e et R e e s R 6 R e P B [S
O BODZvOn BDEOK M Eiatice
D HOW MDY HHOr M EeirT ey
DOZHOK DOOZHO PO = = - 5
ey o HhozZHOm DRy
e 1 HOE DDSem
o 20O RhozH0Om D
AT OF Oy MaryErataeny -
POy = :
DO T
0O
O
e el

o

410R JUNLOR JU

BT

n2ZHOE
HOE MOZH0Om.

o

N

i1
JUNIT
N

.
JNI
JUNTIC
10

R JUNI

<

HEDE MDD O ey
2p L @ AR b ES 6 e

AHOX L SO
o o

L OR
JU

%)

SJUN

4
R
J
U
N
I
O
R

U
NI

B

0
R
U
N
1
0

DEHOI s e
PDOZHON SO Zp
e ryss
mMDZ-On M
g - DZHO Lz O

LI i O mhHhZwO :
i Lo gl

0

R

J

U

N
NI
I10R
OR JU
JU

St

IOR JU

0
OR
R

J
JU
UN
NTOT

NIOR

10R
R

o

UNIOR JUN
UNICR Ju

JUN

JUNIOR.
IOR

JUNTOR. "

10
I0R JUNIO

IOR JUNT
JUNTOR JUNT
JUNIOR JUNI

JUN

N

o

POz B!
O DDZ RN
oz-Hox HoEHDe |
A HOE - D O P
O ZHO = el U 8 A e H O
QL NPDZ0oa DDOZ2H0OD

=
L

JUNIOR JUNIC
UNIOR JUNIOR

R
OR
R

T
i
¥
;
AN

L

UNIOR JUNIOR
ITOR JUNIOR

R J
Ju
N

N

|

d
U
N

U

INIO
 10R
R

1

3

1

i |
10

OR JUN
Iy
-
N
R g
0
H
T
Fud
U
h

R

IOR JUNT

&
e
OR
=
4.t
J
Ju
oUN
F 5
O

o
U
JUN]

|

Ui
NIOI
SO

R
UN
NI

OR Ju
Jii

OR

J
NI
C

1O Z . 84 HODX PDZHOmM NDZ-HOoE DD
ImaEess NDZHOX HODZ-OmM DZHOME D20 NDZXHOM My
2 C NDZH0OX DBoZH0oK DHDOHZH0om HOHZHOE MDZ-0o M
D) Z PRZHOa BOaZHOD DOZHOX NODZ-HOoE HHZH0e !
noz s POoZHOn NDDZHOK RDZHOXE HDZHOM NDZHOX
x5 & PREHOX DpEHOMm, NoZHOoX HDzZrox N3ZHOK
mi»ﬁﬁ amw; unﬁmwﬂu{w-r{ p e o T @ 0 wuﬂﬁ“iﬂhwﬁ mumwwmumww.&ﬂhﬁ .JH@%&WT%m
Sas O MNDIZHOX NDRZHOEM NDDOZHOX mDZH0oE HDZh
O HOM NOZHOE POZHOE NMDZHOK BhDZWOon Bl
DZHC HO K D200 DZ O PRDZHO MmOy
et i SE AR IS Rk Tpaban)
¥ H5 St BELHE. g G e
P =S aot@ogeste OB R0 S0t
S ?L“,. s M L By :vu, wt.ﬂ s 0 P | WML o e - [HT._:W muﬁww J UHMWT.AA
e O X PEZ-H0r MhDOECHONK DHOZ-WOX ODZH0OE NDDF:
Pz 0O YDZMHC :

JIE BRODEHDIE NMDZHOn DDZE-Oon M

NRZHOE DOZHONE DDZHO NDDZH0e M
DOZHO NDhZHOoa Dz HOom hoOZeHOnm *
DDOZHOX DD O Mgty Y90
NDZ-O0ON D200, M ety Yy o by

>

e 00 NoZHOm ODZHOE RDZH0On HDHZ2C
HEHOm ROZHOO NDZW0E o2 en e
ZHOm POZHOKE BRIOZHOE D2 g s

2 O K POZHOE DDZH0OE e 3 .

I EO
2 e
P2
oo hbhzeom
OO Mo EeOE |
(58 WO DhoDZHon
O DD ZHOE NHZEHOX

o it il

g Jemo Bt o L 6
X -
e
) | ﬁ,”.m mﬁh
IO T
T O
ozl
e DOy
1O my=Zedtary
IO DO MmDOhTEHOm =
_ EarH Ty MO TS T T Pyt
et TSN NOIY M HBoZHOD. o7z

I i
Moz F

iy i Py ey

A B [y A

y BPbZ-H0Or BhozuOr Bhze0r Poe

DL, W O MImseOE RDZ-HO0OT

—O o On RDZOKE DDZmOr M
o

2O BOOZHOX MDZH0on Dz -0
ReHOE HDOIAWOE NDOZH0Or e no

ol el

i, e R e | e i g i T, ¥
5t 1 o o LG 0 s HOLL MDD ZEOIE MYy et Y o HOIY T PYE LYY By e LYY My e b O M5
P T B @ R sy ? pi e s i . ; s Sl b Wt e e b oy ; o el D
e ! RO IRV RQRENE P . MDY S oion W o1E e b R o | o
ot o AN Lo - - G - e i g ; 3 : % 2 wrnit - St %, e fe + 4 T8 Nt *
o B Wl ity 3 = Wyt 44 RS e ‘ - E x Py i Py x s ¥ R " P N P W ot .

|
|
|

1381 T

¥

Elektor Publisher

¥
3

T4

»

INTOR JUON
E HES W i

f ATy B4 T8RS P
. 3 LW i

Copyright © 1981 Elektor Publishers Ltd. — Canterbury.

The contents of this book are copyright and may not be
reproduced or imitated in whole or in part without prior
written permission of the publishers. This copyright
protection also extends to all drawungs, photographs and the
printed circuits boards.

The circuits published are for domestic use only. Patent pro-
tection may exist with respect to circuits, devices, com-
ponents etc. described in this publication. The publishers do
not accept responsibility for failing to identify such patent or
other protection.

Printed in the Netherlands

ISBN 0905705 09 2

2

Junior is growing!

With the addition of the interface board, the Junior Computer can be
transformed into a complete personal computer system. This board will
form an essential link between the computer and the outside world as it
includes additional RAM and EPROM and extra input/output possibilities.
It also enables further memory cards and one or two cassette recorders to
be added to the system. Thus, the Junior Computer is able to communi-
cate with the operator (and vice versa) in a much more sophisticated
manner.

Chapter 10 deals with the practical aspects of hardware involved in the
extension. All constructional details are given together with modifications
required to the main computer board and the power supply. It will be
apparent that Junior may well become too large for its original case and
will therefore require a new one — many readers may welcome the change!
Chapter 11 describes the cassette interface. This includes everything that
is needed in the way of hardware and a brief description of the software
(the software concerned is considered in greater detail in Book 4) required
to transfer data (programs) to and from cassette tape. The cassette
interface allows programs which would normally be stored in RAM, to be
preserved in a more permanent manner, so that they can always be entered
again, modified or further elaborated at a later date.

Additional extensions include an ASCI| keyboard and a video interface or
printer which are described in chapter 12. Programs can then be displayed
on a TV screen (via the Elekterminal) or printed on paper. This gives
greater scope for examining and modifying programs than the original
monitor program could provide. These extensions are essential if the
Junior Computer is to be operated in high level languages such as BASIC.
Each chapter provides clear and practical examples to help readers along
the highways of programming.

And that's not all!

Book 4 is in actual fact the second half of Book 3 and contains:
® A new system program: the PM editor (PME)

® The PM software

® The PME software

@® The TM software

® Extensive listings of all the system programs

Contents

CRapran 10 2o 00 ke o e p B SRR R Lt 2T By g Mol L s, o 2103, 7

Junior grows up — From single board to double-decker ‘sandwich’

Chabtor 1l BlEe st 0 e e T 78
The cassette interface: a magnetic memory — Storing data on and retrieving data
from tape

Chapter 12 0 . R . . oo oo b 114
Adding peripherals to the Junior Computer — Extending the input and output
facilities

Appendine L., e« v as can o s v se e B 191
The main board plus a single RAM/EPROM card — Simple memory extension

A 2 R R s & o a oo el S e 1 B2 180
Using the PIA RAM with the original monitor routine

Appendixi3t s 0 % i L R R ks, e e aniann L o e s 185
The vectors and bus board memory — Alternative solutions to maodifying the
EPROM

PR ey Rov are Tttt n s Ty VeI Be) - SR8 188
The hex dump for the TAPE MONITOR (TM) program

MRS : oo . aUows, e L petinkioral .aGliomaid dich. g 190
The hex dump for the PRINTER MONITOR (PM) program

RN e 2 a b L BT AUL, ST R HIO T UL, S8 T 192
RAM test program — Test the reading and writing skills of your Junior Computer

NG 7 .1 L vt s e s ey BT T TR GO O 199
ASCII character code

10

Junior grows up

From
single board
to
double-decker ‘sandwich’

This opening chapter in Book 3 introduces a number of ‘cards’
(or printed circuit boards) which may be added to the basic
Junior Computer for it to develop into maturity. One way to
look at the fully-fledged system is to see it as a card game in
which certain rules have to be kept if the system is to work
correctly. Once all the cards have been ‘laid on the table’, the
adult Junior Computer looks like this:
¢ Additional ‘brain-power’ in the form of RAM and/or EPROM,
up to a maximum of 64 kilo-bytes, is provided.
® It is equipped to pass data to and from magnetic tape
(cassette interface).
e The computer is now able to communicate with the outside
world in greater depth thanks to the addition of the ‘Versatile
Interface Adapter’ (VIA) which has further input/output (1/0)
facilities and allows more peripheral equipment, such as an
ASCII keyboard and a video terminal or suitable printer to be
incorporated.
The interface board plays a key role in these new developments
— in fact, it acts as the trump card. It will be described in detail
during the course of this chapter, along with full constructional
details. The other extension boards for the Junior Computer are
based partly on existing cards which have already been published
in Elektor magazine. One of these is the RAM/EPROM memory

7

card which regular readers will remember from the September
1980 issue. This has now been modified especially for the
Junior Computer.

It should be noted at this stage in the proceedings (before you
are up to your ears in solder and loose components, that is!) that
readers are under no obligation to construct all the proposed
extension boards — at least, not all at once. Memory cards have
the advantage that they can be added one by one, over a period
of time which the reader can spin out to suit his/her require-
ments (or his/her bank balance!). This subject will also come up
for discussion later on.

Junior is growing . . . to adulthood . . . to maturity . . . to suit
the growing needs of the enthusiastic programmer.

Growth is a natural process — it is part of nature. Junior Computer users
share the same nature, in that, once they have become ‘attached’ to the
machine, their interest and affection grow along with their knowledge. The
desire for development and improvement becomes insatiable! As in all
forms of growth, this involves a certain amount of time and, above all,
patience.

In Book 1, the computer was compared to a human being, the hardware
being regarded as its flesh and blood and the software as its brain. After a
certain age, the physical growth of a human being reaches completion,
whereas, ideally speaking, his/her intellectual development should continue
until death. To put it in relative terms for the Junior Computer: the hard-
ware necessary to prepare the machine for adult life must now be provided.
What hardware is required? Once fully extended, the Junior Computer
may be used with various peripheral devices (one or two cassette recorders,
an ASCII keyboard, and either a video terminal or a printer — or both!).
Before these additions can be made, however, the Junior Computer must
be prepared ‘mentally’, that is, certain software must be developed first.
With the aid of one or more of the system programs to be discussed later
on, the computer is able to expand its vocabulary, its command of machine
language. Eventually, it could even become bilingual, thinking in its
‘mother tongue’, machine language, but expressing its thoughts, either on
paper or on a video screen, in a higher level language such as BASIC. What
is important to note here is the fact that, similar to the human brain, the
cultivation of computer software (in the form of additional system pro-
grams, other high level languages etc.) should theoretically carry on
indefinitely, without the need for any further hardware extensions once
the ones mentioned here have been incorporated into the basic system.

All a-board!

Buses, cards and bus boards

Although we said that growth is a natural process, in this particular case
this is not strictly true. Obviously, the Junior Computer is not able to
grow of its own accord — the user will have to lend it a helping hand.
And a good thing too! After all, the world does not wish to be saddled
with a digital Frankenstein! It is imperative that the user is able to gear
any development to suit his/her personal requirements. It is therefore
entirely up to the user whether or not the various extension possibilities
suggested here are deemed necessary, and if so, he/she is free to decide on
the number of stages and the order in which they are to be added. For this
reason, it is best for everyone to consider carefully whether the extensions
are needed and, if they are, which particular ones.

Readers should not let themselves be influenced by such considerations as:
‘Everyone else does it...", ‘Must keep up with the Joneses..." etc. To
help you make up your mind, you are invited on a bus trip ‘a la carte’.

A single or a double-decker system?

To bus or not to bus . . .

Computer systems designed for amateur use fall into two main categories:
bus systems and single board systems. The former employs several cards
(printed circuit boards) to accommodate all the necessary components.
Usually, the cards are all the same size (the eurocard format is 100 mm x
160 mm, for instance) and are interconnected by means of a ‘bus’. This
is a printed circuit network in which equally positioned points (such as
connector pins) are individually linked together. Buses are sometimes
constructed on the basis of wire links and sometimes ‘bus boards’ are used.
Since the bus is universally compatible within the system, the sky is the
limit as far as the theoretical expansion possibilities are concerned. The
final result is a computer with multiple facilities.

The one distinguishing feature of a single board system, on the other hand,
is that all the components are mounted on the same card. The facilities
available to the user determine the size and complexity of the card. As
readers may well imagine, putting everything on a single board is a bit of
a gamble. It means the user has to estimate his/her needs very carefully
from the start and this often proves to be quite a handicap, as it is difficult
to plan ahead when the possibilities are largely unknown.

Nevertheless, single board systems serve a variety of useful purposes. They
are often used by apprentice programmers in order to gain ‘hands on’
experience and as part of relatively straightforward process control or
monitor equipment (where the computer is switched on permanently). In
its basic form the Junior Computer is in fact a single board system, being
designed as an aid for beginners. Many enthusiasts are currently using it to
sharpen their digital reflexes. So much is written and broadcast about
‘chips’ and ‘microprocessors’ nowadays that construction of ‘your very
own system’ at home has become more than a passing phase: it is a once-
in-a-lifetime milestone that many people feel they should reach before it
gets too late.

The basic Junior Computer is already being used in many applications,
ranging from analogue-to-digital conversion to process control in the
manufacture of semiconductors. Therefore, the interface board is a purely
optional addition and if desired, the expansion connector may be left
untouched.

Growth: in which direction?

Nevertheless, the expansion connector is there and for several good reasons,
Itallows for:

More memory. Additional RAM is provided for user programs and for
temporary storage of the variable output data pertaining to system pro-
grams including those recorded on magnetic tape. Additional EPROM is
also made available to (permanently) store supplementary system pro-
grams. These could comprise several specific routines such as the TAPE
MONITOR (TM) and PRINTER MONITOR (PM) routines which are
discussed in chapters 11 and 12 respectively.

Additional 1/0. The existing Peripheral Interface Adapter (PIA) is com-
plemented by a colleague, the Versatile Interface Adapter (VIA), thus
enabling a larger amount of data to be transferred to and from the outside
world along a ‘dual carriage-way’.

Cassette interface. This is a further hardware addition which allows ordi-
nary magnetic tape to be used as data archives (background information)
and as a data library. As their names suggest, permanent or temporary
information (complete programs if necessary) is stored in the archives,
whereas the library is filled with reference material, programs and sub-
routines which the user has developed, borrowed, copied or bought. These
could well include complete operational programs, system programs (not
necessarily resident in EPROM) or even a high level language interpreter
such as BASIC. Since data transfer here is also bi-directional, a read/
write memory (RAM) is an absolute must, even though the contents of an
EPROM may be stored on tape. Naturally, the cassette interface hardware
will have to have its own relevant software. This takes the form of the
system program called TAPE MONITOR (TM) which was mentioned in
passing earlier and which will be dealt with in greater detail in chapter 11.
RS 232 interface. Additional hardware is required to set up communi-
cation channels along which data can be transferred between the computer
and virtually any complex peripheral device. However, the data ‘traffic
flow" must abide by certain regulations, depending on the peripheral
device(s) used. To start with, Junior Computer owners are advised to
replace (or rather supplement) the standard hexadecimal keyboard with
a full-scale ASCII version. The output which formerly appeared on six
seven-segment displays can now best be expressed either on paper (using
a suitable printer) or on a television screen (video terminal). The Elek-
terminal and ASCII keyboard published in the November and December
1978 editions of Elektor (E43 and E44) are highly recommended for this.
Once a computer is able to provide various modes of expression, its
‘vocabulary’ can be extended to include a number of new system pro-
grams, such as a text editor, an assembler, a disassembler (from the hex
dump to the complete listing), etc. One system program mentioned
earlier has already been developed and is ready for use. This is the

10

PRINTER MONITOR (PM) routine and will receive full attention in
chapter 12.

That covers all the basic details of the hardware required to convert the
Junior Computer to run on a high level language such as BASIC. Once the
expansion connector is employed, the Junior Computer is no longer a
single board system. This does not mean that its possibilities as a bus
system are infinite. On the contrary, the computer is limited by its own
hardware. In fact, the only hardware addition that is envisaged after
Book 3 is a 16k dynamic RAM card. Strictly speaking, this is not a hard-
ware expansion at all, but an economic alternative to the RAM/EPROM
cards described in the September 1980 issue of Elektor (E65) and later on
in this chapter.

In any case, the extended version of the Junior Computer bears no real
resemblance to the average bus system. All the extensions mentioned
above are included on the actual interface board. This has been made the
same size as the main board of the Junior Computer, so that the two can
be ‘sandwiched’ together. If required, an existing SC/MP bus board (EPS
number: 80024, see the January 1980 issue of Elektor) may be linked
to the interface card to house several extra memory boards.

In spite of the bus board addition, therefore, the Junior Computer is not
a true bus system, but rather a ‘double-decker’ sandwich! However, never
mind the exact category the computer falls into, let us examine the
system itself in closer detail.

The interface board . . .

. .. the trump card!

Apart from the optional peripheral devices, the majority of the extension
facilities are housed on the interface board. Readers with a healthy
appetite for bytes are, of course, welcome to add further bus boards and
memory cards (up to a maximum of 64 k).

The word ‘interface’ means ‘link’. It can be thought of as the physical
transition from computer childhood to adulthood. Here the interface
board provides the Junior Computer with a vital link, like an umbilical
cord, with the outside world. This life-line consists of various communi-
cation channels: additional 1/O, a cassette interface, an RS 232 interface
and an internal connection to address and data buses to provide a buffered
‘highway’.

All the electronics involved may be found in figures 1 and 2. As can be
seen, it is more elaborate than the main board even though it is equally
compact in size. Each component will now be discussed separately.

The buffers: softening electronic blows

All the connections to the INPUT CONNECTOR are shown on the left-
hand side of figure 1. This connector must be linked to the EXPANSION
CONNECTOR belonging to the basic Junior Computer. As it happens,
the two boards are linked by several such ‘umbilical cords’. One of these
is made up of five connections to the PORT CONNECTOR of the main

1

% #
(,Pmun 3
s ais o\Ngs Taess o NE2ae OUTPUT
<s 320c
19 e 1l N3 asie érig%gg%
B 0000/000000
20 mi3 o[\l Jaois a3 " " A Yo 17 16 13|30 21 $3 55 54 23
ool o[Y e ¢ [[
WLIYE | = [AB15 19¢
AB14 191
as1) AB13 20c
AB12 20a
| |a810 AB11 21, PAT
AB10 21a
ABY ass 22
aB8_ 222 12v
ABS| AB7 _ 23c
. P e
a87 G <12 vlaBa 24 2.
i 47 w5 v fjaB3 25c o
AB6 5 3 AB2 251 v
J//"‘*.uK —SVE T 26c I‘EV
AB5 2% cie d:lc‘w ABS 265
16V ‘%V 8 4 R10
= 2718 y AB10 PBO 5| N37 10k ! P R13 o
ass 22| €S 5 A2 + Bl
- s i Por G o
P <8 sV x 31
< T 3
' Ica 4 Ics ¥ g v kel) Ind R11 A
ABS 2708 _— 2708 2708 ¥ 4 ok a b o
ABa meom | 2716 M) |y o ram e logr 10c 5 2
At Tl £ MRl
A 8114 L] 8114 oo [oss 10s ¥
B % 25! e el 3K
::: _‘f_’: Ew—’,z 5V ci2] Ri2f o) cs
DB3 8¢ s
1ax © =
T o M naw A 05 oo Vi 47 100
< 1 n
NEEEEEER BE’.;m"’ e n:o 12v am n D2
D87, HEEEEEEE BRI o, O =
=5 4 I O< 1o e 5V - 03
~ alalzl s 812 oo cs
o s HELE HEEE ki S o roe
10c ps DBE| ‘ag = B I 0 1 a2 SNy g g 20 pBS R29| . R27 6n8
ABI 0 cal 21 -
o« ‘ PYTH! 5 caz & o2z £88 T2 A c6 i2v
4 3.‘ s A7 & =g 23 rarfess
2 %2 ps @ oss JJaBs PAG w o«
9 ass ic3 ic2 T Z Laam e o= L|R2e 6n8
H < re 5| RAM RAM H o & BC516 BC516 8 ¥
3] ass 3| 2114 2114 PA3 O Rz 2 2 5
ot 4 10 AB2 e — Jo1 30c 22 Ez
2 9% pa |> osaff o E i1 Al g 5V T, 25 89 __________ 2 3 She
4 ABO 7 -5V 18 . + -
s %“ s [lww cs| 5V | esz2 [=] Srian - o P 1
4 10 RAM A/w 10 8 10 8 %) . o fso & = - L 1N\ 311 /8 \
S p3 o83 k1 [RES S z o < 4 c10
\RQ_1zc w 3 1
G s M1 2120 L i cucl i R [L [R31 5V I“év
3 p \ IO 2 2k2 |+
8c D2 ¢ D82
-
6, 8 INPUT OUTPUT
5
Je 08 oee
L3 -
K2 81033-2
3 A - 819012
Lo g4 w1 N1...N8 = IC9 = 74LS241
ReAD oar 3 N9 ... N16 = IC10 = 74LS241
pAG 4 N17 ... N24 = IC11 = 74L5243
L amny S N25 .. N32=IC12 = 74LS243
29¢ RIW pas___ 6 T 5
280 K1 PA3 7 N33 ... N35=IC13 = 74LS27
28c K2 PA2 8 N36 ... N39 = IC14 = 74LS01
e A 2 N40 =1C15 = 74LS30
17 xa pAs 10 N41 ... N44 = IC16 = 74LS00
158 KS
15¢ K6 iy Rel1,Re2 = DIL reed relay 380
L0 RES BK|
fe g -
7 @2 R N
(PR o 3 " C18...C21=1u/16V Tant
Ta, A 12
'“: sy RW g i]
. i - z = ‘ ‘ ‘ ‘
30a Wty z 15
8 % @ @, ® @ ® @
¢ 5 =
:;: s 54, i < " IC13 IC14 |Cc2 1C3 1c4 IC5 IC15 IC16
v
ST T A vt 2 P @ ©) O
N ac -~] .
T6ac
32

Figure 1. The circuit diagram of the main section of the interface board. It provides
more memory, additional 1/0, buffering including data buffer control and complete
address decoding.

Figure 2. The electronics on the interface board which controls data transfer to and
from magnetic tape and to and from peripheral devices. This section contains the
cassette interface and the RS 232 interface.

12 13

board (see figure 2). These lines permit the actual data transfer to and
from the basic Junior Computer. With the exception of the lines EX and
K1...K®6, which only serve the interface board, all the lines lead to the
OUTPUT CONNECTOR on the right-hand side of figure 1. This joins the
interface board to the bus board which in turn permits one or more
memory cards to be added. Note that a signal connected to an (a) input
will -appear at a (c) output and vice versa. The reason for this will be
explained later when we come to the constructional details.

As can be seen, the address lines previously marked AQ ... A15 are now
marked AB@...AB15 and the data lines previously marked D@ ...D7
are now marked DB@. .. DB7; the B stands for ‘buffered’. Why is buffering
necessary? Well, for two reasons. Firstly, it prevents an overload condition
brought about by too many connections to one output. The number of
inputs which can be connected to a singie output are limited, as for each
extra input the impedance is reduced. By including buffers the available
output current is increased and therefore more ICs can be connected to a

READ =0 READ =0
WRITE =0
WRITE =0
(READ g] m
(8) = () =54 ? }
WRITE =1 WRITE =1
READ =0 READ =0
“;_/&—4
WRITE =1 WRITE =1
READ =1 READ =1
@ — t— @ —1]]~
WRITE =0 =
81901-3a WRITE =0 81901.3b

Figure 3. The principle of operation of the data buffers is illustrated here by means
of diodes and switches.

14

single line. This becomes of vital importance when a large amount of extra
memory is to be added to the computer system.
Secondly, the addition of buffers enables the transfer of data and address
information along the relevant lines between the basic Junior Computer
and the interface and memory boards to be controlled. This means that
the flow of data can now be kept within specific limits in either or both
directions. The microprocessor reads data from the memory and writes
data into it. Addressing is always carried out at the instigation of the
microprocessor, in other words, the relevant address information is always
sent from the 6502.
A buffer can be represented by a triangle with one vertical side, the input,
and the opposite point being the output. Figure 1 shows 32 such triangles:
N1...N32. N1...N16 act as address buffers. Since addressing always
takes place by way of the microprocessor the address buffers are ‘uni-
directional’. In other words, they only allow information to pass in one
direction. Therefore, the triangles are pointing in the direction indicated:
inputs to the left and outputs to the right. The remainder, N17 ... N32
act as data buffers which are 'bi-directional’ — they allow data transfer to
take place in either direction. The odd numbered buffers therefore pass
data from the main board to the interface board and memory card(s) via
the data bus and the even numbered buffers transfer data from the mem-
ory or interface boards to the main board.
As it was stated earlier in the chapter, data transfer is subject to certain
‘traffic regulations’ which the data buffers enforce, rather like police
officers. This particular aspect is illustrated in figure 3. Data flow can be
compared to that of an electric current, the ‘traffic conditions’ being
determined by the position of two switches labelled ‘/READ’ and ‘WRITE’,
connected in series with a diode. The main board is situated to the left of
the switches and the extensions to the right. The position of the switches
is a direct interpretation of the logic levels pertaining to the READ and
WRITE signals. Three ‘legal’ situations are possible:
1. Figure 3a. When both the READ and WRITE signals are logic zero, the
even numbered buffers (N17...N32) are inactive and the odd num-
bered buffers are active. Data may then flow from the main computer
board to the extension boards, if data is to be entered into the interface
board memory, the extension memory (via the data bus), or to the input/
output ports of the PIA or VIA.
2. Figure 3b, When the READ and WRITE signals are both logic one, the
odd numbered buffers are inactive and the even numbered ones are
active. Data may then flow from the extension boards to the main board,
if data is to be read from the interface board memory, the extension
memory or the I/0 ports.
3. Figure 3c. All buffers between N17...N32 are inactive when the
READ signal is logic zero and the WRITE signal is logic one. When the
buffers are inactive they are in the so-called ‘tristate’ condition, that is to
say, there is a high impedance at both the inputs and the outputs. In this
condition no data transfer can take place. This occurs when data is being
shifted inside the main computer board or in the I/O section. The READ
and WRITE signals are generated by the PROM, IC17. More about this
device later on.

15

N.B. Figure 3d shows a fourth, theoretical, possibility where the READ
signal is logic one and the WRITE signal is logic zero, all the buffers being
active at the same time. Needless to say, this situation should never occur,
as data may not be read and written simultaneously. This is again taken
care of by the PROM, IC17.

(Note that the points of the diodes (cathodes) in figure 3 correspond to
those of the triangles in figure 1).

The Versatile Interface Adapter (VIA)
Additional 1/0

The Versatile Interface Adapter type 6522, IC1, merits individual atten-
tion. In fact a whole chapter is devoted to this particular device in Book 4.
The VIA is remarkable in that it offers more facilities than the standard
I1/0 device, the 6532 PIA. As shown in figure 1, the VIA ‘CONNECTOR’
incorporates the relevant connections to the outside world. (It is put in
inverted commas, as it is not a real connector). The 6522 is controlled by
address lines AB@ . . . AB3 and by various signals presented via the control
bus. The eight data lines and the IRQ output (to the left of IC1) will be
familiar from Book 1.

Like the 6532, the 6522 features two chip select inputs. One of them
(CS2) is connected to the output signal K6 of the address decoder, IC6, on
the main board of the Junior Computer. The other (CS1) is linked to the
output of gate N35 which is controlled by the select signal K6 and the
address line AB9. For the VIA to be enabled, the chip select inputs CS1
and CS2 will have to be logic one and logic zero respectively. Gate N35 is
a NOR gate, which means that its output will only be high when all the
inputs are low. Effectively, this means that both select line K6 and
address line A9 have to be logic zero before the VIA will be enabled (in
the case of the PIA, A9 has to be logic one). Since address line A8 is not
connected to either the 6522 or the 6532, the VIA will be situated in the
following address range:

1800/1900 . . . 18FF/19FF

(AB8 = x; AB9=0; K6 = 0)

and the PIA:

1A00/1B00O . . . 1AFF/1BFF

(A8 =x; A9=1;K6=0)

As the address lines A8 and AB8 are both the same (x = either @ or 1),
multiple addressing is eliminated and a total of 256 addresses are available
for both the PIA and the VIA. In the former case, 19 different memory
locations are provided for the PIA in addition to the 128 bytes of RAM.
As can be seen from figure 1, address lines AB4 . . . AB7 are not connected
to the VIA. Thus there are only 16 different memory locations available
for this IC.

Why is an additional input/output nucleus necessary? Well, the PIA
already has plenty of internal ‘housekeeping’ to cope with, such as con-
trolling the six seven-segment displays and scanning the hexadecimal key-
board. Once the RS 232 and cassette interfaces are added, the PIA will be
assigned several other tasks as well. As a result, certain restrictions have to
be imposed on programs using the PIA in combination with the monitor

16

routines. If, for instance, one of the programs from Book 2, chapter 6,
is to be examined in the step mode, all sorts of things could go wrong (let
alone the timing!). Stepping through a program involves a jump to the
SAVE routine of the monitor program after each instruction. Readers
who have forgotten this aspect had better refer back to chapter 7 in
Book 2! The slightest change to the normal state of the input/output
ports of the PIA will affect the operation of the monitor program con-
siderably and it may even stop working altogether.

This is just one of the many dangers involved, but they can all be avoided
by simply reserving the PIA for the internal affairs of the computer and
by keeping the VIA for use in personal programs and other applications.
This does not mean, of course, that monitor subroutines cannot be in-
corporated into user programs.

Address decoding

Certain groups of addresses in the Junior Computer (memory locations)
share one common feature: a specific select signal. Memory on both the
main and the interface boards, as will be seen later on, is selected and
addressed by the signals K@ ... K7. These signals are produced by the
address decoder, IC6, on the main board. Additional memory which is
connected via the bus board is also selected by similar signals which are
generated on the memory board(s) itself (themselves). Further details
of this will be provided in the description of the RAM/EPROM board
towards the end of this chapter.

At this stage it might be a good idea to recap on the exact function of 1C6,
referring back to chapter 1, Book 1. The operation of the address decoder
is illustrated in terms of hardware in figure 4, where it is shown as a
switch, and in terms of software in table 1 in the form of a truth table.
Whenever a certain select signal in the range K@ ... K7 is chosen, the
selected K output will go low (logic zero) and the other seven will all be
pulled up to the positive supply voltage via the resistors, and will therefore
be logic one. As you will probably remember, chip select inputs are
usually labelled CS, where the ‘bar’ indicates that the device is enabled
with an active low (logic zero) signal.

As a matter of fact, the switch in figure 4 does not feature eight, but
sixteen different positions. The other eight contacts are not connected.
Effectively, the position of the switch is determined by the three address
lines A13...A15 and point ‘D’ of IC6, which is either connected to
ground (= logic zero) or connected to point ‘EX’ on the expansion connec-
tor (the wire link on the main board is moved to point EX),

Whenever point ‘D’ is grounded one of the contacts 0. ..7 must have been
selected. If on the other hand, point ‘D’ is connected to point ‘EX’, the
logic level present on the latter will determine whether a contact between
0...7 (EX=logic@®) or a disconnected contact between 8...15
(EX = logic 1) is selected. Let us now take a look at the right-hand column
in table 1.

Clearly, whenever point D is logic zero, something is being decoded either
on the main board or on the interface board. Whenever point D is logic
one, however, this means that memory is being accessed on one of the

17

¢ S AR ®sv additional cards connected to the bus board. Obviously, for this to be the
i case, point D on the main board will have to be connected to point EX,
for it to become logic one. But, if no extra memory cards are to be em-

e ployed, the wire link from point D may be grounded. For then the select

K1 (K) outputs of IC6 can be used to access any available interface board

K2 memory up to a maximum of bk.

K3

s Interface board memory

K5

K6 Additional RAM and/or EPROM

o The memory extension on the interface board covers several ICs and may
819014 be supplemented with bus board memory. We will leave the latter for the

time being and concentrate for the moment on the amount of memory
available on the interface board. The memory areas available on the main
board are selected by lines K@ and K7 and are absolutely full to the brim.

) Select line K6 serves the input/output section and lines K1 ... K5 are
Figure 4. A general idea of what goes on inside the address decoder IC6 on the main reserved to access the total, additional memory areas included on the
board. The eight contacts enable memory situated on the main and interface boards. interface board. Each select signal can access up to 1k of memory, which

means that up to 5k is available. This allows the use of up the 8k total
which is decoded by the basic Junior Computer (see table 1), including the
1k for the PIA and VIA.

In the first place, additional RAM is available. The RAM situated on the
main board is located on pages 00 . .. @3.Even without using other exten-
sion facilities, the operator can now make use of 1k of RAM on the inter-
face board (IC1 and 1C2). This particular section of RAM is selected by
means of line K1. Therefore the address range is 3400 . . . 07FF. In other
words, four further pages (04 ... 07) are available which link up nicely
with the RAM on the main board (pages 00 . .. @3) so that lengthy user
programs can now be entered ‘in one piece’.

Both IC4 and IC5 may be 1k RAMs (type 8114), 1Tk EPROMs (type 2708)
or 2k EPROMs (type 2716). One or two select signals, K2 ... K5, enable
each IC with the aid of the clock signal @2 and gates N41 ... N44. The
clock signal is necessary to time the read cycle and (if appropriate) the
write cycle accurately.

The address ranges for the various select lines are as follows:

K2 = logic @ — addresses 0800 . . . OBFF

K3 = logic @ — addresses OCO0 . . . OFFF

K4 = logic @ — addresses 1000 . . . 13FF

K5 = logic @ — addresses 1400 . . . 17FF

Various selection possibilities are provided depending on the particular
type of device used for IC4 and IC5. If 8114s (1k of RAM) or 2708s
(1k of EPROM) are used, only one select input is required per IC. If 2716s
(2k of EPROM) are used two select signals have to be combined: K2 and
K3 for IC4 (address range 0800 . .. BFFF) and K4 and K5 for IC5 (address
range 1000 ... 17FF). Solder points A ... F are provided to select the
required address range and are interconnected to suit the type of memory
used. The same is true for points G...0O and G’ ...Q’, which are wired
according to the value of the supply voltage requirements and also accord-
ing to whether or not an additional address line (AB 10) or the RAM-R/W
signal is required.

Table 1. The truth table for the address decoder (IC6) on the main board.

8K0

=EX=

main! board
i = interface board

b

L(¢p) orD
=A12
=A11
=A10

bus board

K7
K6
K5
K4
K3
K2
K1
m

,massasoscgeesees8es D
il — B = BB~ I AR = IR =T~ 1 C
il = B = it — 1 — S — W~ SR O~} B
— 8- e—e—-8=8-=8=8 A
e g~ N W (G G QU G
T N R N G W Qe Gy, WS N N (T U |
b et Ll) W T h) e b e
n-_-.d_n-_n_s_-_n_n_xgda_._.
R b o B ANl e i) RS SX
SN SCR ST S o QR G g T e
B L e Qe N~ R
i

LoD o 8 o gugeg et D B

18
19

Full or partial address decoding?
Sixteen or thirteen address lines?

In the basic version of the Junior Computer only 8k out of a possible total
64k of memory is actually decoded. Address lines A13 ... A15 are not
used, leaving thirteen address lines to access 2!° = 8192 (8k) different
memory locations. This s, of course, none other than the 8k of memory
which can be enabled with the eight (K) outputs of the address decoder.
Earlier we stated that the full 8k can be utilised, once the interface board
has been connected up to the main computer board. Thus, provided we are
prepared to get by without utilising any extra memory cards, there will be
no need to use address lines A13... A15.
However, supposing that we do wish to use some extra memory after all,
the 8k so far available is fully occupied and so we will have to draw upon
the remaining 56k (64 — 8). The remaining three address lines are now
required and the following must take place:
1. Special provisions will have to be made to ensure that only the extra
memory is accessed and that the original, basic 8k remains untouched
(see table 1). This is necessary to avoid multiple addressing which can lead
to disastrous results. The solution is quite simple: connect point D to
point EX (move the wire link from ground to EX). This will ensure that
none of the select outputs from IC6 will be low whenever point EX is
logic one.
2. Supplementary address decoding is required on the RAM/EPROM
card(s). Again, this will be considered in greater detail towards the end
of this chapter. In the top right-hand corner of figure 1, point EX is shown
connected to the output of an inverter, N34. This inverter is controlled
via the NOR gate N33 which is, in turn, connected to address lines
AB13... AB15. As soon as one of these three address lines becomes logic
one, point EX and therefore point D of IC6 will also become logic one.
When all three address lines AB13... AB15 are logic zero, point EX and
point D will also be logic zero. The end result is the following address
system:
The total main and interface board memory and the 1/0O (PIA and VIA)
can be accessed between address locations: @000 ... 1FFF (pages 00 . .
.. 1F) = 32 pages = 8k.
Depending on the number of extra memory cards required (up to 56k),
one or more memory areas can be selected in the address range:
2000 . .. FFFF = 256 — 32 = 224 pages of %k each.
Partial address decoding (without address lines AB13 ... AB15), as you
know, causes multiple addressing. An address is always expressed as four
hexadecimal figures (= nibbles). The ‘superfluous’ address lines A13 . .
.. A15 correspond to three-quarters of the most significant nibble, in
other words, to the left-hand nibble of the page to which the address
belongs. Since any of these address lines can go high without the operator’s
knowledge, each individual address will appear eight times.
Consequently, addresses belonging to page @x where x=0 . . . F, will also
appear in pages 2x, 4x, 6x, 8x, Ax, Cx and Ex. Conversely, addresses
belonging to page 1x where x = 0. .. F, are also accessed on pages 3x, 5x,
7x, 9x, Bx, Dx and Fx.

