: 1693 AS €6 LDAZ CURADL
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0345: 1695 E5 F6 sBCZ BYTES

0346: 1697 85 E6 STAZ CURADL CURADL:=CURADL-BYTES

0347: 1699 AS E7 LDAZ CURADH

0348: 1698 E9 00 sBCcImM $00

0349: 169D 85 E7 STAZ CURADH CURADH:=CURADH-BORROW
0350: 169F 60 RTS

0351:

0352:

0353: SUBROUTINR INCTAB

0354: INCRESES THE POINTER TABLE BY THE AMOUNT DETERMINED
0355: BY THE CONTENTS OF BYTES (INSTRUCTION LENGTH)
0356:

0357: 16AD 18 INCTAB CLC

0358: 16A1 A5 EC LDAZ TABLEL

0359: 16A3 65 F6é ADCZ BYTES

0360: 16A5 85 EC STAZ TABLEL TABLE:=TABLE + BYTES

0361: 16A7 A5 ED LDAZ TABLEH

0362: 1649 69 00 ADCIM $00

0363: 16AB 85 ED STAZ TABLEH

0364: 16AD 60 RTS

0365:

0366: THE SUBROUTINE BYTIN LOADS THE ACCU WITH
0367: WITH DATA WHICH BELONGS TO TWO NUMERICAL KEYS
0368: DEPRESSED. RETURNING FROM SUBROUTINE N=1 AND
0369: 2=0 IF A NON-NUMERICAL KEY WAS DEPRESSED. TWO
0370: SUCCESIVELY DEPRESSED NUMERICAL KEYS WILL
0371: RESULT INTO N=0 AND 2=1

0372:

0373: 16AE 20 AE 12 BYTIN JSR RECCHA WAIT FOR A DEPRESSED KEY
0374: 1681 20 1E 14 BYT JSR ASHETT CONVERT IT TO A DATA NIBBLE
0375: 16B4 30 12 BMI RETURN ERROR EXIT IF KEY <> 0...F
0376: 16B6 0A ASLA ENTERED DATA IS NEW HIGHER DATA NIBBLE
0377: 1687 0A ASLA

0378: 1688 0A ASLA

0379: 16B9 0A ASLA

0380: 16BA 85 FE STAZ NIBBLE SAVE HIGHER DATA NIBBLE
0381: 16BC 20 AE 12 JSR RECCHA WAIT FOR A DEPRESSED KEY
0382: 16BF 20 1E 14 JSR ASHETT CONVERT IT TO A DATA NIBBLE
0383: 16c2 30 04 BMI RETURN ERROR EXIT IF KEY <> O0...F
0384: 16C4 05 FE ORAZ NIBBLE ISERT NEW LOWER DATA NIBBLE
0385: 16C6 A2 00 LDXIM $00 RESET N-FLAG, SET I-FLAG
0386: 16C8 60 RETURN RTS

0387:

0388:

0389: THE SUBROUTINE READIN LOADS EITHER ONE,

0390: TWO OR THREE DATA BUFFERS DEPENDING

0391: OF THE INSTRUCTION LENGTH SPECIFIED BY

0392: THE OPCODE.

0393: NORMAL EXIT: z=1, N=0

0394: ERROR EXIT: Z=0, N=1

0395:

0396: 16C9 20 AE 16 READIN JSR BYTIN WAIT FOR OPCODE

0397: 16cc 30 27 BMI RDB ERROR IF KEY <> O...F
0398: 16CE 85 FB READ STAZ POINTH STORE OPCODE IN POINTH
0399: 1600 20 60 1E JSR LENACC GET INSTRUCTION LENGTH
0400: 1603 84 F7 STYZ COUNT AND COPY IT INTO COUNT
0401: 1605 84 FD STYZ TEMPX AS WELL AS IN TEMPX

0402: 16D7 C6 F7 DECZ COUNT

0403: 1609 FO 18 BEQ RDA RETURN IF ONE BYTE INSTR.
0404: 1608 20 F3 11 JSR PRSP PRINT A SPACE

0405: 16DE 20 AE 16 JSR BYTIN WAIT FOR (1ST) OPERAND
0406: 16€1 30 12 BMI RDB ERROR IF KEY <> O...F
0407: 16E3 85 FA STAZ POINTL STORE (1ST) OPERND IN POINTL
0408: 16E5 C6 F7 DECZ COUNT

0409: 16E7 FO OA BEQ RDA RETURN IF TWO BYTE INSTR.
0410:; 169 20 F3 11 JSR PRSP PRINT A SPACE

0411: 16EC 20 AE 16 JSR BYTIN WAIT FOR 2ND OPERAND

0412: 16EF 30 04 BMI RDB ERROR IF KEY <> 0...F
0413: 16F1 85 F9 STAZ INH STORE 2ND OPERAND IN INH
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0474: 16F3 A2 00 RDA LDXIM $00 z=1, N=0

0415: 16F5 60 RDB RTS

0416:

0417:

0418: THE SUBROUTINE CHECK VERIFIES IF THERE IS STILL
0419: ROOM IN THE WORKSPACE AREA FOR A NEW INSTRUCTION.
0420: THE WORKSPACE IS LIMITED BY BEGAD AND ENDAD.
04217: CHECK RETURNS WITH:

0422: C=0 IF THERE IS NO ROOM FOR THE INSTR.

0423: €=1 IF THERE IS ROOM FOR THE NEW INSTRUCTION
0424:

0425: 16f6 20 DC 1E CHECK JSR ADCEND ADJUST CURRENT ENDADDRESS POINTER
0426: 16F9 38 SEC

0427: 16FA A5 E4 LDAZ ENDADL

0428: 16FC E9 02 SBCIM 802

0429: 16FE ESAES SBCZ CENDL

0430: 1700 AS €5 LDAZ ENDADH CARRY DETERMINED BY ENDAD-2-CEND
0431: 1702 E5 E9 SBCLZ CENDH

0432: 1704 90 04 BCC CHKEND EXIT IF NO ROOM ANYMORE
0433: 1706 20 EA 1E JSR RECEND READJUST CURRENT END ADDRESS POINTER
0434: 1709 38 SEC

0435: 170A 60 CHKEND RTS

0436:

0437:

0438: THE SUBROUTINE PRINS PRINTS AN INSTRUCTION
0439: SPECIFIED BY THE INSTRUCTION POINTER CURAD.
0440: THE CONTENTS OF THE INSTRUCTION POINTER IS ALSO
0441: PRINTED. BY PRINTING A CERTAIN NUMBER OF SPACES
0442: THE POSITION OF THE CARRIAGE IS IDENTICAL TO THE
0443: FIRST POSITION OF THE SYSTEM COMMAND COLUMN.
Q444

0445:

0446: 1708 20 E8 11 PRINS JSR CRLF PRINT A NEW LINE

0447: 170 20 5C 1E JSR OPLEN GET LENGTH OF INSTRUCTION
0448: 1711 A6 F6 LDXZ BYTES TO BE PRINTED

0449: 1713 AS E7 LDAZ CURADH

0450: 1715 20 8F 12 JSR PRBYT PRINT HIGHER ADDRESS BYTE
0451: 1718 A5 E6 LDAZ CURADL

0452: 1714 20 8F 12 JSR PRBYT PRINT LOWER ADDRESS BYTE
0453: 171D A9 OF LDAIM $OF

0454: 171F 85 EE STAZ LABELS MAXIMUM NUMBER OF SPACES
0455: 1721 AD 00 LDYIM $00

0456: 1723 20 F3 11 PRT JSR PRSP PRINT A SPACE

0457: 1726 B1 E6 LDAIY CURADL GET BYTE T0 BE PRINTED
0458: 1728 20 8F 12 JSR PRBYT AND PRINT [T

0459: 1728 38 SEC

0460: 172C A5 EE LDAZ LABELS DECREASE NUMBER OF SPACES
0461: 172E €9 03 SBCIM 303 T0O BE PRINTED

0462: 1730 85 EE STAZ LABELS BY 3

0463: 1732 8 INY SET UP FOR NEXT BYTE

0464: 1733 CA DEX TO BE PRINTED

0465: 1734 DO ED BNE PRT IF THERE IS ANYONE

0466: 1736 20 f3 11  spP JSR PRSP PRINT A NUMBER OF SPACES
0467: 1739 C6 EE DECZ LABELS

0468: 1738 DO F9 BNE SP

0469: 173D 60 RTS RETURN

0470:

0471:

0472: THE SUBROUTINE MESSA IS IDENTICAL WITH THE
0473: PM SUBROUTINE MESSY, EXEPT FOR A DIFFERENT
0474: LOOKUP TABLE

0475:

0476:

0477: 173E 20 E8 11 MESSA JSR CRLF PRINT A NEW LINE

0478: 1741 B9 50 17 MA LDAY TXT GET CHARACTER TO BE PRINTED
0479: 1744 €9 03 CMPIM $03 EOT CHARACTER?

0480: 1746 FO 07 BEQ TXTEND IF YES RETURN

0481: 1748 20 34 13 JSR PRCHA PRINT A CHARACTER

0482: 1748 8 INY SET UP FOR NEXT CHARACTER
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0483:
0484:
0485:
0486:
0487:
0488:
0489:
0490:
0491:
0492:
0493:
0494:
0495:
0496:
0497:
0498:
0499:
0500:
0501:
0502:
0503:
0504:
0505:
0506:
0507:
0508:
0509:
0510:
0511:
0512:
0513:
0514:
0515:
0516:
0517:
0518:
0519:
0520:
0521:
0522:
0523:
0524:
0525:
0526:
0527:
0528:
0529:
0530:
0531:
0532:
0533:
0534:
0535:
0536:
0537:
0538:
0539:
0540:
0541:
0542:
0543:
0544:
0545:
0546:
0547:
0548:
0549:
0550:
0551:
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174C
174F

1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
175A
1758
175¢C
175b
175€
175F
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
176A
1768
176C
176D
176E
176F
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
177A
1778
177¢
1779
177€
177F
1780
1781
1782
1783
1784
1785
1786
1787

1788

4C 41 17
60

AD FF

JMP MA
TXTEND RTS READY

LOOKUP TABLE TXT

TXT

[T TN (AR N L LT O L T 1 T I L 1 I )

‘P Y=24

'$
$03

T T O L I L L LA LI (T T T T 2 (T L S (S | T N 1 | O I L T [ O 1 L T I | I T}
Ll
(=]
W

THE INSTRUCTIONS FOLLOWING THE LABEL LABLST
DEAL WITH THE PRINTING OF ALL HEXADECIMAL LABELS
AFTER THE PROGRAM HAS BEEN ASSEMBLED

LABLST LDYIM $FF



05s52:
0553:
0554:
0555:
0556:
0557:
0558:
0559:
0560:
0561:
0562:
0563:
0564:
0565:
0566:
0567:
0568:
0569:
0570:
0571:
0572:
0573:
0574:
0575:
0576:
0577:
0578:
0579:
0580:
0581:
0582:
0583:
0584:
0585:
0586:
0587:
0588:
0589:
0590:
0591:
0592:
0593:
0594:
0595:
0596:
0597:
0598:
0599:
0600:
0601:
0602:
0603:
0604:
0605:
0606:
0607:
0608:
0609:
0610:
0611:
0612:
0613:
0614:
0615:
0616:
0617:
0618:
0619:
0620:

1784
178D
178F
1791
1793
1796
1798
1794
1790
179¢
1740
1742
1745
1747
1749
174C
17AD
17AF
1782
1785
1786
1788
178A
1788
1780
178F
17¢2

17¢S
17¢8
17CA
17¢o
1700
1702
1705
1707
1709
1708
170D
17€0
17€3
17€6
17e7
17€9
17E8B
17eD
17€F
17F1
17€3

20
A2
84
AD
20
Ab
B1

88
84
AQ
20

81
20
88

20
20
88
Cé4
FO
CA
b0
FO
20
4C

20
AQ

20
30
20
AD
B1
c9
FO
20
20
4C
18
AS
69
85
AS
69
85
4¢C

E8
04
fD
2E
41
FD
EC
8F

FD

41
FD
EC
8F

EC
8F
F3

EE
05

D2
c8
D3
3D

68
00
3E
87
F3
D3
00
E6
77
09
60
F8
D5

E6
01
E8
E7
00
E9
33

11

17

1€
15

12

17
13

1€
1E
17

LBLSTA JSR CRLF PRINT ON A NEW LINE

LDXIM $04 4 LABELS ON EACH LINE
LBLSTB STYZ TEMPX SAVE Y

LDYIM $2E "LAB 3"

JSR MA

LDYZ TEMPX RESTORE Y
LDAIY TABLEL GET LABEL NUMBER
JSR PRBYT PRINT LABEL NUMBER

DEY

STYZ TEMPX SAVE Y
LDYIM $34 Yrogr
JSR MA

LDYZ TEMPX RESTORE VY
LDAIY TABLEL GET HIGHER ADDRESS BYTE
JSR PRBYT AND PRINT IT
DEY
LDAIY TABLEL GET LOWER ADDRESS BYTE
JSR PRBYT AND PRINT IT
JSR PRSP PRINT A SPACE
DEY SETUP FOR NEXT LABEL
CPYZ LABELS ALL LABELS PRINTED
BEQ LBLSTC IF NOT SET UP FOR NEXT LABEL
DEX
BNE LBLSTB ON THE SAME LINE
BEQ LBLSTA OR ON A NEW LINE
LBLSTC JSR BEGIN INSTRUCTION POINTER = BEGAD
JMP EDITW WARM START ENTRY OF PME WITHOUT
BRK JUMP VECTOR SPECIFICATION

THE WARM CEND ENTRY (LABEL SEACND) OF PME

RESTORES THE POSITION OF THE CURRENT END

ADDRESS POINTER CEND, AFTER SPECIFICATION,

8Y THE USER, OF BEGAD AND ENDAD, AND AFTER FINDING A
PSEUDO QPCODE 77, I.E. AN EOF CHARACTER. THIS IS
FOLLOWED BY A JUMP TO THE WARM START ENTRY OF PME.

SEACND JSR RESIN RESET INPUT BUFFERS
LDYIM $00
JSR MESSA "BEGAD,ENDAD"
JSR INPAR GET BEGAD AND ENDAD
8MI SEACND TRY IT AGAIN IF NOT PROPERLY DONE
JSR BEGIN INSTR. POINTER=BEGAD
SCNDA LDYIM 300
LDAIY CURADL GET CURRENT OPCODE
CMPIM $77 IS IT QPCODE 77?2
BEQ SCNDB IF NOT CONTINUE
JSR LENACC GET CURRENT INSTR. LENGTH
JSR NEXT ADJUST INSTR. POINTER
JMP SCNDA AND CHECK AGAIN FOR OPCODE 77

SCNDB CLC
LDAZ CURADL
ADCIM $01

STAZ CENDL CENDL:=CURADL*+1
LDAZ CURADH

ADCIM $00
STAZ CENDH CENDH:=CURADH+CARRY
JMP BRK WARM START ENTRY OF PME

THE INSTRUCTIONS FOLLOWING THE LABEL BINAR

AND THE INSTRUCTIONS FOLLOWING THE LABEL PMBINA ARE
AN EXTENSION OF THE STANDARD MONITOR AND OF PM
RESPECTIVELY. IN CASE OF SINGLE STEPPING THROUGH

AN USER PROGRAM WITH DECIMAL ARITHMETIC, THERE

WILL BE A TEMPORARY SWTCH BACK ON BINARY ARITHMETIC
PROVIDED THE NMI JUMP VECTOR HAS BEEN SPECIFIED
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0621: ON 17F6 OR 17FA RESPECTIVELY.