20

Thus, as soon as the memory is extended beyond the 8k, the two pro-
visions mentioned above have to be made, enabling any address location
within the range 2000 . . . FFFF to be accessed only once.

Data traffic control
How to manipulate the data buffers

The EX output signal is also passed, under the nomenclature 8K@, to one
of the address inputs of the PROM, IC17. This device contains 32 bytes in
all, but only two bits in each byte, Y1 (= WRITE) and Y2 (= READ), are
used. These two bits control the direction of data flow through the buffers
N17...N32. The 32 bytes can be accessed via the five address line inputs
A. .. E, which will be described later on.

olofo]ofo]o]x]x]

.

W ———————— \5\—{01‘3]0[0 ofo[x[x]

WITH 8K@ KX VIA RW /

s

i N EREEPRR

e OEBERRE

L— WRITE
81901-5 READ

Figure 5. The PROM, IC17, represented as a ‘byte switch’. Five address lines select
one of the possible 32 positions. However, not all 32 positions are actually used.

The operation principle of the PROM is illustrated in figure 5. A 32 pos-
ition switch is used to select one of the 32 possible data bytes. The re-
quired position being determined by the logic levels present on the five
address lines. The result is a particular 8 bit (= 1 byte) ‘word’ at the eight
data outputs. Obviously, the 32 bytes have to be programmed into the
PROM beforehand. The required patterns of ‘ones’ and ‘noughts’ are listed
in table 2. Provided the five address lines all feature a specific logic level, a
certain bit pattern will be constantly available at the output of the PRGM.
In other words, the PROM is read continuously, without the need for a
chip select (CS) or read/write (R/W) control signal.

Seeing as the PROM is so complicated to access, why have one at all? Why
not simply make do with the R/W signal in the manner provided on the
main board of the Junior Computer? To find out, let us see what happens
when data is read from the RAM, EPROM or |/0 situated on the main
board. If the R/W signal is connected directly to the READ and WRITE

21

Table 2. The contents of the PROM, IC17. The ‘program’ is shown as hexadecimal
addresses and data.

ROM-address (hex)
WITH of WITH
STQ
KX
VIA
R/W

Y8
= READ
= |

WR
PROM-data (hex)

o
00 00
o1 03| |@©
02 00
03 00
04 01
05 0@
06 00
07 03]|®
a8 00
09 00
0A 00
00
ac 01
oD 01
0E 90
oF

Q @0 6

00
03

L=
w
S Ssssssaaaass LS e00 0SSOSR RQRSSS |E

R R I R SRR R~
R~ R N =R -l '
- -Ses--ee-~-ee--29e--e8--8e--8e-~-988 |B
“S-e-e-e-8-e-8-8-S-~S-Q-8-8-s-8-8 A
e SS90 SSS96088888008S0C80S8S8E888E8 |3,
Ss-sesesl-sesles-slesleslesas[-slsslss=g]|yr
Ss-eeeegl-g- s~ ses- lseasl-sl--lasl-glly]
8

connections on the interface board, the odd numbered data buffers,
N17 ... N32, will be enabled each time a write operation occurs and the
even numbered buffers will be enabled at every read operation. This means
_that they will allow data to flow to.and from the data bus even though the
interface board itself is not necessarily being addressed. Thus, as the inputs
will be in a random logic state when the outputs are activated, the infor-
mation appearing on the data lines is bound to be incorrect. The solution,
therefore,. is to control the data buffers with the aid of the address system
of each circuit, so that data transfer through the buffers only takes place

22

uP

s

< data bus

90?
”

A

' 14
1?

[14
7

FAEEAEAG e

g
~

-9

I

e
17?

81901-6

Figure 6. The undesirable situation which crops up if the processor reads an
addressable memory range on the main board and the eight data buffers are enabled.
This leads to ‘multiple addressing’. This does not matter provided the eight data bits
are at the same logic level as the corresponding buffer outputs, which is very
unlikely! The only solution is to disable the data buffers in such instances.

at the correct moments.
The PROM is included for another reason as well. The NMI, RES and IRQ

vectors can now (once the address decoding is complete) be stored at their
true address locations FFFA ... FFFF, instead of 1FFA ... 1FFF (as in
the EPROM of the basic version of the Junior Computer). This will only
work, of course, if page FF is actually stored in EPROM. Since page FF is
now included on a RAM/EPROM card, which is connected to the main
computer board by means of a bus board, we will refer to it as bus board
memory from now on.

N.B. As soon as the bus board is used to connect one or more memory
extension cards, page FF must be included in EPROM with the correct
vectors, so that multiple addressing (where FF = 1F etc.) can no longer
occeur.

23

The PROM

Now to get back to addressing the PROM, IC17. The five address lines

from which the READ and WRITE signals are obtained are as follows:

A. The R/W or R/W signal (the bar above the W merely denotes that the
write signal is active when logic zero and helps avoid confusion).

B. The ‘VIA' signal. This is obtained from the output of N35 and is none
-other than the CS1 signal_pertaining to the VIA. This line is logic one

when the select line K6 and the address line AB9 are both logic zero, that

is to say, when the VIA is selected. Inside the 1k memory zone decoded

bt:/ K6, the PIA is situated before the data buffers and the VIA behind

them.

C. The KX signal. This is derived from the select lines K1 . . . K5 via gates
N40 and N36. The output of N36 (KX) will be logic zero when any of

the select lines are logic zero, in other words, when the interface board

memory is being accessed.

D. The 8K® signal. This is another name for the EX signal which was men-
tioned earlier. This line will be logic zero when the first 8k of memory

(inciuding 1/0) on both the main and interface boards are being addressed

and will be logic one when bus board memory is being accessed.

E. Pin E of IC17 is either connected to +5 V (wire link RS) or grounded
(wire link RT). This pin must be logic zero when no bus board memory

is connected (indicated as WITH, meaning WI THOUT) and must be logic

one when extra memory is employed (indicated as WITH, meaning WITH).

The wire link RS or RT is included for the simple reason that it gives the

;ser the option of adding extra bus board memory now or at some future

ate.

Table 2 gives a survey of the contents of the PROM. It contains all the pro-

gramming details required. Bits Y3... Y8 are permanently logic zero as

they are not used. In principle, 32 different situations are possible leading

to a selection of one of the three ‘legal’ READ and WRITE combinations.

In practice, however, only eight situations remain if the separation into

read and write is disregarded:

1. Writing to or reading from memory on the interface card (IC2. . . IC5).
The data buffers are enabled to provide a read or write operation in

PROM addresses @@ and @1.

2. Reading from EPROM and either reading from or writing to RAM or
the PIA on the main board. The data buffers are all disabled (PROM

addresses 04 and @5).

3. Reading from or writing to the VIA. Since this involves the interface
board, the data buffers will be enabled to provide either process (PROM

addresses @6 and @7).

4. Writing to or reading from bus board memory (PROM addresses @C
and @D). Since in this situation address line E is logic zero (WITH =

WITHOUT), no bus board memory is connected and so the data buffers

must all be disabled. The NMI, RES.and IRQ vectors are automatically

defined by the EPROM on the main board of the Junior Computer.

5. See point 1 (PROM addresses 10 and 11).

6. See point 2 (PROM addresses 14 and 15)..

7. See point 3 (PROM addresses 16 and 17).

24

8. This partly corresponds to point 4 (PROM addresses 1C and 1D). As in
points 5...7, address line E is now logic one, (WITH), which means

that bus board memory is connected. Now, however, the data buffers will

have to be enabled to allow data transfer to take place in one direction or

the other. The three vectors (NMI, RES and IRQ) must now be contained

in EPROM at address locations FFFA . .. FFFF.

It can be concluded that half of the 32 bytes inside the PROM, IC17, are

truly necessary. The other 16 logic states are irrelevant, since such combi-

nations as D = 8KB, C = KX and B = VIA just do not arise. As table 2

shows, however, outputs Y1 and Y2 are always logic zero in the other

16 cases. This indicates that the data buffers are prepared for a write oper-

ation and so are perfectly harmless.

Strictly speaking, only five of the eight situations mentioned ever occur.

In two of the five cases the data buffers are disabled:

a. When memory on the main board is being accessed;

b. When vectors are being sought in page FF, whilst referring to the orig-
inal EPROM on the main board since no bus board memory is con-

nected.

In the remaining three cases the data buffers are enabled to allow data

transfer to take place:

c. When memory on the interface board is being accessed;

d. When the VIA on the interface board is being accessed;

e. When bus board memory is being accessed, because, for instance, the
6502 requires certain vector information.

That just about covers figure 1, the address decoding and buffer control

systems, now for figure 2. ..

The cassette interface
Storing data on tape

The majority of components shown in figure 2 refer to the cassette inter-
face. This includes everything that is required in the way of hardware (the
software involved is dealt with in chapter 11) to transfer data to and from
a normal cassette recorder. When data is being read the tape recorder will
be in the playback mode and when data is being written the cassette is in
the record mode.

Data is transferred to and from the microprocessor by way of the PIA port
line PB7 which is available on the port connector of the main board. When
data is being written during the DUMP/DUMPT subroutine of the TAPE
MONITOR system program, port line PB7 functions as an output, as do
port lines PB5 and PB6. These latter two lines will then be logic zero and
logic one respectively. As a result, the input of N38 (pin number 8) will
also be low and so its output will be high (N38 has an open collector out-
put which presents a high impedance whenever it is logic one). Since port
line PB5 is logic zero, the PNP Darlington transistor T3 is turned on via
resistor R15 and so the red LED, D5 (OUTPUT ON) lights and relay Re2
is activated. The relay contacts are linked to the output socket J4. If a
corresponding plug is wired in series with the motor of the tape recorder,
the latter can be switched on by means of software, provided of course
the machine is ready to record.

25

Since port line PB6 is logic one during a write operation, transistor T2 will
not conduct, the green LED, D4, will not light and relay Re1 will not be
activated. The output of gate N39 is fed to potentiometer P2 via resistor
R20 and capacitor C14 and is used to preset the maximum record level.
Connector J2 is the actual data output socket.

When data is being read from tape during the subroutine RDTAPE con-
tained in the TAPE MONITQR system program, port line PB7 functions
as an input and lines PB5 and PB6 will once again be outputs. This time
port line PB5 will be logic one and port line PB6 will be logic zero. As a
result, gate N38 can now pass on the data output signal from IC7 to the
port line PB7 after inverting it. Gate N39 remains enabled, so that the data
signals are also passed to the output socket J2, but without doing any
harm. Now that line PB5 is logic one, the red LED, D5, will not light. Port
line PB6 will now be logic zero causing transistor T2 to conduct, the green
LED, D4 (INPUT ON), to light and relay Re1 to be activated. The con-
tacts of this relay are linked to socket J3 which can be used to control the
playback machine.

There is no absolute need to utilise two tape recorders for storing and
retrieving data. If only one is used for both purposes, remote control will
no longer be necessary and the relays will then seem superfluous. How-
ever, it is best to mount them both on the board ‘just in case’!

In addition, transistors T2 and T3 and the two LEDs provide useful infor-
mation about what is actually going on. The red LED lights when data is
being written to the cassette recorder and the green LED lights when data
is being retrieved from tape.

The PLL
Digital to audio conversion (and vice versa)

The section of circuit in figure 2 between the data input socket, J1, and
the input of N38 (pin number 9) is next on the list for discussion. The
circuitry around 1C6 and IC7 will undoubtedly look familiar to KIM oper-
ators. It is in fact similar to part of the KIM hardware, albeit improved,
because we see no reason for re-inventing the wheel!

Before describing the circuit operation in detail, it is useful to know that
the data is recorded onto tape in the form of a series of audible signals.
These are rectangular in shape, a 3600 Hz tone being followed by one with
a frequency of 2400 Hz, and so on (see diagrams (1) and (2) in figure 7).
A signal with a frequency of 2400 Hz corresponds to a logic low level
while 3600 Hz corresponds to a high logic level.

The circuit around IC6 and IC7 makes sure that the output of IC7 is high
when a frequency of 3600 Hz is present at the input connector J1 and that
it is low when a frequency of 2400 Hz is present. The RDTAPE subroutine
extracts either a logic one or a logic zero from the audio information,
depending on the duration of the two tones. Together with the associated
components, IC6 constitutes a phase-locked loop (PLL). To explain this
type of device in great detail (with complex formulae) would fill an entire
book! Therefore, we hope that readers do not object to a relatively brief
description of its operation. t

Where the interface card is concerned, the PLL may be regarded as a

26

3600 Hz 2400 Hz

@0 LML LT Bow

3600 Hz 2400 Hz

© 1T LI L how

@ 0 _J__Z—L'_r PLL <]from tape
@ 1 | 1 | 2 I PLL <]from tape

819017

Figure 7. Each data bit which is sent to the cassette tape consists of a high frequency
signal followed by a low frequency signal. The duration of each depends on whether
the bit is logic one or logic zero. Due to the record/playback chain of the recorder,
which acts as a low pass filter, the retrieved signals will not be symmetrical
squarewaves. The zero-crossings nevertheless maintain the same position which
enables the PLL to produce the compromise product (diagram (3) or (4)), and the
software of the TM program deciphers this to give the required output: logic 0 or
logic 1.

frequency follower. This is because it is similar to an emitter follower,
where the output voltage imitates the input voltage. In this instance, an
internal oscillator alters its frequency to correspond with that_qf the
incoming signal within a certain frequency range and above a minimum
input signal level. The internal oscillator produces a signal with a fre-
quency which is proportional to a control voltage (Voltage Controlled
Oscillator = VCO). Without any input signal, the free-running frequency of
the VCO is approximately 3000 Hz — exactly halfway between the fr(_e-
quencies of the two required audio signals. If the input frequency is
3600 Hz, the VCO frequency will rise by 600 Hz; with an input frequen_cy
of 2400 Hz it will drop by 600 Hz. The control voltage has to be in-
creased for the frequency to drop and reduced for the frequency to rise.
Thus, the level of the control voltage is directly related to the frequency of
the input signal and, after comparing it to a fixed reference voltage_, itallows
a logical distinction to be made between the two frequencies: logic one fqr
one frequency and logic zero for the other. This principle of operation is
often termed ‘frequency shift keying’ (FSK).

The power supply for the phase-locked loop is fed via diodes [DZ and D3.
Capacitor C8 is connected in parallel with the two diodes in order to
suppress any transients. This ‘clean’ supply voltage (about 11 V due to the
diodes) is also used to preset the input bias voltages (pins 2 and 3 of ICG)
by means of resistors R21 . .. R24. In the KIM computer a 5 volt supply is
used and any interference ‘spikes’ pass straight through to the (in theory)
balanced inputs.

Another difference between this system and the KIM is that in the !<IM
the input signal is not attenuated by a factor of ten until it reaches pin 2.
All these improvements make the system so easy to work with that the

27

user would have to be very careless to make a mistake when inputting
data.

Pin 2 of IC6 (a form of differential amplifier input) is used as an asym-
metrical control. The system is connected to the input socket J1 via
capacitor C1 which has a much lower value than that in the KIM in order
to filter out the maximum number of frequencies below 2400 Hz. Resistor
R37 is included in case.the loudspeaker output (or headphone output) of
the cassette recorder is to be employed.

The free-running frequency of the VCO is determined by the values of C3,
R25 and the setting of potentiometer P1. It is very important to preset P 1
correctly, as this largely determines the quality and reliability when
reading data from the tape recorder. Various methods for setting P1
correctly will be given in a subsequent chapter.

The output of the PLL appears at pin 7 of IC6. This supplies the control
voltage mentioned earlier, to ensure that the VCO output frequency is
proportional to the input signal. Capacitor C9, which is connected be-
tween the VCO output and +12 V, constitutes the required low pass filter
together with an internal 3k6 resistor. This enables the PLL to react
quickly to any changes at the output without any fear of ‘overshoot’. The
output of the PLL is connected to the inverting input of the comparator,
IC7, via the ladder filter consisting of resistors R26 . .. R28 and capaci-
tors C5. .. C7. The non-inverting input of the comparator is connected
to a fixed reference voltage produced by IC6 (at pin 6) via resistor R29.
The values of the components in the ladder filter depend on the speed
at which the 3600 Hz and 2400 Hz frequencies follow each other. This
in turn is determined by the speed at which the data bits are written to
and read from the tape. This is commonly called the baud rate — the
number of bits transmitted or received per second. In the case of the
Junior Computer, the baud rate is 800 (bits per second) for both the
hardware and the software.

As you will remember, when the frequency of the VCO rises to 3600 Hz
the output voltage at pin 7 of the PLL falls and when the VCO frequency
decreases to 2400 Hz the output voltage rises. Therefore, since the fil-
tered DC output from IC6 at the inverting input of the comparator is
either higher or lower than the reference voltage present at the non-
inverting input, the output of IC7 will go high (logic one) when the
input frequency is 3600 Hz and will go low (logic zero) when the input
frequency is 2400 Hz. This is exactly what is required. The output voltage
of_|C7 is then inverted by gate N38 (high goes low and vice versa) before
being fed to port line PB7 (see diagrams (3) and (4) in figure 7).

NB There is a limit to the speed at which the PLL can react to a change
In input frequency. Consequently, the output of IC7 will not change state
Iinstantaneously, but will fluctuate between the two logic levels before
eventually making a definite choice. This is called PLL ‘jitter” and is similar
to contact bounce when switches . or relays etc. are operated. There is
absolutely no need to worry about this phenomenon as the subroutine
E?}TAPE in the TAPE MONITOR system program takes care of this
ehaviour.

28

Connecting peripheral devices via the RS 232 interface

The small circuit situated at the top left-hand corner of figure 2 is sur-
prisingly straightforward, considering the enormous possibilities that it has
to offer. For it enables highly complex peripheral equipment to be connec-
ted to the Junior Computer. It consists of a serial data transmitter and
receiver with port line PA7 acting as an input and port line PB@ as an
output. The receiver section consists of transistor T1 and associated
components and simply inverts the incoming signal.

The transmitter section is slightly more complex! If we suppose that the
input (pin 6) of N37 is connected to +5 V by way of resistor R8 and
forget about the wire link P-Q for the moment, N37 will invert the in-
coming signal from port line PB@. The output of N37 will then control the
comparator, 1C8, via resistor R10. A comparison is then made between the
output of N37 and the voltage at the junction of R11/R12. When the out-
put of N37 is high the output level of IC8 will be approximately +12 V.
Conversely, when the output of N37 is low the output level of IC8 will be
about —12 V. Again it can be seen that the output signal from port line
PBO is inverted irrespective of whether the logic levels are adapted to any
particular voltage (£ 12 V) or not. The data input and output are connec-
ted to a standard 25 pin D-type connector, the RS 232 connector. This
particular number refers to the universally adopted standard which has
been established for data communications. Each data byte is preceded by
a single start bit and is followed by one (or sometimes two) stop bits.
The data bytes are coded according to the ASCII format.

The RS 232 standard determines the two possible logic levels and their
corresponding voltage values. Later on the D-type connector was included
in this standard. A logic zero is represented by a voltage between +5 V and
+15 V (RS 232C version) and a logic one by a voltage between —5 V and
—15 V. In the Junior Computer this corresponds to about +12V and
—12 'V respectively. In other words, a low voltage represents a high logic
level and vice versa. This is known as negative logic. By inverting the logic
levels in the RS 232 interface twice, once during transmission and once
during reception, however, the computer does not have to bother about
such subtle distinctions. The D-type connector features a number of pins
which are internally linked. These links may be altered to suit the particular
peripheral device used.

The first suitable device that springs to mind is the Elekterminal, a video
display terminal and ASCII keyboard which was originally designed for
the Elektor SC/MP system, but which is equally suitable here. The system
program PRINTER MONITOR is based on using the ASCII keyboard as
an input (through various key commands) and the actual Elekterminal or
a suitable printer (not — at least, not for the moment — the metal foil
printer published in the March 1980 issue of Elektor magazine) as an out-
put (display).

Now all the hardware involved in the extensions has been discussed, apart
from the ‘revised’ power supply and a few other minor modifications
required to the main board of the Junior Computer. Depending on which
extensions are to be incorporated, this may involve changing a few resistor
values, adding an extra wire link etc. Nevertheless, the power supply for

29

the computer system will have to be modified to cope with the extra
current requirements.

The ‘revised’ main board and power supply
Constructive surgery on the existing boards

Provided a man does not suffer.from bad circulation, the heart inside his
body should be able to pump blood to the top of his head and to the tip
of his toes. Similarly, the power supply for the Junior Computer must be
in close contact with the ‘extremities’ of the machine, the extension
boards, at all times. Now that the supply current for the computer (the
‘blood’), has to travel such relatively long distances, the ‘arteries’ of the
system will have to be widened to cope with the extra flow. At the same
time, the main board at the heart of the computer will have to undergo a
little minor surgery in the form of a few modifications here and there. Just
as an office worker would have to build up his muscles considerably to be
able to tackle the labour of a lumberjack, the Junior Computer has to be
‘“trained’ to withstand the new strain imposed upon it. Again, the amount
of ‘muscle’ that needs to be added all depends on the ambitions of the
operator,

Preparing the main board

Actually, the ‘operation’ involved is not nearly as drastic as it may sound
and can be carried out in three steps:
1. Change one or two resistors. As you know, the address and data lines
have to be buffered before they can serve the various extensions. The
control lines, however do not need to be buffered, that is, apart from the
RAM-R/W signal. One method of effectively buffering the latter signal is
to reduce the value of the pull-up resistor, R5, on the main board connec-
ted to it to 470 2. The lower resistance value allows the signal to react
faster to any change in logic level. The speed of operation of the select
signals K@, K6 and K7 could also be increased by reducing the values of
pull-up resistors R14 . .. R16.
2. Move the wire link at point D of the address decoder from ground to
point EX. This modification is more or less optional, but is an absolute
must if extra bus board memory is to be added.
3. Extend the circuitry around gate N5, in order to disable a non-maskable
interrupt (NMI) on specific occasions and thus prevent a program from
being run in the STEP mode. Figure 8a presents the situation ‘as of old’,
whereas figure 8b shows the modified version. Figure 9, on the other hand,
gives the pulse diagrams for the various signals around the circuit.
Those of you who read Book 1 will remember from the instruction listing
at the back of the book that every instruction takes a certain amount of
time to be executed. This is expressed as a whole number of clock periods.
During one clock period the op-code of the next instruction to be
executed is fetched from memory. This occurs during the last phase of the
instruction currently on display. Every time data is fetched from memory,
the R/W signal (see diagram 2 in figure 9) has, to become logic one (after
all, an op-code has to be read!) and a SYNC pulse will cause an interrupt

30

3
SO
s24
! o—pNM

SYNC 2
2 STEP

— K7
N5,N6 = %4 IC10 = % 7401/74LS01

81901-8a

N5 ...N8 =1C10=7401/74LS01

“Ka,7" ’

K7 »—ﬁa
e

Kdor K6 - 9
K4 : pin 5, IC6

K6 : pin 7, IC6, R15
K7 : pin 9, IC6, R14

819018b

Figure 8. The additional circuitry required on the main board to inhibit the step
function (by disabling the NMI). This is necessary when the PM program or the
original monitor routine is called (see Appendix 2).

(NMI) by way of gate N5, unless the K7 select line goes low. This means
that the NMI will be enabled unless the EPROM on the main board of the
Junior Computer is being accessed. When a non-maskable interrupt occurs,
execution of the current instruction (the one whose op-code was fetched)
will be completed.

In the STEP mode, the NMI jump vector will be pointing to the start
address of the monitor program (1C0@), meaning that as soon as the
computer encounters monitor instructions, the NMI will be disabled and
the machine will leave the step mode. This is quite logical, seeing as the
whole purpose of the monitor program is to run through a complete series
of instructions without interruption. This happens, for instance, when the
computer is waiting for a new key to be depressed and when it multiplexes
the six displays.

When we get to chapter 12, it will be seen that the NMI also needs to be

31

O LML MM L LrL «

by
<<

® 1] R/W

o . . P i | SYNC
® ¢ ORI il

(K4)

® J U‘L NMI

819019

Figure 9. A SYNC pulse is generated during the final execution phase of an
instruction, when the op-code is being fetched from memory. Whenever this happens,
the instruction being examined (the one whose op-code was being fetched) will be
dealt with completely.

disabled not only to run the printer routine, but also for programs which
are entered manually into the PIA RAM, The latter type of program may
be combined with both the original monitor program (see Appendix 2),
and with the PRINTER MONITOR system program. Select line K4
enables the PM program and line K6 the PIA RAM. This explains the
circuit diagram shown in figure 8b, where the NMI is disabled during a
SYNC pulse, whenever either K4 or K6 is logic zero.

Except for the new resistor values and the modifications shown in figure
8b, the main board electronics remain virtually unchanged. Up to now,
only two of the four gates contained in IC6 were utilised. However, they
are all required by the PM system program. This is made possible by
adding a tiny module to the existing board. Again, this is an optional
‘extra’ for readers who wish to use a printer in the step mode. Another
point about the module is that it allows decimal calculations to be carried
out without any problems, even if the TM program is not used (see
Appendix 2).

Boosting the power supply
More (and larger) ‘mouths” to feed . . .

‘Feeding the five thousand’ does not apply in electronics. There may well
be enough power available for two boards, but not necessarily for three
(or more)! This is especially true where EPROMs are concerned, as they
are particularly greedy components. In addition, a —12 V supply is re-
quired for the RS 232 interface (see.figure 2).
The circuit diagram of the modified power supply is shown in figure 10. It
produces:

+5V, 4 A maximum (previously 1 A) .

—5 V, 400 mA maximum (previously 100 mA)

32

800

D3 ... D8 = 1N4004

Tr.2

I v
=5 l ot sS4 briiribod vie
28t iy I |c20 ! 400 mA
I [Ic4 | i |
i | 7912 [1 |
i s B |
i | Zg: Ci5lryoiali Cm mal et ci8 :
:: | c17 :
i ! ?TOuT)On ?7;. Tumn
] 25V 16V I
° 1
oSl N Sl 1 9 ol Al o o
81033-2 81901-10

Figure 10. The circuit diagram of the ‘revised’ Junior Computer power supply.

+12V, 400 mA maximum (previously 100 mA)

—12V, 400 mA maximum (new)

This should be more than enough to supply the main board, the interface
board and up to five additional memory cards. The Elekterminal has its
own built-in power supply, but it can also be powered by the revised
supply if required. How this can be accomplished will be described in
chapter 12,

That just about covers the extensions to the Junior Computer (apart from
the bus boards) — at least on paper. The RAM/EPROM card will be
considered in the third and final section of this chapter. First of all, it is
high time the theory was put into practice. At last we can get on with the
various constructional details!

33

Constructing the Junior Computer extensions
Soldering on . . .

Before starting, it may be a good idea to recap on chapter one in Book 1,
as it contains a number of useful constructional hints which also apply
here. Paying attention to such details, however insignificant they may
seem at first sight, may well save a lot of unnecessary trouble and expense!
In any case, it is best to be patient and read the construction ‘manual’
from start to finish before actually soldering a single component.

Our first words of advice are of a general nature. Use thin solder (between
% and 1 mm only!) to mount the components. It has come to our notice
in the past that some enthusiasts have such faith in the virtues of solder
that they have been using it to repair water pipes etc. Needless to say, the
plumber had to be called in afterwards. If, on the other hand, lead is used
to solder printed circuit boards, they can be expected to ‘go up the spout’
within a matter of weeks.

Handle printed circuit boards with care at all times. When subjected to
excessive heat, the copper tracks will literally crack up. Copper tracks are
also damaged easily by recklessly pushing a board across a rough work
bench covered in pieces of wire, solder, nuts and bolts, etc. Readers who
donot possess a bench vice should temporarily mount the board on a piece
of wood by using lengthy bolts and spacers so that the board is ‘high and
dry’. Keep the work bench as clean as possible (reducing the number of
‘lost’ components).

IC sockets need not necessarily be used everywhere, but then it is as well
to remember that all 14, 16, etc. pins are connected so care must be taken
when mounting ICs directly on the boards. Integrated circuit pins bend
easily and very often end up being flattened underneath the IC when
pressure is applied during insertion, so watch out for this.

As when constructing the main board of the Junior Computer, the plated-
through holes on the various extension boards should be checked thorough-
ly with the aid of an ohmmeter or with a bell transformer (see page 20,
Book 1). An even better method is to use the continuity tester published
in the July/August 1981 issue of Elektor.

Use flexible wire to make the various links and interconnections and do
not be stingy about the diameter. Flexible wire consists of many strands
and the links should be at least 0.93 mm in diameter. The main power
supply connection leads should have a diameter of not less than 1 mm!
Callers who ring up the Elektor Technical Queries department on Monday
afternoons often admit, somewhat reluctantly, that they throw in the
towel a little too easily. As soon as something goes wrong, or does not
work straight away, they rush to their local component shop to buy a few
more ICs. This is totally unnecessary 99% of the time! It is much wiser,
and certainly cheaper, to make sure that all the connections and polarities
are correct before actually turning on the power supply, thereby avoiding
short-circuits etc.

After that little lecture, which unfortunately often proves to be indispen-
sible, we can continue with the main task at hand: developing the Junior
Computer to maturity. Each item is dealt with separately in a series of
steps which should be followed closely in the order specified:

34

Modify the main board.

. Boost the power supply.

Construct the interface board.

Connect up the main board, the interface board and the (optional) bus
board.

House the fully-fledged Junior Computer in a new case.

. Check for possible errors (before switching on!).

Catiod o

oo

Step one — modify the main board
Change resistor values and add a module

Take the main board, disconnect the power supply and look at table 3.
Decide whether or not you need to exchange one or four resistors for ones
with lower values and whether or not the wire link D — EX needs to be
moved. The old resistors may either be replaced by new ones with a value
of 470 §2 or a 560 2 resistor can be connected in parallel with the existing
one. The latter option allows the extra resistor to be mounted on the
copper side of the printed circuit board and saves the trouble of having to
remove the old resistor. If it is decided that the old resistors must come

Table 3. The modifications required to the main board of the Junior Computer.

Modifications to the main JC board

R5 =470 © (or 560 Q in parallel to ‘old’
R5) — indispensable

R14,R15,R16 = 470 2 (or 560 £ in parallel
to ‘old’ R) — optional

1 wire link D-EX (only if bus board
memory is to be added)

out, a good quality ‘solder-sucker’ should be used. Alternatively, the leads
of the resistor can be cut at both ends and the bits of wire remaining can
be removed with a pair of needle-nose pliers after applying a little heat to
the solder joints with the soldering iron.

The colour-codes for the resistor values used are as follows:

470 Q: yellow - violet - brown (- gold)

560 £2: green - blue - brown (- gold)

If extra (bus board) memory is to be added, the wire link at point D of the
address decoder, IC6, must be moved. Point D must now be connected to
point EX,

Readers who do not intend to utilise the PRINTER MONITOR system
program and its single-step facility (they don’t know what they are miss-
ing!) can skip the rest of this section and move directly on to step two.
For the rest (most?) of us it is now time to mount the module:

The circuit diagram for the complete module is shown in figure 8b; the

35

printed circuit board and component overlay is provided in figure 11; the
wiring details are given in figure 12 and the components required are listed

.ﬂ 2%1

I~
¥ s1033-3

in table 4.

Figure 11. The module containing the circuit shown in figure 8b. Six of the seven
pins belonging to IC10 which are to be connected to the main board are indicated by
crosses inside a circle. Unfortunately, the seventh (pin 14) is unmarked!

81901-12

Figure 12. This is how the module shown in figure 11 is connected to the main
board. Two wire links are involved: one leading to K6 and one to either K4 or K6.

36

Table 4. The parts list for the module: EPS 81033-3.

module EPS 81033-3

R21,R22 = 1 k: brown-black-red-(gold)
(continuation of numbers on main
JC board)

IC10 = 7401, 74LS01 (only if original IC10
has to be desoldered)

1 printed circuit boad EPS 81033-3

1 14 pin IC socket (provided IC10 was not
already in socket)

2 solder pins

Use is now made of all four gates inside 1C10, two of which were pre-
viously unused: N7 and N8. The module contains a substitute for IC10,
two resistors and two solder pins to connect the required select lines (the
SYNC and K7 signals are not included on the expansion connector, there-
fore the interface board cannot be used for this particular application).
The supplementary circuit is mounted ‘piggy-back’ on top of the main
board.

There will be no problems here if IC10 was originally mounted in a socket.
If not, a socket will have to be installed after first removing the original IC
by careful application of a pencil point soldering iron and a good quality
‘solder-sucker’. Alternatively, the pins of the IC can be snipped off and
removed with a pair of needle-nose pliers. Operate with care and a steady
hand!

On the copper track side of the module board only pins1,2,4...7 and
14 will be used. These pins act as links with the socket which has just been
mounted on the main board in place of IC10 and are indicated on the
component overlay of the module by seven circles with crosses in them.
Pins 3 and 8 ... 13 are not used (they are interconnected on the module
only) and can be cut off. As an alternative, seven short lengths of wire may
be used to link the module directly to the main board.

Now the select (K) lines can be dealt with. In some instances the wiring
can be connected directly to the lead of a resistor (see figure 12). If the
PM program is required, lines K4 (together with line K5, as will become
apparent) and K6 will be connected to the module. (If not, lines K6 and
K7 are connected to IC10 instead).

Step two — boost the power supply
How to get a few more (milli) amps . . . and minus 12 V

The circuit diagram of the modified power supply is shown in figure 10
and the printed circuit board and component layout for the —12 V section
is given in figure 13. The printed circuit board for the existing power
supply is shown in chapter 1, Book 1 pages 29 and 30. The new parts list is
printed in table 5 and a constructional drawing is provided in figure 14.

To start with, diodes D1 and D2 are removed from the existing power

37

5

Figure 13. The printed circuit board and component overlay for the —12 V power
supply.

supply board (they can now be used for diodes D7 and D8), so are the
voltage regulators IC1...IC3 along with the heatsink. After virtually
demolishing the board it is time to re-build it. Capacitor C19 is connected
in parallel to and above C1. It is also possible to replace C1 by a 680 uF/
40 V electrolytic capacitor. Likewise, C21 is mounted in parallel with C6.
Again, C6 may be substituted for a 4700 uF/25 V electrolytic. It all
depends on what happens to be available. v

Next, the new regulator ICs (IC1 and IC3) are introduced to replace their
predecessors and are mounted on the board. Read and re-read the follow-
ing very carefully: the metal face of each IC is situated to one side of C2,
In other words, disregard the component overlay! The two ICs should be
provided with a suitable heatsink, as shown in figure 14b. The centre pin
of each is linked internally to the metal face and therefore to the heatsink.
It is quite obvious from the pin assignments given in figure 14b that the
heatsinks of IC1 and IC3 must not touch. The solution is to bend the pins
of one of the ICs while keeping them vertical and then mount the two
heatsinks so that they face in opposite directions.

The new regulator which takes the place of the original IC2 is mounted on
a pre-drilled TO-3 heatsink which can be mounted on the rear of the case.

38

81901-14a

25
{ 81901-14b
e

16\\/

Figure 14. The most important details concerning the installation and wiring of the
revised power supply (14a) and a few items concerning the voltage regulator ICs and
heatsinks.

39

Table 5. The parts list for the ‘revised’ power supply.

Parts list for revised power supply

(additional board: EPS 81033-2: —12 V
power supply)
NB. ‘%’ stands for ‘modified’
‘&’ stands for ‘new’ (numbers run on)

Capacitors:

C1,£2,C10,C14(&),C15(&) = 470 u/25V
C3,C11,C17(&) =47 u/16...25V
C4,C5,C8,C9,C12,
C13,C16(&),C18(&) = 100 n MKH
C6,C21(&) = 2200 /25 V (C21//C6)
(or C6(%) = 4700 u/25 V; C21 is left out)
C7=100u/25V
C19(&),C20(&) = 220 u/40 V
(C19//C1,C20//C14) (C19 and C20 are
omitted when C1(%),C14(%) = 680 u/40 V)

Semiconductors:

1C1(%) = 7812 (TO-220)

IC2(%) = 78H05 (TO-3)

IC3(%) = 7905 (TO-220)

1C4(&) = 7912 (TO-220)

D1,D2 = are omitted; see D7 and D8
D3,04,D5,D6,D7(&),D8(&) = 1N4004
B1(&) = 5 A bridge rectifier

Tr1 = existing transformer
Tr2(&)=1x10V/4 A

S1 = existing mains switch

F1(%) = 2 A fuse

(&): heat sinks for 1C1,1C2,I1C3,IC4

Indicators:

D9 = green LED; R1 = 470 Q: yellow-violet-
brown-(gold)

D10=red LED; R2 = 680 O: blue-grey-
brown-(gold)

The pip assignment of the 78H05 is identical to that of the LM 309K.
There Is no need to use mica washers to insulate the IC as its case is
internally connected to ground. The whole power supply case will there-
fore be automatically earthed as well, provided, of course, that it is made
of cgnductive material! Watch out for shorts between the case and con-
ductive components (metal spacers etc.).

The supplementary —12 V power supply board is very simple to construct.
'l:he new regulator, 1C4, should also be provided with a heatsink (see
figure 13): An additional transformer is required for the —12 V supply.
When wiring up the power supply, the drawing in figure 14a should help
enormously. It shows how to connect another newcomer, the bridge

40

rectifier B1. This can be mounted at the bottom of the power supply case
(without being insulated). It is best to use four (car) terminal connectors
when wiring B1.