0622:

0623:

0624: 17F6 DB BINAR CLD BINARY ARITHMETIC

0625: 17F7 4C 00 1¢C JMP  SAVE  SAVE INPUT PROPER

0626: 17FA D8 PMBINA CLD BINARY ARITHMETIC

0627: 17FB 4C CF 14 JMP  STEP  SAVE INPUT PROPER

0628:

0629:

0630: skxxxkx END OF THE PME PROGRAM *x##xx

0631:

0632:

0633: VICINUS ELABORABAT PROGRAMMAM XXV VI MCMLXXXI

0634: VIR NOCTIS IMPOSIT PROGRMMAM IN MACHINAM

0635:

1=

-1
SYMBOL TABLE 3000 3276
ADCENL 1EDC AGAINH 15CD ASHET\ 141E ASMBLZ 1636
ASSEMJ 1F51 ASSEND 1647 BACK 1508 BCKA  15F0
BCKB 1609 BEGADH O0E3 BEGADL 0O0E2 BEGINH 1ED3
BINAR 17F6 BRKTHH 1A7D BRKTLH 1A7C BRK 1533
BYTESH 00F6 BYTIN 16AE BYT 1681 CENDHH 0O0E9
CENDLH OOE8 CHECK 16F6 CHKEND 170A COUNT 0OF7
CRLF 11€E8 CURADH 00€7 CURADL 00E6 DECURA 1692
DNE 1505 DONE 1567 EDITC 1500 EDITW 153D
ENDADH O0OES ENDADL 00E4 FILLWS 1E47 FOUND 15C3
FULL 1590 ILLKEY 158¢C INCTAB 16A0 INH 00F9
INPAR 1387 INPUT 164D INSERT 1579 I0CORR 14F8
LABELS DOEE LABLST 1788 LBLSTA 178A LBLSTB 178F
LBLSTC 178F LENACC 1E60 LINES 161E LIST 1558
LST 155F MA 1741 MEM 1582 MESS 1569
MESSA 173E NEXT  1EF8 NIBBLE OOFE NMIH  1A7B
NMIL  1A7A OPLEN 1ESC PARAH 1A64 PARAL 1A63
PARBH 1A66 PARBL 1465 PBDD  1A83 PMBINA 17FA
POINTH OOFB POINTL OOFA PRBYT 128F PRCHA 1334
PRINS 1708 PRSP 11F3 PRT 1723 RDA 16F3
RDB 16F5 READ 16CE READIN 16C9 RECCHA 12AE
RECEND TEEA RESIN 1268 RESTTY 14BC RETURN 16(8
SAVE  1¢€00 SCAN 1540 SCNDA 1705 SCNDB  17E6
SEACND 17C5 SEARCH 1594 SEMIW 1667 SKIP  156E
sP 1736 STEP  14CF SXTEEN 1616 TABLEH 00ED
TABLEL 00EC TEMPX DOFD TOFEND 1613 TOF 160¢
TXTEND 174F TXT 1750 up 183 WARM 1545
WRONG 1664

-E

TEEL 0636
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Appendix 2

The hex dump of the PME system program

The first section of the PM/PME system program has aiready been printed
in hex format in appendix 5 on page 190 of Book 3. The extended version
from address $14F8... $17F5 belongs to PME. The remainder, from
$17F6 ... $17FD, is used by the two routines given in appendix 4.

14F@: F9 4C A2 13 FF FF FF FF A9 1lE 8D 83 1A 4C 51 1F
1500: 20 68 12 AQ 00 2¢ 3E 17 26 87 13 30 F3 AD 63 1A
1516: 85 E2 18 69 01 85 E8 AD 64 1A 85 E3 69 @¢ 85 E9
1520: AD 65 1A 85 E4 AD 66 1A 85 ES5 20 D3 1E A9 77 AQ
1536: @6 91 E6 A9 3D 8D 7C 1A A9 15 8D 7D 1A A9 24 20
1549: 3E 17 A2 FF 9A 20 @B 17 20 AE 12 C9 4B D¢ 09 20
155¢: 83 1E 20 EA 1E 4C 45 15 C9 4C D@ 12 20 D3 1E 20
156¢: ¢B 17 26 F8 1E 30 F8 Ag 1F 20 3E 17 F® D7 C9 28
157¢: DO @7 20 F8 1E 30 CE 1@ EE C9 49 D@ 17 28 C9 16
1580: 30 OA 20 F6 16 99 @09 20 47 lE F@ B9 A0 PE D# D9
159¢: A@ 1A D@ D5 C9 53 D@ 44 26 C9 16 38 EF 26 D3 1E
15A9: A5 FB 20 60 1lE AQ 00 Bl E6 C5 FB D@ 208 C6 F6 F@
15B@: 12 CB B1 E6 C5 FA D@ 15 C6 F6 F@ 87 C8 Bl E6 C5
15C@: F9 DO OA 20 0B 17 20 AE 12 C9 59 D@ 08 20 5C 1E
15D@: 20 F8 1E 30 CB 4C 67 15 C9 5A D@ 38 AS E2 85 EC
15E@: A5 E3 85 ED C5 E7 D@ @08 AS E2 C5 E6 D@ 02 FO 19
15F@: AG 90 Bl EC 20 60 1E 20 A@ 16 AS E6 C5 EC D9 F@
1606: A5 E7 C5 ED D@ EA 20 92 16 4C 45 15 C9 54 DO 06
1610: 20 D3 1E 4C 45 15 C9 5¢ D@ 1iC A9 @F 85 F7 20 5C
1620: 1E 20 F8 1E C6 F7 F@ EB Af 06 Bl E6 C9 77 FP E3
1638: 20 éB 17 4C 1lE 16 C9 58 D@ 13 A9 47 8D 7A 1A A9
1646: 16 8D 7B 1A 4C F8 14 20 BC 14 4C 88 17 24 Bl 16
1650: 30 12 20 CE 16 30 @D 20 5C 1lE 20 F8 1E A5 FD 85
1660: F6 4C 82 15 4C 8C 15 20 68 12 A@ @0 20 3E 17 20
1676: 87 13 30 F3 AD 63 1A 85 E2 AD 64 1A 85 E3 AD 65
1686: 1A 85 E4 85 E8 AD 66 1A 85 E5 85 E9 20 D3 1E 4C
1690: 33 15 38 A5 E6 E5 F6 85 E6 AS E7 E9 00 85 E7 60
16A0: 18 AS EC 65 F6 85 EC A5 ED 69 04 85 ED 60 20 AE



16B@:
16Ca:
16D@:
16E@:
16F0:
1700:
1718:
1720:
1736:
17446:
1758:
1760:
1776:
1788:
1799:
17a0:
17B@:
17C@:
17D@:
17E@:
17F@:
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Appendix 3

The complete listings of the Tape Monitor

and
Printer Monitor system programs.

The following pages contain a complete listing of the TM and PM system
programs. Each book page corresponds to a single assembler page con-
sisting of 56 lines.

The listing itself consists of the following:

The main Tape Monitor routine

The TM subroutines

The DUMP/DUMPT subroutine
Subroutines used by DUMP/DUMPT
The RDTAPE subroutines
Subroutines used by RDTAPE

The main Printer Monitor routine
The PM subroutines

The look-up table MESS

The initialisation routine STEP

The IBRES subroutine

A survey of all the labels and their addresses
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0001: 0800
0002:
0003:
0004 :
0005:
0006:
0007:
0008:
0009:
0010:
0011:
0012:
0013:
0014:
0015:
0016:
0017:
0018:
0019:
0020:
0021:
0022:
0023:
0024:
0025:
0026:
0027:
0028:
0029:
0030:
0031:
0032:
0033:
0034:
0035:
0036:
0037:
0038: 0800
0039: 0800
0040: 0800
ool1: 0800
oo42:
0043:
004k :
0045:
00u46: 0800
cou7: 0800
0048: 0800
0049: 0800
0050:
0051:
0052:
0053:
0054: 0800
0055: 0800
0056: 0800
0057: 0800
0058: 0800
0059: 0800
0060: 0800
0061: 0800
0062: 0800
0063: 0800
0064: 0800
0065: 0800
0066: 0800
0067: 0800
0068: 0800
0069: 0800
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SOFTWARE OF JUNIOR COMPUTER 3,4

SOURCE LISTING OF THE TAPE/PRINTER MONITOR

WRITTEN BY A. NACHTMANN

DATE: 17 DEC.

1980

**i*!i*i**l*****i*i***ili!*l*ii**l***

%#%% DEFINITIONS OF DUMPT & RDTAPE **¥
YT I T LT e e T L R S L L Sl A ]

DUMPT STORES A PROGRAM ON TAPE

1) STORE A PROGRAM ON TAPE

IDENTITY NUMBER

START ADDRESS

END ADDRESS + 1

ID = FF SHOULD NOT BE USED

2) ID IS THE
3) SA IS THE
B) EA IS THE
5) ID = 00 &

RDTAPE READS

A PROGRAM FROM TAPE

1) READ A PROGRAM FROM TAPE WITH A CERTAIN ID
2) DISCARD DATA IN MEMORY BEGINNING AT SA

3) ID = 00 & ID = FF ARE SPECIAL IDS

THE DATA FORMAT ON TAPE IS ASCII:

2555YN<>*<>ID<>SAL()SAH<>DATA<>/()CHKL()CHKH()EOT()EOT

I/0 DEFINITION

PAD *
PADD *
PBD *
PBBD ¥

$1480
$1481
$1A82
$ 1483

TIMER REGISTERS

CNTA *
CNTC *
RDFLAG *
RDTDIS *

$1AFY
$1AF6
$1ADS
$1ADY

PORT A DATA REGISTER
PORT A DATA DIRECTION
PORT B DATA REGISTER
PORT B DATA DIRECTION

CLK1T, DISABLE TIMER IRQ
CLK64T, DISABLE TIMER IRQ

READ FLAG REGISTER, B7 IS TIMER FLAG
READ CONTENTS OF TIMER CELL, IRQ DISABLEI

TEMPORARY DATA BUFFERS

SY
BYTE
CHAR
HIGHER
LOWER
CHKL
CHKH
SAL
SAH
EAL
EAH
SYNCNT
BITS
FIRST
SECOND
GANG

' EE N EREEREE R B IERJ

$1A69
$1A6A
$1A68
$1A6C
$ 1A6D
$1A6E
$1A6F
$1A70
$1AT1
$1AT2
$1A73
$1ATY
$1A75
$1A76
$1A77
$1A78

SYN COUNTER

BYTE FROM TAPE

CHARACTER FROM TAPE

3600 HZ HALF PERIODE DELAY
2400 HZ HALF PERIODE DELAY
CHECK SUM LOW

CHECK SUM HIGH

START ADDRESS LOW

START ADDRESS HIGH

END ADDRESS LOW + 1

END ADDRESS HIGH

AMOUNT OF BITS

HALF PERIODE AMOUNT OF 3600 HZ
HALF PERIODE AMOUNT OF 2400 HZ
TEMP OF PBD-BITS



0070:
0071:
0072:
0073:
0074:
0075:
0076:
0077:
0078:
0079:
0080:
0081:
0082:
0083:
0084:
0085:
0086:
0087:
0088:
0089:
0090:
0091:
0092:
0093:
0094:
0095:
0096:
0097:
0098:
0099:
0100:
0101:
0102:
0103:
0104:
0105:
0106:
0107:
0108:
0109:
0110:
0111:
0t12:
J113:
0114:
0115:
0116:
0117:
0118:
0119:
0120:
0121:
0122:
0123:
0124 :
0125:
0126:
0127:
0128:
0129:
0130:
0131:
0132:
0133:
0134:
0135:
0136:
0137:
0138:

0800
0800

0800
0800
0800
0800
0800
0800
0800

0800
0800

0800
0800

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800

0800
0800
0800
0800
0800
0800
0800

ID * $1479
NMI * $1A7A

ID OF THE DUMPT PROGRAM

NMI VECTOR

RRARAREREERE R RARR AR R RN R RN R RN RRRRN RS

*#% DEFINITIONS OF THE TTY MONITOR #%#
A e e e I T T I e Ity

I/0 DEFINITION: SEE DUMPT & RDTAPE

CPU REGISTERS

PCL * $00EF
PCH * $00F0
PREG * $00F 1
SPUSER # $00F2
ACC * $00F3
YREG * $00F4
XREG * $00F5

INPUT BUFFERS

INL * $00F8
INH * $00F9
ADDRESS POINTER

PCINTL * $00FA
POINTH #* $00FB

PROGRAM COUNTER

STATUS REGISTER
USER STACK POINTER
ACCUMULATOR

INDEX Y

INDEX X

LOWER BYTE
UPPER BYTE

TEMPORARAY DATA BUFFERS

TEMP  # $00FC
TEMPX # $00FD
STPBIT * $1A59
CNTL  * $145A
CNTH  * $1A5B
CNTHL * $1A5C
CNTHH * $1A5D
TIML  * $1A5E
TIMH  * $1A5F
TEMPA ¥ $1460
TEMPB * $1461
CHA * $1462
PARAL # $1463
PARAH * $146%
PARBL * $1465
PARBH * $1466
PRTEMP * $1467
BRKT  * $1A7C

NUMBER OF STOP BITS + 1
BIT TIME BUFFER

HALF BIT TIME BUFFER
COUNT DOWN BUFFER
TEMPS

CHARACTER BUFFER
PARAMETER BUFFERS

TTY BUFFER
BREAK TEST VECTOR

HEXRRRERERREREERFRRRERRRRE RN RN ENR

*¥%% BUFFERS & EXTERNAL ADDRESSES ##¥#
At i T I L

DISCNT * $1A68
COLDST * $1CB5
WARMST * $1CCA
BEGIN #* $1ED3
RESET # $1C1D
GETKEY * $1DFg
LDAINH #* $1DA7

DISPLAY COUNTER
EDITOR COLD START
EDITOR WARM START
EDITOR SUBROUTINE
RESET OF VERSION D
COMPUTE THE KEY VALUE
PART OF SCAND/SCANDS
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0139:
0140:
0141:
o142:
0143:
o144:
0145:
0146:
0147:
0148:
0149:
0150:
0151:
0152:
0153:
0154:
0155:
0156:
0157:
0158:
0159:
2160:
0161:
0162:
0163:
0164:
0165:
0166:
0167:
0168:
0169:
0170:
0171:
0172:
0173:
0174:
0175:
0176:
0177:
0178:
0179:
0180:
0181:
0182:
0183:
018L4:
0185:
0186:
0187:
0188:
0189:
0190:
0191:
0192:
0193:
0194:
0195:
0196:
0197:
0198:
0199:
0200:
0201:
0202:
0203:
0204:
0205:
0206:
0207:
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0800
0800
0800
0800
0800
0800

0800
0803
0805
0808
080A
080D

0810
0812
0815
0818
081B
081E

0821
0824
0826
0829
082B

082E
0831

0833
0836
0838
083B
083D

0840
0842
o84y
o8u7
0849
o84cC

O84E
084F

0852

oC

1A
1A
08

1A
1A
1A
1A
1A
1A
1A
1A

09

09
09

1D

0B

1A

08

BEGADL
BEGADH
ENDADL
ENDADH
CENDL
CENDH

* $00E2 BEGIN ADDRESS POINTER

* $00E3

* $00E4 END ADDRESS POINTER

* $00E5

* $00E3 CURRENT END ADDRESS POINTER
* $00E9

ERREERRRERRRERERRRRRERNR

%% TAP
E32 2222

>PC KEY:

>AD KEY:

>DA KEY

>+ KEY

>GO KEY:

GETA

TPINIT

TPI

E MANAGEMENT *¥*
ERRRERENEERANRER

READ A DATA BLOCK WITH ID=01...FE FROM TAPE
1) IF ID = 00, NO SA MAY BE ENTERED
2) IF ID = FF, SAH & SAL SHOULD BE ENTERED
SAVE A DATA BLOCK FROM SA TO EA-1 ON TAPE
1) ENTER ID = 01...FE
2) ENTER SAH & SAL
3) ENTER EAH & EAL + 1
: 1) EDITOR COLD START ENTRY
2) FILE IS DEFINED BY BEGH,BEGL & ENDH,ENDL
: DISPLAY ID-SAH-SAL-EAH-EAL-BEGH-BEGL-ENDH-
ENDL-ID-SAH...
SAVE AN EDITOR FILE BETWEEN BEGAD AND CEND
ON TAPE; THEN JUMP TO WARM START ENTRY OF
THE EDITOR AND DISPLAY THE FIRST INSTRUCTION

JSR ADJPNT DECREMENT FILE POINTER
LDAZ POINTL POINT := SA

STA SAL

LDAZ POINTH

STA SAH

JMP GETB

LDXIM $00

STX ID RESET ALL TAPE PARAMETERS
STX SAL

STX SAH

STX EAL

STX EAH

STX DISCNT RESET DISPLAY COUNTER
LDAIM $06

STA PBD DISPLAY OFF

LDAIM $1E

STA PBDD

TPTXT

JSR TAPDIS DISPLAY TAPE PARAMETERS

BNE TPTXT KEY RELEASED?