Time to wire the board. Things get slightly more complicated here, but the
drawings should be clear enough. The power supply is connected to the
extended Junior Computer system by way of the five solder pins on the
interface board provided for the purpose. Do not forget to use multi-
coloured flexible wire here too! The ground and +5 V leads should be at
least 1 mm in diameter!

By the way, a new, higher rated fuse should also be mounted in the fuse
holder. Now that there are two transformers and the output current is
considerably increased, the old fuse is likely to give up the ghost as soon as
the device is switched on! If desired, an LED ‘display’ can be added. The
red LED, D10, lights to indicate that the new transformer, Tr2, is under
voltage (+5 V) and the green LED, D9, will light when the original trans-
former, Tr1, is under voltage (the remaining three supply voltages). The
LEDs should be mounted in full view on the front panel of the power
supply case. The cathode of the LEDs will be indicated by a slightly
shorter lead. The series resistors (R1 and R2) should be mounted a little
way above the board.

The power supply can be tested without connecting it up to the rest of the
Junior Computer. Once the voltage levels have been checked and are
correct (the tolerance indicated is * 5% in all cases) the supply can be
tested under extreme conditions without any risk to the computer.
Dummy loads may be connected to each of the supply voltages in the
form of resistors (30 /5 W for the +12 V and —12 V supplies, 12.5 £2/
2 W for the —5 V supply and 1.25 /20 W for the +5 V supply). This is
of course an optional measure, but it gives an idea of the cocling capacity
of the various heatsinks. Should they fail to come up to scratch, appropri-
ate measures can be taken to remedy the situation. (Many transformers
attempt to compensate for imaginary dissipation by producing secondary
voltages which are greater than the transformer rating, as a result, the ‘raw’
DC levels for the regulator ICs will also be too high, causing considerable
heat to be dissipated). By the way, there is no real point in carrying out
such a ‘soak’ test until the complete power supply is housed in a suitable
case, as it is only then that the ventilation can be checked.

Step three - construct the interface board
The main connection

The circuit diagrams concerned in this particular stage are illustrated in
figures 1 and 2 and the parts are listed in table 6. The printed circuit board
is shown in figures 15, 16 and 17; Figure 15 shows a reduced version of
the component overlay (upper side) and the track pattern of the copper
(lower) side; figure 16 shows a reduced version of the track pattern for the
component side and figure 17 shows a reduced version of the track pattern
for the copper side. (For a true life-size view of figure 15, see figure 7 on
page 6-14 of the June 1981 issue of Elektor).

The wire links for IC4 and IC5 must be installed according to table 7 and
details concerning the connectors are presented in figure 19. The pin

41

Table 6. The parts list for the interface board.

Parts list for the interface board

Resistors: IC1 =6522 (Rockwell, Synertek)

R1,R2,R3,R4,R32,R33,R34,R35 =1 k: |C2,|_C3 =2114
brown-black-red-(gold) IC4 = 2716, 2708, 8114

R5 = 22 k: red-red-orange-(gold) IC5 = 2716, 2708, 8114

R6,R10,R11,R14,R15,R24,R26 R77, 1C6 = 56:%
R28 = 10 k: brown-black-orange-(gold) IC7,IC8 :311
R7,R8,R36 = 8k2: grey-red-red-(gold) 1C9,IC10 = 74LS241

IC11,IC12 = 74L5243
IC13 = 741827, 7427
1C14 = 74LS01, 7401
IC15 = 741530, 7430
IC16 = 74L.S00, 7400
IC17 = 82823, 74188

R9,R18,R22,R23 = 4k7: yellow-violet-red-
(gold)

R12 = 6k8: blue-grey-red-(gold)

R13,R25,R31 = 2k2: red-red-red-(gold)

R16 = 100 ©: brown-black-brown-(gold)

R17 = 330 Q: orange-orange-brown-(gold)

R19 =470 Q: yellow-violet-brown-(gold)

R20 = 1k2: brown-red-red-(gold)

R21 =15 k: brown-green-orange-(gold)

R29 = 33k: orange-orange-orange-(gold)

R30 = 4M7: yellow-violet-green-(gold)

R37 = 33 2 (see text): orange-orange-black
(gold)

P1 =5k (4k7) multiturn preset

P2 =1 k preset

Miscellaneous:

Re1,Re2 = DIL reed relays

2 8-pin IC sockets

9 14-pin IC sockets

1 16-pin IC socket

2 18-pin IC sockets

2 20-pin IC sockets

2 24-pin IC sockets (see text)
1 40-pin IC socket

Capacitors: 5 wire links on board (in addition to ones
C1 =220 n MKH marked alphabetically)
€2,611,012,C13= 10 4/16 V tantalum 31 .. J4 = cinch chassis connectors
C3 =22 n MKH 1 25-Pole D connector (RS 232), mounted
C4=1nMKH at right angles to board (see figure 19e)
C5.C6.C7 = 6n8 MKH 20 solder pins (VIA ‘connector’)
CB'= 1'00 n MKH 29 solder pins (marked A, B, C, etc.)
C9 =47 n MKH 1input connector (64-pin) placed at right
€10,C14...C22 =1 /16 V tantalum angles,.DlN 41612, male! (is identical to

(total 10) expansion connector in standard JC)

— see figure 19a

Semiconductors: 5 solder pins (links to port connector)
T1=BC5478B 5 solder pins (links to power supply)
T2,T3=BC516 3 solder pins (LED connections)
D1,D2,D3 = 1N4148 1 output connector (64-pin) placed at
D4 = LED green right angles, female (see figure 19¢ and
D5 = LED red text)

assignments for all the ICs used on the interface board are provided in
figure 18.

The printed circuit board is double-sided with plated-through holes like
the main board. There is, however, one fundamental difference between
the two boards: the interface board has a component overlay on one side
only. This does not mean that all the components are mounted on that
side. Most of the connectors will in fact be placed on the copper side.
Generally speaking, the component overlay is considered to be situated on
the upper side of the board. Well, this tradition will have to be broken
with as we are going to make a ‘sandwich’ with the lower slice being the
interface board and the upper slice the main board.

Several readers may have expressed a certain amount of surprise (and
confusion!) when first examining figure 15, which shows the component
overlay of one side and the copper track pattern of the other side. As you
will have probably gathered by now, this-is all to do with the way it has to
be printed. The track pattern corresponding to the copper side is, of

42

..@..m.

& om0 ofmm e
o{[[oca= 3 o-jgo

N

ROOOOOO

Figure 15. The compoanent overlay of the interface board, including the track pattern
of the ‘copper’ side. For reasons of space, the board is shown reduced here.

43

Table 7. The various wire links around IC4 and IC5. o P £
o i : : As 8 [I 16)vee
IC memory type i Jie memory range :) | SIS o) Py e] i5)EE
; YN s R e et X = =
i ¢ ! | ‘ J W vpo N/C s, [1] 13 A,
o ol X WS (Progami® f’g ‘ol e
R i leen e o5 oo
az 10 % s I/O!’ 8, E 10] A
" " os 1704 i E E &
i 170y A
vgs 12 1o g @
g IC17
TrP e :ﬁo;,alcs 82523
2716
1K-EPROM s Vi @(ICB)
i = A (icn) U

GROUND | =i '—"@
INPUT 2 e e 7 QUTPUT
(]
— & BALANCE
PUT 3 —o
e STROBE
Gn v V-4 — (ica) — s saLANCE
AL
i €@ e, LT LTt e Pl

>
&~
5,

2K-EPROM 2716

1) Meant for system program TAPE MONITOR (T™M)

2) Preferable if 1C4 = 8114 (continuous RAM range) (ice)

3) Preferable if IC4 = 2708 (continuous EPROM range) or if Ic7, Ic8 IC9, IC10
IC4 = 8114 (continuous memory range) 565 311 74Ls241

4) When IC4 = 2716

5) Meant for system program PRINTER MONITOR (PM)

N.B. Various other K connections are possible, only the most logical

choices are mentioned in the table,

Figure 18. The pin assignments for all the ICs used on the interface board. <]
VSS 1 40[car @ @
Pa - 1C13 7401
b, po{ =i IC11,1C12 Y457 741501
raz] E=E] 7415243 7 open collector
ra3 s 38[3 RS2 : 74182
Pas (s 35[0 Rsa @
Pas 7 4[] AES 5% 'l 3 Qe
PAG (J8 333 00 . 2 ! A
PAT (]9 32/ 01 As 3 | 22 As @
P80] 502 R Oy] L 1413 s 8
1= :? :;:yo:a r sz BE" .@ ® o O-0 o
P82 (12 29 04 = A el = K el o 1400 1lf1alf2f11]folf e] e i
P83 13 2808 Avd: vha Aol ! voo -
PB4 (14 27f 06 A 6 [%8 U (1 &/ ih1e Progam - -
Pes CJ15 26{J 07 A3 e 15 Ag w ol hv cs 1
res CJ [A 1o,
wrelnl SaRE Y e L S © > Ret, Re2
cer fhs 23[9 Cs2 = b [/0, eing o O 1301/380 2
ce2 19 20 R/w &=ds " /0, @y, W
vee 20 21 Ra ves O o wyae el j = 1121314151 8[]7
04 Ic15 @
IC1 ic2,1c3 - IC4, IC5 7430 81901-18
6522 2114 270,8 74LS30

47

2e

A] . e. On the last count, a grand total of 62 wire links and solder pins are
required on the board. Although table 6 only mentions the solder pins,

g _}_1 &
[:d' 3.5 1! @ Q =5 EI ® 5 the wire links can also be soldered directly to the board. For technical
| P | = Q a 9 ©

] reasons the holes for the solder pins are the same size as those for the rest
- : 2 - of the components. In other words, only thin (1 mm) solder pins are
¥ .32 . s

suitable. The links to be made between the points marked alphabetically
depend on the requirements of the user. Care should be taken to ensure
that the correct links are installed.

If the Elekterminal or a printer is to be used (this refers to most types of
@ available printers) the link P-Q should be omitted. If extra bus board
memory is to be employed, points R and S (WITH) should be linked and
point D on the main board connected to EX. If extra memory is not
required, points R and T (WITH) should be linked and point D on the
main board connected to ground. Which of the links A ... O are needed

30 @ 28 26e 24e 220 200 18e 166 14e 12e 108 88 Ge 40 20 —===1

b | O7|

is determined by the choice of device for IC4 and IC5 (see table 7).

: I‘ 31: ‘lzlsp :570 250 230 218 19e 17e 15® 13e 11e 9¢ 7e 5e 3@ 1e 1 rl :;:::::l[
~Jleld Do not forget to place the two ‘ordinary’ links close to the output connec-

uu'U‘u‘uuuuuuuuuuuuwuuuuuuuuuuuu :

el

®
@\jﬁ:g::;::;?.;:;i;:;i,;i;z;‘:ﬁ@ ﬂﬂ:ﬂ
WLTTTITTTITTTTTTITITT i

Figure 19. A view of the various connectors involved in the construction of the
extended Junior Computer.

81901-19

course, situated on the copper side. The track pattern shown in figure 15 is

none other than the inverted (left to right) version of figure 17.

Now to start work on the interface board in a series of constructive and

instructive steps.

a. First of all, there are the resistors (36 or 37 in all) to contend with. The
37th may be left out unless the loudspeaker or headphone output of

the cassette recorder is to be used to retrieve data from tape. Otherwise

R37 must be omitted, as it will cause a considerable loss of signal even on

Iqw impedance lines. The leads of the resistors, after being soldered and

trimmed, may well come in handy for various wire links later on. The

colour codes of the various resistors are given in table 6.

b. Nex_t, it is the turn of the preset potentiometers. Preset P2 is a normal

: horizontal mounting type whereas P1 is a multi-turn trimmer poten-

tiometer. The latter is used to calibrate the PLL and this procedure will be

discussed in chapter 11.

c. Now fo_r the MKH capacitors. Remember that the sides and their
connections are electrically conductive, so they must not touch the

metal Parts of any other.components, nor should they touch the copper

tracks (if any) running underneath them (see capacitors C1 and C6 for

exa_mple). Unfortunately, many people tend to forget this latter point

which could well cause a short-circuit that is very difficult to trace.

d. When mounting the tantalum electrolytic capacitors, make sure that the
correct polarity is observed. :

48

tor (component side) and the three insulated wire links near the RS 232
connector (pins 4 and 5, pins 5 and 8, pins 6 and 20). The latter are not
strictly required if the Elekterminal is used, but it is better to mount them
now — before the board is covered in components — than having to worry
about them later.
f. The IC sockets. It is advisable to provide all the integrated circuits and
the two dual-in-line relays with good quality sockets. When installing
the ICs in their corresponding sockets, first check their orientation and
then make sure that all pins have actually penetrated the socket. Very
often the pins get twisted and flattened underneath the IC . . . leading to
irate telephone calls on Monday afternoons, quite unnecessary if due care
is taken! Most IC sockets and all ICs bear a special mark or notch to
indicate pin 1 (see Book 1, page 27). Although, of course, the IC sockets
themselves can be mounted in one of two positions, the best method is to
follow the indications on the component overlay of the board to avoid
confusion later on.
If IC4 and IC5 are to be EPROM types, it is best to install ‘zero insertion
force’ sockets in these locations. These are special sockets which have a
lever which allows the devices to be inserted and removed without any
force being applied. This helps to preserve the 24 pins of the device and
makes life easier when they have to be exchanged.
g. When mounting the transistors and ordinary diodes, care must be taken
to connect them the right way round.
h. The LEDs for the cassette interface are not mounted on the board
itself, but in a suitable position on the front panel of the computer.
Connections for them are provided on the board. Again, the correct
polarity should be observed!
i. For the reasons explained above, the ICs have to be positioned very
carefully. Check all the pins. At least one of the memory ICs will have
to be programmed: this is the EPROM, IC17. Provided it is an 82523
type, it can be programmed using the PROM programmer which was
published in the 1980 Summer Circuits issue of Elektor. This does not
apply if the 74188 type is used, which is also commonly available.
If 1C4 is to be a 2716 EPROM containing the TAPE MONITOR program,

49

this can be obtained from Technomatic Ltd, 17 Burnley Road, London
NW10. Alternatively, readers can program the device themselves with the
aid of the hex dump given at the end of this book. If the TM option is not
required, all the cassette hardware may just as well be omitted, unless
readers have their own personal cassette routines. The same is true of IC5.
If it is to be a 2716 containing the PRINTER MONITOR program it can
once again be obtained from Technomatic. Again, readers may program
the device themselves using the hex dump at the back of the book (on the
understanding, of course, that readers own 2716 programming equip-
ment!). If the G and S functions of the PM program are required, the TM
routine must also be available.
j- Relays Re1 and Re2, their corresponding sockets and connectors J3 and
J4, are rendered superfluous if software control of the cassette decks is
deemed unnecessary. In fact, the relays are only really useful when two
cassette recorders are used: one to record/store programs (OUTPUT) and
one to retrieve data (INPUT). In addition, the two cassette decks should
have remote control facilities.
k. Chassis connectors J1. . .J4 link the cassette recorder(s) to the Junior
Computer. They can be mounted directly on the interface board (on
the copper side), with suitably positioned holes in the right-hand side of
the case (further details of this will be given later). A different method,
and a simpler one, is to mount the sockets remotely at the rear of the case.
Connectors J3 and J4, if required (see j), have to be insulated, that is, they
must not be connected to ground. Screened leads should be used for the
connections to the cassette recorder(s).
I. The input connector (if required — see step 4) is mounted on the
component side of the board. This is situated on the right-hand edge of
the board if it is held so that the EPS number can be read easily! The
procedure is the same as that for the IC sockets (see point f). It may well
be advisable to have a look at figure 19a at the same time.
m. The RS 232 connector. The 25 pin D-type connector that should be
used is described in table 6 and is illustrated in figure 19e. If this
connector is to be mounted on the (copper side of the) board, at the
opposite end to the input connector, the pins should be at right-angles to
the main body. Mounting it on the copper side of the interface board has
the added advantage that the space between the two boards is used as
economically and as efficiently as possible, preventing the sandwich from
becoming a king-size hamburger! If the RS 232 connector is mounted on
‘the board, the peripheral devices will be connected up to the right-hand
side of the case. If, on the other hand, the connector is placed on the back
of the case (use a normal type which can be linked with wires), it can be
connected to the board with ‘ribbon’ cable.
n. The VIA ‘connector’ comprises 20 solder pins or wire connections.
This allows other applications to be tried out and so can be linked toa
suitable ‘real’ connector either:at the rear of the case or on the control
panel. It is advisable to use a 31 pin (female) type similar to the PIA port
connector on the main board and use ribbon cable as the connection
medium
o. Finally, the output connector. This connector is only required if extra
bus board memory is to be used and even then it is not strictly necess-

50

ary, as the bus board can be connected with ordinary wi_res._Readers who
prefer to use a connector should use the type illustrated in figure 19¢c and
mount it on the copper side of the board. There are a few minor problems
involved here, but fortunately they are quite easy to solve. The output
connector cannot be mounted in the normal manner by inserting it and
soldering the 64 pins. In view of the position of the two rows of 32 holes,
the connector cannot be placed on the edge of the board itself. This is
because both sides of the board have had to be covered in copper tracks
to save space. The pins might just pass through to the other side of the
board at a pinch, but it is wiser to choose one of the following solutions: ‘

— Using a pair of ‘snipe-nosed’ pliers the pins can be bent slightly to gain
an extra few millimetres.

— Take a connector of the type shown in figure 19b with pins that are at
least 13 mm long (wire-wrap type) and again bend them so that they fit
easily into the holes. '

— Take a connector of the type shown in figure 19b with shorter pins and
connect it to the board by means of 64 wires (hardly ideal!).

— |If the distance between the board and the connector gets any greater
(due to bus board memory being added via connector at the rear of_ the

case, for instance) it is better to use ribbon cable instead of the 64 individ-

ual wires. b :

Figures 20b and 20c will help you make up your mind in this matter as

will step four, which we are about to discuss right now.

Step four - connecting up the boards
Lay all your cards on the table

Detailed constructional drawings are shown in figure 20 and the parts
required are listed in table 8. The connectors are illustrated in figure 19
and a reduced version of the bus board is portrayed in figure 21.

A lot of what is about to be discussed here refers to the case, which is a
separate ‘case’ altogether and will be dealt with in step five. It is advisable
not to start wiring the two boards together until both steps 4 and 5 have
been thoroughly digested!

The interface board is the same size as the main board, enabling the two to
be ‘sandwiched’ together. The mounting holes for the two boards are
placed in corresponding positions. There are five of them, One important
consideration must be borne in mind: the main board contains the key-
board which will obviously have to be within finger-tip reach. Therefore,
the interface board will have to be mounted underneath the main board,
but with as little space as possible between the two. The links have_to be
kept short! The amount of space available largely depends on the size of
switches S24 and S25 and will not be more than about three centimetres.
Just in case step three was not clear enough on this point: the interface
board forms the lower slice of the sandwich with its component overlay,
and practically all the components, facing downwards. The input connector
will be on the left of the lower side of the interface board and the RS 232
connector (if mounted) will be on the right of the upper side. The expan-
sion connector of the main board will be situated to the left of the lower
side of that board. In other words, the main board expansion connector

51

/--Er' i r
main board /
d g — e
‘ mp— e s
- I
aob} <o [0 of 1] j
% Figitah Fig !9-
] J b el l interface board /
Aé s 2 bus board
7 — - 312
BY{ it sgamasgiaed /
iv ® ;‘::_'. e
— Jﬁ’ jig / interface board
Figure 20. Detailed view of the electrical connections between the main and interface
@ boards (20a) and the interface and bus boards (20b . . . 20f).
Fig 19¢ i
g l F gllsa Q Fig 19b Q
: — : centgh ot U sk
Wt Table 8. Electrical connections for the entire unit.
Q@ gh 5
c::{::: £ i e
110 tha caesssi=s v :
o e 1 | Electrical connections for the entire unit
interface board bus board J
I a. between main board and interface card
2 64-pin connectors, female (see figure
19b)
et © 1 printed circuit board EPS 80024
ig Fig 19a Q i Q (partly used)
| 2 > 1 31-pin male connector (see figure 19d)
-— i b. between interface card and bus board
* 5 A
/ i Q O7| 1 64-pin male connector placed at right
- i ~ angles (see figure 19a)
ek 2 1...5 64-pin female connector(s)
%w s (see figure 19b)
interface board busk'mard 1 printed circuit board EPS 80024
81901-20
i and the interface board input connector will be directly above each other
® ’ on the left-hand side.
2 / } Next, the bus board. The output connector is placed on the copper side
= 'S and on the long edge of the interface board, the edge furthest away from
: m f the operator and closest to the input connector, at the rear left. The bus
| imertace board 1 hvinly | | : @ board itself ‘stretches’ away from the operator with 1...5 memory cards
/ » Y bus bosrd \ mounted vertically on it.
, .,(.v"‘* ‘ Now that we have a good idea of the way in which the various boards
= | should be placed, it is time to connect them all up. Here again, there are

| various possibilities, depending on the type of case selected to house the
completed unit.

52
53

Figufe 21. The printed circuit board and connector overlay for the bus board. The
‘cutting’ details are also given (21b).

Connecting the main and interface boards together
The 64 “stitches’

There are a number of preferred methods of actually making the connec-
tion between the two boards:
1. Use strajght connectors (instead of right-angled ones) on both boards.
The main and interface boards will then simply fit together (provided
of course one connector is male and the other female!). The main point to
watch here is the distance between the two boards, which is determined to
a certain extent by the crystal and switches on the main board. The
switches can be moved,- as mentioned earlier, but the crystal can not!
Howevgr, there is no reason why the crystal cannot be re-sited on the
pther side of the board. Note that if this method is employed, the mount-
ing holes for the connectors will not line up. This should not present a
proble_m however, as the connection is only likely to be made once!
There is ample ‘strength’ when all 64 pins are soldered. .

54

2. The two boards can be joined together by using a pair of connectors as
shown in figure 19b which are linked together by means of a short
length of ribbon cable.

3. Use part of a bus board. The bus board has been mentioned on several
occasions, but without fully describing it. We are referring to the

SC/MP bus board (EPS number 80024) which was published in the
January 1980 issue of Elektor and which is shown in figure 21. The idea
is to use one end section containing two memory card connections to
link the two boards. The remaining three connections can be used for the
actual bus board if only three memory cards (or less) are to be added.
A storm of protest all over the UK! What? Cut up such a nice board? Well
it’s only an idea, but it works (see figures 20a and 21b). Note that the
copper tracks on the bus board are not symmetrical. Pins 3 and 4 are
linked to broad copper tracks, but if the board is turned around, the
corresponding pins on the other side lead to much thinner tracks. Looking
at the sandwich ‘edge-on’, as shown in figure 20a, pins 32 are closest to the
operator and pins 1 are furthest away.

4. No connectors are used at all, in other words, neither are the expansion
and input connectors. The various links are all made directly to each

55

®

connector fig. 19b
(link to main board)

link board

connector fig. 19b
<— (link to interface boarg)

discard

memory card 3
(connactor fig. 19b)

<— memory card 2

(connector fig. 19b
bus board - ;

“*— memory card 1
(connector fig. 19b)

<«— bus board
connector
(fig. 19a)

81901-21b

Figure 21b. Readers who do not require more than three extra memory cards can use
part of the bus board (EPS 80024) to link the main and interface boards. This figure
shows the purpose of the various sections. The area above the line @-® can be
discarded, as can the section between lines @-@) and ®-Q@. The area between lines
®-© and @ @ can be used as the link board and the remaining section can be used as
the actual bus board.,

56

board. This method is not recommended, as it demands a high degree of
soldering expertise and, as most experts will agree, connectors are far more
suitable!

The choice is up to you!

There are also the five connections to the PIA port connector to consider.
The five wires connected to the main board are soldered to the corre-
sponding pins of a 31 pin connector which is fitted into the existing port
connector. Alternatively, of course, five individual solder pins can be used,
or the wires may be soldered directly to the pins of the port connector.
Yet another method is to forget about the connector altogether and to use
it for the VIA connector at the rear of the case (unlike the PIA, the VIA
has no internal ‘housekeeping’ jobs to perform). If the port connector is
dropped, the five wires can be soldered directly to the main board, or
solder pins could be employed.

Wiring the interface board to the bus board
Data transfer to higher addresses

This particular section is meant for ‘bus trippers’ only, but readers who are
still undecided now have the opportunity to make up their minds. The
links for the bus board are shown in figures 20b and 20c. A suitable bus
board is the one described previously (EPS number 80024, see figure 21),
using one of the connectors shown in figure 19a and five of those shown in
figure 19b. When using the bus board, remember the asymmetrical copper
'track pattern. In the ‘sandwich’ position stipulated, pins 32 will be to the.
left and pins 1 to the right.

In all the 64 pin connectors on the sandwich the pin rows marked (a) are
closest to the edge of the board. This also corresponds to what is marked
on the connectors themselves. As far as the bus board is concerned,
however, this is the exact opposite: the (c) rows are closest to the edge.
For this reason a particular copper track will be marked (a) on the input
connector and (c) on the output connector, and vice versa (see figure 1).
Note: All the connections marked (a) and (b) given in figure 19 corre-
spond to those on the connector, not to those marked on the bus board!

If the interface board and the bus board are linked by means of 64 wires,
without any connectors, the wires connected to the (a) pins will be just as
long as those connected to the (c) pins (see figure 20d). If proper connec-
tors are used instead, there are two possibilities (figures 20b and 20c) with
regard to the position of the output connector discussed before (either on
the board or to one side of it). Note the difference in height between the
drawings in figures 20b and 20c: they are at different levels in figure 20b,
whereas in figure 20c they are at the same level.

If a‘lectern’ type case is selected to house the completed Junior Computer,
the main board is likely to be at an angle of some 45°, so therefore the
interface board will have to be at an angle as well (unless they are mounted
as shown in figure 22). In view of all the connections, the bus board
should preferably be mounted horizontally (or vertically, as explained
below). If the bus board is mounted horizontally, the only way to connect
it is as shown in figure 20e. Connectors can not be used, unless a length of
ribbon cable is also used.

57

The bus board can also be mounted vertically. This situation is shown in
figure 20f. Pins 1 and 32 maintain the same position, but the bus board is
linked up on the opposite side to that previously. The case should then be
a long flat box, as a bus board is shorter than a memory card. Thus, the
operator has plenty of choice as far as the case is concerned, which is just
as well as the number of different types available nowadays is almost
unbelievable!

main board

interface board

see figure 19b

090 W W W W W O . SIS I L INNNNCNNY)
L] CLLL L L LT

]
- II-II..--I--I-I-IIIIIIII-II L1 1]

81901-22

Figure 22. If a ‘lectern’ type case is used to house the extended Junior Computer, a
separate ‘connection’ board may come in handy to link up the main and interface
boards.

Step five - housing the fully-fledged Junior Computer
The final assembly

Modern houses nowadays are often built with ‘everything under one roof’,
including the garage. This is an idea which could well be applied to the
Junior Computer. At the moment the power supply is probably housed in
a separate case because it takes up so much space. Some people, however,
might prefer to include everything in a single case. This certainly looks a
lot neater, although the case will then, of course, have to be somewhat
larger and stronger, but at least there will be no need to worry about
mixing up the various connections,

The number of ‘houses’ also depends on which peripheral devices are to be
used. As it is, there will have to be a case for the cassette recorder(s), one
for the ASCI| keyboard and video terminal (Elekterminal) and, of course,
the television set. Putting the whole ‘village’ into a single case is easier said
than done and besides, think of the weight and the cost of the casel The
various items may just as well be housed in separate cases, meaning that
the basic version of the Junior Computer does not really have to ‘move’!
However, if the main board and the various extension boards are to be
installed in the same case, there are two main possibilities: a ‘lectern’
model and an ‘amplifier’ model. As its name suggests, the amplifier model
(see figure 23b) looks similar to the type of case used for the old type of

58

81901-23a

81901236

Figure 23. There are two main types of cases in which the ‘mature’ Junior Computer
(with all the extensions) could be housed. It all depends on whether the operator
wishes to have everything inside one large case, or spread over several cases. The two
types may also be combined in a variety of ways.

audio (stage) amplifiers, equipped with obsol_ete_ valves etc. Beiliev.e it or
not, this type of case is still available and is ideal fqr the ‘all-in-one
solution. The board sandwich is mounted under the slanting control panel,
with the bus board and associated memory cards situated at the. rear left
and the power supply including the two transformers to the rear right.

The lectern model (see figure 23a) was probably the type used for the
original version of the Junior Computer, albeit not exactly the same as
that shown in figure 23a. This type of case is a lot more (_:omp’act than the
amplifier version and forms the centre of the computer ‘village’. Here are a
few considerations to help readers make their final choice:

59

1. It is better to ‘sandwich’ the main and interface boards rather than
place them side by side.

2. Itistechnically feasible to link the two boards (main board and interface
board) by means of ribbon cable, but the length of this cable should
not exceed 50 cm.

3. If a lectern type case is preferred (such as the existing model) and, in
addition, bus board memory is required, the output connector can be

mounted at the rear.of_ the case and the bus board can be linked up di-

rectly or by using a length of ribbon cable and suitable connectors. The

latter method will probably involve housing the bus board and extension
memory in a separate case.

4. Make sure the various boards are properly linked with solid connections,
Never let the boards hang on connectors. If, for instance, the bus board

is placed at the back of the case (see point 3), supports must be provided
for it and for each of the extra memory cards employed. When using metal
spacers etc., watch out for shorts with any copper tracks. Readers who
have decided on the connection method shown in figure 20b can best
make up for the different levels by sawing or filing metal spacers to
measure etc.

5. Finally, read the following check list of the various items which
penetrate or are attached to the sides of the case. First the standard

items:

a. The hexadecimal keyboard.

b. The six seven-segment displays. Both a. and b. remain necessary
requirements, even if an ASCI| keyboard and a video terminal or

printer are added.

c. STEP switch S24.

d. Display switch S25. These switches may be removed from the main
board if desired and mounted on the front panel of the computer. This

cuts the board sandwich down in size so that it may well fit in the original

case.

e. The existing 31 pin (PIA) port connector. This may be omitted once
the VIA connector has been installed.]

f. The expansion connector. This is very likely to be mounted on the
original case already, in which instance the interface board can be

connected to it externally (in a Separate case, with or without the bus

board memory). Unfortunately, this means deciding against the sandwich
principle. §

g. The mains cable, main switch and fuse holder have to be fitted to the
power supply or main case. Do not forget the 2A fuse!

h. The RS 232 connector. This can be mounted either directly on to the
side of the interface board or at the back of the case by means of

ribbon cable. Make sure the links are in the correct place. The orientation

of the D-type connector is such that it has to be mounted on the copper
side of the board. If the Elekterminal is used, the links between the pins

(see figure 1) may be omitted.

i. The chassis connectors for the cassette recorder(s) are best mounted at
the rear of the case. As an alternative to J1 and J2 a DIN connector can

be used. Connectors J3 and J4 are only required if the recorder(s) is (are)

to be controlled via software. '

60

j. The cassette LEDs. These should be mounted in full view on the front
anel of the computer. : :
k ?’he two power supply LEDs. These can be situated either on the front
panel of the power supply or on the front panel of the computer (see
oint j). :
IF.) Five leads (via plugs and sockets) to connect the various power supply
voltages, including the ground connection. These are only required if
the power supply is housed in a separate case. The'se leads shoul_d be at
least 1 mm in diameter. Use different coloured wires for the different
voltage levels to avoid confusion. It may also be a goo_d idea to decouple
all the supply lines with 1 uF/16 V tantalum electrolytic capacitors. Make
sure they are the right way round!] :
On the interface board there are five central points for connectmg'all the
supply voltage lines. The main board and memory cards are supplied via
the various connectors. . .
Note: Strictly speaking, point | comes up twice: once_WIth respect to the
power supply case and once with respect to the main Junior Computer
case. e
m. The VIA connector. This either replaces or suppleme_nts_ the existing
PIA port connector. Depending on the particular applications the_ user
has in mind, it may be placed on the rear of the case or, alternatively,
somewhere in full view on the control panel.

81901-24a

yellow

interface board 81901-24b

Figure 24. A WITH/WITH switch can be incorporated if desired. This all?ws the user
to select bus board memory if and when required. This offers an alternative to the

‘hard’ wire links.
61

n. The output connector. This is only required if the bus board option is
selected. The bus board may be connected directly to it or by means of
ribbon cable and a suitable male connector.
0. The WITH/WITH switch is none other than a double-pole switch that
selects the links R-S and D-EX or R-T and D-ground (see figure 24).
This needs to be added if bus board memory is to be used and so it is as
well to include it now even if you are not ready to incorporate extra
memory just yet.'In th¢ WITH position a yellow LED will light, so this
should also be in a clearly visible position.
We have now reached the end of the constructional details, so readers may
now heat up their soldering irons (which are probably white hot anyway)
and set to work. Obviously, no description can be foolproof and we accept
the fact that the various options may complicate matters considerably. On
the other hand, most operators will appreciate such constructional
freedom and it will be interesting to see how many different versions are
created!

Step six - Check for possible errors
The end of the road . . .

Checking for errors is an essential part of any electronics constructional
project and, provided it is carried out thoroughly, will save a lot of
unnecessary disappointment later on. Now that the Junior Computer has
grown to maturity and has built up its body and brain power, it is time to
give it a complete physical check-up. Unlike human beings, a computer
that has something physically wrong with it is also likely to be a little
‘funny in the head’. If, on the other hand, a software test proves that the
new RAM memory can be used to store and retrieve data without any
problems, the hardware may be concluded to be in proper working order.
By means of a carefully selected sequence of ‘diagnostic’ tests the presence
of an error can be pin-pointed and rectified.
The check-up is based on both physical and psychological factors, so let us
deal with the former, the hardware first. This includes a variety of checks
and the most important thing to bear in mind here is the fact they are all
carried out before the supply voltages are connected, in other words, before
the Junior Computer is switched on!
Here again, a number of points which were described in Book 1 (pages 31
and 32) are of the utmost significance, so it may be advantageous for
readers to recap on them at this stage. Enthusiasts learn to watch out for
mistakes as their experience grows and they will certainly have learned a
great deal from building the main board.
To start with, things to look out for in general:
1. Connections. What with all the various extension possibilities, the
number of links on and between the boards will have increased alarm-
ingly. Statistically, therefore, the likelihood of mistakes is proportionally
high. For this reason, operators are advised to spend a fair amount of time
on this particular section. Check all the links with a multimeter set on the
resistance range, or with the continuity tester described in the July/August
1981 issue of Elektor. Are all the IC pins inserted correctly? Make sure
that none of the links are round the wrong way or connected to the wrong

Photo 1. The fully extended Junior Computer as seen from the North-East. Here the
RS 232 connector is mounted directly on the interface board and so are the
INPUT/OUTPUT LEDs.

pins. Are the male and female connectors fitted up correctly? What about
the ‘programmable’ wire links?
2. Check the position of all the various components which can be placed
in two different ways, one of which is definitely wrong. This includes
ICs, electrolytic capacitors, diodes, transistors and the RS 232 cennector.
It is always better to be safe than sorry!
By this time everything should have been thoroug_hly checked out from
top to bottom and maybe you have even invited a friend (_a member of the
local computer club maybe) to come and cast a fresh pair of eyes over it.
Once the power supply has undergone a separate check (see the construc-
tional details), it is time to connect up all the various supply voltages. |
The power supply is connected to the interface board by means of five
differently coloured flexible wires. The ground and +5 V leads must be at
least 1 mm in diameter, as otherwise all sorts of strange and even nasty
things may happen. The five connections must be checked thqroughly!
Although you are probably very eager to connect up the Junior Computer
and switch it on, have a last look to see that everything is real'ly 100%
correct. If you are absolutely sure, switch on. Now, one of two things may
happen: your impatience gets away with you and you depress_thg RST
(reset) key. If all the displays light, the computer will bg operating inside
the original section of the extended Junior Computer. Either that, or you

63

Photo 2. The same as photo 1, but now as seen from the South-East. Note that the
copper side of the interface board is facing upwards. Female chassis connectors are
'used to link the computer to one or two cassette recorders. The nearest memory card
Is a prototype of the forthcoming 16k dynamic RAM card.

patiently measure the various voltages connected ta the IC pins using the
information given in figure 18. Test the voltages are correct at the IC pins..
— not at the solder points on the copper side of the board! This is the
quickest way to detect a faulty IC contact. Make sure that the probes do
not cause a short with neighbouring pins, as that would really make
matters worse.

Now the display should light when the RST ‘key is depressed. If this fails
to happen, and you are sure that the main board is perfectly all right, the
following questions have to be answered: |Is the main board being supp;lied
with enough power? What about the wire link at point D of IC6? This
should be linked to EX if extra memory is connected. In the latter case,
check that there is an EPROM connected to page FF and that the RESET
vector (addresses FFFC and FFFD) is specified correctly (FFFC = 1D,
FFFD = 1C). Is the wire link R-S installed? Does the main board work
when both wire links D-ground.and R-T are connected temporarily? What
about rgmoving the interface board and using temporary power supply
connections as before? The interface board hardware around the address
Fiecodl_ng system and the data bus control require particular attention
including the PROM, IC17. By the way, is this programmed correctly? ’

64

Photo 3. The same as photo 1 only as seen from the South-West. The expansion
connector of the main board and the input connector of the interface board are
linked by means of part of a bus board. Also shown is the connection to the port
connector of the main board.

As soon as the basic monitor routine runs like clockwork, it becomes a
good tool to test the rest of the equipment, such as the new RAM, or in
any case IC2 and IC3 and, if 8114 type devices are used, IC4 and/or IC5.
This is how it works. A few addresses inside the corresponding RAM
address range are selected. One address is keyed in with the aid of the AD
key. Data then appears on the two right-hand displays. By depressing the
DA key new data, different to that displayed, can be entered. If the new
data also appears in the display, the operator can be sure that the RAM
memory location concerned is being written to and read from correctly
(see chapter 7 in Book 2). Repeat this procedure for several other addresses
in the same range (using the + key for instance) and in all the other RAM
address areas.

EPROMs have to be read properly. They are only written into (pro-
grammed) once. If IC4 and IC5 contain the TM and PM routines, respect-
ively, run the monitor program to see if these are read properly. The hex
dumps for both routines are given at the end of this book.

Left to check are the VIA, the cassette and the RS 232 interfaces. Before
the cassette interface hardware can be fully operational, the PLL has to be
calibrated first with the aid of the trimmer potentiometer P1. More about

Photo 4. This photo shows what can go wrong when installing ICs!!

_this in chapter 11. The VIA is dealt with in Book 4 and the RS 232
|nterfa{ce cannot be checked until all the corresponding peripheral devices
are built and connected up. This does not occur until chapter 12,

The fully extended Junior Computer is now complete and tested. A
number of operations cannot be fully checked until chapters 11 and/or 12
have been read. As far as the bus board memory is .concerned, this depends ?
on the RAM/EPROM card, which has to be especially prepared for use.

This is in fact the third and final subject for discussion in this particular
chapter.

The RAM/EPROM rd
How to reach ‘outside’ addresses by bus

The RAM/EPROM card, like the 16k dynamic RAM counterpart (see
Boqk 4), allows up to 56k of extra memory to be added to the extended
Junior Computer. This amounts to pages 20 ... FF. In addition, one
memory card can be linked directly to the main board, in other words', this
Is one memory area which does not require a bus connection. It makes do
with the expansion connector instead. This option is described in
Appendix 1.

The RAM/EPROM card was first described in the September 1980 issue of
Elektor, so there is no need to repeat the whole story here. There are,

66

however, a number of points of interest which could be added to it. Be
very careful when choosing the type of EPROM to be used. This may be
1...4 2708 types, 1...4 2716 typesor 1...4 2732 types, so please do
not start mixing them up! Of these, the 2716 is probably the best choice
as it has more memory capacity than the 2708 and is far less expensive
than the 2732.

The circuit diagram of the entire RAM/EPROM card is provided in figure
25. Figure 26 contains a reduced version of the printed circuit board, EPS
number 80120. In actual fact, this board was designed to meet the
eurocard format requirements and is 100 mm x 160 mm. The figure only
shows the component overlay and the track pattern for the copper side."
All the other features are shown full-scale in the September 1980 issue of
Elektor. The pin assignments and the internal circuit diagrams for the
decoders, IC5 ... 1C7, are shown in figure 27a. Figure 27b illustrates the
truth tables of the main decoder IC5 and the secondary decoders IC6 and
IC7.

Additional information about the RAM/EPROM card
Putting a few things straight

The data buffers situated on the memory card are enabled for a write
operation, provided no memory is being accessed on the main or interface
boards and provided, of course, data needs to be written into RAM. The
data buffers will only be enabled for a read operation when RAM or
EPROM (decoded on the card) is being read. Thus provided the card is
used properly, the risky situation illustrated in figure 6 should not occur.
A bird’s eye view of the operation of the main address decoder, IC5, is
given in table 9. See figure 27b as well. The address range is split up into
sixteen blocks of 4k. In the September 1980 article we referred to these
blocks as ‘pages’. This could lead to a little bit of confusion since, as far as
the Junior Computer is concerned, a page consists of 256 (= FF) bytes.
Further confusion is caused by the fact that address lines A12... A15 are
not connected to IC5 in a very logical manner. In addition, table 9 shows
that in a particular 4k memory area only the most significant nibble of the
address (Dxxx . .. Fxxx) is determined. The other three (x) can each be
any hexadecimal number between @ and F.

Secondary address decoding for the RAM section takes place via IC6
which is controlled by three lower address lines (A10. .. A12) and by gate
N2. Up to 8k of RAM can be addressed. That is why IC6 has eight outputs
(see figure 27b) and N2 has two inputs which receive ‘select’ data from the
main decoder, IC5 (see connections X and Y). If only 4k of RAM is used,
one connection to N2 is sufficient.

Secondary address decoding for the EPROM section takes place by way of
IC7 (see figure 27b). Depending on the type of EPROM used, it will be
controlled by two lower address lines and gate N1, which is connected to
IC5 by means of links V and W.

When selecting particular memory areas on the card, the possibilities are
virtually endless, as can be seen from the ‘memory map’ for RAM and
EPROM. Fortunately, the memory map can be organised quite well. |f up
to 56k of extra memory is connected to the computer, this being the

67

3

ol

os

13
o4 ;] ip_‘
. 9
B
- 3
|
1ca
Lﬂ@
.
5
2 x 74L8243

A0z il o
: 83 ,__ L. :
| [T ™ T A
| [T | LT . -
B = s
A B o 1
| [T
| T | I
83 ;5 5%
| T
IT] [T
8% "’u o5 i
rH:’:L:M 23

N1 N4=IC8 = 74L508
NS = 1/4 1C29 = 74 LSOO

2 x 7418241

1]

Figure 25. The circuit diagram for the RAM

T T

’Jl

¥

/EPROM card. There are different

methods of connecting the 2716 links indicated and these are mentioned in the

appropriate text.

68

81901-25

i i ircui d showing the
Figure 26. The printed circuit board for the RAMIEPROM card s| ng
co'“r:ponont overlay and the track pattern of the copper side. Again, this is shown

reduced in size.

Table 9. The main decoding system on the RAM/EPROM card.

A15 A14 A13 A12 | Address | Which output is low?
(A) (B) (C) (D) (hex) connec- | |C5 pin
tion on
board
(/] 0 0 (1] XXX 0 1
0 0|0 1 1XXX 1 9
(/] o 1 0 2XXX 2 5
(1} 0 1 1 3XXX 3 14
0 1 1] (1} 4XXX 4 8
0 1 7} 1 5XXX 5 1
0 1 1 0 B6XXX 6 7
0 1 1 1 7XXX 7 16
1 1] 0 1} 8X XX 8 2
1 o 0 1 IX XX 9 10
1 (1] 1 0 AXXX A 6
1 0 1 1 BXXX B 15
1 1 (1] 1] CXXX C 4
1 1 (1} 1 DXXX D 13
1 1 1 (1} EXXX E 8
[1 1 1 FXXX F 17

address range from 2000 ... FFFF (= pages 20 ...FF), the following
survey shows how a clear and logical selection can be obtained:

RAM: Start at address 2000 and work your way up the address range
(down the memory card):

EPROM: Start at address FFFF and work your way down the address
range (up the memory card).

This principle can be applied regardless of the number of extra memory
cards employed. For one thing, EPROM must be located on page FF with
the corresponding vector data, On the basis of this, let us see how the
RAM and EPROM sections should be decoded, in other words, where they
should be situated on the memory map, depending on the number of
memory cards involved — not counting the 16k dynamic RAM card for the
moment.

Random Access Memory. An even number of 2114 devices must be used:
two are required for each 1k of memory. Table 10 provides preferences as
to how between 1k and 8k of RAM should be addressed and decoded. The
following wire links are important here:

X-2andY —+5V for 1k ... 4k (decoded addresses 2000 . . . 2FFF)
(X-Y-2 is another possibility) ;

X-2and Y-3 for 1k . .. 8k (decoded addresses 2000 . . . 3FFF)

Now supposing the operator is no longer satisfied with 8k of RAM and
would like to add a bit more. The solution is to add a second card, thereby
increasing the amount of available RAM to between 9k and 16k (see table
11). For this, the following wire. links have to be installed on the second
RAM/EPROM card:

X-4 and Y45V for an additional 1k ...4k (decoded addresses
4000 . . . 4FFF) — again, X-Y-4 is also possible;

X-4 and Y-5 for an additional 1k ... 8k (decoded addresses 4000 . .. 5FFF).

70

INPUTS ouTPyTS
SELECT ouTPUTS

DATA STROBE INPUT Voo TR AT TELT 0776 61 CWITa8 18 LT
Vee (] 62 A M o m m

20 fio Jw Jir Jie fis | |

S O P O PR PO P u o fn |
L]

6282
[)

(4]

'u Iz l: In ls ls]r ' Il lx l! « v s Il I! lll lu 1
DATA STROBE SELECT 1¥3 1¥2 1v1 iva Gwp [
:u

61 INPUT
e ouTPUTS ourruTs

>

-
—<
——q
<
<
-
—

IC5
IC7
atss 74154

STROBE (2)) ourrur
6 ve

5

& outeur
wi

{ 15) ouTPuT .
w2 A @,

1) oureur
141

DATA (1)
€

\Y

SELECT ()
[

o
®

9) ouTRPUT G2 () 3
e
secect IIJID 0 — 0
L “ 1n oureut B,
m ¢
—
A 23) A I A
DATA (15) ;Dﬂ oureuT i
(] i m

b
)
weuts { 4 (22)] .
- _}I> = ot D>
It} ! —
w,
o 3
: >
o,
K=
i
o) [)
. b

" [o
—

4)
(LU

11

1
|

T

¥
(L]

-
—

-

1
1ll“

}-;'—1
0

81901-27a

Figure 27. The pin assignments and internal circuitry of the decoder ICs contained on
the RAM/EPROM card (27a). The truth tables referring to the ma?n address decoder
(1C5) and the secondary address decoders (IC6 and IC7) are also given (27b).

71

72

ICs
INPUTS OUTPUTS
SLIGETO) o A Al Hofs T2 i3 e K6 3 T8 9, 10001158 12 W13 18 18
LA Dl adHUS Y G W dNen) W H THONH a6
) L e e ot g SR T VAR SN ERE R | [Moo B H BT
<o AL SR O R | AR T (SR TR - T Lol R T S
L L TS H | T) < R T e LB HE S E T
cp R RN | BTN T N R s L | N — Y
LLLH'L‘HHHHHHLHHHHHHHNHH
2o el 81 B N, ST BT TR L S Ho W _H W & o
AN el e BN R [S RS T R [B M BTH OB AN W
ERCHIRTIE T ARHITTR 6 v eerr s T R TR IS
2 g s SRR B O i O R g o T L I T e
i i i P e Lo et (L LT L L E TR i - w7 Y]
= O (T RN (B T IS B R L s i HY B TE WM W H W
o L LIS (I S TR TR R B W lte gwn 5 B
Lo bglh H L R N R e H Wy W fH- s L 8B
LS S e A T | O S e S e R Ea g He MR H R 8 BCH
L ECESRR e SRy s R SR G R B HoH W W w
L Bl x o0 & o be@e beone oW ARG WO B E M R W oW
il Bl St S TR - R e oW W AR i 8
Lol e) LR e TR | (R R T O E rg L I L R
"=HighLMI.L’LowLevd.X=Dnn'lC:re
IC6
3LINE-TO-8-LINE DECODER
OR 1-LINE-TO-8-LINE DEMULTIPLEXER
INPUTS OUTPUTS
STROSE
SELECT OR DATA © (1) (2 3 W) .
A 6t [2v0 2v1 2va 2va 1vo 1vi vz 13
ETR X H H H H H . H H W W
frSpl R L L'H W S W W e
(LR L HoLo M W W Bow
E 1M ni L Bpsbapit N My Ne WM
W E B TR e TR R
BT L 8 UNT SRS O NN W
BoL N L B MM Mo W il B o
H H L L B W W OW LW W e
H H H L VT R R
'C = inputs C1 and C2 connected together
G = inputs G1 and G2 crnnected together
H = high level, L = low level, X = don’t care
IC7
INPUTS OUTPUTS
SELECT | STROBE| DATA
2¥o 2vi 2va ava
8- G2 c2
% K H X H M H H
L 'S L L & L] H H
L H L L H L H H
H L L L H H L H
H H i L H H W L
X X X H H H H H
81901-27b

Even more RAM can be provided by the addition of further RAM/EPROM
cards. The main decoder (IC5) for each board needs to be linked in the
following manner depending on the amount of RAM required:

link point X to 6 :

link pointY to 7 Uyircrean

link point X to 8 foUrtH card

link pointY to 9

etc. L /

Again, the 16k dynamic RAM card has not been reckoned with at this
stage. It is possible to start using dynamic RAM from address 2000 on, or
even to alternate dynamic RAM with ordinary (static) RAM. The latter
solution does mean, however, that the 8k blocks of memory have to be
completely filled — there must be no gaps. Otherwise a program loaded
from tape could well fall into such a gap . . . with disastrous results!

2716 EPROM In the case of the 2716 there is room for up to 4 x 2 = 8k of
EPROM on each RAM/EPROM card. In other words, either one or two 4k
blocks may be selected by the address decoder, IC5, on every card. This
will require either one or two wire links between points V and/or W and
points 2. .. F. If two links are required (6k or 8k), one will involve an odd
pin and the other an even pin.

When the operator works his way down the address range, the order of
selection will not be logical if the wire links P-R and S-T are included, as

Table 10. The decoding system for the RAM contained on the first card.

Fnount of

memory | 1IC9/10| IC11/12 | 1C13/14| 1C15/16| IC17/18 1IC19/20| 1C21/22 | 1C23/24
1K 20...23 —_ %% o ! - 1O it .
2K 20..23| 24..27 — — — -_ — e —
3K 20..23 | 24.27 | 28..2B —_— — — — —
4K 20..23| 24..27 | 28..2B | 2C...2F — — _ —
5K 20..23 | 24..27 | 28..2B | 2C...2F | 30...33 — — —
6K 20..23| 24..27 | 28..2B | 2C...2F | 30...33 | 34..37 — —
7K 20..23 | 24..27 | 28..2B | 2C...2F | 30...33 | 34..37 38...3B —
8K 20..23| 24..27 | 28..2B | 2C...2F | 30..33 | 34..37 38..3B |3C...3F

Table 11. The decoding system for the RAM contained on the second card.

F;unt of|

memory | 1C9/10 [1C11/12 | IC13/14 | IC15/16 | IC17/18 | 1C19/20 |1C21/22 | 1C23/24

oK 40.43| — (513 s gy, KT o5 1) 3
10K |40.43| 44..47 | — s . s B o 53
11K |40.43| 44.47 |48.48 | — - o e i &3
12K |40..43 | 44.47 | 48.48 |4C_4F | _ ks ol — |%58
13K |40..43 | 44..47 |48.48B |4c.4F |50.53 | — = — |3%E
14K (40..43 | 44.47 | 48.4B |4C.4F |50.53 |54.57 | _ — |S2u
15K | 40..43 | 44.47 |48.4B |4C.4F |50.53 |54.57 |58.58 | 3E2
16K 40..43 | 44..47 | 48.4B |4C.4F | 50..53 |54.57 [58.58 |6C.5F |2 &

.

73

shown in figure 25. This is illustrated in table 12a, which indicates when
the particular IC is enabled (select input is logic zero, see figure 27b). This
table applies when the output of N1 is logic zero, that is, when one of the
memory devices IC25 .. . IC28 is selected by IC5,

If, on the other hand, wire links P-T and R-S are made instead of P-R
and S-T, it will be seen from table 12b that the selection order certainly is
logical now. This is_very useful whenever longer programs are to be stored
which could span several EPROMs.

The preferable way in which to address and decode the first (or only)
EPROM section starting at page FF is shown in table 13. It involves the
following wire links:

e-g and a-d; P-T and R-S,

V-W-F for either 2k or 4k;

V-F and W-E for either 6k or 8k.

If more than 8k of EPROM is required and the operator decides against
using 2732 devices, a second card will have to be included on the bus
board. For this table 14 should be examined and the following wire links
have to be made:

eg and a-d; P-T and R-S;

V-W-D for either 2k or 4k of additional EPROM (a total of either 10 k or
12k);

V-D and W-C for either 4k or 6k of additional EPROM (a total of either
14k or 16k).

If even more EPROM is required, the same procedure takes place as for
additional RAM; links are made to the next available one or two pins of
IC5 which have not been used, each pin having a lower number than its
predecessor,

2708 EPROM If in table 12a address line A11 is replaced by A1 and A12
by A11, the selection order for IC25...1C28 will refer to the 2708
EPROM. Table 15 provides the preferable way in which to wire the first

Table 12a. The order of selection of IC25 . . . IC28 usingrlinks P-R and S-T (2716).:

A12 A11 1C25 IC26 1C27 IC28
A B k I m n
(1] 1) 0 1 1 1
(v} 1 1 ;o 0 1
1 0 1 (7} 1 1
1 1 1 1 1 0

Table 12b. The order of selection of IC25 . . . 1C28 using links P-T and S-R (2716)

A12 A11 .| 1C25 IC26 1C27 1C28
B A k | m n
1] Q 0 1 1 1
1] 1 1 0 1 1
1 (1) 1 1 0 1
1 1 1 1 1 0

74

Table 13. The decoding system for the (2716) EPROM contained on the first card.

amount

of

EPROM 1C25 1C26 1IC27 1C28
2K — o — F8..FF
4K — = F0...F7 F8...FF
6K —— E8...EF FQ...F7 F8...FF
8K EQ..E7 E8..EF FQ...F7 F8...FF

Table 14. The decoding system for the (2716) EPROM contained on the second card.

amount

of

EPROM 1C25 1C26 1C27 1C28

10K — — — D8...DF including 8K of
12K 2 T D@...D7 D8...DF Table 13 (first
14K S C8..CF D@...D7 | D8...DF RAM/EPROM-
16K C0...C7 C8..CF DQ@...D7 | D8..DF card)

Table 15. The decoding system for the (2708) EPROM contained on the first card.

amount

of

EPROM | IC25 IC26 Ic27 Ic28
(2708)

1K = — o FC...FF
2K - — F8..FB | FC..FF
3K - F4..F7 | F8.FBi|l FCLFF
aK FO..F3 | F4..F7 | F8..FB | FC..FF

Table 16. The decoding system for the (2708) EPROM contained on the second card.

amount

of

EPROM 1C25 1C26 1C27 1C28

(2708)

5K — R — EC...EF

6K — — E8...EB EC..EF including 4K on
7K — E4..E7 E8...EB EC...EF the first card.
8K EQ..E3 E4..E7 E8...EB EC...EF

(or only) EPROM section. The required wire links are:

e-f and a-c; P-Q and S-T,

V-W-F.

To increase the 2708 EPROM area above 4k a second RAM/EPROM card
is required. The selection information is provided in table 16 and these are
the wire links:

e-f and a-c; P-Q and S-T, V-W-E.

75

Additional 2708 EPROM is obtained by including another or several more
card(s) and then using the D, C, B etc connections to IC5,
What's more . . .
1. Do not forget the wire link L-M!!
2. The RAM/EPROM card must be equipped with a male connector as
shown in figure 19a. This should be mounted on the component side
of the board. Depending on the number of memory cards installed, the bus
board will have to be provided with 1...5 female connectors. This is
illustrated in figure 19b. The memory cards are then mounted at right-
angles to the bus board. &
3. Make sure that the connection points to IC5 are made in the correct
order. This is very important!
4. If any of the points V, W, X or Y are not used connect them to a
point that is, or to the +5 V supply line.
5. The best way to build up additional EPROM on the memory card is to
start at address FFFF (working your way down the address range),
because EPROM must be installed on page FF! (At least at addresses
FFFA ...FFFF). The relevant vector information must be stored at
locations FFFA . .. FFFF! This aspect was considered in great detail
during the description of the data bus control system on the interface
board.
To be able to keep the original EPROM (version D) on the main board of
the Junior Computer, the following data must be stored in locations
FFFA ... FFFF of 1C28:
NMIL, addresses FFFA data 2F;
NMIH; addresses FFFB data 1F:
RESL; addresses FFFC data 1D;
RESH; addresses FFFD data 1C:
IRQL; addresses FFFE data 32;
IRQH; addresses FFFF data 1F.

Once the Junior Computer is switched on a jump is made to the RESET

start routine contained in the original monitor program. The IRQ and NM|
jump vectors can be specified in the PIA RAM (page 1A) in the usual<
manner. Obviously, the operator is free to choose a different solution in
connection with his/her system programs. If, however, the reset vector
should fail to be specified, the Junior Computer will be as dead as the
proverbial doornail when it is switched on! Whatever happens, the NMI
and IRQ vector data must be specified to allow an indirect jump to take
place to RAM, where the jump vectors can be determined according to the
situation. See figure 32 and the relevant text on the subject in chapter 3 of
Book 1.
6. By no means expect to be able to remove an EPROM from one socket
and simply place it in another. Not only will the start address have
changed, but also all the operand data (at least the high order bytes) that
refer to the absolute addresses stored in the EPROM. To carry out such an
operation the EPROM will have to be re-programmed and the operand
data mentioned will have to be completely altered. For these reasons, it is
absolutely necessary to have a fully documented program listing for each
EPROM. A hex dump alone is not enough, unless the operator has his/her
own disassembler routine or investigates the contents of the EPROM ‘by

76

hand’, which invariably leads to mistakes.

7. When the bus board contains several memory cards, one card can be

filled with 2716 EPROMs and another 2708 EPROMs. The same ‘start
at the bottom’ rule applies. It is up to the programmer to select the
corresponding wire links. It does not matter so much here if an EPROM
area has a ‘gap’, especially if only part of the available 56k is actually used.
It does matter, however, if devices of a different type are mounted on the
same board!!

8. Any 4k memory range decoded by IC5 and located on a RAM/
EPROM card may be partially filled with RAM or EPROM. If that

memory range covers several cards, however, the operator is not permitted
to store data in the unused section of a different card. Why not? Well,
supposing we have a 4k data block that covers part of one card and part of
another, or several others. This does not necessarily mean that the full 4k
memory range is involved. Just to recap: as soon as one address in the 4k
range is accessed the whole range is selected. If a read operation is involved,
where data is retrieved from a single card, the data buffers will be enabled
on ‘read’ for the cards on which the 4k is being selected. This leads to the
undesirable situation shown in figure 6.

Conclusion: A 4k address range on a single card does not necessarily have
to be used completely, but then the other cards should remain out of the
picture altogether. To put this in practical terms: When a bus board
contains several RAM/EPROM cards, every link to a particular address
decoder (IC5) pin is either used only once or not at all.

9. The links between the various ground connections are all situated on
the interface board, around the output connector (4a/c, 16a/c and
32a/c)

10. One RAM/EPROM card may be connected directly to the main board.

This is described in Appendix 1.

We have now reached the end of chapter 10 and Junior Computer owners
are invited to read chapter 11 and/or chapter 12. Chapter 11 deals with
the TAPE MONITOR system program, once the computer is connected to
a cassette recorder (or cassette recorders) and the PLL has been calibrated.
It is possible to skip this chapter and move directly on to chapter 12
instead (do not pass GO, do not collect £ 200), where further peripheral
equipment is discussed along with the various modifications which are
needed. This includes the PRINTER MONITOR system routine.

Whichever chapter you read first, it will mean a further journey along the
road of discovery regarding computer facilities, for chapter 10 was just the
beginning. The journey will not always be an easy one, but at least there
is one encouraging thought to help you on your way: at the end of the
road there will be a versatile personal computer waiting for you!

77

1

The cassette interface:
a magnetic memory

Storing data on and retrieving data from tape

The combination of cassette interface hardware and Tape
Monitor software enables simple transfer of data from the
Junior Computer to an ordinary magnetic tape, and vice versa,
Basically, what happens here is that some form of load instruc-
tion (LDA) or some form of store instruction (STA) is involved.
Complete blocks of data (files) or even entire programs can be
stored or loaded in one go. The ‘memory’ in which the data is
now stored is not the usual RAM type that suffers from amnesia

as soon as the power is switched off, but the ‘permanent’ type

inherent to magnetic tape.

There are a number of advantages to be derived from working
with a cassette recorder (or two). For one thing, the programmer i
can at last start to collect useful pPrograms and even set up a full
scale library. All that is then required is to select a particular
cassette, slip it into the machine and let the Junior Computer
sort out which program file to load into memory. This saves the
time consuming job of entering strings of instructions and the
accompanying risk of ‘typing errors’. All key entry is reduced to
an absolute minimum because of five new key functions which
replace the ‘old’ AD .. .PC keys.

What is involved are not exactly ‘new’ keys, but brand new
functions which play a very important role in the ‘mechanics’ of
the cassette interface system. Unfortunately, this means that
the relevant keys need to bear yet another set of inscriptions.

78

Programs can now be entered into a much larger address area
running from 0200 up to P7FF without any gaps. This amounts
to a total of 1536 bytes which, thanks to the recording power
of the cassette interface, only have to be entered once.

Now to unveil the technical mysteries involved in storing data
on and retrieving data from cassette tape. It is not as compli-
cated as it may appear at first sight, as readers will find out once
they have this chapter ‘taped’!

It may seem rather remarkable, when you think about it, that digital
signals can be recorded on tape and ‘listened to’ in exactly the same
manner as a piece of Bach, the latest top twenty or the F.A. Cup Final.
However, inadequate mortals that we are, we are not able to decipher
these signals! The only feasible answer is that the cassette recorder system
must possess superhuman powers. This is in fact exactly what happens, as
will be seen later when data is converted into specific frequencies which
only the recording system (and the computer) can understand.

Before delving too deeply into any of the more technical details, let us
return to the various reasons for wanting to use a cassette recorder in the
first place. As it was stated previously, storing programs on cassette saves a
lot of time and effort. Supposing, for instance, a long program needs to be
edited and assembled, The entire program can now be stored on tape
before being assembled and then if anything turns out to be wrong, there
is no need to re-edit the whole program. What happens now is that the
edited version of the program is entered from tape once again, the editor is
activated by means of a warm start entry and the program is corrected
where necessary. A few more labels may well have to be added, etc. The
‘new’ situation may then be recorded before the assembly procedure starts
and this can be repeated as often as is required. Thus, in this example, the
cassette tape acts just like a data bank.

There are, of course, other benefits as well. The horizons of the Junior
Computer can be widened considerably, for it is now able to read programs
which were not specifically developed for it, such as computer games, etc.
The programmer may even be able to join a 6502 ‘user’s club’ and
exchange programs with his/her fellow members. This would provide a real
opportunity to set up a useful data library!

The cassette: a magnetic RAM

The benefits described above are available at the reasonable cost of a
simple mono cassette recorder and a couple of cassette tapes. If, for
example, a C-60 type is used, about 25 minutes worth of recording is
available per side (making allowances for gaps in between files and a short
space at each end of the tape). This means that with a transmission speed
of 50 bytes per second (more about this later) 25 x 60 x 50 = 75.000 bytes
(or 73 kilo bytes) can be stored — and that is just on one side! It should be
enough to start with . . .

79

How is the data actually stored on tape?

Fig'ure 1 looks rather like a train carriage with a series of compartments in
which different information is ‘seated’. The data does not necessarily
belong to a complete program, it may also constitute a separate routine, a
table or a length of text, etc. In any case, however, a data block is involve'd
which is sent to the tape recorder during data transmission.]
Now let us examine the configuration shown in figure 1:

(¢

256)
synchronisation * 1D SAL , SAH / CHKL ,cuxu EOT , EOT
characte: d of
s start file) data data ::‘.o end of
character number s iratter control bytes transmission
(¢ characters
)J
|
N | s Al 81902-1
cassette | ey
——————————————— '
memory TR e
: |
read | write
record I playback
ouTPUT | INPUT
|

Figure 1. The various ‘compartments’ belonging to a data transmission.

1. Synchronisation characters.

Considering the tape from left to right, the first ‘compartment’ consists
of 255 synchronisation characters. These determine the actual start of a
plata blogk and enable the Junior Computer to distinguish data from other 5
information which may have been recorded previously. In other words, the
computer will ignore the first babblings of your new baby, your brot!'lxer's
trumpet voluntary or such remarks as ‘this is my first program on
cassette’ . . . i

Since a total of 73k bytes is available on one side of a C-60 cassette tape
there is ample room for several data blocks and/or programs on the same'
cassette. Therefore, a single tape will contain a number of data trans-
missions with short breaks in between them.

What, in fact, is a synchronisation character? Basically, what is meant is an
AS(;II coded character, for data is always coded in the ASCI| format —
8 bit words — when it is recorded on tape. The most significant bit is
resgrved for special purposes and in this particular instance will always be
logic zero. The various bits in the ASCII byte are stored one after the
other, serially. Serial data transmission will be discussed at length in
chapter 12. .The synchronisation character is 16 in hexadecimal. Thus a
data transmission will start with 00010110 which is repeated 254 times.

80

2. The start character ‘s’

Once the start of a data transmission is known, the start of the data itself
needs to be announced. This is accomplished by the character ‘** (hexa-
decimal 2A in ASCII).

3. The file number ‘1D’

Obviously, if a great number of data blocks are to be stored on one (side
of a) tape, each individual block will have to have its own identity to
avoid confusion. Thus, ID really stands for ID in this instance! A total
of 254 different file numbers are possible. This includes all the various
values between @1 and FE. Values @0 and FF are reserved for a specific
task when data is read from tape. Each data block must be preceded by
its ID.

4. The low order address byte, SAL

This corresponds to the low order byte of the first address location
pertaining to the program or data block that is to be stored on cassette.

5. The high order address byte, SAH

This corresponds to the high order byte of the first address location
pertaining to the program or data block that is to be stored on cassette.
Each address byte is transcribed into two ASCI| characters, that is to say,
one ASCII character per nibble. The data bytes are then stored on tape as
a series of 16 bits. The write operation begins with the start address
(contents of SAH and SAL) and ends with the address minus one stored in
locations EAH and EAL. As figure 1 shows, the end address (EA) does not
have a ‘compartment’ of its own, but is determined by the start address
and the length of the data block.

Some readers may wonder why we chose to call the last address EA
instead of the more logical LA. Well, this is because the procedure had to
be compatible with that of the KIM computer. Obviously, it is important
to ensure that the contents of SA are always less than those of EA.

Why are SA and EA necessary? The computer must know where (at which
address) to start reading (storing on tape) or writing (reading from tape)
the information from/to RAM. It is possible to select a different start
address when reading data from tape (ID = FF), but this may not be a
particularly good idea. Remember that a program (= data block) contains
absolute address operands which will have to be modified either partially
or completely if a new start address is chosen (only the high order address
bytes have to be altered during a page shift), in other words, if the data
is to be stored in a new memory area.

6. The actual data block

Since each data byte consists of two nibbles, each of which is stored on
tape as an ASCI| coded character, 16 bits per data byte are sent, bit by bit,
to the tape. The data block contains all the information belonging to
locations SA . . . EA (see figure 2). In principle, a data block may be any

81

SA
.
(o]on]

1A71 1A70

1A79

5 _r ‘(ID=G1,..FE)
i L,
B et
Askq,
% <:|(m=n...|=£;

81902-2

Figure 2. A data block containing the parameters involved during transmission.

size. Both RAM and EPROM data may be stored on tape (= read from
memory), but only RAM can be filled with data contained on tape, as an
EPROM can only be written to once during the initial programming.

7. The end of data character /'

This character (ASCII code 2F) informs the Junior Computer when all the
data in the block has been read from tape (when data is stored on tape, the
end of data character is recorded when the contents of the address pointer
POINTH and POINTL, coincide with those of EA). '

8. The control bytes CHKH and CHKL

These two bytes ensure that nothing was mislaid or misread during a
recorgilng. A cassette recorder has a special gift for distorting information
in spite of the improved PLL (see chapter 10). It is therefore absolutely'
necessary to check whether one or more bits happened to be viciously
rputllated in some invisible manner, the best method being to count them
like a shepherd counts his sheep. :

At the beginning of a write operation, the CHKH and CHKL bytes are
made equal to zero. From SAL on, the bytes are all added to each other
before'being translated into the ASCI| code. The file number (ID) is not
taken into account here. Each time the contents of CH KL reach FF, the
contents of CHKH are incremented by one, and when this also reaches FF

both are reset to zero without causing any complications. When data is'
read from tape, the same procedure is used.

All that has to be done then is to compare the result of the two counts:
the.number of bytes during the read operation must be the same as those
during the write operation, and vice versa. If so, there is reason to believe
(and hope!) that the data transmission has been carried out succesfully. If
not, the tape will have to be re-loaded and maybe even tidied up here and

82

AAAAA,

data FF

IAAAAN
data 7F
/\ SAL, SAH, data
data 90 |.—|
\ /
CHKL
ANANANANANANANANNNANNANNNN
CHKH
819023 T

Figure 3. The ‘beer barrels’ illustrate the purpose of the checkbytes CHKH and
CHKL.

there. We could of course provide a whole chapter of error statistics and
other theoretical titbits . . ., but at this stage it is better for readers to cross
that bridge when they come to it.

The check system can be illustrated by a pair of beer barrels (see figure 3).
Location CHKL is represented by a small beer barrel and CHKH by one
that is 256 times (= FF) larger. The beer represents the flow of data. If the
data amounts to FF, the small barrel will be filled to the brim. If, however,
the data is 00, the barrel will be empty. As soon as the small barrel
threatens to overflow, the entire contents will flow out of the bottom of
the barrel. The same will happen to the large barrel when this is also full of
beer, the entire contents will disappear. Once all the beer/data has stopped
flowing (assuming, of course, that none was drunk on the way!), the final
levels may be compared.

How the balance of the two levels is drawn up is illustrated in figure 4. If
the two large and the two small beer barrels are equally full, everything
will be all right. If one of them is slightly emptier, you can be sure that
someone has been having a few ‘tipples’ on the side.

Another way of looking at the check system is to compare it with a bank.
It is in the bank’s common interest (and ours!) to see that people’s money
is well looked after. It would therefore be disheartening, to say the least,
for the employees to discover one morning that one of the clients had
remained in the building after closing and has subsequently absconded
with all the cash. This can be avoided quite simply by counting all the
clients who come in and go out during the day and then compare the two
numbers. If they do not tally, the bank manager may well have reason to
worry. |t could mean that the system has forgotten how to count correctly,
or that two persons passed the detector at exactly the same time and were
therefore registered as only one, or even that a client cashed in on his/her
pools winnings and was shown out discretely through a door at the back.
If the two latter cases mentioned happened to coincide they would auto-

83

CHKH >
wile -4

CHKL CHKL

e coed 819024

gz:r: 4. The ‘scales’ illustrate the comparison of the two values for CHKH and

matically cancel each other out and so would esca i

g e pe notice altogether.
As fa_r as the check byte§ CHKH and CHKL are concerned, however,
counting the b_ytes_by adding them is, believe it or not, a perfectly fool-
proof method, in spite of the peculiar circumstances which might arise.

9. Two EOT (End Of Transmission) characters

These ‘close the gate‘behind the sheep’ to indicate that a complete data
Plock has been’tr.ansmltted (ASCII code: @4). That just about covers all the
compartments’ in figure 1. As you probably noticed, it was quite a long -
train of I1:hc():'ught. Apart from the fact that 255 synchronisation characters
are involved instead of 100, the data transmission format is identi

that of the KIM computer. e everig

How to store data on tape
Digital music in the form of three notes per bit

As we mgntioned earlier, data is transmitted serially, bit by bit. The
question is: _How are the bits stored on tape? A logic one is commonly
associated with a ‘high’ level and a logic zero with a ‘low’ level. Conse-
qugntly, a_logic one bit could be translated into a high frequency and a
logic zero into a low frequency. A flow of data bits would then be stored
on tape as a series of high and'low tones. Such a system is the ‘Kansas City
Stqndard’ where the two tones are 2400 Hz and 1200 Hz respectively

Things are slightly more complicated in the case of the Junior Com;;uter
where both bits are translated into a-high frequency tone followed by a'
low frequency tone. The difference between a logic one and a logic zero

84

——

| |

(L 8 1
e

= [

CJ L4

1 »
e —

{
1 T
L& r J L J
8190252

KiM
19] o 2
-3
v £5 5 1 g g
i | [y] ~ P —
1 =t 1 : T s " T T 7 1 1 1 T T T
E e e e e]
pt 7 7 J—v r 4 r A r A [4
81902 5b

Figure 5. Say it with music: a logic zero bit can be represented by two high notes
followed by a single low note, whereas a logic one bit can be represented by a single
high note followed by two low notes. The ‘music’ is recorded and played back by
the Junior Computer at a rate of almost six times the speed of the KIM (figure 5b).

lies in the length of the high frequency tone with respect to the length of
the low frequency tone, the total length of each pair being the same. In
the case of a logic zero, the high frequency tone lasts twice as long as the
low frequency tone, whereas the exact opposite is true for a logic one.

The time ratio will therefore be either 2:1 or 1:2. Since one plus two
equals three, a bit can be represented by three ‘musical’ notes. This is
illustrated in figure 5a, where the ‘melody’ for the logic zero bit consists of
two high notes followed by one low note, and the ‘melody’ for the logic
one bit is made up of a single high note followed by a pair of low notes.
Fortunately, the Junior Computer does not need a piano to write ‘music’
and record it on tape. The two frequencies involved are 3600 Hz and
2400 Hz. These, we assure you, are well outside the range of any soprano!
The various pulse trains are shown in figure 6a. A low logic level bit
consists of six half-periods of 3600 Hz and two half-periods of 2400 Hz
(pulse train (1) in figure 6a). A low logic level bit is comprised of three
half-periods of 3600 Hz and four half-periods of 2400 Hz (pulse train (2)
in figure 6a). The total length of the train remains unchanged, irrespective
of whether the logic level is high or low. (This can be expressed as 9T
where T equals the duration of one half-period of 3600 Hz). Furthermore,
the train will always start with the higher frequency. The duration ratio
for the high and low frequencies is either 2:1 or 1:2. In the musical
example in figure 5a each note lasts 3T.