TTXT

JSR TAPDIS

BEQ TTXT ANY KEY DEPRESSED?
JSR TAPDIS DEBOUNCE KEY

GET

BEQ TTXT KEY STILL DEPRESSED?
JSR GETKEY RETURN WITH KEY IN ACCU

CMPIM $1l PC KEY?

BNE SAVE

JSR RDTAPE READ DATA FROM TAPE
LDXIM $FF

CPX ID CHECK, IF 1D =

FF
BEQ GETA IF YES, ADJUST FILE POINTER

GETB

INX RESET DISCNT

JMP TPI SHOW “ID XX~

SAVE

CMPIM $10 AD KEY?



0208: 0854 DO 08 BNE PLUS

0209: 0856 20 DF 09 JSR DUMP WRITE DATA ON TAPE
0210: 0859 A2 00 LDXIM $00

0211: 085B 4C 21 08 JMP TPI SHOW “ID XX~

gz212:

0213: 085E C9 12 PLUS CMPIM $12 + KEY?

0214: 0860 DO 11 BNE FILES

0215: 0862 EE 68 14 INC DISCNT SET UP PARAMETER COUNTER
0216: 0865 A0 09 LDYIM $09 LIMIT COUNT

0217: 0867 CC 68 14 CPY DISCNT

0218: 0864 DO C2 BNE TPTXT

0219: 086C AO 00 LDYIM $00 RESET PARAMETER COUNTER
0220: 086E 8C 68 14 STY DISCNT

0221: 0871 FO BB BEQ TPTXT

0222:

0223: 0873 C9 13 FILES CMPIM $13 GO KEY?

0224: 0875 DO 25 BNE DAT

0225: 0877 AS E2 LDAZ BEGADL

0226: 0879 8D 70 1A STA SAL BEGAD := SA

0227: 087C A5 E3 LDAZ BEGADH

0228: 087E 8D 71 1A STA SAH

0229: 0881 A5 ES8 LDAZ CENDL CEND := EA

0230: 0883 8D 72 1A STA EAL

0231: 0886 A5 E9 LDAZ CENDH

0232: 0888 8D 73 1A STA EAH

0233:

0234: 088B 20 DF 09 JSR DUMP WRITE DATA = FILE ON TAPE
0235: 088E 20 D3 1E JSR BEGIN SHOW THE FIRST INSTRUKTION
0236: 0891 A9 1E LDAIM $1E DIFINE 1/0

0237: 0893 8D 83 1A STA PBDD

0238: 0896 A2 FF LDXIM $FF RESET STACK

0239: 0898 94 TXS

0240: 0899 u4C CA 1C JMP WARMST RETURN TO EDITOR

o241:

0242: 089C Cc9 11 DAT CMPIM $11 DA KEY?

0243: 089E DO 03 BNE SHIFT IT WAS A DATA KEY

0244: 08A0 4C B5 1C JMP COLDST EDITOR COLD START ENTRY
0245:

0246: 08A3 06 F9 SHIFT ASLZ INH SHIFT KEY INTO DISPLAY BUFFER
0247: 08A5 06 F9 ASLZ - INH

0248: 08A7 06 F9 ASLZ INH

0249: 08A9 06 F9 ASLZ INH

0250: 08AB 05 F9 ORAZ INH

0251: 08AD 85 Fg STAZ INH

0252: 08AF A0 00 LDYIM $00 RESET PARAMETER COUNTER
0253: 08B1 CC 68 1A CPY DISCNT ID TO DISPLAY?

0254: 08B4 DO 06 BNE STSAH

0255: 08B6 8D 79 1A STA ID SAVE ID

0256: 08B9 4C 2E 08 JMP TPTXT

0257:

0258: 08BC C8 STSAH INY

0259: 08BD CC 68 1A CPY DISCNT SAH TO DISPLAY?

0260: 08CO DO 06 BNE STSAL

0261: 08C2 8D 71 1A STA SAH SAVE SAH

0262: 08C5 4C 2E 08 JMP TPTXT

0263:

0264: 08C8 C8 STSAL INY

0265: 08C9 CC 68 1A CPY DISCNT SAL TO DISPLAY?

0266: 08CC DO 06 BNE STEAH

0267: OBCE 8D 70 14 STA SAL SAVE SAL

0268: 08D1 4C 2E 08 JMP TPTXT

0269:

0270: 08Dy C8 STEAH INY

0271: 08D5 CC 68 14 CPY DISCNT EAH TO DISPLAY?

0272: 08D8 DO 06 BNE STEAL

0273: 08DA 8D 73 1A STA EAH SAVE EAH

0274: 08DD 4C 2E 08 JMP TPTXT

0275:

0276: 08E0 C8 STEAL INY
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08E1

: 08EY
: 08Eb6
: 08E9

: 08EC
: 08ED

08F0
08F2
08FY4

08F7

: 08F8

08FB

: O8FD

08FF

: 0502

0903
0906
0908

. 0904
: 090D

090E

: 0911
: 0913

0915

: 0918

: 091B
: 091E

0921

1 0924

0925
0927

: 0928

092A
092B

: 092C

092D

: 092E
: 0930
: 0932
¢ 0935

: 0936

0938
093B

: 093D

093F

: 09l2

0944

: 0947

: 0949

oguc

: 094D

094E
0951
0953

: 0956

BB
80
82

TF

FD

1A

1A
08

08

08

09
1A
1A

1D

1A
1A

09

1A
1A

CPY
BNE
STA
JMP

STBEGH INY
CPY
BNE
STAZ
JMP

STBEGL INY
CPY
BNE
STAZ
JMP

STENPH INY
CPY
BNE
STAZ
JMP

STENDL INY
CPY
BNE
STAZ
JMP

TPVEC JMP
SUBROUTINES

TDISP LDAY
STA
STX
TYA
LDYIM

DELY DEY
BNE
TAY
INX
INX
INY
CPXIM
BNE
JSR
RTS

TAPDIS LDAIM
STA

SID LDXIM
LDYIM
CPY
BNE
LDA
STAZ

COMPNT JSR
RTS

SSAH INY
CPY
BNE
LDA
STAZ

DISCNT
STBEGH
EAL
TPTXT

DISCNT
STBEGL
BEGADH
TPTXT

DISCNT
STENDH

BEGADL
TPTXT

DISCNT
STENDL
ENDADH
TPTXT

DISCNT
TPVEC
ENDADL
TPTXT

TPINIT

EAL TO DISPLAY?

SAVE EAL

BEGH TO DISPLAY?
SAVE BEGADH

BEGADL TO DISPLAY?
SAVE BEGADL

ENDADH TO DISPLAY?

SAVE ENDADH

ENDADL TO DISPLAY?
ERROR EXIT
SAVE ENDADL

OF ‘TAPE MANAGEMENT’

TLOOK
PAD
PBD

$7F

DELY

$10
TDISP
LDAINH

$7F
PADD

$08
$00
DISCNT
SSAH
ID

INH

TDISP

DISCNT
SSAL
SAH
INH

TEXT LOOKUP

OUTPUT TEXT PATTERN
DISPLAY ENABLE

SAVE INDEX Y

DELAY

RESTORE INDEX Y

SET UP FOR NEXT DISPLAY

ADJUST TEXT POINTER
4 DISPLAYS SCANNED?

DISPLAY DATA BUFFER INH

I/0 DEFINITION

INIT DISPLAY SWITCH
ID TO DISPLAY?

ID TO DISPLAY

SHOW ANY PARAMETER

SAH TO DISPLAY?

SAH TO DISPLAY



0958
0954

095C
095D
0960
0962
0965

1 0967

0969
096B

: 096C

096F
0971

0974

0976

: 0978

097A

: 097B
: 097E
: 0980
: 0983
: 0985
: 0987

: 0989
: 0984
: 098D
: 098F
: 0991
: 0993
: 0995

¢ 0997
: 0998
: 099B
: 099D
: 099F
: 09A1
s 0943

09A5
09A6
0949
09AB

09AD

: 09AF
¢ 09B1

09B3

: 09B5

09B7
09B9

09BB
09BC
09BD
09BE

09BF
09Co
09C1
09c2

66

7F
TF

52
08
09
TF

o]

68
09
70
F9

DE

68
09
73
F9
o]0
CF

1A

1A

1A

1A

1A
1A

1A

LDYIM $0u4 LOOKUP POINTER
BNE COMPNT SHOW SAH

SSAL  INY
CPY DISCNT SAL TO DISPLAY?
BNE  SEAH
LDA  SAL SAL TO DISPLAY
STAZ INH
LDYIM $08 LOOKUP POINTER
BNE  COMPNT SHOW SAL
SEAH  INY
CPY DISCNT EAH TO DISPLAY?
BNE  SEAL
LDA  EAH EAH TO DISPLAY
STAZ INH
LDYIM $0C LOOKUP POINTER
BNE  COMPNT SHOW EAH
SEAL  INY
CPY  DISCNT
BNE  SBEGH
LDA  EAL
STAZ INH
LDYIM $10 LOOKUP POINTER
BNE  COMPNT SHOW EAL
SBEGH INY
CPY  DISCNT
BNE  SBEGL
LDAZ BEGADH
STAZ INH
LDYIM $14
BNE  COMPNT
SBEGL INY
CPY  DISCNT
BNE  SENDH
LDAZ BEGADL
STAZ INH
LDYIM $18
BNE  COMPNT
SENDH INY
CPY  DISCNT
BNE  SENDL
LDAZ ENDADH
STAZ INH
LDYIM $1C

BNE COMPNT

SENDL LDAZ ENDADL
STAZ INH
LDYIM $20
BNE COMPNT

7 SEGMENT TEXT LOOKUP TABLE
TLOOK $66 ID PATTERN
$21
$7F
$7F

$52 SAH PATTERN
$08
$09
$7F
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0415:

O416: 09C3 52 $52 SAL PATTERN

o417: 09C4 08 = $08

0418: 09C5 u7 = $u7

0419: 09C6 TF = $7F

0u20:

0421: 09C7 06 = $06 EAH PATTERN

o422: 09C8 08 = $08

0u423: 09C9 09 = $09

‘O424: 09CA TF = $7F

0u425:

0426: 09CB 06 = $06 EAL PATTERN

o427: 09CC 08 = $08

0u28: 09CD 47 = $47

0l29: O9CE TF = $7F

0430:

0U31: 09CF 03 = $03 BEGH PATTERN

0432: 09D0 06 = $06

0433: 09D1 42 = $u2

0434: 09D2 09 = $09

oU35:

0l36: 09D3 03 = $03 BEGL PATTERN

0437: 09D4 06 = $06

0438: 09D5 42 = $u2

0439: 09D6 47 = $47

ouyo:

ol41: 09D7 06 = $06 ENDH PATTERN

0442: 09D8 2B = $2B

oul43: 09D9 21 = $21

oul4Yy: 09DA 09 = $09

ouys:

QuU6: 09DB 06 = $06 ENDL PATTERN

o4u7: 09DC 2B = $2B

o448: 09DD 21 = $21

0449: Q9DE 47 = $u47

0us50: BRRRERBARRERRARRERARARBRRRRR D

ous1: # DUMP/DUMPT IS A SUBROUTINE #

0452: EENRRERRAR NI R RN AR R RN AR ERRR RO

0453:

oush4: Q9DF A9 TD DUMP LDAIM $7D 3600HZ HALF PERIODE DELAY
0455: O9E1 8D 6C 1A STA HIGHER

0456: O9EY4 A9 C3 LDAIM $C3 2400 HZ HALF PERICDE DELAY
0457: O9E6 8D 6D 1A STA LOWER

0458: 09E9 A9 03 LDAIM $03 TOGGLE 3 TIMES AT 3600 HZ
0459: O9EB 8D 76 1A STA FIRST

Qu60: O9EE A9 02 LDAIM $02 TOGGLE 2 TIMES AT 2400 HZ
0u61: 09F0 8D 77 1A STA SECOND

0462:

0u63: O9F3 A9 47 DUMPT LDAIM $47 PBD PATTERN

oubld: 09F5 A2 FF LDXIM $FF PBDD PATTERN

0465: 09F7 8D 82 1A STA PBD INPUT OFF,QUTPUT ON,STROBE DISABLED
0466: O9FA 8D 78 1A STA GANG SAVE BITS OF PBD

0467: O9FD 8E 83 1A STX PBDD PB7...PBO IS OUTPUT

0u68: 0ACO A9 00 LDAIM 300 PAD PATTERN

0U69: 0AOZ2 A2 TF LDXIM $7F PADD PATTERN

O470: 0AO4 8D 80 1A STA PAD SEGMENTS ON BUT DISABLED
O471: OAO7 BE 81 1A STX PADD ALL LINES QUTPUT EXEPT PAT
0472: OAOA 8D 6E 1A STA CHKL RESET CHECK SUM

0473: OAOD 8D 6F 1A STA CHKH

O4TU: OA10 AD 70 1A LDA SAL INITIALIZE DUMPT POINTER
0475: OA13 85 FA STAZ POINTL

ou76: OA15 AD 71 1A LDA SAH

ou477: OA18 85 FB STAZ POINTH

0478: OAtA A2 FF LDXIM $FF SET SYNC COUNTER

0479: OA1C 8E 74 1A STX  SINCNT

0480:

0481: 0AIF A9 16 SYINCS LDAIM SYN CHARACTER

0482: 0A21 20 A3 OA JSR  OQUTCH OUTPUT 255 SYN CHARACTERS
0483: 0A24 CE T4 1A DEC SYNCNT
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0Lu8y:
0485:
0486
0487:
0u488:
0U8g:
0490:
0491:
ou92:
0u93:
ougl:
0495:
0Ug6:
QuU97:
0ug8:
0499:
0500:
0501:
0s502:
0503:
0504
0505:
0506:
0507:
0508:
0509:
0510:
0511:
0512:
0513:
0514:
0515:
05[16:
0517:
0518:
0519:
0520:
0521:
0522:
0523:
0524:
0525:
0526:
0527:
0528:
0529:
0530:
0531:
0532:
0533:
0534:
0535:
0536:
0537:
0538:
0539:
0540:
0541:
0542:
0543:
0544:
0545:
0546:
0547:
0548
0549:
0550:
0551:
0552:

oA27

0A29
0A2B
0AZE
0A31
0A34
0A37
0A3A
0A3D

0440
QAl2
0AY45
0ANdT
0AL4g
QAUC

OAYE
0A50
0A53
0A56
0A59
0A5C
O0ASF
0A61
0A6Y
0A66

0A69

OAGA
0A6C
OA6E
0AT1
OA73
O0AT5
0ATT

OAT7A
0AT7B
0ATC
OATF
0A82
0A85
0A87
0A8A

0A8B

DO

A9
20
AD
20
AD

AD
20

A5

Do
AS
CD
DO

A9
20
AD
20
AD
20
A9
20
A9
20

60

AO
B1
20
E6
DO
E6
4C

A8

6D
8D
AD
69
8D
98

A8

00
FA
TA
FA
CB
FB
4o

6E

6F
00
6F

0A
1A
0A
1A
0A
1A
0A

0A

0A
1A
0A
OA

0A

0A

oA

1A
1A
1A

BNE SYNCS

LDAIM “# OUTPUT START CHARACTER
JSR OUTCH

LDA ID OUTPUT ID

JSR QUIBT

LDA QUTPUT START ADDRESS

SAL
JSR OUTBTC AND START CHECK SUM COMPUTATION
LDA SAH
JSR QUTBTC

DATATR LDAZ POINTH
CMP EAH ENTIRE FILE TRANSMITTED?
BNE HEXDAT
LDAZ POINTL
CMP EAL
BNE HEXDAT

LDAIM "/ OUTPUT END OF DATA CHARACTER
JSR OUTCH STOP WITH CHECK SUM COMPUTATION

LDA CHKL QUTPUT CHECK SUM

JSR OUTBT

LDA CHKH

JSR QUTBT

LDAIM ~ EOT CHARACTER

JSR OUTCH OUTPUT EOT CHARACTER
LDAIM ° EOT CHARACTER

JSR OUTCH
RTS RETURN TO CALLER

HEXDAT LDYIM $00
LDAIY POINTL FETCH CURRENT DATA BYTE
JSR OUTBTC TRANSMIT CURRENT DATA BYTE
INCZ POINTL AND COMPUT CHECK SUM
BNE DATATR SET UP FOR NEXT DATA BYTE
INCZ POINTH
JMP DATATR

#%% END OF DUMP/DUMPT ***
DUMP S SUBROUTINES

OUTBTC OUTPUTS A HEX BYTE AS TWO ASCII CHARACTERS
TO THE TAPE RECORDER. ALSO THE CHECK SUM IS COM-
PUTED.

OUTBT OUTPUTS A HEX BYTE AS TWO ASCCI CHARACTERS
TO THE TAPE RECORDER WITHOUT CHECK SUM COMPUTATION.

NIBOUT CONVERTS A HEX NIBBLE TO AN ASCII CHARACTER
AND TRANSMITS THE 8 BIT ASCII WORD TO THE TAPE.

HIGH AND LOW PRODUCE THE DELAYS OF THE 3600 HZ AND
THE 2400 HZ FREQUENCY.

#%% QUTBTC/OUTBT *¥*

OUTBTC TAY SAVE ACCU
CLC
ADC CHKL CHECK SUM COMPUTATION
STA CHKL
LDA CHKH
ADCIM $00 CHK:= CHK + BYTE
STA CHKH
TYA GET ACCU AGAIN
OUTBT TAY SAVE ACCU TEMP
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: OA8C 4A LSRA GET UPPER NIBBLE

: CABD 4A LSRA
: OASE U4A LSRA
: OASF 1A LSRA
: 0A90 20 9A 0A JSR NIBOUT OUTPUT UPPER NIBBLE AS ASCII CHAR.
: 0A93 98 TYA GET BYTE AGAIN

0A94 29 OF ANDIM $0OF GET LOWER NIBBLE

0A96 20 94 0A JSR NIBOUT OUTPUT LOWER NIBBLE AS ASCII CHAR.
: 0A99 60 RTS

#%#% END OF OUTBTC/OUTBT #%#

#%% NTBOUT/OQUTCH ###

0A9A C9 0A NIBOUT CMPIM $0A CONVERT A NIBBLE TO AN ASCII CHAR.
0A9C 18 CLC
: 0A9D 30 02 BMI NIB
: OA9F 69 07 ADCIM $07
0AA1 69 30 NIB ADCIM $30
: 0OAA3 A2 08 OUTCH LDXIM $08 SET UP FOR 8 BITS
: OAA5 8E 75 1A STX BITS
OAA8 4A ONE LSRA SHIFT OUT BIT BY BIT
OAAQ 148 PHA SAVE CHARACTER
OAARA 90 OC BCC ZERO
: OAAC 20 C8 0A JSR HIGH START AT 3600 HZ
OAAF 20 E5 0A JSR LOW
0AB2 20 E5 0A JSR LOW END AT 2400 HZ
0AB5 4C C1 0A JMP ZRO
0AB8 20 C8 0A ZERO JSR HIGH START AT 3600 HZ
OABB 20 C8 0A JSR HIGH
OABE 20 E5 0A JSR LOW END AT 2400 HZ
: 0AC1 68 ZRO PLA GET CHARACTER AGAIN
: OAC2 CE 75 1A DEC BITS ALL BITS SHIFTED OUT
: 0AC5 DO E1 BNE ONE
: OAC7 60 RTS

#%#% END OF NIBOUT/QUTCH ###*

#%8 HIGH #e%
0AC8 AE 76 1A HIGH LDX FIRST AMOUNT OF HALF PERIODES

0ACB 2C D5 1A HIG BIT RDFLAG TIME 0OUT?

: OACE 10 FB BPL HIG
OADO AD 6C 1A LDA HIGHER SET UP TIMER FOR SHORT PERIODE
0AD3 8D F4 1A STA CNTA DISABLE TIMER IRQ, CLK1T
: OAD6 AD 78 1A LDA GANG
: OAD9 49 80 EORIM $80 TOGGLE OUTPUT
OADB 8D 82 1A STA PBD
: OADE 8D 78 1A STA GANG SAVE STATUS QUO
: OAE?T CA DEX
OAE2 DO E7 BNE HIG
: OAE4 60 RTS

#%% END OF HIGH #%*#

EER [ OW WER

: OAES AE 77 1A LOW LDX SECOND AMOUNT OF HALF PERIODES
OAE8 2C D5 1A LO BIT RDFLAG TIME OUT?



0622:
0623:
0624:
0625:
0626:
0627:
0628:
0629:
0630
0631:
0632:
0633:
0634:
0635:
0636:
0637:
0638:
0639:
0640:
0641:
06u2:
0643:
06ul:
06u45:
0646:
0647
0648:
0649:
0650:
0651:
0652:
0653:
0654
0655:
0656:
0657:
0658:
0659:
0660:
0661:
0662:
0663:
0664:
0665:
0666
0667:
0668:
0669:
0670:
0671:
0672:
0673:
0674:
0675:
0676
0677:
0678:
0679:
0680:
0681:
0682:
0683:
0684:
0685:
0686:
0687:
0688:
0689:
0690:

CAEB
OAED
0AFO
0AF3
OAFb6
OAF8
OAFB
OAFE
OAFF
0BO1

0B02
0BOY
0BO7
0BOA
0BOC
OBOF
0B11
0B 14
0B16
0B19

0B1C
0B1E

0B21
oB24
0B27
0B2A
0B2D
0B2F
0B31
0B33

0B36
0B39
0B3C
0B3E
0BL0
0B43

0B4S
OB48
0B4B
0B4D
OB4F
0B51
0B53

0B55
0B58
0B5B
OBSE

0B60
0B63
0B66

10
AD
8D
AD

8D
8D
CA
DO
60

FB
6D
Fy
78
80
82
78

E7

1A
1A
1A

1A
1A

1A
1A

1A
1A
1A
1A
1A
0B
1A

1A
OB

1A

ocC
ocC

oC
ocC

oC
0B
1A

0B
ocC

BPL
LDA
STA
LDA
EORIM
STA
STA
DEX
BNE
RTS

Lo

LOWER SET UP TIMER FOR LONG PERIODE
CNTA DISABLE TIMER IRQ, CLKI1T

GANG

$80 TOGGLE OUTPUT

PBD

GANG SAVE STATUS QUO

LO

%% END OF LOW *%#

123232322 R22 222222222 2]

* RDTAPE IS A SUBROUTINE *
EREERERREESRRNERERERERENEN

ID = 00: IGNORE ID ON TAPE; DISCARD DATA BLOCK
AT SAL, SAH COMING FROM TAPE

ID = FF: IGNORE ID ON TAPE; DISCARD DATA BLOCK
AT SAL, SAH STORED IN JUNIORS MEMORY

RDTAPE LDAIM
STA
STA
LDAIM
STA
LDAIM
STA
LDAIM
STA
STA

SYINC LDAIM
STA

SYNCA JSR
ROR
LDA
JSR
CMPIM
BNE
LDYIM
STY

TENSYN JSR
JSR
CMPIM
BNE
DEC
BNE

STAR JSR
JSR
CMPIM
BEQ
CMPIM
BEQ
BNE

STARA JSR
JSR
CMP
BNE

RDSA JSR
JSR
STAZ

$32 INPUT RECORDER IS ON

PBD OUTPUT RECORDER IS OFF, PB7 IS ENABLED
GANG STROBE “9° IS ENABLED

$7E PBO IS INPUT

PBDD PB7 IS INPUT

$7F PA6...PAO IS OUTPUT

PADD

$00 SEGMENTS ON

CHKL RESET CHECK SUM

CHKH

$FF RESET FOR SYN CHARACTER
CHAR

RDBIT READ A BIT FROM TAPE

CHAR  RIGHT SHIFT

CHAR GET CURRENT CHARACTER
BTWEEN DISPLAY NOT SYN CHARACTER

’ SYN CHARACTER?

SYNCA IF NOT, RESYNC

$0A TRY IT FOR 10 SYNS AT LEAST
SY SYN COUNTER

RDCH

CHARVU DISPLAY SYN CHARACTER
’ STILL SYN CHARACTER?
SYNC IF NOT, RETURN

SY 10 SYNS RECEIVED?

TENSYN RETURN IF LESS THAN 10 SYNS

RDCH WAIT FOR “#° CHARACTER
CHARVU

i

STARA

’ STILL SYN CHARACTER?
STAR IF YES, THEN WAIT
RDTAPE IF NOT, THEN RESYNC

CHARVU DISPLAY “*°

RDBYT READ ID FROM TAPE
1D REQUESTED ID?
CHKID

RDBYT READ SAL FROM TAPE

CHKSUM CHECK SUM COMPUTATION
POINTL SET UP STORE POINTER
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0691: 0B68 20 F3 0B JSR RDBYT READ SAH FROM TAPE

0692: 0B6B 20 4B 0OC JSR CHKSUM

0293: OB6E 85 FB STAZ POINTH

0694:

0695: OB70 20 F3 0B FILMEM JSR RDBYT READ DATA BYTE FROM TAPE
0696: 0B73 30 8D BMI RDTAPE NOT VALID HEX CHARACTER
0697: 0B75 FO 13 BEQ CHECK END OF DATA CHARACTER?
0698: 0OB77 20 u4B 0C JSR CHKSUM

0699: OBT7A A0 00 LDYIM $00

0700: OB7C 91 FA STAIY POINTL STORE BYTE IN MEMORY
0701: OBTE E6 FA INCZ POINTL SET POINTER FOR NEXT BYTE
0702: 0B80 DO 02 BNE FMA

0703: 0B82 E6 FB INCZ POINTH

0704:

0705: 0B84 20 64 0C FMA JSR vuU DISPLAY "%’

0706: OB87 4C 70 OB JMP FILMEM READ NEXT DATA BYTE FROM TAPE
0707:

0708: 0B8A 20 F3 0B CHECK JSR RDBYT READ CHECK SUM FROM TAPE
0709: 0B8D CD 6E 1A CMP CHKL AND COMPARE IT

0710: OB90 DO 09 BNE SYNVEC

0711: 0B92 20 F3 0B JSR RDBYT

0712: 0Bg5 CD 6F 1A CMP CHKH

0713: 0B98 DO 01 BNE SYNVEC

0714: OBGA 60 RTS RETURN TO CALLER

0715:

0716: OB9B 4C 02 OB SYNVEC JMP RDTAPE

0717:

0718: OBY9E AD 79 1A CHKID LDA D

0719: OBA1 C9 00 CMPIM $00 Ib = 007

0720: OBA3 FO BB BEQ RDSA

0721: 0BAS C9 FF CMPIM $FF 1D = FF?

0722: 0BAT DO F2 BNE SYNVEC

0723: OBA9 20 F3 0B JSR RDBYT READ SA FROM TAPE, BUT IGNORE IT
0724: OBAC 20 4B 0C JSR CHKSUM

0725: OBAF 20 F3 OB JSR RDBYT

0726: 0OBB2 20 4B 0C JSR CHKSUM

0727: OBB5 AD 70 1A LDA SAL USE SA STORED IN BUFFER
0728: 0BB8 85 FA STAZ POINTL

0729: OBBA AD 71 1A LDA SAH

0730: OBBD 85 FB STAZ POINTH

0731: OBBF 4C 70 OB JMP FILMEM

0732:

0733: %%% END OF RDTAPE ¥###

0734:

0735: SUBROUTINES OF RDTAPE

0736:

0737: ##% RDBIT ###

0738:

0739: RDBIT READS 1 BIT FROM TAPE.

0740: LOG 1: IT RETURNS WITH C = 1

o741: LOG 0: IT RETUNS WITH C = O

gTh2:

0743: 0BC2 2C 82 1A RDBIT BIT PBD 3600 HZ?

0744: OBCS5 10 FB BPL RDBIT

O745: OBC7 AD D4 1A LDA RDTDIS GET COUNT DOWN

0746: OBCA AQ FF LDYIM $FF

0747: OBCC 8C F6 14 STY CNTC START TIMER FOR 2400 HZ COUNT DOWN
0748: OBCF AO 14 LDYIM $14

0749:

0750: 0BD1 88 RDBA DEY DELAY JITTER TIME

0751: 0OBD2 DO FD BNE RDBA

0752:

0753: OBD4 2C 82 1A RDBB BIT PBD 2400 HZ?

0754: OBD7 30 FB BMI RDBB

0755: OBD9 38 SEC

0756: OBDA ED D4 14 SBC RDTDIS SET OR RESET C-FLAG
0757: OBDD AO FF . LDYIM $FF

0758: OBDF 8C F6 1A STY CNTC START TIMER FOR 3600 HZ COUNT DOWN
0759: OBE2 AQ 07 LDYIM $07 DELAY FOR JITTER
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0761: OBEY 88 RDBC DEY

0762: OBE5 DO FD BNE RDBC

0763: OBE7 60 RTS

0764 :

0765: #%% END OF RDBIT %#¥%

0766:

0767:

0768

0769: *%% pTYEEN *¥¥

0770:

0771: DISPLAY THE BETWEEN CHARACTER

0772

0773: OBE8 48 BTWEEN PHA SAVE ACCU

0774: OBE9 A9 36 LDAIM $36 OUTPUT BETWEEN CHARACTER
0775: OBEB 8D 80 1A STA PAD

0776: OBEE 68 PLA GET ACCU AGAIN

0777: OBEF 20 64 0C JSR - VU DON’T CHANGE BETWEEN

0778: OBF2 60 RIS

0779:

0780: ##% END OF BTWEEN ¥*¥#¥

0781: #%% RDBYT *¥¥

0782

0783:

0784: READ 1 HEX BYTE = 2 ASCII CHARACTERS FROM TAPE.
0785: COMPOSE THE HEX VALUES OF THE CHARACTERS IN ACCU
0786: AND RETURN.