85

T= f = 3600 Hz

1
2f

@0 LML oo

@1 T F1L I o

@ Um PLLC]from tape

@ 1_M PLLGfrom tape 8190262

. to tape

. to tape

| <] from tape

///,— PLLGfrom tape

s

d o
R -

oT 9T 18T time

18T 27T 36T

36T . , 45T 54T
{ 81902:6b

Figure 6. The signals transmitted to ta i i i

5) pe during the write operation, (1) and (2) for
the Junior Computer (figure 6a) are much shorter than those for the KIM (figun’a 6b).
Consequently, the output signals from the PLL in the playback mode, (3) and (4)
are also of much shorter duration in the Junior Computer. h ;

86

By way of comparison, figure 6b shows what happens in the KIM com-
puter. The pulse train had to be spread over several lines, so please follow
the arrows. Here, a high level bit consists of nine full periods of 3700 Hz
(which in this instance is shown rounded off to 3600 Hz) plus twelve full
periods of 2400 Hz. A low logic level bit, on the other hand, is made up of
eighteen full periods of 3700 Hz and six full periods of 2400 Hz. From
these figures it can be seen that a bit in the KIM lasts six times longer than
one in the Junior Computer. The reading and writing speed is therefore
much slower in the KIM, but this has been remedied by the HYPER TAPE
program written by Mr. J. Butterfield, which enables the transmission
speed to be increased considerably, so that one KIM bit is then equal in
length to one in the Junior Computer. The software in the DUMP/DUMPT
routine in the TAPE MONITOR program differs from that in the HYPER
TAPE program in a number of fundamental aspects. These will be dealt
with in greater detail in Book 4.
To get back to what we were saying, one bit of data in the Junior
Computer lasts nine half-periods of 3600 Hz, which is 9 x 139= 1250 us.
In other words, the transmission speed is 800 bits (or 100 ASCI| charac-
ters = 50 data bytes) per second. This is generally known as a baud rate of
800.
Data is recorded on tape during the DUMP/DUMPT routine which is called
in the course of the main TAPE MONITOR program. During this write
operation the six seven-segment displays will remain unlit, but the red
(OUTPUT) LED will be on. The parameters for a successful operation are:
a. Indicate the program number, ID (01... FE, @0 and FF serve a special
purpose, which we shall come back to later).
b. Indicate the start address SA.
c. Indicate the end address EA (one location higher than the last address,
LA, of the data block). The data block is read from memory starting
with the first address, SA, and ending with the last address, LA. This is
accomplished with the aid of the well known address pointer POINT,
which is used to display an address and its contents.
At the end of the DUMP/DUMPT routine, the contents of POINT should
equal the contents of EA. This can be verified by depressing the RST key.
The display will then show the address EA and its contents.

How to read data from tape
From bits on tape to bytes in memory

Returning to figure 6a, the data bits are recorded on tape either as two
high frequency tones followed by a low frequency tone (logic zero) or as
one high frequency tone followed by two low frequency tones (logic one).
When the information is read from tape, the tones have to be translated
back into bits and reorganised into ASCI| bytes, which in turn have to be
converted into data bytes. The latter must be stored in memory, in serial
format, from the start address on.

Let us first reconstruct the bits. During the read operation, the recorded
signals (1) and (2) in figure 6a feature a symmetrical, rectangular
waveform (see also figure 17). The record head of the cassette machine
will, however, cause them to lose this rectangular form. Due to the effects

87

of the low pass filter, the signal will become sinusoidal in shape, as shown
at the playback INPUT of the Junior Computer (see figures 18 and 19).
The important factor as far as the PLL is concerned is that the zero-
crossing information is not lost. In other words, the frequency information
(high and low tones) is preserved. This is quite adequate for the PLL, asa
result of which, drawings (1) and (2) are transformed into (3) and (4),
respectively. As can be seen, drawings (3) and (4) also give a good idea of
the ‘melody’ shown in figure 5a. When the PLL control was described in
chapter 10, the transition from (1) to (3) and from (2) to (4) was dis-
cussed in great detail.

The output signal from the PLL, (3) or (4), is inverted (a high logic level
becomes a low logic level and vice versa) and is fed to the Junior Computer
by way of the port line PB7.

According to the duration of the high and low output levels of the PLL,
the software will filter out either high or low logic bits from the PLL signal.
It is not the durations themselves that matter, but their relation to each
other: is the 3600 Hz period (high PLL output) any longer than the
2400 Hz period (low PLL output), or vice versa? Their specific T values
are irrelevant. If the 3600 Hz tone lasts longer than the 2400 Hz tone, the
bit in question will be logic zero, otherwise it will be logic one. Since the
durations themselves are immaterial, the Junior Computer may be used to
read back data taped by the KIM computer, in spite of the pulse length
differences between the two systems. Consequently, signals (3) and (4) in
figure Ba are identical to those in figure 6b, even though the latter signals
are six times longer than the former. This is a great advantage, even for
readers who do not have occasion to use the KIM, as it means that vari-
ations in the recording and playback speeds (nominally 4.75cm per
second) will not affect the transmission quality — there will be no ‘flutter”,
etc. In other words, it does not matter which type of tape recorder is
employed and it is possible to record on one machine and playback on
another. This is because the 2:1 (low logic level) and 1:2 (high logic level)
ratios are too wide apart to cause confusion.

Ratios of 4:3 (instead of 2:1), due to temporary interference, or 3:4
(instead of 1:2) do not cause the read software any problems, as even then
it manages to detect the correct bit value. As figure 5a shows, this is quite
something, for if the diagram containing two high tones and one low tone
differs greatly from its opposite number, the drawing containing four high
tones and three low tones is almost identical to the one containing three
high tones and four low tones!

In chapter 10 the question of PLL jitter came up in connection with
unauthorised, premature or indefinite changes in the logic level of the
output. PLL jitter is not taken into account during a read operation. In
actual fact, both the high frequency tone durations and the low frequency
tone durations are trimmed down a little. This means that the contrast
between the 1:2 and 2:1 ratios is narrowed down slightly, but not enough
to cause confusion. PLL jitter' may, however, cause problems when
attempts are made to speed up the read and write operations. This is
because the bit times are shortened somewhat. So do not place too much
trust in the high speed cassette interfaces currently advertised, the
majority only lead to data readings full of errors!

Subroutine RDTAPE

Data is read from the cassette tape with the aid of the subroutine

RDTAPE, which is called during the TAPE MONITOR program. The two

i i i iently indicate what is
ht-hand displays of the Junior Computer.cqnvenlen ' A

;c?ing on during the read process. The remaining fqur wu!l stay unI!t. The

two right-hand displays light in three specific configurations (see figure 7

and 8).

i
© IO

- HHEHE -

ile) i i ed and loaded from
i 7. When a data block (file) is being searched for, detect d and
:ﬁ:. the two right-hand displays of the Junior Computer will indicate the status.

This is not the case with the KIM computer.

The first drawing in figure 7 applies when:) ; }
a. :he tape passing the playback head (cassette is in the ‘play’ mode)

ins no digestible data (space between two data blocks,_unrecord'ed
tapZ?nBt:;:;oven’sg;th, etc.). The two displays will be seen to flicker during
g"ihzert'::é contains a data block which is being read, but the begl.f;Pl(I;!g|IS
missing, or the ID number does not correspont_:l to the_ one specifie I n
this instance the two displays will not flash, but w!II remain lit constantly.
The second situation occurs when the computer is in 'ghe synchronisation
phase. In other words, it is reading the synchrom;atlon charat_:t;rs pred-
ceding a data block. The reading may well not be quite perfect_ wit _Il;efg:arh
to the initial few characters, so the display pattern in the drawing w1h as
for about one second before becoming stable. There are 255 sync :;)ms-
ation characters on the tape. The computer t_akes about 2.5 seconbes to
read these ASCII bytes. The Junior Computer is qble to detect the glnf-
ning of a data block as soon as it has read an uninterrupted sequsnceﬂ?
ten synchronisation characters. Since there are 255 of these altoget_bt'alr.,t ' ?
Junior Computer has an excellent chance (in fact, at least 20 pOSSIdI i |e|s
of making an unambiguous detection. The K_IM on the other h:nl ,tong
has 100 synchronistaion characters and so things are far more likely to g

wrong here. sis
The tghird situation shown in figure 7 occurs when the ID number specified

by the operator has been found and stored in the memory of the Junior

Computer.,

Before data recorded on tape can be read, that is before the jump to the

RDTAPE subroutine, an identification number must be specified. Even

though a tape may contain up to 254 different data blocks, entering the

number of one of them is sufficient for the computer to trace the correct

file. If either PP or FF is entered as an 1D number, the computer will load

the first data block that happens to come along. Moreover, when 00 is

specified, the file number will be ignored and the data block will be stored

in memory starting at address SA on the tape. When, on the other hand,

FF is specified, both the file number and the start address are ignored. In

this instance, the data block will be loaded into memory at an address

selected by the operator at that particular moment.

This enables the data blocks to be moved around easily. The only con-

sideration that needs to be taken into account is that whenever 00 or FF is

used as an ID number, the ‘first come, first served’ rule will be enforced,

meaning that the first data block which happens to arrive in due time will

be loaded into memory. In other words, the operator must know exactly

which data block is to be transferred and its exact location on the tape.

One solution to this problem is to use a cassette recorder which has a ‘tape

counter’ built-in. The complete procedure is illustrated in figure 8a. When

the program number (ID) is @@ the following happens:

® The first data block to be read is stored in memory.

® The start address, SA, is the same as that stored on tape.

® The program number which was recorded on tape is therefore ignored.

® See figure 8b.

When the program number (ID) is FF, the following happens:

® The first data block to be read is stored in memory.

® The start address, SA, is the same as that previously entered by the
operator.

® The program number which was recorded on tape is therefore ignored.* =+

® The start address recorded on tape is also ignored.

® See figure 8c. £
This is how data blocks can be stored in memeory without losing the start
address recorded on tape. Programs can now also be relocated in memory.
This is why a tape counter is essential. In some cases, for instance, moving
a data block may mean that absolute address operands have to be modi-

1D = XX T

ot) data no data

S
4 ¥ §F T 7

8190282

20

b ID=01...FE ID=01...FE

D D> oO— -

data no data

D SA

1A79 81902-8b

v
e

Cc ID=01...FE ID=01...FE

b—()—»— 1 (2) G) “id FF" ——
data no data
~ nr
I SAH l SAL [
1D

1A71 1A70 - 81902-8¢

1A79 -

~ ~

Figure 8. The search for a data block when the identifier (ID) equals 81 . . . FE
(figure 8a), when ID = 00 (figure 8b) and when ID = FF (figure 8¢).

fied, either partially or completely. Such thing§, howevz_er, d_o not yet exist
in programs generated by the editor. The label information is still included
in such programs. By using the identifier FF, and a start address chosen by
the operator, it is possible to shift a data block to any memory area and

assemble it with the assembler.

Data management
The TAPE MONITOR program

The TAPE MONITOR system program (which we will refer to as TM from
now on) is designed to fulfil all the wishes of the operator with regard to
writing data from the Junior Computer onto tape and read_lng dgta sto_red
on tape into the Junior Computer memory. This program is resident in a
2716 EPROM and is therefore available as soon as th_e Junior Comput_er is
switched on. The EPROM can be programmed using the he>_<adecn:na|
dump printed in Appendix 4 at the back of this bogk. Although it consists
of more than 1024 bytes, it by no means occupies the full 2048 bytes

91

©
g@ﬁ

S

D)
S|

D

J

2

®
ﬁgﬁ

i

S|

D

o OO

L

1{

Figure 9. The new names and new f

Computer keyboard.

which are available, so there is s

L SEARCH
c[|[o]|]E @ 3
- INSERT IN’UT:.
8[l[o]lla E o] [hae
4 lI5](le]ll7 conr ||[| ST
11 2(3 P

which could come in handy later on.

The TM program is situated in
less, the start address is not
times the program is left via
depressing the RST key,

original monitor routine.

Most of the TM program consists of the actual write routine DUMP/
DUMPT and the actual read routine RDTAPE. The rest of the program
includes software which, on the basis of the new functions given to the
parameters to be set before the data is - -
om tape. The ‘new’ keyboard is shown in

keys AD . .. PC, enables various
actually stored on or retrieved fr

figure 9. Let us now examine each ‘new’ function in turn.

1. The PAR key (the ‘old’ +/SKIP key)
Setting parameters beforehand

Let us start by taking a
Depress;

RST 08 10 GO
2C

PAR
02
PAR
PAR
03
PAR
FF

92

‘key’ example:

The display shows:

id P9 (situation (1) in figure 10)

idy- 142G

SAH 32 (situation (2) in figure 10)
2

. SAH
"‘SAL 0@ (situation (3) in figure 10)

EAH 00 (situation (4) in figure 10)
EAH 03

EAL 00 (situation (5) in figure 10)
EAL FF .

unctions for the control keys of the Junior

ufficient room for a few extra routines

the address range 0800 . . . BC7F. Neverthe-
0800 as might be expected, but P810! Some-
the editor and sometimes it is exited from by
after which the computer will return to the

DB

|

)

i

o Co o oo

®
L= m N S

m mifR] mim

0=

i |

mi Y mim

J

o

=i

DI

i
i

J

=

b

e

mim AR i

u(

L

E@

J

oo

2

)
)

2

U

)

g

=

U

©)
La Wi~ === =0RL= = 10!
o

=

oo
Q|

1

i i i i le when data is being
Figure 10. The nine parameters which play an lmpovtal.'lt ro
transferred to or from cassette can all be displayed during the TAPE MONITOR

program with the aid of the PAR key (= +/SKIP key),

81146 4
81902-10

93

PAR bEGHxx (situation (6) in figure 10)
PAR bEGLxx (situation (7) in figure 10)
PAR EndHxx (situation (8) in figure 10)
PAR EndLxx (situation (9) in figure 10)
PAR id 2C

PAR SAH 92

PAR SAL 00

PAR " ~EAH 03

04 EAH 04

PAR EAL FF

00 EAL 00

PAR bEGHxx

etc.

What was that all about? Clearly, preparations were being made to transfer
a data block from memory to cassette tape (by way of the SAVE key,
more about this later), because a program number (1D = id) was entered
and so were a start address, SA, and an end address, EA. The data block
0200 ... D3FF was meant to be stored on tape as file 2C. At the last
minute the programmer realised that he/she had not taken into account
that the end address is equal to the last address plus one (EA= LA+ 1).
The error was then rectified by depressing the PAR key until EAH and
then EAL appeared on the display.

As you have probably guessed, ‘PAR’ stands for ‘parameter’. This term is
used to define the size of a particular data block and its whereabouts on
cassette. There are nine parameters altogether, one or several of which
have to be specified (depending on which of the other four function keys
that the TM program also acknowledges were depressed. The parameters
are as follows:

ID (program or file number)

SAH

SAL

EAH

EAL

BEG(AD)H

BEG(AD)L

END(AD)H

END(AD)L :

It should be noted that, for once, the high order address byte is specified
first.

When the required parameter is shown on the display, two numeric keys
are depressed, one after the other. The two key values (nibbles) move from
right to left across the two right-hand displays in exactly the same manner
as in the DA mode. After the start of the TM program, five of the nine
parameters are reset (@0). These are: ID, SAH, SAL, EAH and EAL. The
other four parameters either have a random value, if the Junior Computer
was switched on just before the TM program was called, or the same value
as when the computer was in the editor mode. Situations (6) ... (9) in
figure 10 show the data ‘88’ to illustrate the ‘don’t care’ condition (all the
segments lit).

94

Table 1. The temporary data buffers used by the TAPE MONITOR program are
stored in page 1A. These locations (like those used by the original monitor program)
should never be overwritten by the user program.

TEMPORARY DATA BUFFERS

sY * $1A69 SYN COUNTER

BYTE * $1A6A BYTE FROM TAPE

CHAR * $1A6B CHARACTER FROM TAPE

HIGHER * $1A6C 360@ HZ HALF PERIOD DELAY
LOWER * $1A6D 2400 HZ HALF PERIOD DELAY
CHKL * $1A6E CHECK SUM LOW

CHKH * $1A6F CHECK SUM HIGH

SAL * $1A70 START ADDRESS LOW

SAH * $1A71 START ADDRESS HIGH

EAL * $1A72 END ADDRESS LOW

EAH * $1A73 END ADDRESS HIGH

SYNCNT * $1A74

BITS * $1A75 AMOUNT OF BITS

FIRST * $1A76 HALFPERIOD AMOUNT OF 3600 Hz
SECOND * $1A77 HALF PERIOD AMOUNT OF 2400 HZ
GANG * $1A78 TEMP OF PBD-BITS

ID * $1A79 ID OF THE DUMPT PROGRAM

NMI * $1A7A NMI| VECTOR

As soon as a numeric key is depressed the parameter display changes. In

this way, the PAR key allows the value of the displayed parameter to be

altered by depressing a numeric key on the hexadecimal keyboard. This is

very convenient for the operator, as he/she can now ‘see’ what is going on.

If the more primitive system were to be used (AD 00 E 2 DA xx+vyy)

the operator would not really know what was happening: PPE2, is that

BEGADH or BEGADL?? ...

N.B. Nine locations on both page @@ and page 1A correspond to the nine

initialisation parameters shown in figure 10. The data stored in locations

1A69... TA7F must not be overwritten during the cassette read/write

operations!

What about those four functions mentioned earlier? These are:

1. SAVE: this is a new name and a new function for the AD/INSERT key.
It enables data stored in the memory of the Junior Computer to be

saved by transfer of a data block to cassette tape. This is accomplished as

follows:

® Enter a program number (ID) in the range @1 ... FE, in other words,
do not include 0@ or FF.

® [ndicate a start address, SA.
® |ndicate an end address, EA. Take care! EAH and EAL form an address

which is one place behind the last address of the data block concerned.
Thus, if the end of the data block is @3FF, EAH = @4 and EAL = 00.
® Find an empty section on the cassette. To ensure that no ‘old’ data will
be overwritten, check by means of the internal speaker whether any
3600 Hz or 2400 Hz signals can be heard.

95

® Make a note of the current contents of the tape counter, the ID, the SA
and the EA. If you like, you can record these comments as well.

® Depress ‘record’ and ‘play’ on the cassette player simultaneously. Make
sure the record level is adequate. Start the tape.

® Record your comments first or depress the SAVE key at once. A data
transmission will now be recorded with the aid of the DUMP/DUMPT

routine. The red (QUTPUT) LED will light. The six seven-segment displays

remain unlit. Wait until the Junior Computer reports back ‘id xx’, where

xx stands for the program number you just stored on tape.

® Stop the cassette recorder.

That covers the practical side of a data recording. Readers with cassette

recorders featuring remote control facilities will find that the cassette

starts automatically after SAVE is depressed (provided, of course, the

recorder is set in the ‘record’ mode!). They will then have to switch off the

remote control if they wish to add any comments. As soon as the re-

cording has finished and RST is depressed, the end of file address, EA, will

;:)pear on the display. This will be the start address, SA, of the next data

ock.

2. The GET key: a new name and a new function for the PC/SEARCH
key. When this key is depressed, the Junior Computer reads a particular

data block stored on cassette tape into memory. This involves the subrou-

tine RDTAPE.

The following steps are taken:

® |ndicate the required program number in the range @1 . . . FE. If this is
omitted the ID will be taken from the former contents of location 1D

(situation (1) in figure 10).

® |f ID = FF, indicate a start address, SA. Forgetting to do this will cause
the old contents of SAH and SAL (situations (2) and (3) in figure 10)

to be used for SA. At the start of the TM program, SAH and SAL will be

reset (@@), so that the start address will be GO@Q.

® Place the cassette containing the required data block into the recorder.
Where ID = @1. .. FE it does not matter whether the exact location of

the data block is known, as long as the tape is started early enough. Where

ID = 09 or FF, the tape must be prepared beforehand, as the first data

block to arrive will be entered into memory in these instances.

® Depress the GET key. The green (INPUT) LED will light.

® Set the cassette recorder to ‘play’ and start the tape.

Now, the situations belonging to figure 7 will be displayed. When situation

(3) appears, the data block in question has been stored in memory.

Once the file has been loaded, the Junior Computer will inform the

operator by displaying ‘id xx’, where xx stands for the program number

that was indicated previously — provided the data has been read in cor-

rectly. See the end of this chapter.

® Stop the cassette recorder.

This is the normal procedure, that is, if no mistakes were detected during

the checksum calculation: If, however, there were some errors, the com-

puter will not display the text ‘id xx’.

Once a data block has been loaded the various parameters can be examined

with the aid of the PAR key. Only the contents of ID and (if ID = FF)

those of SAH and SAL are relevant. So do not expect to find the end

96

address of the data block at locations EAH and EAL (this only applies
when data is written to tape).
N.B. If the RST key is depressed (return to the original monitor) immedi-
ately after a file has been read into memory, the appropriate end address,
EA (contents of SA plus the size of the data block), will appear on the
display. That is, if an ID of FF was not involved.
If the chosen ID was FF, something else will also happen. The address
pointer, POINT, which was used during the write operation is decremented
by one. Next, the contents of SAH and SAL are made equal to the new
contents of POINTH and POINTL respectively. Thus, depressing the RST
key would bring the last address, LA, of the data block to the display.
The above allows edited programs to be placed one after the other without
loss of space (the EOF characters of the previous data block are overwrit-
ten). Bearing this in mind, if any data blocks are to be placed one after the
other using the identifier FF, the end address (EAL) will have to be
modified (incremented by one) and, if necessary, so will EAH, before a
new data block is loaded (otherwise, the last address of the first data block
will be overwritten by the first address of the new block!).
This is illustrated in figure 11. Using a start address, SA, that is equal to
BEGAD and an end address that is the same as CEND, an edited program
is loaded onto tape (see the section on the SEF key). The current end
address pointer, CEND, will be pointing to the first vacant memory
location. This is one location behind the EOF character 77. The EOF
characters will have to be overwritten to allow several edited data blocks
to be stored one after the other without loss of space. Thus, one memory
location must overlap, which is done by decrementing POINT until it
equals the new start address.
3. The EDIT key: this attributes a new function to the DA/DELETE key.
In actual fact, the function concerned is not entirely new, as activating
EDIT is equivalent to entering AD 1 C B 5 GO, leading to a cold start of

SA BEGAD
SAH SAL I BEGH l BEGL
1471 1A70 00E3 PPE2
1A79
i) o
4 -
XX LA
EA CEND = —)
| EaH | EaL > Icsnnulcsum XX
1A73 1A72 W0E9 OOES
5 s 81902-11

Figure 11. The same situation as figure 2, only now an edited program is involved in
the data transmission. The data is transferred to cassette after operating the SEF key
and is reloaded by depressing the GET key.

a7

the editor. Prior to this, BEGAD and ENDAD are loaded by means of the
PAR key (operate PAR until BEG(AD)H is found, enter the correct data,
operate PAR once more and enter the required data into BEG(AD)L, etc.
— see points (6) ... (9) in figure 10). As you know, a cold entry to the
editor causes ‘77" to appear on the displays. This is exactly what happens
when EDIT is operated as well, so that it may well seem superfluous. Is
this really necessary? The answer is yes, as will be gathered from the
following.
4. The SEF key: this is a new function given to the GO/INPUT key. It has
a special task to fulfil just before the TM program is started. SEF stands
for Save Edited File; in other words, a data block that is not completely
edited, and therefore not assembled is transferred to cassette. Provided the
EDIT key is depressed beforehand (cold start entry to the editor), all the
program data from BEGAD onwards (like ENDAD, BEGAD will have been
entered prior to EDIT) up to the address indicated by the current end
address pointer CEND, will be copied onto tape in the form of a single
data block during the DUMP routine. For such a data block to be trans-
ferred by means of the SEF key, it is absolutely imperative BEGAD
and CEND are defined, which of course in only possible once the program
has been edited! Thus, before SEF is operated to load an edited program
onto cassette, the editor must be left by way of the monitor program and
then the TM program is started (during this time, the Junior Computer
must not be switched off — BEGAD and CEND are stored in RAM on page
@0!!). What is the procedure?
® Start the TM program via the original monitor program:
RST 0 8 1 0 GO.
After the GO key is depressed, the TM program will be running. Situation
(1) in figure 10 will then appear on the display. Now enter any ID between
@1...FE. This is the only thing that has to be done beforehand; because
SA and EA are automatically established by BEGAD and CEND, respect-
ively.
® [ntroduce an empty section of tape. Be careful not to erase any data
already stored on cassette.
® Jot down the value shown in the tape counter and the ID;SA and EA
are not noted until the end of transmission! This is because the
contents of BEGADH, BEGADL, CENDH and CENDL are not transferred
to SAH, SAL, EAH and EAL, respectively, until after SEF has been
depressed. ‘
® Place the recorder in the record mode. Make sure the record level is
sufficient and start the tape.
® Operate the SEF key. The data is then stored on tape during the DUMP
routine. The display remains unlit after SEF is operated, but the red
LED will light. Once all the data has been transferred the first instruction
of the edited program that has just been taped will appear on the display.
This is because straightafter the transmission, the contents of the current
address pointer, CURAD, are made equal to those of BEGAD and so the
computer makes a warm start entry to the editor.
® Stop the cassette recorder.
® Note the start address (SA) and the end address (EA) of the edited data
block. The start address is stored in BEGAD (= PPE2 and PPE3) and

98

the end address is stored in CEND (= PPE8 and @PE9). This information is
only necessary if a warm start entry to the editor is to be made when a file
is read back — instead of assembling the program immediately.

The required information can be obtained as follows:

RST back to the monitor program
p810GO ID

PAR (SAH)

PAR (SAL)

PAR . (EAH)

PAR (EAL)

PAR (BEGH); see SAH

PAR (BEGL); see SAL

PAR (ENDH); note if necessary
PAR (ENDL); note if necessary

Note that the contents of ENDAD have to be at least six more than the
contents of CEND. There will be no problems if files in the address range
0200 ... P7FF are edited. It is advisable therefore, to always set the
contents of BEGAD and ENDAD to 9200 and B7FF, respectively.
A warm start entry into the editor can then be made:
RST 1 C C A GO
The BEGAD and ENDAD pointers do not need to be set. The current end
address pointer, CEND, will be pointing to the first free memory location
after the EOF character 77 and the current address pointer, CURAD,
contains the same as BEGAD. The first instruction of the edited block will
then be displayed. Again, do not switch off the computer in the meantime!
Why is it necessary to note the start address and the end address? This can
be explained in connection with an important feature of the SEF function.
The SEF function allows the operator to store incomplete (un-assembled)
programs of any length on tape. Supposing, for instance, that you are busy
developing a program, which is stored in RAM, by means of the editor.
After a certain time you think that you have reached the stage at which
the program can be considered complete and ready for testing after its
final assembly. More often than not, however, such programs are not ready
at all. All sorts of things need modifying. But the labels, of course, have
disappeared during the assembly, so that the program as it stands cannot
be re-edited. There is nothing for it but to start from scratch! All this can
be avoided by storing the original edited version of the program on tape
before it is actually assembled. How do we go about this?
® Operate the SEF key and write down the identifier (ID), the start
address (SA) and the end address (EA).
@ Now start the assembler in the normal manner:
RST 1 F 51 GO
@ Start the user program:
AD (SA) GO
@ |f there is something wrong with the program, the listing will have to be
checked thoroughly. It may well take quite a while to pick out the
error, so the computer may just as well be switched off for a while to save
energy. After all, everything has been stored on cassette,
® Switch the computer on and carry out the procedure outlined in the
section describing the GET function.

29

Now depress:

RST 0 9 E 2

DA pp BEGADL = pp= noted SAL

+ qq BEGADH = qq = noted SAH

b rr ENDADL = rr= noted ENDADL

+ ss ENDADH = ss= noted ENDADH

+ pp . CURADL = BEGADL do not have to
+ aq CURADH = BEGADH be entered

& tt CENDL = tt= noted EAL

+ uu CENDH = uu= noted EAH

AD 1 C C A GO warm start entry to editor
Since the contents of CURAD are the same as those of BEGAD, the first
instruction (or label) will appear on the display after the warm start entry
into the editor. Correct the program where necessary and repeat the above
procedure as often as required.
® If the program was correct, the edited version will no longer be necess-
ary unless it is to be further developed later on. At least the correct
version can now be stored on cassette after assembly. In any case, it is
always a good idea to make a complete listing of the finished program.,
This can be done either as a hex dump (see chapter 12) or as a
full assembled listing including comments etc. If the latter method is
chosen, a program can then be checked instruction by instruction quite
easily by using the SKIP function. Although this was dealt with in chapter
5 of Book 2, a brief recap would not be amiss:
® Set the contents of CURAD equal to those of BEGAD, the start address
of the program.
® Set the contents of CEND equal to those of ENDAD. ENDAD may
have moved if any corrections have been carried out. Be sure that
CEND = ENDAD is pointing to an address which is at least two locations
higher up than the last instruction in the program. If this is not done the
SKIP function will not operate correctly (EEEEEE will appear on the
displays).
If the program requires altering at this stage, SKIP through the program
until the EOF character (77) appears on the display. Depress the SKIP key
again. Depress the RST key and note the address stored in locations PPE6
and PPE7 (CURAD). Enter this address in locations OOE8 and PPEQ
(CEND) respectively.
® Make a warm start entry into the editor. Warning. Never depress EDIT
and use a cold start entry into the editor! A cold start is only required
if the editor has to start work from scratch. A cold start entry into a data
block that is already edited would cause several memory locations to be
overwritten by the EOF character. In the case of a warm start entry, the
EOF character will be situated at the very end of the file and so no new
EOF character will be shifted down the program.
Another warning. If ID = FF and several edited programs are being stored
on tape (with the EOF character at the end of each block) the contents of
CEND will be the end address of the last file to be read. The contents of
ENDAD will therefore have to be readjusted. An edited and taped block
(or blocks) may be re-adressed by re-entering it (them) with FF as the ID.
It goes without saying that in that case the CURAD and CEND parameters

100

have to be adjusted accordingly.

The PLL control
Reading data without errors

When data is read from cassette the PLL constitutes the ears of the Junior
Computer. It is therefore extremely important to ensure that the PLL
receives the correct audio signals.
The PLL is calibrated with the aid of the multi-turn preset potentiometer,
P1, on the interface board (see figure 2 in chapter 10). The signal received
by the PLL consists of a series of alternating 3600 Hz and 2400 Hz tones.
In the absence of an input signal the free-running VCO frequency is
determined by the setting of P1. This should be halfway between 3600 Hz
and 2400 Hz, that is to say around 3000 Hz. If the VCO frequency of the
PLL is greater than 3600 Hz or less than 2400 Hz, the PLL will not ‘lock’
and the output signal will be permanently high or low. It is important,
therefore, to set P1 in its mid position before calibrating the PLL.
There are two methods of calibrating the PLL:
® Adijust P1 and keep an eye on the display while the cassette recorder
sends out previously recorded test data. Preset P1 is initially set in the
mid position and is rotated to the left and to the right until a happy
medium is obtained. This is known as the empirical method . . .
® A more scientific approach is to monitor the output signal from the
PLL on an oscilloscope and adjust P1 during the test data transmission
until the signal is up to standard.
The ratios of 2:1 and 1:2 enable a clear enough distinction to be made
between the logic levels of the data bits transmitted by the cassette.
Nevertheless, the PLL still needs to be adjusted with due care. This is what
has to be done:

1. Calibrate the PLL with the aid of the display

Obviously, 1C4 will have to be an EPROM containing the TM program.
We realise that this has been mentioned a number of times, but the point
has to be made!
Two short routines (see table 2) co-operate in the setting up procedure.
The first is located in the address range 0200 . . . 3250 and uses one TM
subroutine to provide about 4 minutes of synchronisation characters
which are recorded on tape. The second is located in the address range
@251...0283 and monitors the played back synchronisation characters
with the assistance of four TM subroutines.
P1 should be adjusted in such a way that these characters are read from
tape correctly. This can be seen on the display: the configurations that are
likely to appear are shown in figure 7. The preset potentiometer will be
correctly adjusted when the situation shown in the second drawing of
figure 7 is stable. That is to say, when the display does not flicker between
situations (1) and (2).
The calibration procedure takes place as follows:
a. The machine is switched on and the programs given in table 2 are
entered.

101

Table 2. Two routines which enable test data (synchronisation characters) to be
stored on and read from tape, respectively, and which allow the PLL to be calibrated
according to the ‘display method’.

M
HEXDUMP: 204,250

BB 1dis Busnd o3 Reiateha B of alia b G S ORI SR B0
@208: A9 7D 8D 6C 1A-A9 C3 8D 6D 1A A9 @3 8D 76 1A
821@0: 02 8D 77 1A A9 47 A2 FF 8D 82 1A 8D 78 1A 8E
220: 1A A9 @0 A2 7F 8D 80 1A 8E 81 1A A9 DD 8D 00
@230: 8D @1 1A 18 A9 @1 6D @@ 1A 8D @d 1A A9 @8 6D
@240: 1A 8D @1 1A B@ @8 A9 16 20 A3 BA 4C 33 82 4cC
9250: 1C

JUNIOR

M
HEXDUMP: 251,283

B unipss 3 TRy T SR RREE SU I SR AT R At
6251: A9 32 8D 82 1A 8D 78 1A A9 7E 8D 83 1A A9 JF
6261: 81 1A A9 FF 8D 6B 1A 20 C2 9B 6E 6B 1A AD 6B
8271: 20 E8 @B C9 16 D@ F@ 208 36 0C 28 SD 9C C9 16
@281: F6 D@ DF
JUNIOR

b. The cassette recorder is connected to the computer. Preset poten-
tiometer P2 is turned fully clockwise and the record level control of the

cassette recorder is set in the mid position.

c. The recorder is set to ‘record’ and is started. Enter AD @ 2 00 GO. The
red LED lights and the synchronisation characters are recorded,

d. After about four minutes the write operation will have been completed.
The red LED will go out and 6200 A 9 will appear on the display.

The cassette recorder is then stopped and the tape rewound.

e. Set the recorder to ‘play’ (read) this time and enter: AD ?251GO.If
the headphone socket of the cassette recorder is used, turn the volume

control up half-way. The green LED lights. During the section of tape

preceding the synchronisation characters, situation (1) in figure 7 will

appear on the display. This will flash! However, as soon as the synchron-

isation characters are being read, the PLL can be calibrated.

f. Adjust P1 until the second drawing in figure 7 appears on the display.
If this does not alter while the remainder of the synchronisation charac-

ters are being read, P1 will have been set correctly.

To be absolutely sure this procedure should be repeated a few times. We

are not going to tell you in which direction to turn P1, as this depends on

certain parameters of the PLL circuit which are rather complicated and

can not be dealt with here. .

That covers the first method of setting up the PLL. Now, how about the

second?

2. Calibrate the PLL using an oscilloscope

Readers who are lucky enough to own an oscilloscope (or possibly borrow

102

F

A9
83
1A
g1
1D

8D
1A
Fo

Table 3. This routine transfers test data to the cassette recorder (until the RST key is
depressed) and allows the PLL to be calibrated with the aid of an oscilloscope.

M
HEXDUMP: 2049, 23F

Qe N2 {80 AL SR 86 IATET il g A RERE ST E F
p260: A9 7D 8D 6C 1A A9 C3 B8D 6D 1A A9 @3 8D 76 1A A9
p210: 02 8D 77 1A A9 47 A2 FF 8D 82 1A 8D 78 1A 8E 83
0220: 1A A9 00 A2 7F 8D 80 1A 8E 81 1A 20 C8 0gA 20 ES5
P230: OA 20 E5 OA 20 C8 QA 20 C8 (OA 20 E5 @A 4C 2B g2
0240:
JUNIOR

one!) can calibrate the PLL quite easily. A dual-trace oscilloscope is ideal,
but not strictly necessary. To start with, a section of memory is recorded
on cassette with the aid of the routine given in table 3. This can be of any
length.

Thg data is then replayed. The output signal from the tape recorder wiH_be
presented to the input of the PLL, which is pin 7 of IC7 (thg junction
between resistors R30 and R31) in the diagram shown in figure 2 of
chapter 10. This point is monitored by the oscilloscope. Preset poten-
tiometer P1 will be correctly adjusted when the drawing in figure 12¢ and

g

® :
-
too too long
short
g
g
®)
o)
—
too
too long short
g
et
nqe
O i 3

\V 81902-12

all three the same length

Figure 12. A series of three (possible) output signals from the PLL. Figures 12a and
12b correspond to an incorrectly calibrated PLL and figure 12c shows the result of a
correctly calibrated PLL.

103

Figure 13. Compare to figure 12a: an incorrectly calibrated PLL.

in the photo of figure 15 is shown on the oscilloscope screen. If, on the
other hand, P1 is set incorrectly, the PLL will not function properly.
Examples of what may go wrong are given in the drawings of figures 12a
and 12b and in the photographs of figures 13 and 14.

Figure 14. Compare to figure 12b: an incorrectly calibrated PLL.

104

Figure 15. Compare to figure 12c: a correctly calibrated PLL.

Thus the signals drawn in figures 12a ... 12¢ correspond to those shown
in the photographs of figures 13. .. 15, respectively. In the photographs,
a bit sequence corresponds to nine horizontal divisions on the oscilloscope
screen.

The three drawings in figure 12 show several differences. In figure 12a the
high frequency period is too short and so the low frequency period is too
long for both logic levels. In figure 12b the high frequency period is too
long and so the low frequency period is too short for both logic levels. In
both cases, P1 is incorrectly adjusted. In the first example the wiper of P1
was turned too far to the left and in the second example it was turned too
far to the right. The correct setting for P1 is illustrated in figure 12c and in
the photograph of figure 15. As can be seen, the three relevant time dur-
ations are equal.

That covers the second method of calibrating the PLL. Now for a few
more details. Figure 16 shows a series of seven drawings, each containing
three arrows. One of them represents the free-running frequency of the
PLL VCO, and the other two represent the high and low frequencies which
are used to code the data bits (see figure 6a), in other words, the 2400 Hz
and 3600 Hz signals. Figure 16a corresponds to the signal from a correctly
calibrated PLL. In figures 16b and 16c, the PLL is certainly working, since
it reacts to the input signal, but it is not properly calibrated. Figures 16d
and 16e show a PLL which is not functioning at all (the free-running fre-
quency of the VCO is either far too high or far too low).

Figure 16f looks similar to 16b: it shows what happens when data is
recorded on one machine and played back on another, the latter having a
tape speed that is 10% faster than the former. The nominal speed is of
course 4.76 cm per second, but this may often vary by + 10%. Figure 16g

105

@ 06 | os
30 36 gt
vco
24 <3 36
vco
24 >3 38
vco
@ [
24 36 >36
vco
® b
<24 24 36

VCO VCO (+10%)
© :

03| 10296
066 ' 066
< - -l. pliet ' o
= H

24264 3033 36 396

vco
(-10%) V€O

1

i
084 024
054 ! 054

]
L a

fkHz]

flkHz]

flkHz |

flkHz]

flkHz|

flkHz|

flkHz|

216 24 2,7 30 32436

81902-16

Figure 16. The seven drawings show three different frequencies: the high (3600 Hz)
and low (2400 Hz) frequency data signals and the centre {free-running) frequency

of the PLL VCO. The latter is preset with P1 on the interface board.