0787:

0788: 1) N = 1: A NOT VALID HEX CHARACTER WAS TRANSMITTED
0789: 2) Z = 1: END OF DATA TRANSMISSION

0790: 3) Z = 0: VALID HEX BYTE IN ACCU

0791: 4) THE N-FLAG HAS ALWAYS PRIORITY

0792:

0793: OBF3 20 36 0C RDBYT JSR RDCH READ ANY ASCII CHARACTER FROM TAPE
0794: OBF6 C9 2F CMPIM "/ END OF DATA CHARACTER?
0795: OBF8 DO 01 BNE RBB

0796:

0797: OBFA 60 RBA RTS ERROR EXIT

0798:

0799: OBFB 20 19 0C RBB JSR ASCHEX ASCII HEX CONVERSION

0800: OBFE 30 FA BMI RBA NOT VALID CHARACTER

0801: 0CO0 0A ASLA SHIFT NIBBLE TQ LEFT

0802: 0CO1 0A ASLA

0803: 0C02 04 ASLA

0804: 0CO3 0A ASLA

0805: 0CO4 8D 64 1A STA BYTE SAVE HIGH ORDER NIBBLE
0806: 0CO7 20 36 oC JSR RDCH READ NEXT CHARACTER

0807: OCOA C9 2F CMPIM "/ END OF DATA CHARACTER

0808: 0COC FO EC BEQ RBA

0809: OCOE 20 19 0OC JSR ASCHEX ASCII HEX CONVERSION

0810: 0C11 30 E7 BMI RBA NOT VALID CHARACTER

0811: 0C13 0D 6A 1A ORA BYTE BYTE = HIGH ORDER AND LOW ORDER NIBBLE
0812: 0C16 A0 01 LDYIM $01 BE SHURE THAT CHARACTER
Og13: 0C18 60 RTS NORMAL EXIT

0814:

0815: #%% DND OF RDBYT ##%%

0816: ¥%% ASCHEX #%%

0817:

0818:

0319: CONVERT AN ASCII CHARACTER TO A HEX DATA NIBBLE.
0820:

0821: 1) RETURN WITH CONVERTED HEX NUMBER IN ACCU
0822: 2) N = 1, IF NOT VALID HEX NUMBER

0823: 3) Z = 1, IF VALID HEX NUMBER

0824: ”) #%% ASCHEX IS ALSO USED IN THE PRINTER SOFTIWARE #*#
0825:

0826: 0C19 C9 30 ASCHEX CMPIM $30 IGNORE 00...2F

0827: 0C1B 30 0OC BMI NOTVAL

0828: 0C1D C9 3A CMPIM $3A
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0829:
0830:
0831:
0832:
0833:
0834:
0835:
0836:
0837:
0838:
0839:
0840:
0841:
0842:
0843:
o84l:
0845:
08u6:
0847:
08u8:
0849:
0850:
0851:
0852:
0853:
0854:
0855:
0856
0857:
0858:
0859:
0860:
0861:
0862:
0863:
0864:

0865

0866
0867:
0868:
0869:
0870:
0871:

0872:

0873:
0874 :
0875:
0876:
0877:
0878:
0879:
0880:
0881:
0882:
0883:
0884:
0885:
0886:
0887:
0888:
0889:
0890:
0891:
0892:
0893:
0894
0895:
0896:

0897:
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0C1F
oc21
ocz23
0C25
oca7

0C29
0Cc2B

ocac
0C2E
0C30
0c31

0C33
0C35

0C36

0C38
0C3B
0C3E
0C3F
oc41
ocuy
ocu7
ocua

0C4B
oCHC
0C4D
0C50
0C53
0C56
0C58
0C5B
0Cs5C

0C5D
0CSE
0C60
0Cc63

océou
0C65
0C68

30
c9
30
30

A0Q
60

c9

18
69

29
60

0B
1
04
03
FF

40
03

09
OF

08

c2
6B

F7
6B
6B
6B

6E
6E
6F

6F

78
02

0B
1A

1A
1A
1A

1A
1A
1A

1A

BMI
CMPIM
BMI
CMPIM
BMI

NOTVAL LDYIM
RTS

VALID CMPIM
BMI
CLC
ADCIM

VAL ANDIM
RTS

VALID
$41
NOTVAL
$47
VALID

$FF

$40
VAL

$09
$0F

IGNORE 3A...40
IGNORE 47...7F
SET N-FLAG
ERROR EXIT

ASCII HEX CONVERSION

HEX DATA IS LOW ORDER NIBBLE IN ACCU

#%#% END OF ASCHEX %##

#%% RDCH ##%

READ AN ASCII CHARACTER FROM TAPE AND
STORE IT IN ACCU

RDCH LDXIM

READ JSR
ROR
DEX
BNE
ROL
LSR
LDA
RTS

$08

RDBIT
CHAR

READ
CHAR
CHAR
CHAR

##% END OF RDCH #%#

#8% CHKSUM ®##

SET UP FOR 8 BITS

READ A BIT FROM TAPE
SHIFT BIT INTO CHARACTER
ALL BITS READ?

B7 MUST BE ZERO

RECEIVED CHARACTER TO ACCU

COMPUTE CHECK SUM OF RECEIVED DATA

CHKSUM PHA
CLC
ADC
STA
LDA
ADCIM
STA
PLA
RTS

CHKL
CHKL
CHKH
$00

CHKH

SAVE ACCU

CHK := CHK + BYTE

GET ACCU AGAIN

#%#% END OF CHKSUM ###

#%% CHARVU ##¥

CUTPUT ANY CHARACTER TO 7 SEGMENT DISPLAY

CHARVU PHA
EORIM
STA
PLA

vu PHA
LDA
EORIM

$TF
PAD

GANG
$02

CHARACTER CHANGE IS ENABLED/DISABLED

SAVE ACCU
OUTPUT INVERTED CHAR. TO SEGMENTS

RESTORE ACCU

CHANGE DISPLAYS



0898:
0899:
0900:
0901:
0902:
0903:
0904:
0905:
0906:
0907:
0908:
0909:
0910:
0911:
0912:
0913:
0914:
0915:
0916:
ID=BY§

0001:
0002:

0003:
0004:
0005:
0006:
0007:
0008:
0009:
3010:
0011:
0012:
0013:
0014:
0015:
0016:
0017:
0018:
0019:
0020:
0021:
0022:
0023:
0024:
0025:
0026:
0027:
0028:
0029:
0030:
0031:
0032:
0033:
0034:
0035:
0036:
0037:
0038:
0039:
0040:
0041:
oo42:
0043:
oolk:
0045:
00U6:

0C6A
0C6D
0C70
0C71

0C72
0C73
0C75
0C77
0C79
0C7B
0C7D
0C7F

1000

1000
1001
1002
1004
1007
1009
100C
100E
1011
1012
1015
1016
1018
101A
101D
1020
1022
1025
1027
1024
102¢C
102F

8D

68
60

82 1A
78 1A

FA
01
FA
FB
00
FB

1A
1A
1A
1A

1A
1A

1A
1A
1A

STA
STA
PLA
RTS

PBD
GANG

SAVE STATUS QUO

#%% END OF CHARVU ###

ADJPNT ADDRESS POINTER ADJUSTMENT

ADJPNT SEC
LDAZ
SBCIM
STAZ
LDAZ
SBCIM
STAZ
RTS

POINTL
$01
POINTL
POINTH
$00
POINTH

16 BIT SUBTRACTION

#%% END OF ADJPNT *#*®

ORG

$1000

RERERREREREABARBAFRBBERER AR RRBRBRERRENN

#%%* MATN PROGRAM OF THE PRINTER MONITOR ###
Rt R T e Ty e e A T e e e ]

COMMANDS OF THE PRINTER MONITOR:

> -’ DECREMENT THE CURRENT ADDRESS BY ONE
> “+° INCREMENT THE CURRENT ADDRESS BY ONE
>

"SPACE”

1) PRINT THE ADDRESS IN THE INPUT BUFFER

2) SHOW THE DATA OF THIS ADDRESS

R
L
P
M

>
>
>
>
>
>
>

INITPR CLD
SEI
LDAIM
STA
LDAIM
STA
LDXIM
STX
INX
STX
TXS
STXZ
LDAIM
STA
STA
LDXIM
STX
LDAIM
STA
LDAIM
STA
LDAIM

$67
PBD
$00
PAD
$FE
CNTL

CNTH

SPUSER
$7F
PADD
PBDD
$02
STPBIT
LABJUN
BRKT
LABJUN
BRKT
STEP

° STORE INPUT DATA AT THE CURRENT ADDRESS
’ START PROGRAM EXECUTION AT THE CURRENT ADDRESS
° LIST THE CONTENTS OF ALL CPU-REGISTERS
 PRINT OUT THE LAST PROGRAM CONTER

° PRINT A HEXDUMP SPECIFIED BY THE INPUT PARAMETER
G° READ A DATA BLOCK WITH A CERTAIN ID FROM TAPE

‘S’ STORE A DATA BLOCK BETWEEN SA AND EA-1 ON TAPE

RESET SEQUENCE OF THE PRINTER PROGRAM

IRQ LINE IS DISABLED
PBD: 01100111

PAD: 00000000
RESET BIT TIME COUNTER

RESET COMPUTER STACK POINTER
RESET USER STACK POINTER

TRANSMIT NONE PARITY & ONE STOP BIT

SETUP BREAK VECTOR

/256

+01

SETUP STEP BY STEP VECTOR
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0047:
0048:
0049:
0050:
0051:
06052:
0053:
0054:
0055:
0056
0057:
0058:
0059:
0060:
0061:
0062:
0063:
0064:
0065:
0066:
0067:
0068:
0069:
0070:
0071:
0072:
0073:
0074:
0075:
0076:
Q077:
0078:
0079:
0080:
0081:
0082:
0083:
0084:
0085:
0086:
0087:
0088:
0089:
0090:
0091:
0092:
0093:
0094:
0095:
0096:
0097:
0098:
0099:
0100:
0101:
0102:
0103:
0104:
0105:
0106:
0107:
0108:
0109:
0110:
0111:
0112:
0113:
0114:
0115:
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1031
1034
1036

1039
103C
103E
1041
1044
1047
1044
104D
1050
1053
1055
1058
105B
105D

105F
1062
1065
1067
1068

106A
106D

1070

1073
1075
1077
107A
107D

1080

1082

1084
1087
1084

108D
108F
1091
1093

1095
1097
1099
109C

109F
10A1
10A3
10A5
10A7
10A9
10AC
10AF

10B2
10B4
10B6
10B8
10B9
10BB
10BC
10BE
10BF

8D
8D

2c
30

4E
6E
AD
8D
AD

A2
20
20
C9
DO

20
20
A2
9A
86

20
20

TA
14
7B

80
FB

SF
S5E
5E
5C
SF
5D
08
03
BE

A1

46
E8
FF

1A
1A
1A

12
1A
1A
1A
1A
1A
1A

13
12

12
1

12
12

12

11
10

12
11
10

STRTBT

LABJUN

RESALL

READCH

PLU

MINUS

SPACE

PNT

RUN

STA
LDAIM
STA

BIT
BMI
JSR
LSR
ROR
LDA
STA
LDA
STA
LDXIM
JSR
JSR
CMPIM
BNE

JSR
JSR
LDXIM
TXS
STXZ

JSR
JSR

JSR

CMPIM °~

BNE
JSR
JSR
JMP

CMPIM
BNE
JSR
JSR
JMP

CMPIM
BNE
LDAZ
STAZ
LDAZ
STAZ
JSR
JMP

CMPIM
BNE
LDAZ
LDYIM
STAIY
JSR
JSR
JMP

CMPIM
BNE
LDXZ
TXS
LDAZ
PHA
LDAZ

PHA
LDAZ

NMI
STEP
NMI

PAD
STRTBT
COMTIM
TIMH
TIML
TIML
CNTHL
TIMH
CNTHH
$08
DELHBT
RECD
$7F
INITPR

JUNIOR
CRLF
$FF

SPUSER

RESPAR
RESIN

RECCHA

+
MINUS

INCPNT
PRBUFS3
RESALL

SPACE

DECPNT
PRBUFS
RESALL

PNT
INL
POINTL
INH
POINTH
PRBUFS
RESALL

RUN
INL
$00
POINTL
INCPNT
PRBUFS
RESALL

‘R
LIST
SPUSER
POINTH
POINTL

PREG

/256
+01

WAIT FOR A START BIT

COMPUTE THE START BIT TIME

DIVIDE BY 2

SAVE HALF START BIT TIME

GET THE REST OF THE CHARACTER

WAS IT THE RUBOUT CHARACTER?

PRINT “JUNIOR’

RESET STACK POINTER WHEN A BREAK OCCURS
RESET PARAMETER BUFFER

RESET INPUT BUFFER
WAIT FOR A CHARACTER

INCREMENT CURRENT ADDRESS
OPEN NEXT CELL

DECREMENT CURRENT ADDRESS
OPEN PREVIOUS CELL

OUTPUT THE ADDRESS
IN THE INPUT BUFFER

OPEN CURRENT CELL

STORE CURRENT DATA BYTE IN MEMORY
OPEN NEXT CELL

START PROGRAM EXECUTION
AT THE CURRENT DISPLAYED ADDRESS



0116:
0117:
0118:
0119:
0120:
0121:
0122:
0123:
0124:
0125:
0126:
0127:
0128:
0129:
0130:
0131:
0132:
0133:
0134:
0135:
0136:
0137:
0138:
0139:
0140:
0141:
0142:
0143:
0144:
0145:
0146:
0147:
0148:
0149:
0150:
0151:
0152:
0153:
0154:
0155:
0156:
0157:
0158:
0159:
0160:
0161:
0162:
0163:
0164:
0165:
0166:
0167:
0168:
06169:
0170:
0171:
0172:
0173:
0174:
0175:
0176:
0177:
0178:
0179:
0180:
0181:
0182:
0183:
0184:

111F
1121
1123
1125
1127
1129
112B
112E

1131
1133
1135
1137
113A
113D

113F

1142
1143
1146
1149
14c
114F
1151
1154

Cc9
Do

A5

A5
85
20
4c

Cc9
DO
A0

20
10

4c

38
AD
ED
AD
ED
90

A2

50
OE
EF
FA
FO
FB

F8 1

6A

4D
E7
52

87
03

5F

65
63

64
EE

06

10

10

1A
1A
1A
1A

LIST

CONTIN

PC

MATRIX

MATD

MATF

PHA
LDXZ
LDYZ
LDAZ
RTI

CMPIM
BNE
LDYIM
JSR
LDAZ
JSR
LDYIM
JSR
LDAZ
JSR
LDYIM
JSR
LDAZ
JSR
LDYIM
JSR
LDAZ
JSR
LDAZ
JSR
LDYIM
JSR
LDAIM
JSR
LDAZ
J3SR
LDYIM
JSR
JSR
LDYIM
JSR
JSR
JMP

JMP

CMPIM
BNE
LDAZ
STAZ
LDAZ
STAZ
JSR
JMP

CMPIM
BNE
LDYIM
JSR
JSR
BPL

JMP

SEC
LDA
SBC
LDA
SBC
BCC

JSR
LDXIM

XREG
YREG
ACC

L

PC
$14
MESSY
ACC
PRBYT
$1A
MESSY
YREG
PRBYT
$20
MESSY
XREG
PRBYT
$26
MESSY
PCH
PRBYT
PCL
PRBYT
$2C
MESSY
$01
PRBYT
SPUSER
PRBYT
$32
MESSY
SHOWPR
$38
MESSY
PRSP
RESALL

GETTAP

‘P
MATRIX
PCL
POINTL
PCH
POINTH
PRBUFS
RESALL

M
CONTIN
$52
MESSY
INPAR
MATF

LABJUN

PARBL
PARAL
PARBH
PARAH
MATD
CRLF
$06

ACC:

PC :

SP :

PR :
PRINT OUT FLAGS

NV BDIZC

RESTORE LAST PROGRAM COUNTER

OPEN CURRENT CELL

HEXDUMP :
READ PARAMETERS

RETURN, IF INVALID CHARACTER

VALID INPUT PARAMETERS?

PARA < PARB?
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0185:
0186:
0187:
0188:
0189:
0190:
0191:
0192:
0193:
0194:
0185:
0196:
0197:
0198:
0199:
0200:
0201:
0202:
0203:
0204:
0205:
0206:
0207:
0208:
0209:
0210:
0211:
0212:
0213:
0214:
0215:
0216:
0217:
0218:
0219:
0220:
0221:
0222:
0223:
0224:
0225:
0226:
0227:
0228:
0229:
0230:
0231:
0232:
0233:
0234:
0235:
0236:
0237:
0238:
0239:
0240:
0241:
0242:
0243:
o244:
0245:
0246:
0247:
0248:
0249:
0250:
0251:
0252:
0253:

1156
1159
1154
115C

115E
115F
1162
1165
1168
1169
116B
116D
1170
1172
1175

177
1174
117C
117E
1181
1183
1186
1188

118B
118C
118F
1191
1194
1196
1198
119B

119E
11A0
11A2
11A5
11A8
11AB
11AC
11AE

1180
11B2
11BY
11B7
11B9

11BC

11BF
11C1
11C3
11C6
11C8

11CB
11CE
11D0

11D3
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20
CA
DO
AC

98
20
20
20
c8
co
DO
AD
85
AD
85

20
A2
A5
20
AS
20
AQ
20

38
AD
E5
AD
ES
BO
20
4C

AO
B1
20
20
20
CA
DO
Fo

c9
DO
20
30
4c

C9
DO
20
30
4c

20
DO
uc

11

11
1

1A

1A

10
12

10

MATG JSR PRSP

DEX

BNE MATG

LDYIM $00 RESET COLUMN COUNTER
MATH TYA

JSR PRNIBL OUTPUT COLUMNS

JSR PRSP

JSR PRSP

INY

CPYIM $10 PRINT COLUMS 0...F

BNE MATH

LDA PARAL

STAZ POINTL SETUP MATRIX POINTER

LDA PARAH

STAZ POINTH

MATJ JSR CRLF
LDXIM $10
LDAZ POINTH
JSR PRBYT OUTPUT CURRENT MATRIX ADDRESS
LDAZ POINTL

JSR PRBYT

LDYIM $17

JSR ME
MATK SEC

LDA PARBL HEXDUMP FINISHED?
SBCZ POINTL

LDA PARBH
SBCZ POINTH
BCS MATL
JSR CRLF

JMP LABJUN HEXDUMP IS FINISHED

MATL LDYIM $00 :
LDAIY POINTL FETCH CURRENT DATA BYTE
JSR PRBYT OUTPUT CURRENT DATA BYTE

JSR PRSP
JSR INCPNT
DEX

BNE MATK
BEQ MATJ

GETTAP CMPIM G
BNE SAVID
JSR GETID READ DATA FROM TAPE SPEC. BY ID
BMI GETERR ILLEGAL CHARACTER?
JMP RESALL NORMAL EXIT

GETERR JMP LABJUN

SAVID CMPIM °S
BNE VALNUM NO COMMAND KEY WAS DEPRESSED
JSR SAID STORE DATA ON TAPE SPECIFIED BY THE PARAMETERS
BMI GETERR ILLEGAL PARAMETER WAS ENTERED
JMP RESALL

VALNUM JSR HEXNUM INPUT DATA TO BUFFER
BNE VNA
JMP READCH

VNA JMp RESALL

222222222 2222222222222 2222222222 22222222 ]

##% SUBROUTINES OF THE PRINTER MONITOR %##%
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0254:
0255:
0256
0257:
0258:
0259:
0260:
0261:
0262:
0263:
0264
0265:
0266:
0267:
0268:
0269:
0270:
0271:
0a272:
0273:
0274:
0275:
0276:
0277:
0278:
0279:
0280:
0281:
0282:
0283:
0284:
0285:
0286
0287:
0288:
0289:
0290:
0291:
0292:
0293:
0294:
0295:
0296:
0297:
0298:
0299:
0300:
0301:
0302:
0303:
0304:
0305:
0306:
0307:
0308:
0309:
0310:
0311:
0312:
0313:
0314:
0315:
0316:
0317:
0318:
0319:
0320:
0321:
0322:

11D6

11D9
11DC
11DE
11E0
11E3
11E4

11E7

11E8
11EA
11ED

11EF
11F2

11F3
11F5

11F8
11FB
11FD
1200
1202
1205
1208
120A
120C
120F
1212

1213
1215
1217

1219

121A
121B
121D
121F
1221
1223
1225
1227

1228
122A

20

B9
c9
FO
20
c8
4c

60

A9
20
AS

20
60

A9
4c

20
A5
20
A5

20
AQ
B1
20
20
60

E6
E6
60

A5
8D

E8

BD
03
07
34

D9

oD
34
0A

34

20
EF

E8
FB
8F
FA

F3
00
FA
8F
F3

FA
FB

FA
01
FA
FB
00
FB

F1
67

13

13
1

13

12
11

1A

MESSY PRINTS A MESSAGE, POINTED BY Y REGISTER

MES3Y
ME

MESEND

JSR CRLF PRINT A CR&LF

LDAY MESS LOAD CHARACTERS

CMPIM $03 ETX CHARACTER ?

BEQ MESEND

JSR PRCHA CHARACTER TO TTY
INY

JMP ME

RTS

CRLF PRINT CARRIAGE RETURN & LINE FEED
PRSP PRINT A SPACE

CRLF

CLEND

PRSP

PRBUFS

PRBUFS

INCPNT

INCPNT

IP

DECPNT
DECPNT

SHOWPR

SHOWPR

LDAIM $0D
JSR PRCHA OUTPUT CR
LDAIM $0A

JSR PRCHA OUTPUT LF
RTS

LDAIM $20
JMP CLEND OUTPUT A SPACE

OUTPUT ADDRESS AND DATA

JSR CRLF

LDAZ POINTH

JSR PRBYT OUTPUT HIGH ORDER ADDR
LDAZ POINTL

JSR PRBYT OUTPUT LOW ORDER ADDR
JSR PRSP

LDYIM $00

LDAIY POINTL FETCH DATA FROM MEMORY
JSR PRBYT

JSR PRSP

RTS

INCRMENT ADDR POINTER BY ONE

INCZ POINTL
BNE IP
INCZ POINTH

RTS

DECREMENT ADDR POINTER BY ONE

SEC
LDAZ POINTL 16 BIT SUBTRACTION
SBCIM $01

STAZ POINTL
LDAZ POINTH

SBCIM $00
STAZ POINTH
RTS

SHOW THE CONTENTS OF THE P REGISTER

LDAZ PREG
STA PRTEMP
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0323: 122D A2 08 LDXIM $08 BIT COUNTER

0324:

0%25: 122F OE 67 1A SPRA  ASL  PRTEMP SHIFT OUT THE BITS
0326: 1232 90 09 BCC SPRB IS IT A O OR 1 ?
0327: 1234 A9 01 LDAIM $01

0328: 1236 20 9B 12 JSR  PRNIBL PRINT A “1°

0329: 1239 CA DEX

0330: 123A DO F3 BNE SPRA  ALL BITS PRINTED ?
0331: 123C 60 RTS

0332:

0333: 123D A9 00 SPRB  LDAIM $00

0334: 123F 20 9B 12 JSR  PRNIBL PRINT A "0~

0335: 1242 CA DEX

0336: 1243 DO EA BNE SPRA  ALL BITS PRINTED ?
0337: 1245 60 RTS

0338:

0339:

0340: JUNIOR PRINT “JUNIOR®

0341: EDITOR PRINT 'EDITOR’

0342: ASSEM PRINT “ASSEMBLER’

0343:

033&: 1246 A0 00 JUNIOR LDYIM $00

0345:

0346: 1248 20 D6 11 JUN JSR  MESSY

0347: 124B 20 E8 11 JSR  CRLF

0348: 124E 60 RTS

0349:

0350: 124F A0 07 EDITOR LDYIM $07

0351: 1251 HC 48 12 JMP  JUN

0352:

0353: 1254 AQ OE ASSEM LDYIM $0E

0354: 1256 U4C 48 12 JMP  JUN

0355:

0356:

0357: RESET SUBROUTINES

0358:

0359: 1259 A0 00 RESPAR LDYIM $00

0360: 125B 8C 63 1A STY PARAL

0361: 125E 8C 64 1A STY  PARAH

0362: 1261 8C 65 1A STY  PARBL

0363: 1264 8C 66 14 STY  PARBH

0364: 1267 60 RTS

0365:

0366: 1268 A0 00 RESIN LDYIM $00

0367: 126A 84 F8 STYZ INL

0368: 126C 84 F9 STYZ INH

0369: 126E 60 RTS

0370:

0371: HEXNUM >CONVERT AN ASCII CHAR. TO A HEX NIBBLE
0372: >SHIFT HEX DATA NIBBLE INTO BUFFER
0373: SPRINT °"WHAT?  IF CHARACTER WAS NOT VALID
0374: >RETURN WITH Z=1, IF VALID CHARACTER
0372: >RETURN WITH N=1, IF NOT VALID CHARACTER
0376:

0377: 126F 20 1E 14 HEXNUM JSR  ASHETT ASCII HEX CONVERSION
0378: 1272 30 10 BMI  HNUB  NOT VALID ?

0359: 1274 A2 04 LDXIM $oi SET NIBBLE COUNTER
0380:

0381: 1276 06 F8 HNUA ASLZ INL

0382: 1278 26 F9 ROLZ INH

0383: 1274 CA DEX

0384: 127B DO F9 BNE HNUA

0385: 127D 05 F8 ORAZ INL NIBBLE TO INPUT BUFFER
0386: 127F 85 F8 STAZ INL

0387: 1281 A0 00 LDYIM $00 SET Z FLAG

0388: 1283 60 RTS

0389:

0390: 1284 AO 46 HNUB  LDYIM $46

0391: 1286 20 D6 11 JSR  MESSY “WHAT?®
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0392:
0393:
0394:
0395:
0396:
0397:
0398:
0399:
0400:
ouUo1:
0402:
0403:
oluoly:
0405
0406:
0407:
0408:
0409:
0410:
ou11:
ou12:
o413:
ou1l:
ol15:
0l16:
0417:
0418:
0L419:
0420:
ou21:
ou22:
ouz3:
ou24:
0425
0k26:
0427:
0428:
0429:
0430:
ou31:
ou32:
ou33:
ou34:
0435:
ou36:
ou37:
0438:
0439:
0440:
oul1:
ouu2:
0443:
ouyy:
Quys:
ohl6:
ouy7:
ouus:
ouyg:
0450:
0451:
0452:
0453:
0454
0l55:
0456:
0us7:
ous8:
0459:
0U460:

1289
128¢C
128E

128F
1290
1291
1292
1293
1294
1297
1294

129B
129D
1240
1243

12A4
12A6
12A7
1249

12AB
12AD

12AE
12B1
12B3
12B6
12B8

12BB

12BE
12C1
12C3
12CH4
12C7
12C8
12CA

12CD
12CE
12D1
12D2

12D4
12D7
12DA
12DC
12DF

12E0

20 E8 11

A0
60

c9
18
30
69

69
60

18

FF

AY
34

OF
A4
34

0A

62
07

30

80
FB
61
03
12

80
CA

62
F1
D4
62
E7
12
62

TF
61

12
13

12
13

1A
14
13
13
1A

1A

JSR CRLF
LDYIM $FF SET N FLAG
RTS

PRBYT >CONVERT AN BYTE STORED IN ACCU TO

PRBYT

PRNIBL

NIBASC
NIBASC

NA

RECCHA

RECCHA

RECA

RECD

RECB

RECC

TWO ASCII CHARACTERS AND PRINT THEM

PHA SAVE BYTE

LSRA GET UPPER NIBBLE
LSRA

LSRA

LSRA

JSR NIBASC NIBBLE TO ASCII CONVERSION
JSR PRCHA PRINT UPPER NIBBLE
PLA GET BYTE AGAIN

ANDIM $0OF GET LOWER NIBBLE
JSR NIBASC

JSR PRCHA PRINT LOWER NIBBLE
RTS

>CONVERT A HEX DATA NIBBLE TO AN ASCII CHARACTER

CMPIM $0A NUMBER OR LETTER ?
CLC

BMI NA

ADCIM $07

ADCIM $30
RTS

>RECEIVE 1 ASCII CHARACTER FROM PRINTER
>RETURN WITH ASCII CHARACTER IN ACCU
>SAVE X REGISTER

BIT PAD WAIT FOR START BIT
BMI RECCHA

STX TEMPB SAVE INDEX X

LDXIM $08 BIT COUNTER IS 8
JSR DELHBT DELAY HALF BIT TIME

JSR DELBIT DELAY ONE BIT TIME

BIT PAD ONE/ZERO CHECK
BPL RECB BRANCH IF ZERO

SEC BIT IS "1

ROR  CHA ROTATE CARRY INTO CHARACTER
DEX SET UP FOR NEXT BIT

BNE RECA  ALL BITS READ?

JMP  RECC

CLC BIT IS "0°

ROR  CHA

DEX

BNE  RECA

JSR DELBIT WAIT FOR STOP BIT TIME
LDA CHA

ANDIM $7F BIT 7 MUST BE ZERO

kgé TEMPB RESTORE INDEX X

COMTIM >COMPUTE BIT TIME

COMTIM

CLC
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ou61:
ou62:
0u63:
o46k4:
0U65:
0466:
0LU6T:
0468:
0469:
0470:
o471:
o472
0473:
ouUTh:
0475:
0U76:
o477:
0478:
0u479:
0480:
ou81:
0482:
0483:
0u8y:
0485:
0uB6:
ou87:
0488:
0u89:
0490:
o4g1:
ou92:
0ug3:
0494:
o0lug9s5:
0496:
04gT:
0u98:
0U99:
0500:
0501:
0502:
0503:
0504:
0505:
0506
0507:
0508:
0509:
0510:
0511:
0512:
0513:
0514
0515:
0516:
0517:
0518:
0519:
0520:
0521:
0522:
0523:
0524:
g525:
0526:
0527:
0528:
0529:
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12E1
12E4
12E6
12E9
12EC
12EE
12F1
12F Y
12F6
12F9
12FC
12FF
1302

1303
1306
1309
130C
130F

1312
1315
1318
131B

131E
131F
1322
1324
1327
132A
132C
132F
1330
1331
1333

1334
1337
1334
133D
133F
1342
1345

1347
1344
134C
134F
1351

1354
1357
1358
1354

135D
1360
1362
1365
1368

AD
69

AD
69
8D
2C

10

8D
AD

60

5E
01
5E
5F

S5F

EB

1A

1A
1A

1A
1A

1A
1A

1A
1A

1A

1A
1A

1A

1A
1A
1A
1A
13
1A
1A
1A

13

1A

14
13

DELBIT
DELHBT

DELHBT

DELBIT

CNTDN

LDA
ADCIM
STA
LDA
ADCIM
STA
BIT
BPL
LDA
STA
LDA
STA
RTS

CNTL 16 BIT ADD

$01

CNTL

CNTH

$00

CNTH

PAD START BIT FINISHED ?
COMTIM

CNTL SET UP FOR

TIML HALF BIT TIME COMPUTATION
CNTH

TIMH

>DELAY 1 BIT TIME
>DELAY 1/2 BIT TIME

LDA
STA
LDA
STA
JMP

LDA
STA
LDA
STA

SEC
LDA
SBCIM
STA
LDA
SBCIM
STA
NOP
NOP
BCS
RTS

CNTHL FETCH 1/2 BIT TIME

TIML

CNTHH

TIMH

CNTDN START WITH BIT COUNT DOWN

CNTL FETCH 1 BIT TIME
TIML
CNTH
TIMH

TIML 16 BIT SUBTRACTION
$01 COUNT DOWN
TIML
TIMH
$00
TIMH
EQUALIZE 4 MICRO SEC

CNTDN COUNT DOWN FINISHED ?

PRCHA >TRANSMIT AN ASCII CHARACTER STORED IN
ACCU TO PRINTER
>SAVE INDEX X

PRCHA

PRA

PRB

PRD

STX
STA
LDA
ANDIM
STA
JSR
LDXIM

LSR
BCC
LDA
ORAIM
STA

JSR
DEX
BNE
LDX

LDA
ORAIM
STA
JSR
DEX

TEMPA SAVE INDEX X

CHA

PBD

$FE TRNSMIT START BIT

PBD

DELBIT DELAY OF START BIT

$07 SET UP FOR 7 DATA BITS

CHA SHIFT OUT CHARACTER
PRC BRANCH IF ‘07
PBD

$01 OUTPUT A LOG "1
PBD

DELBIT DELAY 1 BIT TIME

SET UP FOR NEXT BIT
PRA ALL BITS TRANSMITTED ?
STPBIT X := AMOUNT OF STOP BITS + 1

PBD

$01 FIRST NONE PARITY
PBD AND THEN 1 STOP BIT
DELBIT



0530: 136G DO F2 BNE PRD

0531: 136B 2C 80 1A BIT  PAD TEST FOR BREAK

0532: 136E 10 04 BPL  BRKTST

0533: 1370 AE 60 1A LDX TEMPA RESTORE INDEX X
0534: 1373 60 RTS

0535:

0536: 1374 2C 80 1A BRKTST BIT PAD KEY RELEASED ?