106

Figure 17. The output signal at the wiper of P2 during a data transmission to tape
using the routine given in table 3 (2 V/cm).

Figure 18. The output of the tape recorder (upper trace) and the output of the PLL

(lower trace) during the loading of data from cassette. The volume control of the
cassette recorder is at maximum level. (Both traces: 2 V/cm).

107

Figure 19. Similar to figure 18, but now the volume control of the cassette recorder
has been turned down. The PLL operates satisfactorily over a wide range of input
levels. However, higher input levels (figure 18) will give more reliable results.

(Both traces: 2 VV/cm).

shows the opposite situation: this time the second machine runs 10%
slower than the first. This is similar to the situation in figure 16¢c.

If the two recorder speeds are very different, the PLL will have to be re-
adjusted (see the dotted arrows in figures 16f and 16g). Usually, however,
this will not be necessary, owing to the tolerances allowed for by the TM
program and the contrast between the 2:1 and 1:2 ratios. Thus, as long as
the operator is prepared to work with only one cassette recorder, the PLL
does not have to be calibrated very precisely. As soon as two recorders are
used, however, or cassettes are swapped with other Junior Computer users,
P1 will have to be set very accurately to avoid any compatibility problems.
Finally, a few photographs to put everything into perspective. Figure 17
shows what the output signal at the wiper of P2 looks like during the
transmission of data to tape using the program given in table 3. First the
high frequency sections can be seen (about three half-periods per centi-
metre) followed by the low frequency sections (about one full period per
centimetre). In addition, the distinction between a logic one bit and a
logic zero bit is quite clear. Figure 18 illustrates the output signal from
the cassette recorder on the upper trace and the output signal from the
PLL on the lower trace. As can be seen, the cassette recorder converts the
symmetrical squarewave signal in figure 17 into a form of sinewave. This is
not that important, as the PLL is a frequency, rather than waveform,
detector. ;

108

Answers to questions which are likely to be asked

Forewarned is forearmed . . .
1. What type of cassette recorder should be used?

Do not buy the cheapest one in the shop, but by no means buy an expen-
sive one. It does not need to have an array of knobs, dials and switches,
but it should be fairly robust. A stereo machine is not required, but a tape
counter would prove very useful. In addition, it should have an 8 Q loud-
speaker output, so that the built-in speaker can be disconnected. Remote
control facilities would be an added advantage, but by no means indis-
pensable. Normally, a 3.5 mm jack socket is provided for an external loud-
speaker, whereas the remote control socket is usually 2.5 mm.

2. How is the cassette recorder connected to the Junior Computer?

The record input of the cassette player (usually either a 3.5 mm socket or
a DIN socket; if DIN, pin 3 is the signal input and pin 2 is ground) to J2
(the chassis connector). Connect the loudspeaker output (3.5 mm jack
socket) to J1. The remote control connections, J3 and J4, are not used.
N.B. Remote control of one tape recorder is possible, if desired. In this
instance, the contacts of J3 and J4 must be linked together and fed to the
remote control input. Furthermore, the two relays, Re1 and Re2, must be
plugged in.

3. How are two cassette recorders connected to the Junior Computer?

The cassette interface hardware and software was designed to cater for two
separate recorders: one to take care of the recordingvia OUTPUT and the
other to transfer data from tape to memory via INPUT. Here, therefore,
a remote control facility would be extremely useful. These are the various
connections to be made:
a. Between the loudspeaker output socket of the INPUT recorder and J1.
b. Between the record input socket of the OUTPUT recorder and J2.
c. Between the remote control socket of the INPUT recorder and J3.
d. Between the remote control socket of the OUTPUT recorder and J4.
For further details, see points 1 and 2.
The INPUT recorder should be permanently on ‘play’ and the OUTPUT
recorder should be permanently on ‘record’. The connections to J3 and J4
activate the remote control facilities with perfect timing.
As far as setting up the PLL is concerned, the procedure is slightly more
complicated than that for a single recorder. Run the program given in
table 2 and transfer the data to the OUTPUT recorder. Next, insert the
cassette into the INPUT recorder and calibrate the PLL, which will then
compensate for any differences in tape speed between the two recorders.
After operating the SAVE, GET or SEF keys, one of the recorders will be
started immediately by remote control. Where the SAVE and SEF func-
tions are involved, the cassette recorder should be started at the right
speed at once, as otherwise the start of the data transmission will be
altered. This is one of the reasons why there are so many synchronisation
characters recorded at the start of each transmission (lasting about 2.5 sec-

109

qnds). It does not matter, therefore, if 50 or 100 are lost, if in the mean-
time the tape speed has settled down.

4. How is the correct recording level determined?

A good recording leads to a reliable data reading. This is, in effect, what
sound technicians take years to achieve . . . but do not worry — we are not
going into all the vastly-complex details here! All we are interested in is
finding a suitable recording level, so that the data can be read back with-
out any of it being lost or mutilated on the way. As mentioned earlier,
once a signal has been recorded on cassette it has already been mutilated
to a certain extent. In other words, it will have to be compensated for
during playback. If your cassette recorder has a tone control, it should be
turned up to maximum (full treble). Make sure the record and playback
heads are clean to prevent any high frequency signals from disappearing.
Up until now we have only concerned ourselves with the external loud-
speaker output of the INPUT recorder, because this is where the level
really counts. The ‘line’ output provides a signal level that is too low for
the PLL to function correctly.

N.B. If the line output is used, resistor R37 must be omitted.

YVith regard to the actual record level, it is very difficult to give precise
Instructions. It all depends on the quality of the cassette recorder(s) used.
Generally speaking, the record level is unusually high for human ears
(fortunately the internal loudspeaker of the recorder is disconnected!).
By the way, cassettes do tend to wear out rather quickly and so do record
and playback heads. Do not pile up your cassettes near to a mains trans-
former, as the magnetic field might erase the contents of the tape.

With time you will find out (as we did) that it does no harm to make
several recordings of a particular program, preferably on different cassettes
(spare copies do come in handy!).

By now, most readers should be able to cope with all the intricacies of the
cassette interface, the PLL and the TM program. Nevertheless, it is always
better to be safe than sorry and so the remaining pages of this chapter will
be devoted to the various things that just might go wrong . . .

5. Does it work?
- . . or how to make a quick diagnosis

_By now the hardvs{are extensions should have been built according to the
instructions given in chapter 10. Full attention can, therefore, be given to
the software.

Is the TM program doing its job correctly?

First and foremost, IC4 should be a 2716 EPROM containing the TM
program (never mind about IC5 for the time being!). Look at all the pins

and make sure that none of them are bent and that the IC is positioned
correctly.

Now let us enter the following sequence:
AD0810 GO (note the start address is @810 and not 0800!). The next
item to be displayed is: ‘id @@". If the EDIT key is operated, 77 should

110

appear on the display (provided the contents of ENDAD are greater than
those of BEGAD). If, on the other hand, the SAVE key is depressed, the
red LED (OUTPUT) will light and the contacts of J4 will be shorted
(check with an ohmmeter) provided Re2 is mounted on the interface
board. Data may be transferred frem the memory of the Junior Computer
even if there is no cassette recorder at the receiving end. Make the con-
tents of EA greater than those of SA and operate the SAVE key. Shortly
afterwards, the Junior Computer should report back by displaying ‘id xx”
(meanwhile, the red LED will light). The SEF function can be tested in the
same manner. Enter an imaginary program anywhere in RAM with the aid
of the editor. Stick to the rules regarding BEGAD and ENDAD and then
operate the SEF. key. Again, the Junior Computer will shortly give a sign
of life by displaying ‘id xx’ and again the red LED will have been lit. The
contacts of J4 will, of course, now be open circuit.
It all sounds very good, but what if the above does not happen? The first
thing to do is to check the contents of the EPROM, IC4, with the aid of
the hex dump given in Appendix 4. Examine the circuit around T3. What
about the links between the interface board and the main board port
connector? There are five of them . ..
Not only can data be written into thin air, as we did earlier, but data can
also be read without a cassette recorder being connected to the Junior
Computer. Operate the GET key and wait for the green (INPUT) LED to
light. If relay Re1 is where it should be, the contacts of J3 will be shorted.
After the GET key is depressed, the first situation in figure 7 will be dis-
played. The display will probably be a little faint and will be seen to
flicker quite clearly.
If everything has gone well up to now, the PLL can be calibrated. Connect
the recorder(s) as indicated earlier. Depending on which calibration
method has been chosen, either the two auxiliary routines given in table 2
or the write routine given in table 3 may be used. Then the actual cali-
bration procedure may be carried out (see the relevant paragraphs earlier
in this chapter).
If the calibration is not satisfactory, check the following points:
— Were the test routines entered without any errors?
— |Is P2 turned fully clockwise? Its position has a direct influence on the
signal sent to the OUTPUT recorder.
— Examine the connections between the interface and the cassette re-
corder(s).
— Is P1 set to the mid position? If not, the PLL will not work (see figures
16d and 16e and the corresponding text).
— Are the record and playback levels sufficiently high?
— Look at the circuit around the PLL; do IC6 and IC7 plus associated
components meet all the requirements? Check all the supply voltages
(see figure 18 in chapter 10).
— Isresistor R37 still on the board even though you are using the line out-
put? If so, remove it!
— Readers with access to an oscilloscope should compare the various
signals with those shown in figures 13... 15and 17 ... 19. No problem
is impossible to solve! Usually you will find human inaccuracy is at the
bottom of it! (We know from experience!). |f you are really stuck, contact

11

the technical editorial staff at Elektor either by letter or by telephone on
Monday afternoons.

Final check

Once everything is in proper working order and the PLL has been cali-
brated, a test data block.can be entered to see whether or not it is trans-
mitted and received correctly. What happens is that a program is stored on
cassette byte by byte and the Junior Computer is then switched off. The
program is then re-entered, after switching the machine back on again, and
stored (and checked) in RAM. If the re-entered program works first time,
the transmission of data obviously functions correctly. The Junior
Computer was switched off so that the entire RAM contents would be
totally random and the test program previously entered completely erased.

Is something wrong with the read function?

Quite a bit was said earlier about the control bytes CHKH and CHKL (see
figures 3 and 4). The question now is: what happens if the values of CHKL
and/or CHKH do not coincide with the values stored on cassette after the
data has been re-entered. The latter values were noted (or should have
been!) during the recording. Incidentally, only data blocks which have
been searched for and located are actually checked.
Supposing the GET key was depressed. The cassette is now played back.
When the required file number is found, situation (2) in figure 7 will be
displayed first (synchronisation characters) followed by situation (3). The
data block is then stored in memory. As soon as the entire file has been
entered and both CHKH and CHKL are correct, the TM program will
report ‘id xx’, where xx is either the program number or @@ or FF. The
Junior Computer then leaves the RDTAPE subroutine and jumps back to
the main TM routine.
If either CHKH or CHKL do not tally, the machine will remain in the
RDTAPE subroutine and so no ‘id xx’ will be displayed. The display will
in fact switch from situation (3) in figure 7 to situation (1) (clean tape)
and after a while situation (2) will reappear: the synchronisation characters
of the next data file. (If ID = FF this will be loaded into memory). The
fact that the display changed from the third situation to the first instead
of to ‘id xx’, means that something went wrong during the data entry.
Should the above occur, the data block can be read in once again (rewind
the cassette, the GET key need not be depressed again). If this does not
help matters, the error might be due to one of the following:
a. The record/playback levels are too low.
b. The levels are all right, but there are too many ‘drop-outs’ on the tape.
This situation is very unlikely, but you never know!
c. The data block was recorded on a machine with a tape speed that
differs greatly from the playback recorder. P1 is probably correctly
adjusted, but will have to be altered to cope with the difference in speed.
The situation outlined in ¢ could well occur when one Junior Computer
operator exchanges programs on cassette with another. In other words, the
programs were taped on one owner’'s machine and played back on a

112

completely different model. The remedy is to provide every cassette with a
section of test data to help calibrate the PLL. This may, for instance, in-
clude the first half of the program given in table 2 (4 minutes of synchron-
isation characters). After entering the read program (second half of
table 2), the PLL can be adjusted to cope with any difference in tape
speed.

Tphat brings us to the end of chapter 11. Have fun recording (and playing
back) programs!

113

12

Adding peripherals
to the Junior Computer

Extending the input and output facilities

The basic Junior Computer keyboard allows a limited number
of different functions. These amply serve the single board
computer, but tend to fall short when more extensions are
added. The same is true of the seven segment displays — they
seem unable to present a complete picture. The answer to these
shortcomings is to connect certain peripheral equipment, as a
result of which the basic operating panel is transformed dras-
tically.

The peripheral equipment we have in mind includes the ASCI|
keyboard and Elekterminal (mentioned on many occasions
during the course of this book). This combination is connected
directly to the Junior-Computer and to a normal domestic
television set. The television screen offers a lot more scope than
a single line of six characters and gives a much clearer indication
of what is actually going on. In addition, various comments can
be typed in alongside the program instructions, a thing that was
totally out of the question previously. This is because the ASCII
keyboard provides a full scale repertory of key functions.

The new facilities can be used to full advantage with the aid of
the PRINTER MONITOR system program. This is effectively
an extended version of the basic monitor program. The
PRINTER MONITOR program utilises ten key commands and,
depending on the particular function key which was depressed,
will report back to the operator via an appropriate message
displayed on the TV screen.

114

All in all, the Junior Computer ‘news’ can now be ‘broadcast’
on TV to keep the operator fully up to date on the machine’s
progress. The ‘news reader’ in this chapter happens to be the
PRINTER MONITOR program, but in the future the operator
may well communicate with the Junior Computer in a higher
level language such as BASIC.

The addition of a full ASCII keyboard and a video interface constitutes a
very important step along the road to maturity. Initially, of course, the
original keyboard and display were ideal, as their simple form enabled
the apprentice programmer to get to grips with the microcomputer in a
very short space of time. In the previous chapter, however, the original
keyboard acquired so many new functions that it proved to be quite
difficult to distribute them easily among the keys. All five function keys
now serve a number of purposes: the original monitor program, the
editor and, after its introduction in chapter 11, the TAPE MONITOR
program.
Technically speaking, there is always room for a few more functions. But
in practice this leads to considerable problems. For one thing, how do you
fit all the new names onto the keys? They could well end up being totally
illegible! In any case, a lot more than five command keys are required for
a fully grown system. The alphabet alone has 26 letters and then what
about upper and lower case letters and numerals etc.?
It is the consideration of using high level languages such as BASIC which
really decides the matter. After all, GOSUB' looks a lot better, and is a lot
easier to understand, than ‘PC + FBA'. So, why not make life a lot easier
for ourselves and connect an ASCII keyboard, which is all geared to total
communication and quite compatible with the Junior Computer and the
video interface.
On the original display there is only room enough for a single address
and its contents, or for a single 3 byte instruction, or for six data ‘nibbles’
belonging to a particular user program. Clearly, the time has come for:
1. A larger selection of displayed characters. The possibilities for a seven-
segment display are rather limited, as not a great many different charac-
ters can be shown. We would like to be able to use both upper and lower
case letters, numerals, punctuation marks, etc.
2, Longer lines. Try as they may, six seven-segment displays can not hold
too much information. Imagine the Elekterminal as 64 times seven-
segments and you will see what we mean. . .
3. More lines. Examining a single line of data at a time is rather like
looking at the entire memory contents of the computer through a
keyhole! The exercise in both instances is very tiring for the eyes. The
Elekterminal, on the other hand, is capable of displaying up to 16 lines
at a time. If, instead of a video screen, Junior Computer operators wish to
obtain ‘hard copies’ of their programs etc., they can always add a printer
in which case the sky is the limit as far as the number of lines is concerned.
In order to meet these parameters that we have just set ourselves, the

115

ASCI| keyboard and the Elekterminal will have to be connected to the
Junior Computer by way of the RS 232 interface. With regard to the video
screen, any (black and white) television set will do as long as it is connec-
ted via the UHF/VHF modulator. As longstanding readers of Elektor will
know, the Elekterminal, ASCIl keyboard and UHF/VHF modulator are
projects which were published as early as 1978. These now require very
minor modifications to be completely compatible with the Junior
“Computer system. i : :

Since the circuits etc. have been published in Elektor magazine, we will
not go into all the specific details again, but will concentrate on the way
in which they are linked up to the Junior Computer. Then we will go on
to describe the way in which the computer communicates with them and
with the outside world. Special attention will be given to the data trans-
mission and reception system (the UART: Universal Asynchronous
Receiver/Transmitter). . .

Passing information from the Junior Computer to the
peripherals and vice versa

Serial data transmission

The Junior Computer is certainly getting bigger and bigger and is now able
to control a number of external devices. It is the RS 232 interface, de-
scribed in chapter 10, that controls the serial data transfer between the
Junior Computer and the peripheral equipment. This is, in fact, bi-
directional communication as both the computer and the peripheral
devices transmit and receive data. That is why there are two separate lines
marked RS 232 in the diagram in figure 1: one represents the flow of data
from the Junior Computer and the other represents the flow of data from
the peripherals. Each line therefore starts at the output of one device and
ends at the input of another.

The serial input of the Elekterminal is indirectly connected to the port line
PBP@, which, of course, is programmed as an output: The serial output of
the Elekterminal is indirectly connected to port line PA7, which is pro-
grammed as an input.

Inside the Elekterminal itself there are far more than two connections. The
central control device is the UART, which will be described in greater
detail later on. The section in the lower left-hand corner of figure 1
constitutes the ASCI| keyboard. This is connected to the UART via an
8 bit data bus. As soon as a key is depressed the corresponding ASCI|
code appears on the bus. A ninth line (strobe) indicates whether or not
any key has been operated. This produces a start signal for the UART
to process the parallel data entered from the keyboard.

A seven bit data bus and a single control line connect the UART to the
actual video section of the Elektérminal. The ASCII characters transmitted
along this (uni-directional) 7 bit data bus are either generated when a key
is depressed, or are sent to the video interface from the Junior Computer.
In the first instance a further distinction is made between letters, figures
and punctuation marks on the one hand and control functions such as

116

———{ —————— = UART —i— ='= = Je
dlock signal (-o)Rs232
25 PA7

3 Q0 A

20 +
m RS 232

0

Ds 23 + l

strobe H BREAK

ASCI|-Keyboard

81903 1

Figure 1. A block diagram showing how data is transferred between the Junior
Computer and the peripheral device: the Elekterminal and the ASCI| keyboard.

Carriage Return (CR), Line Feed (LF) etc. on the other hand. These are
mentioned in detail in the actual Elekterminal article. The position of the
next character to be written on the screen is indicated by a cursor. This is
continually updated as new data is entered by way of the 7 bit da.ta b'us.
By the way, it is not strictly true that command functions are instigated
exclusively by the ASCII keyboard. The computer is also able to output
command functions. One or two of the subroutines in the PM program
cater for this.

As can be seen from the diagram in figure 1, a clock signal is fed to the
UART (extreme left-hand side). This enables the UART to convert seriql
incoming data into parallel data and vice versa. This may sound compli-
cated, but all that really happens is that data is transferred from a single
input line to the wider data bus and vice versa. _

The procedure may be compared to a band parade, which at a certain stage
in the proceedings has to pass through a narrow alleyway. The members
of the band therefore have to start walking in single file. (Whether the
bass drummer will get through is, of course, another matter!). Thus th_e
parallel rows of data have to converge to form a single serial fiIe._ Th!s
procedure is illustrated in figure 2a. The serial-to-parallel conversion is
illustrated in figure 2b, where the original condition is restored. Well, not
exactly restored, for the configuration is slightly different. Whereas the
first band consisted of rows of eight (the data bus between the keyboard
and the UART), the second band is made up of rows of seven (the data
bus between the UART and the video section).

Figure 1 also shows a ‘bridge’: the link between the serial output of the
UART (the alleyway in figure 2a) and the serial input of the UART by
way of a type of summing circuit (‘s.i." and ‘s.0.” in figure 1 refer to the

117

32 24
e o 016

*14
13
12
o1l
10
09 v

o™
o~
o
*n
LR
*w
L)
-

b
-
N

.7

e6
—— 0 6" 6 o gle 0 o' 0 ¢ o 166 @ 5 —

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

4

o3

9e o2

81903 2b 8e o1

Figure 2. The ‘band parade’ illustration of how parallel data is converted into serial
data (2a), and how serial data is converted into parallel data (2b).

serial input and output, respectively, of the Elekterminal, not those of
the UART!). Serial data meant for the video terminal must be derived
from the Junior Computer or from the keyboard, but not both at the
same time. The link between the input and the output of the UART
enables data to be sent to the video interface and to the computer simul-
taneously. This full/half duplex function is required when there is no
need for the computer to confirm the operation of a key. In other words,
even when there is no need for the computer to report back to the oper-
ator, he/she can keep an eye on the video screen to see what is going on.
Figure 1 also shows a BREAK key. When this is depressed the data line
between the Elekterminal and the computer is taken to logic zero. It is
psed to call the attention of the Junior Computer when, for instance, it
is busy sending a particular message. It may not be very polite to interrupt
the machine in this manner, but it can be very handy at times.

All that remains to be discussed in figure 1 are the four inverters. These
are required to prepare the serial data prior to transmission over the
RS 232 lines and to translate the data back to TTL levels during reception.
Each data line contains two inverters and readers may wonder about the
need for them. After all, if a signal is inverted twice it ends up as if it had
not been inverted at all! This is not strictly true in this instance, as the
RS 232 standard is based on ‘negative logic’, where logic one is low and
logic zero is high. Both the Junior Computer and the Elekterminal operate
on positive logic, where logic one is high and logic zero is low. Therefore,
!f It were not for the inverters at both ends of the line, the ASCII code
involved would be inverted, so that the code for A would not be 41 but
BE_. As you can imagine, this is extremely impractical so there really is a
serious requirement for both inverters.

118

Bi-directional data transfer

What exactly is serial data transfer? This is really an intermediate stage in
the complete process of data movement. Data is converted from its initial
parallel form into serial format and then back into parallel data again.
To understand this more clearly, take a look at the two data buses in
figure 1 and remember that the data is transmitted by the Junior Com-
puter from its parallel position (8 bits) inside a memory location and when
it is received by the computer the data has to be stored as eight parallel
bits in memory. This parallel-to-serial conversion, and vice versa, takes
place by means of software at the Junior Computer end. In fact, it is the
carry flag which does all the work. In the Elekterminal, however, all the
conversions are carried out by the UART.

Let us forget about the UART for the moment and see exactly how infor-
mation concerning a depressed key is sent to the Junior Computer in serial
form (and to the video interface via the full/half duplex switch). This
takes us to figure 3a, which shows the situation before the data is con-
verted (inverted) to the RS 232 levels by the Elekterminal and after the
data is converted back to TTL levels in the Junior Computer. Under
quiescent conditions (when no data is being transmitted) this data line is
held high (logic one). The equipment at the other end of the RS 232 line
is waiting patiently for an ASCII character to be transmitted. How does
it know when a character is to be sent? Simple. The data line is pulled
down (logic zero) for a certain period of time. This duration is called the
bit period and the change in logic level occurs when the start bit is sent.
When the computer detects a start bit (change in logic level), it must wait
1% bit periods to be absolutely sure that the next logic level it detects
belongs to bit @. If the computer then waits for a further full bit period,
it will be able to detect bit 1, and so on. Bits b@ . . . b7 correspond to the
parallel data transmitted by the keyboard. Bit b@ represents the least
significant bit in the 7 bit ASCII code and bit b6 is the most significant bit.
The eighth bit, b7, is actually the parity bit.

The parity bit is generated so that the computer can check whether or not
the particular ASCII character has been transmitted correctly. Although
this facility is not used in the Junior Computer (see figure 3c), a few words
should be said about its purpose. The parity bit can be set or reset before
the transmission to bring the number of logic ones in the data word to
an even total (= even parity) or to an odd total (= odd parity). During the
reception of this ASCII character, the parity bit can be tested to see
whether anything has been altered. If so, this is reported and suitable
action is taken to rectify the situation. For instance, the transmitting
device could well be asked to send the character again. Incidentally, this
method is far from perfect!

Once the eight bits have been transmitted, the data line will have to
assume its quiescent level (logic one) once more. This is accomplished by
transmitting one or two stop bits. In our particular instance, two stop
bits are transmitted. Figure 3b illustrates the RS 232 line levels corre-
sponding to figure 3a. As can be seen, the inversion has exchanged the
high and low logic levels. This is, of course, on the assumption that diode
D4 was not mounted on the Elekterminal board (TTL adaptation).

What about data transmission from the Junior Computer to the

119

stop stop
stop
o

- | IS
- ® o s | - a -3
|)
— S —ie L
o ! o ®
- ® o s | - 0o - ® a Y ARED S
_ . = By b
n | X w ! 0
= il 5 - - ® 2o - | wos
S ! |
- | < =]
- e a s | - a - e a - | - 8
(SRR LR —t LR iy
i A] >4 b, T ¢
e i - a 3 ® 3 ° | - &
e] SERY |
! 1
o
o
T ® 3 & Tr1eT - s & s | - &
ooy . i, I
3 []
- ® 5 s | T = T o | —_—
I
= s 2 s | - 2 - s 5 Y - 8
[— L& 1Y
5| ‘3
~
~

5y (S

1
(]
by
[]

stop
5 %

1
by
stop

o o
g ® o Y - o - S e s
e v - et e
.; e a w
- - 5 - e 3 - - 58
B — —
I
= <+
- ® o e | - o - e 5 Y - a8
o——r—— l aanti—
|
« «
- ® o e | - o o il - YR F)
P I e e
|
o~ o |
e e o e | CAR) - e 5 o | w s
prereI ! il |
= : 1 - |
- ® 4 s | - 3 ¥, e a - | - &
—_— ek il G Rt i
|
- |
- e F s | - 2 - ® 2o - 1 - £
: |

j
1
:

1
(.
+5V
0
—12v
+12V
0
—-12v

® @ odi 2 Aoyl ©)

Figure _3..The logic levels (3a and 3c) and the voltage levels (3b and 3d) during the
transr.mssnon of two ASCII characters from the keyboard to the computer (3a and
3bt)’ v:l;:,the UART and from the computer to the video terminal via the UART (3c
an g

120

3

81903

Elekterminal? For this we can refer to figures 3c and 3d. No parity bit is
transmitted here. Furthermore, the high RS 232 logic level is at +12V
instead of +5 V as previously.

By the way, bit b7 is in fact transmitted from the keyboard via the UART
to the Junior Computer for parity checks, but after it has been received

by the computer it is made logic zero.

The UART

The Universal Asynchronous Receiver/Transmitter, to give it its full title,
has been mentioned in several places and it is high time we explained its
full function. As we know, it takes care of the parallel-to-serial conversion
from the keyboard to the Junior Computer and the video interface and the
serial-to-parallel conversion from the Junior Computer to the video
interface. The system is ‘asynchronous’ in that the conversion speed is
determined by the bit period as opposed to a separate clock signal.

TRANSMITTER =
DATA BITS 3

PARITY SELECT
DATA BITS

w
o

NO PARITY
g NUMBER

STOP BITS
g ODD/EVEN
<

NUMBER
14
o
—

23
(X2 O DB8

32| 31/30|29] 28(27] 26|

CONTROL
strose O—22 23_(") DATA STROBE
25 SERIAL
—=—0O outrut
18X Tis (2l v | TRANSMITTER | 24 END OF
CLOCK CHARACTER
16 xR 17 21
EXTERNAL
cLock @4 ﬁ RECEIVER RESET
SERIAL 20 1
INPUT Ot ®sv
:
; 2—(O12v
STATUS O 5
WORD () RECEIVED
ENABLE DATA ENABLE
5| 1a| 13| 22| 19| 18] 5[6 ;Le 9 ‘l“ 2| 3] 9966 2
2 oariel, & < 3 RECEIVER =)
Wk W -
2 2% 2 Es g3 ke = DATA BITS «
s ES <2 |g|€
e B Dt s og =]
u o > @&« =< 81903 4
c>) w & Zw < o>
= qu > |wlg
PRl Io5e
B o * see text

Figure 4. Simplified internal block diagram and pin connections of the UART used in
the Elekterminal.

121

B6
BS
B4
B3,
B2)
5V
B1 x
80 l 900000
-¢.—
*
12{ 11f 10| 9| 8] 7 6 35 3 37 38 3
9N = R N8 2
1 20
24 UART
12v(=)-2 Ic8
- AY-5-1013
. MM5303
19| 17] 40| 23 26| 27| 28| 29| 30| 31/ 32|33
L O KB7
O KB 6
30 ——— O KB 5
——— O KB4
1
12 —O KB3
T2 —O KB 2
—0_KB 1
-O KB O
T —O K STROBE
5V q) 5v &+
14 2 14 2
R 1 4
1 Ic14 ese ‘ o Reset
4024
== i N15 4024
Q1 Q3 Q4 6| 5 Q2 Q3 Q4 05Q6
l 12 9 sL l 1| of 6| 5[a
2 4 5
1] N19 | N20

Figure 5. The section of the Elekterminal circuit diagram containing the UART has

been slightly modified for use with the Junior Computer.

122

When the Elekterminal was first published in Elektor magazine
(December 1978), the UART was described in detail. Just to recap on this,
the simplified internal block diagram of the UART and its pin connections
have been drawn in figure 4. Its (electronic) location in the Elekterminal
is given in figure 5. The circuit has been modified here and there, but this
will be dealt with later during the constructional details. Figure 6 provides
an overview of the UART as a pair of conveyer belts. It is this figure which
concerns us at the moment.

Consider two conveyor belts: one runs from the Junior Computer to the
Elekterminal and the other runs from the Elekterminal to the Junior
Computer (the two serial data lines). Each belt carries a number of black
and white balls. A white ball represents a logic one and a black ball rep-
resents logic zero. A ball marked with a cross in the centre stands for
‘don‘t care’; these may be black or white (the data bits). When the belt
has travelled the length of the diameter of a ball, a full bit period will
have passed. The speed of the belt therefore increases as the bit rate is
reduced. This means that the baud rate — the transmission speed in bits
per second — also increases.

Figure 6 shows the situation at both ends of the RS 232 data lines. Cross-
ing a line corresponds to making a black ball white, and vice versa, and
then back again.

Let us start by depressing a key on the ASCII keyboard. Imagine that
eleven pipes are placed in a certain position above the conveyor belt (top
left in figure 6). As soon as a key is depressed and the belt is in the correct
position, eleven of the white balls already on the coveyor belt will be
directly underneath the pipe valves. The balls on the belt are white, in
other words, the transmission of the previous ASCII character has been
completed. The eleven pipe valves are now opened at the same time and
new balls drop on to the belt to replace the old ones, which disappear.
This complete operation is carried out in a split second.

The start bit, which is the black ball, is now in front of the data bits
(b@ .. .b7). This corresponds to the direction in which the conveyor
belt is moving: towards the Junior Computer. The order of the data
balls corresponds to their position in the relative byte. Observant readers
may have realised that the two white balls corresponding to the stop bits
are rather superfluous. What is the point of replacing two white balls with
another two white balls? These may in fact be omitted from the model
along with their pipes.

The conveyor belt comes in at the top left-hand corner of figure 6 and
moves in the direction of the Junior Computer. There we see a vertical
tube with room for eight balls. As soon as a black ball is detected (the
start bit) the following eight balls fall from the belt into the tube in the
correct order. The last ball to enter the tube, b7 (the polarity bit), is
painted black, because, as we stated previously, the polarity check is not
performed by the Junior Computer. During the next phase, which takes
place inside the memory of the computer, the balls are formed into a
byte (contents of one memory location) and the tube is turned around to
point to the left,

Now for the lower conveyor belt in figure 6. This runs from the Junior
Computer to the Elekterminal. Logically, therefore, the process starts at

123

B1EP-08PIA

— 0 10X (RO

‘q
‘q

- Lxxxxxxxtﬂ

4q

huxxxxxxﬂ

i€ T 55 rEss R AR AN 8 N ¢

81903 6

Figure 6. The conveyor belt illustration of how data is converted from parallel-to-
serial and from serial-to-parallel.

124

P420GARY-11DSY

the computer. The contents of a memory location are transferred into a
tube which hangs vertically over the belt and has room enough for eight
balls. As soon as there are a series of white balls underneath the tube
(to indicate the end of transmission of the previous ASCIl character,
including the two white stop bits), and one of them arrives directly under-
neath the pipe valve, the latter opens to let out one ball which pushes
the other one off the belt. One bit period later the next ball is pumped
out and so on until the tube is empty.

Again, we have the problem of the two white balls which are supposed to
replace their predecessors on the belt. In reality the stop bits are trans-
mitted by restoring the quiescent level of the data line (logic high), if
necessary, depending on the value of the last data bit to be sent and the
transmission of the next ASCII character is disabled for two full bit
periods. A similar situation occurs during reception. Immediately after
the last data bit has been received the following ASCI| character is
delayed for two successive bit periods.

Let us get back to the balls on the conveyor belt. As soon as a start bit
is detected by the UART in the Elekterminal (the first black ball after at
least two white balls), the next seven balls are unloaded from the belt
simultaneously. These contain the 7 bit ASCII| character data or the
control function data pertinent to the video display.

One other thing needs to be said about figure 6. Readers may have noticed
the black arrows in the centre of the drawing. These indicate that the
serial data stream transmitted from the keyboard not only reaches the
Junior Computer, but also the Elekterminal via an internal ‘corridor’: the
hardware echo we mentioned previously. The diagram in figure 6 is a
little vague on this point, but users will learn from experience that the data
sent from the keyboard travels to the Elekterminal at exactly the same
speed as it does to the Junior Computer. Since the computer takes a
certain amount of time to react to the data, the serial input of the UART is
unlikely to have to process data from two directions at once.

Building the Elekterminal and the ASCII keyboard

How to construct the video interface and connect it to
the Junior Computer

As mentioned earlier in this chapter, the Elekterminal and the ASCII
keyboard are existing devices which were published in Elektor in 1978,
These designs were also featured in the book: ‘SC/MPuter (2) build your
own microprocessor system’, currently available from Elektor. This book
and the magazine articles contain full details of the circuit diagrams and
the printed circuit boards, as well as explanations as to how they work
and constructional hints. Unfortunately, we do not have the room to go
into the designs in too much detail here. We can, however, give you a
helping hand in the way of construction. This is really quite a straight-
forward job. For one thing, readers will be quite experienced in getting
electronic circuits to work correctly by now and for another, the printed
circuit boards involved are single-sided and so should not present any
difficulties.

125

The keyboard

When constructing the ASCI| keyboard, the following points should be
borne in mind:
® The RES key (optional reset) which was previously not electrically
connected to the key matrix (X@...X7/Y®...Y10) is now required.
Figure 7 shows that one contact of the keyswitch is connected to row X3
and the other to column Y1@-in the matrix. This means that the RES
switch will now act as ‘DELETE’ or ‘RUBOUT’. When this key is de-
pressed the PRINTER MONITOR system program will be started. The
connections concerned are indicated in the drawing of part of the key-
board in figure 8. Row X3 corresponds to pin 36 of the keyboard encoder
IC, IC1 (AY-5-2376), and column Y10 corresponds to pin 21 of the same
IC.
® Link up points b and ¢ and connect one contact of the BREAK key to
ground — see figure 9.
® The keyboard does not indicate these connections (next to IC1) by
name, as there was insufficient room on the component overlay. This
has, however, been done in figure 9. In addition, the corresponding con-
nections to the Elekterminal are indicated. Make sure that S8, and not S6,
of the keyboard is connected to KB5 of the Elekterminal. This auto-
matically generates the ASCIl code of the corresponding capital letter

Yo Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

e I\ v
o N NN T e NN e e
o 2N IV IV NI e e e
o NNV NN IV IV IV IN N
= 61k ot o\l ot 5l .l g A
o NNV NN NN NN

Figure 7. The key matrix of the ASCII keyboard. The RES key now performs the
function RUBOUT.

126

TS

81903 8

Figure 8. The connections required for the RES key to perform its new (RUBOUT)
function.

whenever a letter key is operated, without having to use a ‘shift’ (SFT)
key (there are two of them). In any case, the character generator in the
Elekterminal can not generate any lower case letters (unless the modifi-
cation described in the January 1981 issue of Elektor is carried out). Do
not forget that the Elekterminal requires a —12 V supply as well as a
+5 V supply.

The Elekterminal

The section of circuit diagram in figure 5 contains all the information

necessary to modify the Elekterminal for use with the Junior Computer.

The (reduced) component overlay for the Elekterminal can be seen in

figure 10. This includes a few suggestions as to where to place the various

wire links. Now for the details:

® First of all, diode D4 has been removed, as it is no longer necessary.

® The Baud rate switch, S2a/S2b, is omitted. The Elekterminal now
operates at a fixed speed of 1200 Baud (= 1200 bits per second). The

127

@ 81903 9

Figure 9. The various connections and wire links required on the ASCI| keyboard.