0537: 1377 10 FB BPL  BRKTST

0538: 1379 6C 7C 1A JMI  BRKT JUMP TO AN USER SELECTABLE VECTOR
0539:

0540: 137C AD 82 1A PRC LDA  PBD

0541: 137F 29 FE ANDIM $FE OUTPUT A LOG "0~
0542: 1381 8D 82 tA STA  PBD

0543: 1384 4C 54 13 JMP  PRB

0544

0532: INPAR >PARAMETER INPUT OF MATRIX

0546

0547: 1387 20 AE 12 INPAR JSR  RECCHA WAIT FOR A CHARACTER
0548: 138A C9 2C CMPIM IS IT A COLON ?
0549: 138C FO 07 BEQ IPA

0550: 138E 20 6F 12 JSR  HEXNUM FILLUP INPUT BUFFER
0551: 1391 30 29 BMI  IPD RETURN, IF NOT VALID
0552: 1393 FO F2 BEQ INPAR ELSE CONTINUE

0553:

0554: 1395 A5 F8 IPA LDAZ INL INPUT TO PARAMETER BUFFER
0555: 1397 8D 63 14 STA PARAL

0556: 139A A5 F9 LDAZ INH

0557: 139C 8D 64 1A STA  PARAH

0558: 139F 20 68 12 JSR  RESIN

0559:

0560: 13A2 20 AE 12 IPB JSR RECCHA WAIT FOR A CHARACTER
0561: 13A5 C9 0D CMPIM $0D WAS IT A CARRIAGE RETURN ?
0562: 13A7 FO 07 BEQ IPC

0563: 13A9 20 6F 12 JSR  HEXNUM

0564: 13AC 30 OE BMI  IPD VALID CHARACTER ?
0522: 13AE FO F2 BEQ IPB

0566

0567: 13B0 A5 F9 IPC LDAZ 1INH INPUT TO PARAMETER BUFFER
0568: 13B2 8D 66 1A STA  PARBH

0569: 13BS A5 F8 LDAZ INL

0570: 13B7 8D 65 1A STA  PARBL

0571: 13BA A0 00 LDYIM $00

0572:

0573: 13BC 60 1PD RTS

0574:

0575:

0576 STRING LOOKUP TABLE

0577:

0578: 13BD 4A MESS = ‘J Y = 00

0579: 13BE 55 = g

0580: 13BF UE = N

0581: 13C0 49 = ‘I

0582: 13C1 UF = 0

0583: 13C2 52 = ‘R

0584: 13C3 03 = $03

0585: 13C4 45 = E Y = 07

0586: 13C5 44 = ‘D

0587: 13C6 49 = ‘I

0588: 13C7 54 = ‘T

0589: 13C8 A4F = ‘0

0590: 13C9 52 = ‘R

0591: 13CA 03 = $03

0592: 13CB 41 = ‘A Y = OE

0593: 13CC 53 = ‘S

0594: 13CD 53 = S

0595: 13CE 45 = ‘E

0596: 13CF 4D = M

0597: 13D0 03 = $03

0598: 13D1 41 = ‘A Y = 14
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0599:
0600:
0601:
0602:
0603:
0604 :
0605:
0606:
0607:
0608:
0609:
0610:
0611:
0612:
0613:
0614:
0615:
0616:
0617:
0618:
0619:
0620:
0621:
0622:
0623:
0624:
0625:
0626:
0627:
0628
0629:
0630:
0631:
0632:
0633:
0634:
0635:
0636:
0637:
0638:
0639:
0640:
0641:
0642:
0643:
o6ul:
0645
0646:
0647:
0648:
0649:
0650:
0651:
0652:
0653
0654:
0655:
0656:
0657:
0658:
0659:
0660:
0661:
0662:
0663:
0664
0665:
0666
0667 :
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13D2
13D3
13D4
13D5
13D6
13D7
13D8
13D9
13DA
13DB
13DC
13DD
13DE
13DF
13E0
13E1
13E2
13E3
13E4
13E5
13E6
13E7
13E8
13E9
13EA
13EB
13EC
13ED
13EE
13EF
13F0
13F1
13F2
13F3
13FY
13F5
13F6
13F7
13F8
13F9
13FA
13FB
13FC
13FD
13FE
13FF
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
140A
140B
140C
140D
140E
140F
1410
1411
1412
1413
41y
1415
1416
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0668:
0669:
0670:
0671:
0672:
0673:
0674:
0675:
0676:
0677:
0678:
0679:
0680:
0681:
0682:
0683:
0684 :
0685:
0686:
0687:
0688:
0689:
0690:
0691:
0692:
0693:
0694:
2695
0696:
0697:
0698:
0699:
0700:
0701:
0702:
0703:
0704
0705:
0706
0707:
0708:
0709:
0710:
0711:
0712:
0713:
0714:
0715:
0716:
0717:
0718:
0719:
0720:
0721:
0722:
0723:
0724:
0725:
0726:
0727:
0728:
0729:
0730:
0731:
0732:
0733:
0734:
0735:
0736:

1417
1418
1419
1414
141B
141C
141D

141E
1420
1422
1424
1426
1428
1424
142C

142E
1430

1431
1433
1435
1436

1438
1434

1438
143E
1430
142
1445
47

1449
1448
TUUE
1450
1452
1454
1456
1459
145C
145E
1461
1464
1467
1464
146D
1470
1473
1476
1479
1u7c
147E
1481
1484

1486

30
ocC
3A
0B
41
o4
03

FF

40
03

09
OF

12

12

12
13

1A

1A
1A
1A
1A
14
1A

14

1
A

ASHETT

$03

= ASCHEX

CONVERT AN ASCII CHARACTER TO A HEX DATA NIBBLE.

1) RETURN WITH CONVERTED HEX NUMBER IN ACCU

2) N =
3) 2 =

ASHETT

NOTVAT

VALIT

VALT

SAID

SIC

1, IF
1, IF

CMPIM
BMI
CMPIM
BMI
CMPIM
BMI
CMPIM
BMIT

LDYIM
RTS

CMPIM
BMI
CLC
ADCIM

ANDIM
RTS

JSR
CMPIM
BEQ
JSR
BMI
BEQ

LDAZ
STA
CMPIM
BEQ
CMPIM
BEQ
JSR
JSR
BMI
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR
JSR
LDYIM
JSR
JSR
LDYIM

RTS

NOT VALID HEX NUMBER
VALID HEX NUMBER

$30 IGNORE 00...2F
NOTVAT

$34

VALIT

$41 IGNORE 3A...40
NOTVAT

$U47 IGNORE 47...7F

VALIT

$FF SET N-FLAG
ERROR EXIT

$u40 ASCII HEX CONVERSION
VALT

$09
$OF

RECCHA WAIT FOR A CHARACTER

?
SIC IT WAS A DELIMITER
HEXNUM READ PARAMETER = ID
SIB
SAID

INL SAVE ID
ID

$00 ID = 00 & FF ARE NOT VALID

SIA

$FF

SIA

RESIN RESET INPUT BUFFER
INPAR READ SA AND EA

SIB NOT VALID CHARACTER
PARAL SAVE ALL PARAMETERS
SAL

PARAH

SAH

PARBL

EAL

PARBH

EAH

DUMP STORE DATA ON TAPE
RESTTY 1/0 RESET

$uC "READY’

MESSY

CRLF

$00 NORMAL EXIT
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0737:

0738: 1487 AO FF SIA LDYIM $FF ERROR EXIT

0739: 1489 60 RTS

0740:

oTU1:

0742: 148A 20 A2 13 GETID JSR IPB READ ID

0743: 148D 30 17 BMI GA NOT VALID PARAMETER

OT7uU4: 148F 8D 79 1A STA 1D SAVE ID

O745: 1492 C9 FF CMPIM $FF SPECIAL ID ?

0746: 1494 FO 11 BEQ IDPAR

0747

0748: 1496 20 02 0B GB JSR RDTAPE READ DATA FROM TAPE

0749: 1499 20 BC 14 JSR RESTTY I/0 RESET

0750: 149C AO UuC LDYIM $u4C "READY”

0751: 149E 20 D6 11 JSR MESSY

0752: 14A1 20 E8 11 JSR CRLF

0753: 14A4 AQ 0O LDYIM $00 NORMAL EXIT

0754:

0755: 14A6 60 GA RTS

0756

0757: 14AT7 AO 5C IDPAR LDYIM $5C “SA:

0758: 14A9 20 D6 11 JSR MESSY

0759: 14AC 20 EB 14 JSR IPBRES READ A SPECIAL ID

0760: 14AF 30 F5 BMI GA NOT VALID PARAMETER

0761: 14B1 8D 70 1A STA SAL SAVE START ADDRESS

0762: 14BY4 A5 F9 LDAZ 1INH

0763: 14B6 8D 71 1A STA SAH

0764: 14B9 4C 96 14 JMP  GB

0765:

0766:

0767:

0768: 1UBC A9 67 RESTTY LDAIM $67

0769: 14BE 8D 82 1A STA PBD

0770: 14C1 A9 00 LDAIM $00

0771: 14C3 8D 80 1A STA PAD

0772: 14C6 A9 TF LDAIM $7F

0773: 14C8 8D 81 1A STA PADD

0774: 14CB 8D 83 1A STA PBDD

0775: 14CE 60

0776 EEEEARRE NN R RRRR R AR RE RN RN RN RN RN RERRRN NN RNNR RN
O777: ##% STEP BY STEP PROGRAM OF THE PRINTER MONITOR **#
0778: Py st 2222222322132 12222222232 2 2 2
0779:

0780

0781: > THE NMI VECTOR FOR STEP BY STEP IS SET AUTOMATICALLY
0782: > STEP SWITCH: ON POSITION

0783: > K4 AND K5 DISABLE THE SYNC SIGNAL OF THE PROCESSOR
0734: > A HARDWARE MODIFICATION IS REQIRED (SEE BOOK 3)
0785:

0786:

0787: 14CF 85 F3 STEP STAZ ACC SAVE ACCU -

0788: 1LD1 68 PLA GET PREG

0789: 14D2 85 F1 STAZ PREG

0790: 14D4 68 PLA GET PCL

0791: 14D5 85 EF STAZ PCL

0792: 14D7 85 FA STAZ POINTL PC OF THE NEXT INSTRUCTION
0793: 14D9 68 PLA GET PCH

0794: 14DA 85 FO STAZ PCH

0795: 14DC 85 FB STAZ POINTH

0796: 14DE 84 FY STYZ YREG

0797: 14E0 86 F5 STXZ XREG

0798: 14EZ2 BA TSX GET OLD STACK POINTER
0799: 14E3 86 F2 STXZ SPUSER AND SAVE IT

0800: 14E5 20 F8 11 JSR PRBUFS OPEN NEXT CELL

0801: 14E8 4C 6A 10 JMP RESALL BACK TO MONITOR

0802:

0803:

0804:
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0805: ##% SPECIAL ID ##=

0806:

0807: 14EB A9 00 IPBRES LDAIM $00

0808: 14ED 85 F8 STAZ INL RESET INPUT BUFFER
0809: 14EF 85 F9 STAZ INH

0810: 14F1 u4C A2 13 JMP IPB CONTINUE

SYMBOL TABLE 3000 3594

ACC OOF ADJPNT 0C72  ASCHEX 0C19  ASHETT 141E
ASSEM 125 BEGADH 00E3  BEGADL GOE2  BEGIN 1ED3
BITS 1A75  BRKT 1A7C  BRKTST 1374  BTWEEN OBES
BYTE 1A6A  CENDH 00E9  CENDL OOES8 CHAR  1A6B
CHARVU 0C5D  CHA 1462 CHECK OB8A  CHKH  1A6F
CHKID OBOE  CHKL  1A6E  CHKSUM OC4B  CLEND 11EF
CNTA 1AF4  CNTC  1AF6 CNTDN 131E  CNTH  1A5B
CNTHH 1ASD  CNTHL 1A5C  CNTL  1A5A COLDST 1CB5
COMPNT 0949 COMTIM 12E0 CONTIN 111C CRLF  11E8
DATATR 0A4D DAT 089C DECPNT 121A  DELBIT 1312
DELHBT 1303  DELY 0927 DISCNT 1A68  DUMP  O9DF
DUMPT 09F3  EAH 173 EAL 1472 EDITOR 124F
ENDADH OOE5  ENDADL O0E¥  FILES 0873 FILMEM 0B70
FIRST 1A76 FMA 0B8Y GA 14A6  GANG  1A78
GB 1496 GETA 0800 GETB O84E  GETERR 11BC
GETID 148A  GETKEY 1DFg  GETTAP 11B0  GET  08k0
HEXDAT OA6A  HEXNUM 126F HIGH  OAC8 HIGHER 1A6C

HIG 0ACB HNUA 1276 HNUB 1284 ID 1A79
IDPAR 14AT INCPNT 1213 INH 00F9 INITPR 1000
INL 0OF8 INPAR 1387 IP 1219 IPA 1395

IPBRES 14EB IPB 13A2 IPC 13B0O IPD 13BC
JUNIOR 1246 JUN 1248 LABJUN 105F LDAINH 1DA7
LIST 10C9 LO 0AE8 LOWER 1A6D LOW OAES
MATD 113F MATF 1142 MATG 1156 MATH 115E
MATJ 1177 MATK 118B MATL 119E MATRIX 1131
ME 11D9 MESEND 11E7 MESS 13BD MESSY 11D6
MINUS 1080 NA 12AB NIBASC 12A4 NIBOUT 0OA9A
NIB 0AA1 NMI 1AT7A NOTVAL 0C29 NOTVAT 142E
ONE 0AA8 OUTBT O0A8B OUTBTC O0ATA OUTCH OAA3
PADD 1481 PAD 1480 PARAHR 1A64 PARAL 1463
PARBH 1466 PARBL 1A65 PBDD 1483 PBD 1482
PC 111F PCH 00F0 PCL OOEF PLUS 085E
PLU 1073 PNT 109F POINTH 0QFB POINTL OOFA
PRA 1347 PRBUFS 11F8 PRBYT 128F PRB 1354

PRCHA 1334 PRC 137C PRD 135D PREG 00F 1
PRNIBL 129B PRSP 11F3 PRTEMP 1A67 RBA OBFA
RBB OBFB RDBA OBD1 RDBB 0BDY4 RDBC OBEY

RDBIT OBC2 RDBYT O0BF3 RDCH 0C36 RDFLAG 1ADS
RDSA 0B60 RDTAPE 0B02 RDTDIS 1AD4 READ 0C38
READCH 1070 RECA 12BB RECB 12CD RECC 12D4
RECCHA 12AE RECD 12BE RESALL 1064 RESET 1C1D
RESIN 1268 RESPAR 1259 RESTTY 14BC RUN 10B2
SAH 1AT71 SAID 143B SAL T1AT0 SAVE 0852
SAVID 11BF SBEGH 0989 SBEGL 0997 SEAH 096B
SEAL 0974 SECOND 1AT77 SENDH 09A5 SENDL  09B3
SHIFT 0843 SHOWPR 1228 SIA 1487 SIB 1486
SIC 1449 SID 093B SPACE 108D SPRA 122F
SPRB 123D SPUSER 0Q0F2 SSAH 094D SSAL 095C
STAR 0B45 STARA 0BS55 STBEGH 08EC STBEGL 08F7
STEAH 08D4 STEAL O08E0 STENDH 0902 STENDL 090D
STEP 14CF STPBIT 1A59 STRTBT 1039 STSAH 08BC
STSAL 08C8 SY 1469 SYINC 0B1C SYNCA 0B21
SYNCNT 1AT7H SYNCS OA1F SYNVEC OB9B TAPDIS 0936
TDISP 091B TEMP Q0FC TEMPA 1A60 TEMPB 1461
TEMPX OOFD TENSYN 0B36 TIMH 1A5F TIML 1A5E
TLOOK O09BB TPINIT 0810 TPI 0821 TPTXT 082E
TPVEC 0918 TTXT 0833 VALID ocC2C VALIT 1431
VALNUM 11CB VALT 1438 VAL 0C33 VNA 11D3
VU oc64 WARMST 1CCA XREG 00F5 YREG 00F 4
ZERO 0AB8 ZRO OAC1
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Appendix 4

Working in decimal

The detours involved to reach either the original monitor routine or the
Printer Monitor during or after execution of a decimal program was
mentioned at least twice in Book 3 (see chapter 12, page 151 and appen-
dix 2). The ‘detours’ consisted of a few instructions stored in PIA RAM.

Although the detours are still necessary, the corresponding instructions
no longer need to be entered into the PIA RAM by the operator, as they
are now located in the very last section of the PM/PME EPROM. The de-
tails are shown in figures 1a and 1b — the BINAR and PMBINA routines.

1 a $17F6 1b $ 17FA
cLp cLD
JMP-SAVE JMP-STEP
SAVE STEP
$1cH0 $ 14CF
(original monitor} PV}

NMI {STEP) NMi (STEP)
I
1A78 1A78 1A7A

1A7A

IRQ (BRK) IRQ (BRK)
i T

1a7F 1A7E 1A7F 1A7E

81916 1a 81916 1b
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Appendix 5

BASIC on the Junior Computer

Although the Junior Computer is quite fluent in machine
language, its linguistic skills cannot lead to full “aduit’ communi-
cation until the machine has learned a ‘high level” language, such
as BASIC. A specially adapted version of BASIC is now available
on cassette from the Microsoft/Johnson Computer Corporation,
which will enable Junior Computer operators to fulfil their
dreams at long last.