) x § - -
- A 5[0 8| Ro—e=
i 2
['.H 8 C
o r.—J——c E
. V or =
S m
oO—0| - + [
N M == o=
|,/ - —12Vv
—o / ‘r "oa ele
ﬁ M ee] O=—=09 & (STROBE OUTPUT) > KS
: (s1) —~KB#
o— _—9 ' ® - ; (s2) +KB1
A (s3) - KB2
e 30 o5 0=0 ¢ (s4) -~ KB3
n m . (ss) KB4
l s/ 3 (s6) N.C.1!
! _:, 'é c + (s7) >KB6
0 . (s8) KBS
2 n o ‘u Z (PAR.OUTPUT) - KB7
B 3|2 d
1] -}] 5V
m b} m O Ak
[m (-]
‘ / 2 g %

wiper contact, MS2b, is connected directly to ground and points ‘MS2a’
and ‘1200’ are linked to each other — see figure 10.
® The full/half duplex switch, S1, may be replaced by-a wire link between
points ‘U’ and ‘V’. If S1 is maintained on the board, the switch will
have to be permanently closed. This allows an ‘echo’ of the depressed key
to appear on the video screen.
® The wire links around points 35...39 are made according to the
choice between parity/no parity, odd/even parity, one/two stop bits
and 5/6/7/8 bits per character. The connections for the preferred ASCII
code (transmitted parity bit, even parity, two stop bits and seven bits per
character) are shown. Although the PM program does not carry out a
parity check when characters are received, the parity bit will have to be
transmitted for other reasons. In figure 10 the centre connections for links
36 and 37 have been omitted for the sake of clarity. These points are
connected to +5 V., "
® |f no extra pages are added to the memory of the Elekterminal, there
will be thirteen connections between the Elekterminal and the ASCI|I
keyboard. These are indicated in figure 10. The connections can be made
via suitable plugs and sockets or can be ‘hard-wired’ with ribbon cable.

128

ASCII-Keyboard

Figure 10. The various connections and wire links required on the Elekterminal
(video) board.

Choice of UART (IC8)

Two versions (at least) of the UART used by the Elekterminal exist. The
AY-5-1013A, which requires +5V and —12V supplies and the
AY-3-1015D, which only requires a +5 V supply. The latter is obviously
preferable as the current requirements for the —12 V supply will then be
reduced. The Elekterminal can then be fed from the modified Junior

129

Computer power supply. The total current consumption for the
Elekterminal when only +5 V is used is around 500 mA. Equivalent de-
vices for the AY-3-1015D (General Instruments) include the HM 6402
(Harris), the COM 8017 and COM 8502 (SMC).
® The power supply connections, 0 V (ground), +5 V and —12 V, are
shown at the top of figure 10. However, it is preferable to make the
actual ground connection to the Elekterminal at the video output (bottom
right-hand side). RN
® The video output can be fed directly to the video input of a TV moni-
tor. Alternatively, the signal can be fed to the aerial input of a standard
TV set via the UHF/VHF modulator. In either instance the signal connec-
tions must be made with good quality coax cable with a nominal im-
pedance of between 50 . , . 75 £2.
® The page extension. In the second part of the SC/MP book series, a
method of extending the Elekterminal memory by 3 k (from 1k to
4 k) was described. As a result, up to 64 lines of text can be stored away.
The page memory is controlled by the ‘PAGE 1’ and ‘PAGE 4’ keys on the
ASCII keyboard. This means that the number of connections between
the keyboard and the Elekterminal has to be increased by two. The
‘DOWN’ connection on the keyboard (see figure 9) is linked to the point
marked ‘P |’ of the Elekterminal and the ‘UP’ connection is linked to ‘P 1.
See figure 10 also.
N.B. We are not quite ready to discuss the PM program at this stage, but
it should be pointed out here that PAGE UP and PAGE DOWN are hard-
ware keys and they will not cause an ASCI| code to be generated. For this
reason the PM program will not acknawledge them as irrelevant keys by
displaying ‘WHAT?’ or ‘JUNIOR’. This also means that the page display
function of the Elekterminal can not be controlled by the Junior Computer
software.
® How to connect the video interface to the Junior Computer. In the first
place, two RS 232 lines are required to provide serial data transfer.
Next, at least one, but preferably two ground connections will have to be
made: one ‘signal ground’ and a supply ground. Then ‘there are the +5 V
and =12V supply lines, bringing the total up to 5 or 6 links. If only one
ground connection is installed, a five pin DIN connector can be used,
provided a ‘removable’ connection is required. Another method, of course,
would be to use direct wire connections and even to leave out the 25 pin
D-type connector. Whichever method is chosen, readers must ensure that
all connections are made correctly. Careful attention should be paid to the
two serial data links. The serial output of the Elekterminal is marked
‘Sout’ on the printed circuit board and the serial input is marked ‘Sin’.
Let us go back to figure 2 in chapter 10. The point marked ‘Sout’ on the
Elekterminal printed circuit board is connected to pin 2 of the RS 232
connector on the interface board. Point ‘Sin’ on the other hand is connec-
ted to pin 3 of the RS 232 connector. In both cases, the links can be made
either directly to the board(s) oriby using suitable cable terminated with
male D-type connectors at each end. The latter is by far the best method
of connecting the two devices to each other.
Figure 11 shows the pin assignment for a 25 pin male D-type connector.
Below this a clear survey of the various connections is given. The EIA

130

Q000 #0504 10| . O30WO
23 22 21 20 19 18 17 16 15 14

289292929999

Ouo
O »o

-
w
N

. Protective Ground
. Transmitted Data
. Received Data
. Request to Send
. Clear to Send
. Data Set Ready
. Signal Ground
. Data Carrier Detect
.+ .. 14 Not Used
. Transmitted Bit Clock Internal
. Not Used
17. Received Bit Clock
18,19, Not Used
20. Data Terminal Ready
21. Not Used
22. Ring Indicator
23. Data Signal Rate Selector
24, Transmitted Bit Clock
25. Not Used

PNV A WN o

-
o 0 ©

81903 n

Figure 11. The pin assignment of the RS 232 (D-type) connector including the actual
function of each pin according to the EIA RS 232C standard.

RS 232C is an Anglo-American standard. In this particular application
only pins 2, 3 and 7 are actually involved. The connections to pins 2 and 3
are a little tricky, as they concern transmitted and received data, respect-
ively. This could lead to a certain amount of confusion as, after all, any-
thing transmitted by A will be received by B, and vice versa.

When we examine the pin assignment of the RS 232 connector on the
interface board (figure 2 of chapter 10), it can be seen that pin 2 is used to
receive data (entering the Junior Computer) and pin 3 to transmit data
(from the Junior Computer). Thus, it does not correspond to figure 11,
where pin 2 is meant for ‘transmitted data’ (data to be transmitted from
either the peripheral equipment or the computer) and pin 3 is meant for
‘received data’ (data to be received by the computer or the peripheral
equipment). Any confusion can be cleared up quite easily, since ‘trans-
mitted data’ means ‘data to be transmitted’ and not ‘data already trans-
mitted’.

Going by the indications on the interface board, ‘Sin’ must be connected
to pin 3 of the RS 232 connector and ‘Sout’ must be connected to pin 2.
The ground (common) connection should be made to pin 7 of the D-type
connector.

Power supply connections. It has already been mentioned that the
Elekterminal and ASCI| keyboard can be powered from the ‘revised’
Junior Computer power supply. However, it is also feasible to use a
separate power supply. This alternative makes the Elekterminal universally
compatible and then, of course, no supply links are necessary.

If required, two of the unused pins (9 . . . 14) of the D-type connector (see
figure 11) can be used for the +5V and —12 V connections. The corre-

131

sponding solder pins on the interface board are then linked to the nearest
+5V and —12 V points available. It is a good idea to decouple the two
supply voltages with 1 £/16 V tantalum electrolytic capacitors (watch the
polarity!) at the connector end(s).

During the description of the constructional details of the interface board
in chapter 10, the fact was mentioned that wire links should be placed
between pins 4, 5 and 8 and between pins 6 and 20 of the RS 232 connec-
tor. These links are not required when the Elekterminal is used. They were
mentioned in chapter 10 because, once the D-type connector has been
mounted, they are very difficult to install.

Why and when are these links required? They are needed if another
peripheral device is used instead of the Elekterminal (a large printer with
a built-in keyboard, for instance). Such devices communicate with the
computer much more extensively. What is being referred to here is the
so-called handshake system, where each activity must follow a set pattern
of questions and answers in both the computer and the peripheral device.
The point being that the software and hardware of the Junior Computer
do not conform to this system. This means that when such an item of
peripheral equipment is employed, some form of ‘artificial answer” will
have to be incorporated, so that the Junior Computer will continue to
operate. In computer terms, what is required is an ‘automatic loop’. This
is in fact what the above mentioned links are for.

Now that we have our peripheral equipment built and ready to go, the
question arises: what can we do with it? Unfortunately, this can not be
answered in a single sentence and will, in fact, take up the rest of this
chapter.

The PRINTER MONITOR (PM) system program

Control of communications

Actually, the term ‘printer monitor’ is rather misleading, for the program
could equally be termed ‘video monitor’. The word ‘printer’ is usually
associated with printing on paper rather than on a TV screen. Although
the computer can be made to work with a printer, in most instances a
video display (a video interface, such as the Elekterminal, and a domestic
television set) will be used. The reason it was not called ‘video monitor’
was to avoid any confusion between it and the hidden monitor systems
in such places as banks and department stores, etc.!

The PM program constitutes a more elaborate alternative to the original
monitor program. It enables a great deal of information to be observed at
the same time. Not only what is being processed at the moment, but also
what went on before, so that the programmer has a comprehensive survey
of the whole situation. The last sixteen lines are always shown on the TV
screen. Furthermore, there are more key functions, including two that are
required by the TAPE MONITOR program (the cassette interface soft-
ware). All these key functions are used to process data in machine
language. Earlier on it was mentioned that it is also possible to work in
higher level languages such as BASIC and still use the same hardware

132

pertaining to the PM program. The only prerequisite for this is that some
form of ‘interpreter’ needs to be located somewhere in memory.

The PM program is resident in a2716 EPROM (IC5 on the interface board).
This means that it can be run as soon as the Junior Computer is switched
on and does not have to be entered from the keyboard or from cassette
beforehand. The program occupies the address area 1000 ... 14F3 (see
the hex dump in Appendix 5). As with the TM program, it requires more
than 1K of memory space, but less than 2K, so there is sufficient room for
any additional software that the user may wish to add at a later date. This
can be accomplished by simply reprogramming the device. The EPROM
containing the PM program has to be placed in the socket for IC5. It is
no good placing it in the socket for 1C4, modifying the start address and
then hoping for the best! From chapter 10 we know that IC5 can also be
a 1K RAM device. Obviously, this will not meet our requirements and so
a ‘resident’ solution is much more preferable. Some readers may like to
program the 2716 themselves using the hex dump given in Appendix 5.
The contents of the EPROM can then be checked with the aid of the
original monitor program (enter AD, 1000, +, + etc. and examine each
byte).

The original monitor program contains a number of subroutines which can
be utilised by the user program. Examples are routines which are used to
display certain information, or to wait for a key to be depressed and then
identify it. The same is true of the PM program. It includes a subroutine to
transfer an ASCII character to the video interface or to the printer.
Another reads in characters transmitted from the keyboard (thus, it waits
for a key to be depressed). Then there are all sorts of control function
routines: enter a space, start a new line, etc. The various routines are
fully described in Book 4, in the chapter devoted to the PM software.
Under supervision of the PM, a user program may be run in one go or in
the step mode. We know this feature from the original monitor. Now for
the interesting bit: A single key operation is enough for the computer to
display the contents of all the internal registers at the same time. This
helps to keep the operator fully informed about the various intermediate
phases during program execution.

The time has come to get to know the PM program a little better, which
can be accomplished with the aid of figure 12. This shows the ASCII
keyboard and the keys used by the PM program.

® RES = RUBOUT

The RES(ET) key on the ASCII keyboard is used to RUBOUT infor-
mation. Depressing this key will cause the ASCI| character 7F (seven ones
in a row) to be transferred from the keyboard to the Junior Computer by
way of the UART. This is very important when the PM program is to be
started for the second time. Well, for there to be a second time, there has
to be a first! The first start takes place via the original monitor routine:
(switch on)

RST 10 0 0 GO

The monitor of the PM program has been started up. The ignition key has

133

~
o
w
u [x]
&
X ©
(1§ q
3] i
[}
:
|
+
o
[4 %
a
- [}
]
s i
o
N
o
T
© o «
o
w
¢
a
in w o
T u
¢ o
w
m n
n <
(™
w
1]
i

Figure 12. The keys on the ASCII keyboard which are used by the PRINTER
MONITOR program.

134

2

8

been turned, so to speak. The start section of the PM program is executed.
Now the computer waits until the PM car is actually ready to drive. A kind
of ‘'warm’ start takes place:
RUBOUT (= RES)
As a result, the start character, 7F, is sent to the computer. This enables
the rest of the PM program to be dealt with. The computer determines
the speed (Baud rate) at which the start character was transmitted. All the
characters transmitted by the computer will be sent at the same speed as
this. When the required time measurements have been taken, the computer
reports back:
JUNIOR
blank line
This reaction is called a ‘prompt’. Thus, the text ‘JUNIOR’ is printed and
then two commands to start a new line are given (Carriage Return = CR
plus Line Feed = LF). This gives an empty space between the word
JUNIOR and the text to follow.
After this the PM program is ready for use. Now it is simply a question of
waiting for an instruction to be entered, so a key or several keys will have
to be depressed.
N.B. If the Elekterminal is not used, the start character 7F can usually be
obtained by depressing ‘control’ and ‘DEL’ (= delete) simultaneously.
@ The alphanumerickeys@®...9andA...F
® SP (space)
@ *." (fullstop)

This concerns the most elementary keys and key functions. The alpha-
numeric keys @...9 and A ...F are used in exactly the same way as in
the original monitor program. In other words, they constitute data,
address information and program numbers etc. The full hexadecimal
repertoire. Special input buffers, locations INH and INL (see table 1), are
used to enter data or address information. When a work address and
associated data is entered, however, the operation is quite different to that
when the original monitor is used (AD, DA, + and alphanumeric keys):
® First the alphanumeric data is entered, then the user tells the computer

whether the data is a work address or data belonging to that memory
location.
® |fa work address is involved, SP (space bar) is operated.
® |f data is to be entered at a work address (which will have been typed

in previously), depress the “." key.
® |f an address or data starts with @, this may be omitted. The work

address 0200 can be entered as 200. If SP is depressed, the work
address will be @80@. The work address is loaded with @0 (the opcode of
the BRK instruction, for instance) by depressing the .’ key. As soon as
any alphanumeric data has been processed the input buffers INH and INL
are reset ((0).
@ As soon as data has been entered by way of the ‘.’ key, the current

work address is incremented by one and is printed on a new line along
with its corresponding contents. In other words, there is no need to
depress the plus key as with the original monitor. This saves a lot of time
when entering a program, which after all is simply a sequence of addresses.
Let us take as an example the addition program on page 62 of Book 1.

135

Table 1. The various RAM locations used by the PM program.

TEMPORARY DATA BUFFERS

TEMP * $00FC

TEMPX * $QOFD

STPBIT * $1A59 -NUMBER OF STOP BITS
CNTL * $1A5A BIT TIME BUFFER
CNTH * $1A5B

CNTHL * $1A5C HALF BIT TIME BUFFER
CNTH * $1A5D

TIML * $1A5E COUNT DOWN BUFFER
TIMH * $1A5F

TEMPA * $1A60 TEMPS

TEMPB * $1A61

CHA * $1A62 CHARACTER BUFFER
PARAL * $1A63 PARAMETER BUFFERS
PARAH * $1A64

PARBL * $1A65

PARBH * $1A66

PRTEMP * $1A67 TTY BUFFER

BRKT * $1A7C BREAK TEST VECTOR

* * * BUFFERS & EXTERNAL ADDRESSES * * *

DISCNT * $1A68 DISPLAY COUNTER
COLDST * $1CB5 EDITOR COLD START
WARMST * $1CCA EDITOR WARM START
BEGIN * $1ED3 EDITOR SUBROUTINE
RESET * $1C1D RESET OF VERSION D
GETKEY * $1DF9 COMPUTE THE KEY VALUE
LDAINH * $1DA7 PART OF SCAND/SCANDS
BEGADL * $0QE2 BEGIN ADDRESS POINTER
BEGADH * $0QE3

ENDADL * $00E4 END ADDRESSPOINTER
ENDADH * $0QES5

CENDL * $GPE8 CURRENT END ADDRESS POINTER
CENDH * $0QE9

First let us define the IRQ vector (which is pointing to the start address
of a SAVE-like routine in the PM program, but we shall come back to that
later) in connection with the BRK instruction. Then the program data is
entered.

Imagine that the PM program is already running and that the JUNIOR
prompt has appeared on the video display.

(1) 1A7E (SP) :

(2) 1A7E XX

After depressing the alphanumeric keys 1, A, 7 and E and then operating
the space bar, (SP), the Junior Computer will react by printing the work
address, a space, the data contained in the work address and then another
space.

136

Now for a few practical considerations. The keystrokes of the operator are
displayed with a normal type of letter, including ‘(SP)’ and other ‘invisible’
commands (they are not entirely invisible since the position of the cursor
will indicate when a CR, LF, SP etc. has been operated). The response by
the Junior Computer is printed in bold type. The figure in parentheses at
the beginning of a line is the line number. It has been included here for
editorial reasons, but is not actually displayed in practice.
Right, so a work address has been entered and we wish to store the data
‘CF’ in it. Thus:
(2) 1A7ZE XX CF.
(3) 1A7F XX
The next address therefore appears on the screen and is to contain the
data ‘14":
(3) 1A7F XX 14.
(4) 1A80 XX
Address 1A80 is irrelevant in this particular instance and so the program
can be keyed in from address @10@. We will therefore have to change to a
new work address:
(4) 1A80 XX 106 (SP)
(5) 0100 XX
and then we can type in the required data:
(5) 9100 XX 18.
(6) 9101 XX A9.
(7) 9102 XX 13.
(8) 9183 XX 69.
(9) 0104 XX 8.
(10) 0105 XX .
(11) 9106 XX
A full stop was entered after address @105 so that the BRK instruction
(opcode = @@) is copied into that location. The entire program has now
been transferred to the memory banks of the Junior Computer.

® The ‘+' key

® The ‘' key
These functions are virtually self-explanatory and can be described very
briefly. The ‘+' key produces an address which is one higher than the one
previously on display (in other words, it increments the current address
by one). The ‘—' key, on the other hand, produces an address which is one
lower than that previously on display (it decrements the current address
by one). In both instances, the new work address is printed together with
the data contained therein. These keys are of invaluable assistance when
sections of the memory need to be checked, such as the newly entered
addition program for instance:
(11) 9106 XX +
(12) 0107 XX
Oops, wrong way!
(12) 9107 XX —
(13) 9166 XX —
(14) 0105 00 —
(15) 0104 @8 —
(16) 0163 69 —

137

(17) 9102 13 —
(18) 9101 A9 —
(19) 0100 18
which brings us back to the start address. All the relevant data has now
been entered correctly and the program can be started.

N.B. The ‘+’ key on the Elekterminal can only be operated in conjunction
with the ‘shift’ key (SFT).

@ The ‘R’ key

The ‘R’ stands for ‘RUN’ and is identical to the GO key of the original
monitor program. The operation of this key allows a program to be carried
out starting from the work address currently on display. The program may
either be run in one go or can be run in the step mode, depending on
whether the STEP switch has been operated.

Let us continue with the addition program:

(19) 9160 18 R

(20) @107 XX

What does line 20 means? The IRQ jump vector is pointing to address
14CF. As far as the PM program is concerned this location is similar to
1C@0@ for the original monitor program. In the event of a non-maskable
interrupt (NMI) or an interrupt request (IRQ), a short interrupt routine
at the start of the PM program is dealt with. This ensures that various
program data is saved and also sees to it that the current program counter
and its contents (the following start address) is displayed on the screen.
The BRK instruction causes an address to be ‘skipped’ (see page 101 in
Book 2). This is why line 20 contains address @107 instead of the expected
address of 3106.

The ‘P’ key

This key performs the same function as the PC key in the original monitor
program. Depressing the P key when a program is being run in the step
mode, allows the programmer to continue where he/she left off after
temporarily interrupting the program to check on various parameters (by
depressing L = List for instance — see @). The return address after such an
interruption is printed on a new line after the P key is operated and acts
as a new work address. Then the R key should be operated to carry out
the next step (instruction).

® The ‘L’ key

As mentioned above, L stands for ‘List’ and when this key is depressed the
contents of all the internal registers of the 6502, which are stored in RAM
during the interrupt routine at the start of the PM program, are displayed
on the video screen.

The complete function can best ‘be explained with the aid of an example.
Let us continue from line 20 of the addition program:

(20) 0107 XX L

(21) ACC: 1B
(22) Vi XX
138

(23) X: XX

(24) PC: 0107

(25) SP: @1FF

(26) PR: 00110100

(27) NV BDIZC

The C in line 27 is followed by a space. As can be seen, the whole pro-
cedure is much swifter and more efficient than that of the original monitor.
Everything can be seen at a single glance rather than by one location at a
time (from O@EF to @@F5). Neither is there any need to spell out the

‘names of the flags in the status register (PR) as they all appear beneath the

actual contents of the latter. The result of the addition (1B) can be seen in
the accumulator (ACC) immediately. The X and Y registers are omitted
from the picture altogether and contain XX here, as usual when the
contents are of no importance. The contents of the program counter (PC)
are @107, which is quite correct due to the BRK instruction. The contents
of location SPUSER are @1FF, which is what it contained at the beginning
of the PM program. This is also correct as nothing was stored on or removed
from the stack during the addition program and no subroutines were
involved. The B flag will be set as we have just witnessed a BRK instruc-
tion and the N, Z and C flags will al be reset (@) because the result of the
addition is positive and smaller than FF,
Thus, L is a very useful key.

® The ‘M’ key

@ The ‘', key

® The ‘CR’ key
Perhaps this is not so obvious, but M stands for ‘Matrix’. The term matrix
is used here to imply rectangle made up of various data. A normal rec-
tangle features a certain length and a certain width. A matrix, however,
features a number of rows and a number of columns. Individual data
occupies a specific row and a specific column. A data matrix is in fact
none other than the well known hex dump. A hex dump is a data matrix
consisting of sixteen columns and (in this instance) any number of rows.
The actual number of rows depends on the amount of data to be dumped.
Divide this amount of data by sixteen, add one to it if a remainder is left
and the result will be the number of rows in the hex dump. The last row
need not be completely filled with data.
The M key (together with keys S and G) belongs to a set of functions that
have parameters attached to them. This means that when these keys are
operated certain extra details will have to be entered as well. If more than
one parameter is involved, the relevant data will have to be separated by a
comma. The key function will then be carried out when the operator
presses the CR (Carriage Return) key — to take the cursor back to the
beginning of the next line.
Which parameters are involved when a hex dump needs to be printed?
Obviously, the first and last address of the data block to be dumped.
How this is accomplished can best be illustrated by using the previous
program example.
Before the above ‘interrupt’ we had reached line 27:
(27) NV BDIZC M
(28) HEXDUMP:

139

The first address of the data block is then entered, the *,’ key depressed,
the last address of the block entered and finally CR is depressed. Again,
the leading zeros can be ignored. The first address entry is completed by
the operation of the .’ key and must be lower than the last address. If this
is not the case, an error will be reported. We will come back to this later,
but first:

(28) HEXDUMP: 100, 105 CR

(29) ® 1 2 3 456789A B C D E F
(30) ©8160: 18 A9 13 69 @8 09

(31) (blank line)

(32) JUNIOR

(33) (blank line)

a new line is started: line 34.

First the column numbers (@ . .. F) are printed. The next line starts with
the address of the first two bytes of data to be dumped. This data then
follows under the corresponding columns. The hex dump of the program
example does not occupy a complete row, but obviously, if the data block
were any larger the dump would have taken up several rows.

One thing we have to watch out for is the fact that the address of the first
line of the hex dump does not necessarily have to be XXX@ (where X =
@...F). It all depends on what the user has selected. However, he/she
is strongly recommended to start the dump at XXX@, as then the correct
data will fall into the correct rows and columns. This was the case in the
example (lines 29 and 30) that we have just given.

® The ‘S’ key

In actual fact, this key corresponds to the SAVE function of the TM
program (chapter 11). Thus, the PM program can also be used to store data
blocks or programs on cassette. Again, the DUMP/DUMPT subroutine is
involved and as this belongs to the TM program, the latter will have to be
available before the S key can be used. :

After the S key has been operated, the file number, ID, the start address,
SA, and the end address, EA (= LA + 1) have to be entered. The moment
at which the actual SAVE function is executed, by depressing the CR key,
corresponds to the moment at which the GET key is depressed during the
TM program. Part of the necessary preparations were discussed in
chapter 11.

Program numbers @@ and FF should not be generally used. To do so
would cause an error report.

Here is a practical example. The addition program:

(34) S11, 100, 1P6CR

(35) READY

Line 35 is printed as soon as the data block has been transferred to tape.
The next activity on the part of, the user will be printed on line 36. The
addition program has been given the file number 11. All the data between
SA and EA (up to and including LA) is written onto the tape.

® The ‘G’ key.
Just as GET is twinned with SAVE in the TM program, so the G key is

140

related to the S key in the PM program. The G key must be depressed
to read a data block from tape during the PM program. Clearly, the
RDTAPE subroutine of the TM program will have to be available, other-
wise key G will have no function to perform.

One parameter which must always be indicated is the file (or program)
number, ID. If the program number FF is chosen, the start address will
have to be entered (see chapter 11). If FF is indicated the first data block
to arrive will be read and stored in memory starting from location SA.
Another practical example. The addition program was found to be so
useful that is was stored on cassette (lines 34 and 35), so that it could be
used at a later date without having to key in the required six bytes. Now
it is needed again and so it is retrieved from tape:

(36) G11CR

(37) READY

Line 37 is printed as soon as the data block with a file number of 11 has
been found and completely loaded into memory in the address range
0100 ... 0106. Now it can happen that the routine needs to be included
in a different, more extensive program starting at address @20@. This
means that the addition program will have to be moved elsewhere. There
is plenty of room for it on page zero (from address 8310 on) and it does
not contain any address operands which require modification.

Now what? The tape is rewound until just before the start of file 11, then
the cassette recorder is set to the play mode during line 39!

(38) G FF

(39) SA: 10 CR

(40) READY

The addition program has been copied into address locations (3@10 . .. 3@16.
This can be checked by calling up the hex dump routine by way of the
M key.

® The BREAK key

Supposing, for instance, a hex dump is being printed in the range
@0@0 . .. FFFF and you suddenly realise that the range should have been
0000 . . . 0BOF. The first dump will take 4096 times as long as the second,
which is rather a long time to wait! It would be nice, therefore, if the pro-
cedure could be interrupted in an elegant manner, allowing the computer
to a certain point (=start address of a subroutine) in the program. It is
rather drastic to resort to switching off the power. Depressing the RST
key would lead us back to the original monitor program, which is not
what we want either. What about the ST key of the original monitor? Well,
this results in a non-maskable interrupt. An indirect jump takes the com-
puter to locations TA7A and 1A7B, where the NMI jump vector has been
defined by the user. Usually, the program will continue from the original
monitor (1CQ0).

In the case of the BREAK key, something similar will happen, albeit
without involving a non-maskable interrupt. Looking at the section of the
Elekterminal circuit diagram in figure 5 we can see that one side of the
BREAK key is connected to ground (or at least . . . it should be!) and the
other side of the switch is connected to the buffered serial output of the

141

UART. Depressing the BREAK key causes the normally high serial output
line (and port line PA7 of the Junior Computer) to change to logic zero.
As we mentioned previously, the PM program includes a subroutine which
has the task of sending an ASCII character to the peripheral device. This
subroutine is called PRCHAR. During the final phase of this routine the
computer checks to see whether the port line PA7 has gone low. If so, it
waits until PA7 has goné high again, in other words, until the BREAK key
has been released. After this, an indirect jump to locations 1A7C and
1A7D takes place:

1A7C = ADL, and

1A7D = ADH

These locations contain the BRK jump vector. Right at the beginning of
the PM program, the BRK vector is loaded with the start address of
LABJUN, location 1@05F. The section of program starting from this
address makes sure that the text JUNIOR is displayed on the screen and
that the stack pointer (SP) and the contents of location SPUSER are made
equal to FF. It is possible to define a different BRK vector, but that will
have to be accomplished during the PM program. Note: The BRK jump
vector referred to here has nothing to do with the IRQ vector during a
BRK instruction — it is something quite different!

N.B. From the above it can be seen that the BREAK key is only active
during the transmission of an ASCII character by the Junior Computer.
Thus, while the PM program is still waiting for a new key to be depressed,
operating the BREAK key will have no effect whatsoever.

Right, that just about covers all the relevant keys on the ASCII keyboard
which are utilised by the PM program. Depressing any other key will
merely cause a surprised ‘WHAT?’ to appear on the screen. Either that,
or the PM program answers ‘JUNIOR’ which does not help matters either!
Now let us play around with the R, P and L keys.

Using the PM program to step through a program

As mentioned earlier. The PM program can also be used to carry out user
programs step by step, one instruction at a time. The procedure is as
follows:
® Make sure that the hardware on the main board is adapted correctly.
By this we mean that the module discussed in chapter 10 should be
mounted: see figures 8b, 9, 11 and 12 in that particular chapter. The two
select lines (K) must be linked to the corresponding pins of IC6 to prevent
programs in the address range 1000 . . . 17FF (select lines K4 and K5 are
linked to enable the EPROM containing the PM program) and in the
address range 1C@0 ... 1FFF (K7) from being run in the step mode. In
one instance the address range selected by K6 must disable a non-maskable
interrupt to allow for a small monitor extension in PIA RAM on page 1A.
This concerns both the original monitor (K6 and K7, see Appendix 2) and
the PM program (K4, K6 and K7) during a decimal arithmetic operation
(see later on in this chapter).
® Make sure that the STEP switch (S24) is ON. The red LED in the GO
key will then light. :
® The NMI vector need not be entered (except during a decimal arith-

142

metic operation). This is automatically pointing to address location 14CF
(STEP label) at the beginning of the PM program. This address marks the
start of a kind of SAVE routine. All the 6502 registers are examined and
stored in the familiar RAM locations on page zero. In addition, the address
and its contents belonging to the opcode of the next instruction to be
executed are printed on the screen.

A practical example

Chapter 3 in Book 1 gave a few examples of how to step through a user
program. Although it is the PM program involved here and not the original
monitor program, the two routines have a great deal in common and so a
lot of what was said in chapter 3 can be applied here. It may be a good
idea to read that particular chapter again and so refresh your memory.
Now for an example. Look at the following series of figures very closely:

0 1 3 6 10 1865,

+1 +2 +3 +4 +5 & aec

The difference between the second and the first numbers is 1, that
between the third and second is 2, that between the fourth and third is 3,
etc. Each time the difference between two consecutive numbers increases
by one. We will now write a program to calculate the first eleven numbers
of the series, including the first which is zero. The numbers must be saved
on the stack in the correct order, starting with zero at location @1FF.
Remember, this program is only meant to illustrate the step mode and
does not have any particular significance other than that.
The program is shown in figure 13 and is called NUMBERS. The program
is based on this principle: first the initial value of the Y index register is
made @1 and the first number in the series (#@) is saved on the stack. Next,
the program loop after label ADD is run through ten times in succession: it
is run through once and then stepped through nine times because of the
BNE instruction. The value in the Y register is stored in location TEMPY,
the previous number to be calculated is sent to the accumulator (PLA plus
PHA) and the contents of TEMPY are added to those of the accumulator.
The PHA instruction is required so that the status of the stack pointer is
restored. The new number in the series has now been calculated and is
placed on the stack (PHA). The contents of the Y register are then in-
cremented by one (INY) to caiculate the next number in the series. A test
(CPY # @B plus BNE) will inform the computer whether the next number
is to be calculated or not. ‘
Figure 14 shows the status of the stack and the stack pointer for the
different values in the Y register. The contents of locations @1FF ... @1F5
are used during a hexadecimal calculation. This is what happens in the
program in figure 13. The contents of locations @1F4 . .. B1EA indicate
what happens during a decimal calculation. We shall come back to that
later.
During the step procedure the program in figure 13 was ‘disguised’ in the
unfamiliar apparel of figure 15. The black balls represent address locations
containing an opcode. These are ‘half-way’ stations at which the train
(the step-by-step procedure during a program) stops temporarily. As can
be seen, it is a slow train which stops everywhere. When a program is run

143

9201

10

A9 LDY # 01
A9 LDA # @9
: .48 PHA
8C STY — TEMPY 0200
68 PLA
a8 PHA
18 cLe
6D ADC — TEMPY 0200
48 PHA
cs INY
co CPY # 0B

1A7E : CF
1A7F : 14

81903 13

Figure 13. The NUMBERS program performs the task of storing a sequence of values
on the stack in the correct order.

through in one go, the train is more like an express. In fact it only stops
once during DECAR at address 0217. The last part of the journey involves
the BRK instruction at address location $#215.

We have been introduced to the NUMBERS program in the form of the
detailed flowchart in figure 13 and in the form of the railroad journey
in figure 15. A third representation will now be provided, which is not
altogether new; the assembler version:

NUMBERS 0201 A0 01 LDY # @1
0203 A9 00 - LDA # 00
0205 48 PHA

ADD 0206 8C 00 02 STY-TEMPY
#0209 68 PLA
P20A 48 PHA
020B 18 ClC

144

@20C 6D 00 02 ADC-TEMPY

B20F 48 PHA

0210 C8 INY

0211 COo 0B CPY #0B

0213 D@ F1 BNE ADD
BRK 0215 00 BRK

1A7E CF

1A7F 14

The first column is clearly intended for labels. Next follows a column of
addresses containing an opcode (except for the |IRQ jump vector at the
end). Then the remaining bytes for each operation are printed; one instruc-
tion per line, and finally the mnemonics. If necessary, a further column
may be used to express any comments or remarks the operator may wish
to make.

It was calculated that stepping through the NUMBERS program involves
93 stops and one final destination at DECAR. If the two termini
(NUMBERS and DECAR) are also taken into account, there are a total of

FF @1E9 XX < Y=9B “\

55 “ Y=0A
g1 P1EB 45 < yY=0
92 @1EC 36 « v=08
83 @1ED 28 < Y=07
84 OI1EE 21 < Y =906 D=1
85 @1EF 15 “ Y=95
96 91F0 10 “ y=04
97 @1F1 06 < Yy=03
98 01F2 03 < y=92
@ Q1F3 01 < v=01 J
oA B1F4 09 “y=08)
98 01F5 37 < Y=0A
8C @1F6 2D < Y=09
9D @1F7 24 < Y=08
@E P1F8 1c “ v=07
OF @1F9 15 “« Y=06 D=9
10 B1FA oF < Y=05
11 @1FB PA < Y=04
12 @1FC 06 “~ y=03
13 @1FD 03 « y=92
14 PIFE 91 < Y=p1
15 @1FF (1]

81903 14
LDA-ABS,Y

Figure 14. The status of the stack and stack pointer for the different values in the
Y index register during the NUMBERS program (figure 13). The left-hand values
refer to the PRNUMB program in figure 18.

145

NUMBERS
0201@ 1
LDY #01
2
LDA #00

9293

0205

4,1322,31,40,49,58,67,76,85 9206
STY — TEMPY
5,14,23,32,41,50,59,68,77,86 * 9209
PLA

PHA
7,16,25,34,4352,61,70,79,88 9208
cLc Y=02...0A
8,17,26,35,44,53,62,71,80,89 928C X (9x)
ADC — TEMPY
9,18,27,36,45,54,6372,8190 020F
PHA
10,19,28,37 46,56,64,738291 9219
INY

11,20,29,38,47,56,65,74,83 92 9211

CPY # 98
12,21,30,39,48,57,66,75,84.93 © 0213 bilEl)
(BNE(2=1); Y=0B
8215 @94
BRK
0217 @95
DECAR 81903 ' 15

Figure 15. The ‘railway journey’ version of the NUMBERS program (figure 13). The
number of ‘stations’ is one greater than the total number of instructions in the
program. The number of ‘stops’, however, is much higher — 94 in all — due to the
program loop.

95 stops or steps. Important intermediate phases to keep in mind are the
contents of location TEMPY (@200) and certain of the processor registers.
We are not going to note down all the phases at each step in figure 15, as
that would take up yards of paper, or rather, of TV screen, if you see what
we mean. Of course, readers are very welcome to do it themselves if they
so wish. We prefer to take a look at a few examples here and there. First,
let us start the PM program and type in the NUMBERS program:

RST 1 0 0 0@ GO RUBOUT

JUNIOR

(followed by a blank line)

... STOP! Instead of informing the operator in great detail about what to
do next and how the Junior Computer reacts by way of the PM program,
we have printed the NUMBERS program and the results obtained in
table 2.

Firstly, the IRQ vector was defined and then the actual program was
entered and then checked for correct entry. Then the start address was
entered and the STEP switch turned”ON. The numbers 1. .. 95 given in
the ‘railway journey’ of figure 15 are also included in table 2. These were
not calculated during the PM program, but were added later for the sake
of clarity. ’

146

Table 2. A printout of the two versions of the NUMBERS program (see figure 13)

run in the step mode.

®
JUNIOR

1A7E
1A7E 04
1A7F Aa
1A807 80
#2011 3C
A202 3D
283 3C
WHAT?
203
@203 3C
0204 3C
A205 3C
p206 3C
@207 3C
p2n8 3C
7209 3C
A20A 3C
g20B 3C
@2aC 3C
a20D 3C
g20E 35
A20F 3C
a210 2C
g211 3C
g2l J&
p213. 3C
#214 3C
2215, 3C
#3215 36
p215 @@
9214 F1
3213 D@
n212 @B
g211 C@
2219 C8
920F 48
020E 72
920D A@
#20C 6D
020B 18

G et
14,

221

AQ.
g

A9,

A9,

48.
24 i

2

68.
48.
LB
6D.

48.
c8.