Part one

BASIC still remains the number one computer language. Although it may
not be as grammatical and efficient as other languages (such as COMAL or
PASCAL), its popularity shows that it meets the essential requirements of
computer users all over the world. Thanks to Microsoft, who developed an
excellent version of BASIC for the KIM computer some time ago, the
Junior Computer can now be made bilingual, its ‘mother tongue’ being
machine language of course. Even with the addition of a BASIC vocabu-
lary, machine language still plays an important role in various routines and
timing processes etc., so there is no question of it being completely re-
placed. That is a relief for readers who have stayed up to all hours getting
to grips with the machine language instruction set!

The KB9 BASIC by Microsoft is a nine digit 8k BASIC on cassette. Since
this was originally developed for the KIM, it will have to be modified
before it will run on the Junior Computer. Contrary to what might be
expected, this is a straightforward operation that takes a mere fifteen
minutes or so. This is nothing compared to the thousands of man-hours
involved in developing the Microsoft BASIC. Only 31 of the eight thousand
memory locations need to have their contents altered. Now to discover
what ingredients are required to ‘cook up’ a BASIC on the Junior Com-
puter.

The ingredients

First of all, what about the hardware? Obviously, the computer will have
to be a fully extended version. In addition, 16k of RAM has to be located
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in the address range $2000 ... $5FFF, either in the form of two RAM/
EPROM cards each containing 8k of RAM, or the 16k dynamic RAM card
described in the Elektor April 1982 (E84) issue.

Although the extensions were fully described in Book 3, it may be an idea
to briefly recap on a few main points here, as this is really a very basic part
of the BASIC facility! The extra bus board memory should also contain
the three jump vectors situated in the address range $FFFA ... $FFFF.
Appendix 3 in Book 3 mentions two ways in which to include these vec-
tors without the need for an expensive RAM/EPROM card. In the Elektor
April 1982 issue a mini EPROM card is introduced which provides yet
another option.

As far as the software requirements are concerned, both the printer
monitor (PM) and the tape monitor (TM) routines must be available. The
former contains the input/output subroutines RECCHA ($12AE), PRCHA
($1334) and RESTTY {$14BC) which serve to start the Junior Computer
BASIC. The latter contains the main cassette routines DUMP ($@9DF) and
RDTAPE ($0B02). Then, of course, the KB-9 BASIC cassette (not KB-6
nor KB-8!!) will have to be acquired, together with all the necessary docu-
mentation. Other requirements include a cassette recorder, an ASCI| key-
board, a printer and/or a video display terminal and an understanding of
programming in the BASIC language. Anyone who wishes to brush up on
their BASIC knowledge should read the crash course published in the
March . . . June 1979 issues of Elektor or SC/MP Book 2.

The recipe

® Switch on the Junior Computer and start up the PM routine. Place the
KB-9 cassette in the tape recorder:

RST 100 0GO RES

G1(CR)

® Start the recorder in the play mode at the beginning of the tape. The
program number {ID) of KB-9 is @1. Reading in the instructions etc.

takes several minutes, after which the computer reports ‘READY’. Remove

the cassette from the recorder as it is advisable to store the Junior BASIC

on a separate cassette and preserve the KB-9 version in its original form,

® Using the PM routine, alter the contents of 31 memory locations, as
indicated in the first section of the accompanying table. Start by

checking the ‘old’ data at the locations concerned. Any discrepancies will

mean that you have been landed with the wrong version of BASIC!

® Place a new cassette in the recorder. Start at the beginning, reset the
counter and depress the record and play buttons. After about ten

seconds enter:

SB1, 2000, 4261 (CR)

It only takes a matter of minutes for the Junior BASIC to be recorded.

The program number will now be B1.

® As soon as the Junior BASIC is stored on cassette, the message
‘READY’ will appear on the printer or the video screen. Let the tape

continue for a further ten seconds before depressing the stop key.

® 18 locations on page 1A (PIA RAM) need to be loaded with six LOAD
and SAVE instructions. The address area concerned is $1A00...$1A11;
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Table 1

The KB-9 to Junior BASIC conversion table
{based on the KB-9 cassette, # 4065 © 1977 by Microsoft Co.; version V1.1).

1. The interpreter H. Additional instructions on page 1A
a. 1D = B1 instead of 01. a. ID =82

b. 1. Address $2457 should contain AE instead of BA; b. 1. Address $1AQ@Q contains 20;
2. Address $2458 shouid contain 12 instead of 1E; 2. Address $1A01 contains DF;

3. Address $26DD should contain 8¢ instead of 49; 3. Address $1A02 contains @9,

4. Address $26DE should contain 1A instead of 17; 4. Address $1AG3 contains 2¢;

6. Address $2746 should contain 78 instead of F9; 5. Address $1A04 contains BC;

6. Address $2747 should contain 1A instead of 17; 6. Address $1A85 conwins 14,

7. Address $274D should contain 7@ instead of F5, 7. Address $1A06 contains 4C:

8. Address $274E should contain 1A  instead of 17; 8. Address $1A07 contains 48;

9. Address $275@ should contain 71  instead of F6, 9. Address $1A08 contains 23;

10. Address $2751 should contain 1A instead of 17; 10. Address $1A@9 contains 26;
11. Address $2757 should contain 72  instead of F7; 11. Address $1ABA contains 02;
12. Address $2758 should contain 1A instead of 17; 12. Address $1A@B contains 0B;
13. Address $275A should contain 73  instead of F8; 13. Address $1AQC contains 20;
14. Address $275B shouid contain 1A instead of 17; 14. Address $1APD contains BC;
15. Address $275E should contain 1A  instead of 18, 15. Address $1AQE contains 14;
16. Address $2791 should contain 7@  instead of F5; 16. Address $1A@F contains 4C;
17. Address $2792 should contain 1A instead of 17; 17. Address $1A10 contains AB;
18. Address $2794 should contain 71 instead of F6; 18. Address $1A11 contains 27.

19. Address $2795 should contain 1A instead of 17;
20. Address $2799 should contain 79  instead of F9;
21. Address $279A should contain 1A instead of 17;
22. Address $27A4 should contain @9 instead of 73;
23. Address $27A5 should contain 1A instead of 18;
24. Address $27B9 should contain FA instead of ED;
25. Address $27BA should contain 3@ instead of 17;
26. Address $27BC should contain FB instead of EE;
27. Address $27BD should contain @ instead of 17,
28. Address $2A52 should contain 34  instead of AQ;
29. Address $2A53 should contain 13  instead of 1E;
30. Address $2AEG should contain AE instead of BA;
31. Address $2AE7 should contain 12  instead of 1E.

details of the contents of these iocations can be found in the second half
of the table. This data is given the program number B2 and is again stored
on cassette.
® Depress the record and play keys once more and enter:

SB2, 1A00, 1A12 (CR).
® After the 'READY’ message, the cassette recorder can be stopped.
Now it is time to check whether the Junior BASIC is correctly stored in
memory. This can be done with the aid of the ‘question and answer’ game
following the BASIC start address ($4065). It is always a good idea to
enter a test program. The cassette commands can be verified by writing a
BASIC program, storing it on cassette (SAVE), erasing the program area
(NEW) and then reading the program in again from cassette (LOAD}. Once
the Junior BASIC has met with approval, the same procedure can be used
to test the Junior BASIC cassette. For this, the Junior Computer is
switched off for a while and then on again, after which the two programs
(B1 and B2) are loaded from cassette.

Ready to serve

By now the operator is all set to dish up the Junior Computer BASIC. Do
not forget to read the manual supplied with the cassette. This consists of
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the ‘Microsoft Introduction’, ‘Dictionary’ and ‘Usage Notes’. Although the
contents are rather concise, to the point of being cryptic, all the necessary
information is provided. As far as the software is concerned, only one or
two actual addresses are mentioned.
The following remarks, however, should make things a bit clearer:
1. After entering:

RST 10 00 GO RES (RUBOUT)

GB1 (CR)

READY (depress stop key)

GB2 (CR) (depress stop key again)

READY
the Junior BASIC can now be started. A cold start entry takes place at
address $4065.
4065 (SP) R
The program must be started by way of PM and not by way of the original
monitor routine, as otherwise the input/output parameters will be incor-
rectly defined. In any case, PM is indispensable for reading in data.

2. The Junior BASIC utilises the following memory range on page zero:
$0000 . . . $00DC and $OOFF. Thus one of the locations (MODE) be-

longing to the original monitor is used. This merely serves to start PM,

3. The start address for a warm start entry is $0000. In the KIM the warm
start entry allows the computer to return to BASIC after writing or

reading a BASIC program to or from cassette. In the case of the Junior

Computer things are slightly different (see point 9). Here, the warm start

entry may be used to return to BASIC from PM. The jump from BASIC to

PM occurs either as a result of a non-maskable interrupt (NM1) or because

the BREAK key on the ASCIl keyboard was depressed. The BRK jump

vector points to the label LABJUN ($105F) of the PM routine. After

printing the text ‘JUNIOR’, the computer jumps to the central label

RESALL of PM (see Chapter 14 in this book). In the event of an NMI,

RESALL is reached at the end of the STEP initialisation routine ($14CF).

4. The ST key may be used during PM to examine the contents of various
memory locations, such as the ones on page zero (see point 2) for in-

stance. A warm start entry heralds the return to the BASIC program.

5. Supposing the operator is executing a BASIC program (RUN) making
use of the Elekterminal (up to 16 lines on the display} and the BASIC

program turns out to contain more than 16 lines. This is what should be

done:

RUN (CR)

BRK {while 16th line is being printed)

examine result

(SP) R The computer prints

oK

Start the program again: RUN(CR)

enter the 16th and following 14 lines, etc.

6. When starting the Junior BASIC by way of a cold start entry, the
operator will be requested to state the TERMINAL WIDTH'. If the

Elekterminal is being used, this is set at 64 (CR).

7. The ASCII keyboard does not provide a ‘' nor a ’~ key necessary for
power functions, where A4 corresponds to A% What is required is an
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ASCIl key which generates the code $5E. This can be improvised by sacri-
ficing another key. One contact is connected to row x7 and the other to
column y9 in the keyboard matrix (pins 32 and 22 of IC1). Only two keys
are suitable: the 'PAGE’ key at the far right in the top row and the ‘ESC’
key at the far left in the second row. The latter affords the most elegant
solution, as the ESC function is preserved {a matter of combining it with
the Shift key). Interrupt the two connections x5 and y 10 (without actu-
ally cutting the wires!) and link the ESC key to pins 22 and 32 of IC1.
Further details on the ASCIl keyboard are provided in Book 3
(Chapter 12). -
8. In order to start the Junior BASIC by way of a fresh colid start entry
during a computer session, the program (file B1) will have to be loaded
from cassette all over again. This is necessary as a relatively large section of
data block B1 is reserved as the first section of the BASIC work area if any
trigonometric functions are required. After the cold start entry, the com-
puter will request the operator to specify its task. Whether trig functions
are to be performed or not, the computer must be informed by way of a
cold start entry, (once B1 has been loaded again).
N.B. In file B1 ($2000. . . $4260), locations $4041 . . . $4260 are added
to the user work space if the operator wishes to utilise the trigonometric
functions (depress the Y key); locations $3F1F ... $4260 are added to
the user work space if the trig functions are not required (N key) ; locations
$3FD3 ... $4260 are added if the ATN function (A key) is cancelled.
The first memory location is loaded with @0 (BOF: Beginning Of File).
Now that 16k of RAM has been added, the user work space will cover the
following ranges:
$4042 ... $5FFF (8126 bytes) when Y is depressed;
$3F20 ... $5FFF (8416 bytes) when N is depressed and
$3FD4 ... $5FFF (8236 bytes) when A is depressed.
9. Thanks to the Junior Computer subroutine system, reading and writing
BASIC programs to and from cassette (SAVE and LOAD) is much
easier than with the KIM BASIC. The only snag is that this occupies the
second file, B2. After SAVE has been entered, the BASIC program is
stored on tape (where 1D = FE). After a while, the ‘OK’ message will
appear followed by an empty line. After LOAD (CR) is entered, a BASIC
program is read from tape (where ID = FF, so make sure the required
BASIC program is stored before this!). A little later ‘LOADED’ is printed.
This is not followed by the message OK and the computer does not start
a new line. In other words, the video screen will display ‘LOADEDLIST” if
the entered program is to be checked.

Any questions?

Here are the answers to several questions which are likely to be asked:

1. Elektor Publishers Ltd. cannot comply with requests for a copy of the
notes accompanying the Microsoft/Johnson BASIC cassette, as this

would be an infringement of copyright.

2. The source listing of the KB-9 costs a few thousand dollars. Not sur-
prisingly, Elektor is not in a position to sell it to readers.

3. The Junior BASIC is derived from the KIM BASIC, about which plenty
of literature is available.
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Part Two

Polishing up the Junior BASIC

When the Microsoft BASIC appeared on the market for the 6502, several
batches of the CPU did not contain the ROR instruction at that particular
time. That is why it was excluded (out of necessity!) from the muitipli-
cation and addition/subtraction routines. It was replaced by a ‘macro
instruction’, a set of six two byte instructions. Nowadays, however, the
new 6502 chips all include the ROR facility, so that the slow, tedious
macro instructions can be omitted altogether. This cuts down the total
time it takes to multiply nine digit numbers with a floating decimal point
by 37% and saves a lot of memory space.

In the case of the Junior BASIC B1 and B2 can now be combined into a
single file, which means 68 bytes are available for other purposes.

Before modifying anything be sure to preserve the original KB-9 BASIC
and the B1 and B2 files on cassette . . . just in case!, or at least until Junior
Computer owners are absolutely satisfied that the modified BASIC works.

Table 2*

111. Modifications to the addition and subtraction routines:
37C3: 18

e 1 2 3 4 5 6 7 8 9 A B C D
37D0: 76 02 76 ©3 76 04 68 6A C8 DO E8 18 60

IV. The following B2 instructions fill the ‘vacancies’ left by the macro instruction
set:
¢ 1 2 3 4 5 6 7 8 9 A B C D EF
37D@: 20 DF
37E0: 09 20 BC 14 4C 48 23 20 @2 ©B 20 BC 14 '4C A6 27
37F@ . .. 3801 are empty (18 bytes)

V. Modifications to the multiplication routine:

o 1 2 3 4 5 6 7 8 9 A B C D E F
38C0: 66 73 66 74 66 75 66 76 66 BD 98 4A DO
38D9: D6 60 ’
38D2 ... 3903 are empty (50 bytes)

V1. New absolute addresses for the ‘ex’ B2 instructions
see |. The interpreter)

e lines1... 14 (l. The interpreter) remain unchanged

e line 14ais included after line 14:
14a. address $275D should contain DE instead of 3@

e lines 15, 22 and 23:
15. address $275E should contain 37 instead of 1A (18 in KB-9)
22. address $27A4 should contain E7 instead of 89 (73 in KB-9)
23. address $27A5 should contain 37 instead of 1A (18 in KB-9)

e All the other lines and addresses remain unchanged, paragraph Il in Table 1 is
therefore superfluous.

* The modifications indicated in this table are optional.
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So much for the theory . . .

Table 2 shows how to modify the B1 file. Start by loading KB-9 into the
Junior Computer memory. Then modify the contents of addresses $37C3,
37D0...37DD, the ROR instructions used by the addition and sub-
traction programs. After $37DE, the ‘old’ instruction set may be substi-
tuted for B2 instructions. The ones contained in page 1A are stored in
the $37DE ... 37EF address range (see section |l of table 1). Then
change the multiplication routine instructions: $38C3...38D1 (Table 2,
section V).

All that remains to be done is to adjust the absolute addresses belonging to
the ‘old’ B2 instructions in the manner shown in Table 2, section VI.

B1 and B2 will now constitute a new file which could be christened BB,
for example, to avoid confusion. Readers will find the alterations speed up
the Junior BASIC considerably and improve its overall performance.

The division programs are not affected, as they include the ROL instruc-
tion and very tittle would be gained by changing the addition/subtraction
operations.
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