020A
0209
2208
w207
0206
@205
n2¢4
0203
9202
0201
0209
0201
ACC:

PC
SP
PR

n200
E6C3
a0l
n203
n205
R206
0209
A20A
2208
a2ecC
@20F
0210

"p211

#2213
ACC s

PC
SP
PR

#2200
9213

i g

e =

a2 -

a0 -

8¢C =

48 -

oa -

ADTE

gy =

AQ -

JC +

A@ L4

C3

c3

e

E6C3

ALFF
0000100

NV BDIZC 209
3C
E6
AQ
A9
48
8C
68
48
18
6D
48
Cc8
Cco
D
a1
A2
3
P213

A1FD
10109100

NV BDIZC 200
A1 P

D@ R /2

b}
st

COTTOW OO OO ON D
NIV WA AN

#2086
2209
B20A
?20B
A2@acC
A20F
%210
g211
#213
A206
8229
ACC:

PC
SP
PR

200
3209
f20A
A20B
A2acC
A20F
9210
p211
#2213
ACC:

PE
SP
PR

n200
0213
#3206
#7209
A20A
p20B
a20C
A20F

®
8C R /3
68 R /¢
48 R /§
18 R /£
6D R /7
48 R /&
C8 R N9
C@ R Ao
DG R g/
8C R 22
68 L 13
93
a3
C3
#3209
@1FC
10100100
NV BDIZC 200
g3 P
68 R 23
48 R 24
18 R 2%
6D R 2€
48 R 47
CE RS
Cd R 29
DO L 3¢
N6
g4
c3
7213
g1FB
10100100
NV BDIZC 200
@3 P
D? R 3o
8C R 3/
68 R 32
48 R 33
18 R 3y
6D R 3¢
48 R 36

210
@211
#3213
ACC:

7200
@213
A206
3209
A20A
A20B
a20cC
g20F
210
A211
f213
ACC:

148

y C3

@
C8 R 3%
ce® R 138
pDg L 39
@A
)
9213
gLFA
1010a100
NV BDIZC
3C 200
g4 P
D@ R 3¢
8C R V¥
68 R W/
48 R Y2
18 R y3%
6D R 4y
48 R ¥S
C8 R ¢é
Cé R yp
De L 4&
gF
06
ol
9213
g1FQ
10100100
NV BDIZC
g5 P
DO R &
8C R ¥9
68 R s0
48 R ¢/
18 R $X
6D R 53
48 R 5Y
C8 R 6%
CO R s
DA L 52
15

a7

20080

200

PC
SP
PR ¢

0200
213
3206
A209
a20A
@20B
@20C
@20F
7210
@211
3213
ACC:

PC 2
SP :
PR ¢

A200
7213
Aa206
#3209
n20A
#20B
a20C
@20F
210
p211
A213
ACC:

PC . -
SP :
PR

0200

®
C3
9213
gLF8
10100100
NV BDIZC
@6 P
D@ R 5%
8C R 44
68 R %59
48 R 6¢
18 R &7/
6D R 42
48 R 63
C8 R &4
ca R 6%
pg L &6
bt
08
c3
9213
@LF7
17100120
NV BDIZC
27 P
D@ R 66
8C R 67
68 R &8
48 R 69
18 R 7¢
6D R 3!
48 R 32
CR R 23
CO R 3y
D8 Lo 35
24
29
|
0213
f1F6
101006100

200

200

NV BDIZC 200

g8 P

#2213
206
A209
d20A
3208
@2ec
A20F
210
A211
A213
KCO%

PC
SP
PR

2200
w213
0206
0209
g20A
g29B
#20C
A20F
0210
3211
2213
ACC:

PC
S P
PR

3200
p213
#2115
@217
A21A
@21D
A220

®
DG R 3§
8C R 3£
68 R 3%
48 R 34
18 R 19
6D R do
48 R §1
C8 R 21
Cd R §3
DB L 8y
2D
aA
C3
9213
ALFS
10100100
NV BDIZC 200
a9 P
Dy R 8
8C R §¢
68 R §6
48 R §%
18 R #)
6D R §9
48 R g9¢
S B 91
Co R g2
De L 93
37
gB
Cc3
9213
g1F4
00100111
NV BDIZC 204
AA P
DA R 93
A0 R gy
10 R 83
3C R
3C'R
47 R

- -

@
a3 iL
56
?B
€3
P222
PLlF4
AR1ea1al
NV
ng -
e
s
06 -
oA &
PFL5
1505
1C &
24 -
2D R
37 =
1L
89 =

3C 'F8<

AC FRE
3C "%

3C 217
F8 R 45
ac L qé

BDIZC IFF

ACC:

PC
SP
PR

2 se ee

9218
A1FF
A201
ACC:

PC
SP
PR

0200
7201
203
3205
p206
209
A20A
#@20B
@20C
A20F
#2109
#2211
p213
ACC:
Y £

PCnE
sp. g
PR :

A200
#2213
0206
p209
A20A

®
56
0B
c3
0218
0LF4
00101101
NV BDIZC
ac R ¢4
@0 R 9}
A@ L /
56
B
C3
a201
gLF4
AALLLLAL
NV BDIZC
oA
AG
A9
48
8C
68
48
18
6D
48
c8
ca
D@
a1
02
c3
0213
¢LF2
19101100
NV BDIZC
a1
DO
ec
68
48

COXW VDOV O DD O
N IIDVRUW AN Wl

2
/3
i &
i

00DV D O

200

200

A200
@213
206
3209
B20A
#20B
a2ec
A20F
2210
g211
@213
ACC:

PC
SP
PR

7200
0213
a206
9209
p20A
A20B
p20C
A20F
@210
#2211
A213

®
18 R«
D R 12
48 R /8
C8 R /9
ce R 24
DO LES &/
03
g3
C3
0213
ALF 1
10101100
NV BDIZC 209
#2 P
DA R 2/
8C R 22
68 R 43
48 R 29
18 R 2§
6D R 24
48 R 23
CRA RS 28
Cé R 29
DA L 36
76
04
c3
9213
gLF 0
160101100
NV BDIZC 209
g3 P
DG R 3o
8C R 9%/
68 R 32
48 R 33
18 R 3y
6D R 3¢
48 R 3
C8 R $3
Cd R 14
DA L 39

149

n
jav)

n200
A213
206
0209
A20A
A20B
g2@cC
@20F
g210
9211
#2213
ACC:

PC
SP
PR :

0200
g213
6206
n209

150

@
16101100
NV BDIZC
6 P
D@ R 52
8C R 58
68 R §9
48 R ¢
18 R &/
6D R 62
48 R 63
c8 R by
C@ R é5
DO L &6
28
@8
C3
@213
@1EC
10101100
NV BDIZC
@7 P
D@ R éé
8C R €7
68 R &
48 R 69
18 R 7o
6D R 3
48 R 32
C8 R 23
CO R 3y
DA L 3§
36
29
C3
P213
P1EB
16101100
NV BDIZC
08 P
D@ R 7§
8C R 76
68 R 3%

200

200

200

n200
A213
0206
2209
a20A
p20B
#20C
A20F
n210
A211
p213

>

@®
10
@5
C3
0213
G1EF
10101160
NV BDIZC 200
A4 P
D@ R 3
8C R 4¢
68 R y/
48 R 42
18 R 43
6D R oy
48 R ¢S
C8 R ¢
CA R 43
DO L 4§
15
26
C3
@213
@1EE
10101100
NV BDIZC 240
a5 P
DB R ¥8
8C R ¥9
68 R §¢
48 R &/
18 R $2
6D R §3
48 R §¢
C8 R ¢S5
co rR 5S¢
DA L S#
21
07
C3
213
@1ED

A20A
A20B
fA20C
A20F
@210
A211
P213
A206
ACC:
Y 4
Xnoe
PC
SP :
PR :

A200
7206
0209
02047
#20B
n2ecC
N20F
n210
0211
0213
ACC:
Y .
X

pPe
SP
PR

200
P213
A215
ACLH
Y
X
PC
SP
PR :

@
48 R 6
18 R 19
6D R &b
48 R #
C8 R #
CO R §3
D@ R §Y
BCIL VS
45
oA
C3
#9206
P1EA
10101100
NV BDIZC
g9 P
gc R &%
68 R &6
48 R 83
18 R &8
6D R 89
48 R 04
C8 R 91
Co R 92
DO L 93
55
7B
Cc3
g213
@1E9Q
Ael1A1111
NV BDIZC
oA P
D R 93
0% L 9Y
55
?B
C3
0215
@1lEQ
00101111

200

200

NV BDIZC 200

0200 0OA
J1FF 00 -
01FE 01 -
0LFD A3 -
@1FC 06 -
@1FB QA -
G1FA OF -
g1F9 15 -
A1F8 1C -
GLRT 284w
1R 62:2D)i=
1T ShL3dhas
#1F4 A0 -
31F3 01 -
J1F2 03 -
#1F1 06 -
gl1FQ 16 -
#1EF 15 -
AlEE 21 -
31ED
ALEC 36 -
91EB 45 -
@LEANSS 1=
#1E9 10

Intermediate phases concerning the 6502 registers were also noted (key L)
together with location TEMPY (keys 2 @ @ @ and SP), at points 1, 12, 23,
30, 39, 48, 57, 66, 75, 84 and 93: each of these ‘stations’ feature a BNE
instruction — except for point 23, which was caused by inadvertently
pressing the L key. In the end, we are presented with a panorama of all
the locations in the stack containing the series of numbers required. Which
is what the program was all about.

By the way, table 2 is shown in three columns per page to save space.

At this stage we are not particularly interested in the software develop-
ments in table 2, but readers are, of course, welcome to examine the
table in greater detail if they so wish. What is important here is the fact
that the PM program in the Junior Computer helps to keep the user
completely up to date with regard to everything going on inside the
machine (by using keys L and P).

Decimal arithmetic using the NUMBERS program

Let us repeat the program, but this time to make a decimal calculation.
Exactly the same numbers are involved here, only now they will be deci-
mal numbers as opposed to hexadecimal numbers. In the first instance

151

the numbers were expressed with the characters@...9 and A . .. F, in
the second only the numbers @ . . . 9 will be required.

As indicated in Appendix 2, jumping to the SAVE routine of original
monitor program may cause difficulties during a decimal operation, that
is to say, if the last instruction in the sequence was SED as opposed to
CLD. Various problems can also be expected when returning to the orig-
inal monitor during the STEP mode while still operating in decimal. The
instructions ADC and SBC appear at a number of places within the PM
program and the execution of these instructions in decimal can lead to
very strange results. Furthermore, data containing numbers A ... F just
do not occur in decimal arithmetic. The PM software will be considered
in much greater detail regarding this aspect in Book 4. .

Similar to the process given in Appendix 2 for the original monitor routine,
the PM program, or to be more precise, the STEP routine, can be extended
by using some of the PIA RAM. This restores the binary situation before
the program actually jumps to the STEP routine (see figure 16b). The
main requirement for the step procedure is that the NMI vector is pointing
to location 1AG@ (the start address of BINAR). This is also necessary if
the processor is to return to the main PM routine by way of the ST key.
At the same time, the IRQ jump vector must also be pointing to the start
of BINAR in case there are any BRK instructions in the user program.
Thus, if the D flag is set (decimal arithmetic) just prior to the jump to the
PM program (= jump to BINAR) this extra little subroutine is absolutely
essential. However, it is rather superfluous in the case of a binary
(hexadecimal) calculation — although no harm is done by including it.

The module

In chapter 10 we described the hardware required on the main board of

the Junior Computer to disable the step function during the original

monitor and the PM routines. As the select line connections on the actual

module (EPS 81033-3) are rather confusing, we will recap on the matter

once again:

1. Select line K7 must always be connected even if the RES, NMI and
IRQ vectors are included in EPROM on a bus board memory card. This

is because the original EPROM contains two indirect jump instructions

which must be executed before an interrupt can be carried out (which will

have to be done in the step mode, as the effective IRQ and NMI| jump

vectors are defined in page 1A in the PIA RAM).

2. Select line K6 will be the second link if decimal calculations are to be
carried out without using the PM program, in other words, with the

aid of the original monitor (see Appendix 2).

3. Select line K4 will be the second link if the PM program is to be used
to step through programs, as in the case of NUMBERS in the first

section of table 2. ')

Well, now we can kill two birds with one stone by stepping through the

NUMBERS program in the decimal mode! Because of the BINAR routine

in figure 16b, a third link, select line K6, will have to be added to the

module. How this is done is shown in figure 17.

Admittedly, using a germanium diode in series with the K6 select line is

152

& e

F8 SED
ac JMP — STACK 01FF

L
81903 16a

IRQ NMI
Lulu)Imloo
1A7F 1A7E 1A7B 1A7A
D8 CLD
ac | ump—sTer 14cF T e
DECAR
9217 95 STEP:OFF
SED
9218 96
JMP — STACK
P1FF 97
BRK
0201 1 STEP : ON
81903 16¢
NUMBERS

Figure 16. The DECAR routine (16a) enables the NUMBERS program to be run
again, this time in the decimal mode. The PM program will therefore have to be
extended by using some PIA RAM (16b). Also, the IRQ and NMI jump vectors have
to be altered. As a result, the ‘railway journey’ in figure 15 becomes slightly extended

as well (16¢c).

not an ideal solution from a technical point of view, but the main thing is:

it works (a better solution to this particular problem is described in

Book 4). This provision must be made to allow NUMBERS to be stepped

through in the decimal mode (second section of table 2). Incidentally, we

do not intend that the Junior Computer be switched off and K6 connected,

as we are assuming that this was carried out before the NUMBERS

program was run in binary!

The NUMBERS program is executed in decimal as follows:

® At the end of the binary version of numbers, the program counter will
have reached address 3217, due to the BRK instruction, which has the

163

SYNC

K4: pin 5, IC6
K6: pin 7, IC6
K7: pin9, IC6 81903 17

Figure 17. For a decimal calculation to be carried out under the supervision of the
PM program, the select line K6 of the address decoder on the main board will have
to be connected to the module via a germanium diode.

label DECAR. The contents of the status register show that a binary
operation took place which is confirmed by the fact that the CLD instruc-
tion was executed at the start of the PM program. This is exactly what
happens during the RESET routine of the original monitor program.
® The program in figure 16a starts at address 3217. This does not need
to be run in the step mode, but can be executed in one go. The pro-
cessor now switches to decimal operation (via the SED instruction) and
jumps to the lowest position in the stack (the stack pointer points to
location @1FF) which has been appropriately labelled STACK.
® Address @1FF contains the data @@, as this is the first number in the
required series. This data (@#@) now acts as the opcode of the BRK
instruction! After the BRK instruction, the program counter will be
pointing to address location @2@1. This was the start of the binary version
of NUMBERS and it is now ‘recycled’ and used to start the decimal
version.
® The jump from DECAR to NUMBERS by way of the BRK instruction
at @1FF (see figure 16c) allows the computer to work in decimal
instead of binary, without having to modify the program or the start
address.
How is this put into practice?
® Assuming that the binary version of the NUMBERS program has just
been completed, the program counter will contain the address 0217
(this can be checked by depressing the P key). At the start of the second
section of table 2 a survey of the contents of the internal 6502 registers,
that of TEMPY and of the stack locations containing the numbers in the
series has been given. »
® Type in the data according to figures 16a and 16b. Do not forget to
modify the NMI and IRQ jump vectors.
® Turn the STEP switch OFF (not absolutely necessary, but it will take
us straight to the start address of NUMBERS). In table 2 this section
was in fact run in the STEP mode.

154

® Depress key P to prepare the start address of DECAR.
® Depress key R. The program is running and the Junior Computer will
report back with the start address of the NUMBERS program.
® The operator requests a listing at the start of the NUMBERS program
by depressing L, 200 and the space bar.
® Make sure that the STEP switch is ON and then press P (to prepare the
start address) and then R (to execute the first instruction).
Now the whole performance is repeated as in the binary version of the
NUMBERS program. What happens next can be ascertained from the
second half of table 2.
The NUMBERS program has now been run in the step mode twice, first
in binary and then in decimal, for mainly educational reasons. It was not
strictly necessary to change over to decimal by way of the DECAR
program in figure 16a. We could also have diverted every jump to the PM
program during the binary operation via the BINAR routine in figure 16b.
In other words, the only data which needs to be entered at the end of the
binary version of NUMBERS are the instructions for the decimal change-
over. There is no need to include the SED instruction in a user program,
as the PM program is capable of loading location PREG (@@F1) with
the data to make the D flag become logic one (set) whereas the other flags
remain unchanged.
By now readers will realise that stepping through a program involves a lot
more than examining internal registers. The whole development of a
program depends on the entered data. It should also be clear by now that
stepping through a program using PM routines is a lot more practical than
using the original monitor program.

Points to remember about the PM program

What about a different NMI jump vector?

The NMI jump vector is automatically defined at the start of the PM
program. Location 1A7A is loaded with CF and location 1A7B is loaded
with 14; address 14CF is the start of the STEP routine, in which the
contents of the CPU registers are stored away and the contents of the
program counter is printed on the screen, this being the next start address.
The user may, however, change his/her mind about the NMI vector. The
operator may like to implement the ST key on the hexadecimal keyboard
of the Junior Computer. (Do not forget that each time the ST key is
depressed, three stack locations are filled). It is possible to make the NMI
vector point to any start address which the user may decide upon. This
will have to be carried out after the start of the PM program, as otherwise
(if done prematurely) the data at address locations TA7A and 1A7B will
be overwritten by the PM program! The IRQ jump vector can be entered
at any time.

Caution!

If either of the keys S or G are depressed (that is to say, a subroutine
belonging to the TM program is called) and the STEP switch is ON, no

155

data will be transferred to or from the cassette. The operator can wait
until Doomsday for ‘READY’ to appear on the screen . .. nothing will
happen! The reason for this is that the TM program is stored in EPROM
and must be enabled by select lines K2 and K3 (see chapter 10). These
select lines do not disable the step operation within the corresponding
address range. So OFF with the STEP switch!

* .Error messages

Only a few of the keys on the ASCIl keyboard (see figure 12) mean
anything at all to the PM program: they are recognised by their ASCII
code. As soon as one of the (parameter) command keys M, S or G are
depressed, any other perfectly valid key function will be ignored. For
instance, if S11, 200, R are depressed, no data will be transferred to
cassette and the PM program will not react to R either, but will answer:
JUNIOR

followed by a blank line.

There are other situations which lead to incomprehension:

a. 'WHAT?"

This desperate cry (sometimes together with JUNIOR) indicates that the
PM program does not recognise the key that has just been depressed. In
other words, it was not an alphanumeric key (@...9, A...F) nor a
(relevant) function key. If one of the parameter keys are operated (M, S
or G) the message 'WHAT?" will always be followed by ‘JUNIOR’ and
another blank line.

For example:

0407 XX 3F,

WHAT?

Here the data 3F was to be entered into address location 0407, but instead
of hitting the full stop key we typed in a comma. The comma only means
something when it is used in conjunction with keys M and S.

b. “JUNIOR’

This message has been mentioned on a number of occasions already. In

fact, it is output whenever:

1. The PM program is fully activated: both start sequences have been
accomplished.

2. When the BREAK key is depressed during the transmission of an ASCI|
character by the Junior Computer: provided the BRK jump vector is

defined as:

1A7C: data FF; 1A7D: data 10.

This occurs automatically after the start of the PM program, but can be

modified by the user program,

3. After a hex dump has been printed, by depressing the M key and setting
the required parameters. In each case, the computer is reacting quite

normally, even though the BREAK key is often used in an emergency.

Sometimes, however, the text ‘JUNIOR’ is displayed because something

has gone wrong! y

156

=

4. After operating the M key and entering an end address which is lower
than the start address. Although the parameters are technically correct

(no typing mistakes) the error message will be displayed.

5. When the S key is operated and a file number (ID) of @@ or FF is
entered. As you (and the PM program) know, a data block can not

possess either number.

6. When a error was made during the entry of a function which requires
certain parameters. Only the alphanumeric keys®...9 and A...F,

the " key and CR are relevant (the comma is not required if the G key is

operated). If irrelevant keys are depressed or if CR, for instance is de-

pressed too soon (before the ‘,” key), an error will be reported.

The only valid keys are:

M - HEXDUMP: (data), (data) CR

S (data), (data), (data) CR

G (data# FF) CR

GFF — SA: (data) CR

In every. other case an error will be reported. Even, for instance, if the

space bar is depressed for more clarity on the video screen.

N.B. 1. Occasionally an error report during the preparation of parameters

for a particular function is preceded by the message ‘WHAT?’. This aspect

will be dealt with during the discussion of the PM software in Book 4.

N.B. 2. What action is taken after an error report? If a key function

requiring certain parameters (M, S or G) was involved, start again. So press

M, S or G once more and re-enter the parameters. Normally, in most other

instances, the work address has to be re-entered

A word on keys S and G

After depressing one of these keys, entering the parameters followed by
CR, the cursor will move back to the beginning of the line. The first
character in this line will then flash until the text READY appears on the
screen. If one of the keys S or G is operated at the start of line, that letter
will flash after the CR and before ‘READY' appears.

An ‘appetiser’

A glimpse behind the cover of Book 4

Which subroutines are incorporated in the PM program? How can these
subroutines be implemented in user programs? Such questions will be
answered at length in Book 4. However, it is only fair that eager program-
mers should have something to whet their appetites before Book 4 is
available. So here are four examples of ways in which to use the PM
program, and which will give you a good idea of what the main software
menu has in store for you. At this point in time, the meal is not quite
ready, but there is no reason why the kitchen door could not be opened
to let the aroma of sizzling bytes waft out . . .

157

1. Printing data

We have already seen how neatly the PM program prints out a hex dump.
How about printing a user program in a similar manner? What about using
the two versions of the NUMBERS program (figure 13) as an example?
The two series of numbers could be printed out in neat columns.
This can be done with the aid of the program given in figure 18. This is
called PRNUMB and makes use of three different PM subroutines:
® CRLF: Start at the beginning-of a new line (11E8).
® PRSP: Print a space (11F3).
® PRBYT: Transmit the contents of the accumulator in the form of two
ASCII characters (128F).
Let us look at the structure of the PRNUMB program. It starts very much
like the NUMBERS program (see figure 13). The first BNE instruction (in
the section of program after the ADD label) ensures that this particular
section is run until all eleven numbers in the series have been calculated
and stored on the stack. Once this has happened, the status of the D flag
is examined. The procedure is as follows: the contents of the status
register are copied into the accumulator. This taken care of by the
instructions PHP and PLA. By means of the instruction AND # @8, all the
bits in the accumulator (not those in the status register!) are made logic
zero, except for the bit corresponding to the D flag. The status of the
latter will let us know whether the program section starting at label ADD
has been run through once (binary/hexadecimal arithmetic) or twice
(decimal arithmetic). For when the bit corresponding to the D flag is logic
zero, the program switches to decimal calculation (SED) and then jumps
back to PRNUMB.
Readers may well wonder how we can be sure that the first calculation
is carried out in binary. Well, the program has to keyed in or read in from
cassette using the original monitor program or, preferably, the PM and TM
programs. After the start of either the original monitor or the PM program,
the Junior Computer will automatically be in the binary mode.
When the D flag is logic one, to show that both series of numbers have
been calculated, the program jumps to the label READY. The second
section of PRNUMB prints out the numbers in a clear and orderly fashion.
Now you may wonder why this was not done during the ADD routine in
the first place. The problem is, this can be done during the binary calcu-
lation, but not during the decimal version. This is because the PM
subroutines are likely to go haywire if they are set to work via a JSR
instruction while the computer is still in the decimal mode. Although the
jump to the STEP routine of the PM program by way of the BINAR
routine and while the D flag is still set is quite plausible, problems are
bound to arise if the binary adjustment is omitted and the PM program is
entered by way of one of its subroutines. For this reason the READY label
is organised at once: CLD. Next, the jump to subroutine CRLF brings us
to a fresh line on the display.
The purpose of PRNUMB is to print out the two series of numbers in two
rows: first the binary row and below it the decimal row. For this the Y
index register is used. The contents of the Y register are made equal to 15
and the accumulator is loaded using post indexed indirect addressing
method, the operand address being @1EA {STACK). By looking at the

158

0201
PRNUMB

AD LDY # 01
A9 LDA # 00 JSR — CRLF 11E8
48 PHA LDY #15

0

8C STY — TEMPY 0209

_LDA — STACK,Y

68 PLA 20 JSR —PRBYT 128F
48 PHA JSR — PRSP
18 CLC

6D ADC — TEMPY 9200

a8 PHA

cs INY

co CPY #@B

Do
(F1)

08 PHP

JSR — CRLF
68 PLA
bozs

29 AND # 88

Do

(04)

F8 SED

ac JMP — PRNUMB | 0291

1

81903 18

Figure 18. The PRNUMB program enables the series of numbers (see figure 13) to
be calculated in both binary and decimal. The contents of the stack (see figure 14)
are printed as a row of hexadecimal numbers followed by a row of decimal numbers.

159

drawing of the stack in figure 14, we can see that location @1EA is exactly
15 (decimal: 21) locations away from @1FF. The latter contains the first
number in the binary series. By decrementing the Y register several times
each number is dealt with in turn via the PRINT label, in other words,
each one is stored in the accumulator.

After this, the subroutines PRBYT (print accumulator contents) and
PRSP (print a space to separate two numbers) follow. The contents of the
Y-index register are then deeremented by one via the DEY instruction.
Once the contents of the Y register become @@, the last number has been
reached. The contents of the Y register after the next DEY instruction are,
therefore, FF. This means that the N flag has become logic one and the
BMI instruction causes a jump to label END: the start of a new line
(CRLF), followed by a BRK instruction, thus a jump to the STEP routine
of the PM program.

As soon as the contents of the Y register are equal to OA, the PRNUMB
program has to print the remaining (decimal) figures on a new line, since
@A corresponds to the first figure in the decimal series. This can be
checked in the drawing of the stack in figure 14. The instructions CPY #0A
and BNE PRINT prepare the way for this via the CRLF subroutine of the
PM program.

That just about covers the theory, now let us get on with the practical
side. First the PRNUMB program is typed in. This is quite easy by
following the assembler version printed below:

PRNUMB 0201 A0 01 LDY #01
@203 A9 00 LDA # 00
@205 48 PHA
ADD G206 8C 0@ 02 STY-TEMPY
@209 68 PLA
020A 48 PHA
020B 18 CLC
020C 6D 00 @2 ADC-TEMPY
P20F 48 PHA
@210 C8 INY
@211 CO 0B CPY #0B
0213 D@ F1 BNE ADD
0215 08 PHP
0216 68 PLA
0217 29 @B AND # 08
0219 DO 04 BNE READY
021B F8 SED
021C 4C 91 02 JMP-PRNUMB
READY 021F D8 CLD
0220 20 E8 11 JSR-CRLF
0223 AD® 15 LDY #15

PRINT 0225 B9 EA. 01 LDA-(STACK,Y)
0228 20 8F 12 % JSR-PRBYT
©22B 20 F3 11 JSR-PRSP

022E 88 DEY.
022F 30 @A BMI END
0231 CO OGA CPY # 0A

160

0233 DO FO BNE PRINT
0235 20 E8 11 JSR-CRLF
0238 4C 25 02 JMP-PRINT

END ®23B 26 E8 11 JSR-CRLF
023E 00 BRK
1A7E CF BRKL
1A7F 14 BRKH

By now there should be no problems regarding the entry of programs
via the PM program, so let us move on and execute the routine:

201 (SP)

0201 A0 R

00 01 03 06 QA @F 15 1C 24 2D 37

00 01 03 06 10 15 21 28 36 45 55

blank lire

0249 XX

The program works and before we turn the computer off we may as wel!
store it on cassette:

S1, 201, 23F, (CR)

READY

That was that.

In principle, a program like PRNUMB which includes certain PM routines,
can be carried under the supervision of the original monitor program. In
this instance the BRK jump vector (= IRQ vector) will have to point at
location 1C0@. This means that the message ‘0240 XX’ will then appear
on the Junior Computer display instead of on the video screen. The
PM program must also have been started once before during the program-
ming session. This is because certain bit times, which are defined in RAM
locations, must be known by the PM subroutines involved in transmitting
and receiving an ASCI| character.

An important point

As we have just seen, calling PM subroutines during decimal arithmetic
could lead to grave problems. One method to avoid such difficulties is to
implement a routine such as PRNUMB. Another possibility is to ensure
that the computer switches over to binary before a PM subroutine is called
and switches back to decimal afterwards. Two situations may arise:

a. The operation will always be carried out in decimal.

Well, that is easy enough. The jump to a PM subroutine (label PMSR) is
preceded by the CLD instruction and when the processor returns to the
main program the instruction SED is carried out (see figure 19a).

b. The operation will take place in either binary or decimal.

This is a little more complicated, see figure 19b. Using the instructions
PHP and PLA, the contents of the status register are copied into the
accumulator. This data is then ‘masked’ by the instruction AND #0@8 so
that all the bits except the one corresponding to the D flag are made zero.
The result is then stored in location PREG (PPE 1), which has very little to
do seeing as the original monitor program can no longer be stepped
through.

The instruction CLD follows, which is not strictly necessary, and then

161

CLD

JSR — PMSR

IXXX

81903 19a
pe
08 PHP
PLA
29 AND # 88
85 STAZ - PREG 00F1 — PAPOXP0@ (PREG)
D8 CLD
20 JSR — PMSR 1XXX
08 PHP
PLA > XXXX@XXX (P)
25 ORAZ - PREG POF1
48 PHA
28 PLP

81903 19b

Figure 19. The PM subroutines should never be called during decimal operations. If
they are required, the computer will have to change over to binary arithmetic for a
while (19a). If the program involves both binary and decimal calculations (not at
the same time!), the original status of the D flag must be restored upon the return
from a PM subroutine (19b).

the relevant PM subroutine is called and run. Many subroutines cause one
or more of the various flags to be set or reset. This will be elaborated on in
Book 4. In other words, the contents of the status register at the end of
the subroutine are of vital importance. Only the D flag must be restored
to its original value.

This is accomplished by fetching the contents of the status register and
storing them in the accumulator (the instructions PHP and PLA). We
know that the D flag is reset at the end of the PM subroutine. The D flag
is restored to its original value by means of the instruction ORAZ-PREG,
which will have no effect on any of the other bits in the accumulator. The

result is then stored in the status register. by means of the instructions
PHA and PLP.

162

2. Graphic display

Are you familiar with the PM subroutine PRCHA? Yes and no. Actually,
this routine was introduced twice in succession during the PRBYT
subroutine, which we learned about in the first example (PRNUMB, see
figure 18). The PRCHA routine is devoted to transmitting, or rather
printing, the contents of the accumulator. The important thing to know
here is that the contents of the X index register are exactly the same after
the PRCHA routine as they were before, in spite of the intensive activity
during the subroutine. The start address of PRCHA is 1334.
In the first example, alphanumeric data was printed; in the last example
we will print a short piece of text, but before this, it is time to have a bit
of fun with a graphic display in our second example. Again the programs
need not serve any particularly significant purpose: they are just exercises
to enable us to improve our programming skills.
The idea is to display a chessboard on the TV screen. Obviously, it will
have to be a very simple pattern due to the limitations of the Elekterminal.
It will have eight rows of eight squares with the usual pattern of 32 white
squares and 32 black squares. A white square is indicated by a blank space
and a black square is marked by a cross (X). The squares themselves are
not outlined.
The chessboard should be square on the screen. Since there is a space
between the rows of characters on the screen (about the same size as the
space occupied by a letter), extra spaces will have to be printed next to
those representing a white square, to make the graphic display appear
even, This is not quite possibie, but we can reduce the size of the TV
picture. Most sets provide a control for this purpose. As a result, horizon-
tal black bars appear at the top and bottom of the screen. We know what
happens next. The question is: how?
Look at the following rows of data very carefully:
00 01 02 03 04 05 06 07 @8 09 OA OB OC @GD QE GF 10
20 20 58 20 20 20 58 20 20 20 58 20 20 20 58 @D QA
The first row contains a series of consecutive numbers and the second row
contains ASCI| coded data: 20 stands for a space, 58 represents a capital
‘X’, 0D and @A are the ‘invisible’ commands for carriage return (CR) and
line feed (LF), respectively. The first row contains a number of values
allocated to the Y index register one after the other. The second contains
data which is stored in the accumulator by means of post indexed indirect
addressing and then printed with the aid of the PRCHA subroutine con-
tained in the PM program. The data row corresponds to one line of the
chessboard, but not all the data in the row is used to print one chessboard
line. The data row mentioned is actually dealt with nine times: once to
make sure the chessboard display starts at the beginning of a new line and
another eight times to display a row of chessboard squares. The X index
register is used to keep an eye on the progress. This is incremented from
00 to 09:
a. When X =00, Y = OF; a new line is started.
b. When X = 01, 83, @5 and @7, Y = 0@; the chessboard line starts with a
white square.
c. When X = 02, 04, 06 and @8, Y = @2; the chessboard line starts with a
black square.

163

9200

AP

B9
20
cs
ce

5
8
EO

CHSBRD

LDX # 00

LDY # OF

LDA — FIELDS,Y

0226

1334

JSR — PRCHA

INY

CPY #11

%

D®
‘ (F5)
E

INX

CPX # 89

BEQ

(9F)

TXA

AND # 91

(05)

029

JMP — LABJUN

d. When the value in the X register has reached @9, the computer knows

that it has finished printing out the chessboard and will display the
message ‘JUNIOR’.
That just about covers the main points of the chessboard program
CHSBRD, given in figure 20. The section of program between label LINE
and the next BNE instruction is run several times in order to print out one
line of the chessboard. The data row mentioned earlier can be found in the
form of a look-up table under the label FIELDS. The contents of the
accumulator which are to be printed are fetched from the relevant table
location. Afterwards, the contents of the Y index register are incremented
by one. As soon as the contents of the Y register reach 11, the line will be
complete and the computer proceeds to the next line. Not surprisingly, the
contents of the X index register are then incremented (INX) and the
computer checks to see whether the value in the X register has reached @9
yet.
If one or more lines are still to be printed, the value contained in the X
index register is examined to see whether it is even or odd. Should the
next line start with a black square (Y = @2) or with a white square (Y =00)?
How does the computer know whether the value in the X register is odd
or even? This is determined by copying the contents of the X register into
the accumulator (TXA) and then masking all the bits in the accumulator
except the least significant one (AND # #1). This means that if the value
in the X register was odd, the Z flag will be reset and if the value was even,
the Z flag will be set. After the masking process the BNE instruction acts
like a set of points on a railway line and diverts the processor to label
BLACK or label WHITE depending on the status of the Z flag.
As soon as the entire chessboard has been printed on the screen (the
contents of the X register = @9), the program jumps to the READY label
in figure 20 and then to the LABJUN label in the PM program. This latter
section of the PM program takes care of the ‘JUNIOR’ report and then
jumps to the middle of the PM program to wait for a key to be depressed.
So much for the theory behind the CHSBRD program, now for the practi-
cal side. The relevant data is presented in assembler format below:
CHSBRD 0200 A2 00 LDX # 00

0202 A® OF LDY # OF
LINE 0204 B9 26 02 LDA-FIELDS,Y
0207 20 34 13 JSR-PRCHA

020A C8 INY
a8 k0YiHe 020B Co 11 CPY #11
vt SIRELING)] 0284 020D D@ F5 BNE LINE
020F E8 INX
0210 EO @9 CPX # 09
WHITE 0212 FO OF BEQ READY
0214 8A TXA
) V08 .50 @215 29 01 AND # 01
a [.; @217 DO 05 BNE WHITE
o] e’ BLACK 0219 A® 02 LDY #02
- | @21B 4C 04 @2 JMP-LINE
Figure 20. The CHSBRD program displays a simplified chessboard pattern on the WHITE gg;g 4Ag 82 @2 kﬁglﬁgg

TV screen.

164 165

READY @223 4C b5F 10 JMP-LABJUN
FIELDS 0226 20

0227 20

@228 58

0229 20

022A 20

022B 20

@22C 58

022D 20

022E 20

@22F 20

#0230 58

0231 20

0232 20

#0233 20

@234 58

0235 @D

0236 0A
We only need to type this in once, so:
S2, 200, 237 (CR)
READY
The start address of the CHSBRD program is our old favourite, 3200. The

chessboard pattern is meant to look like this:
X X X X
XX XX
X X X X
X X X X
X X X X
X X XX
X X X X
X X XX
but then with a few more spaces. In practice, the result is more like this:
X X X X :
X X X ‘
X X X X
X X X X
X X X X

X X X X

X X X
X X X
X X X

3. Prepare your own ASCII table!

An ASCII table is part and parcel of any book on computers and this book
is no exception: an ASCI| table has been printed in Appendix 7. The
Elektor article on the ASCIl keyboard also contains a full table with all
128 possibilities listed. Of course, it all looks very good on paper, but how
about writing a program to print out the ASCII code of a depressed key
followed by its actual binary value. b

This is quite feasible, as we are about to find out. The previous two

166

examples involved PM subroutines purely for printing purposes. For a
program to display the ASCIl code of any depressed key, we require a
subroutine which waits for an ASCIlI key to be depressed. Such a
subroutine can be found in the PM program by the name of RECCHA.

All this subroutine does is to detect the presence of an ASCII code trans-
mitted by the keyboard to the Junior Computer and the video terminal
(or printer). Thus, its name is quite appropriate: RECeive CHAracter. The
ASCII code corresponding to the key in question is determined according
to whether a normal key function is involved, or whether one which
requires simultaneous operation of the shift (SFT) or control (CNTRL)
keys. After the RECCHA subroutine the ASCII code of the depressed
key will be stored in the accumulator.

The program needed to display the ASCII code of any selected key is
called, quite simply, ASCII and is shown in figure 21. The start address
of the program is @@@@. The program will certainly not use up too much
of the computer RAM, as it is only 26 bytes long.

Firstly, the subroutine CRLF sets things going: start at the beginning of a
new line. Then the computer waits for the user to depress a key. This is
then printed at the beginning of a line on the screen.

The ASCII code of the particular key is then copied from the accumulator
into the Y register (TAY). This is because the contents of the accumulator
will alter during the following PRSP routine. This latter routine prints a
space between the key character and the following hexadecimal represen-
tation. The latter occurs by restoring the previous contents of the accumu-
lator (TYA) and calling the PRBYT subroutine. We already know the
PRBYT subroutine from our first program example PRNUMB. This makes
sure that first the high order nibble and then the low order nibble con-
tained in the accumulator are printed in that order. The value of each

20
20

[recom]
—STAZ - PREG
—.SH - SHOWPR
|

A8

29

98

29

29

98

85

20

81903 21

Figure 21. The ASCII program enables the ASCII code and the binary value of any
(ASCII) key which is depressed to be displayed on the screen or printed on paper.

167

nibble can be anywhere between @ and F, and each is translated into its
corresponding ASCI| code prior to the actual transmission.
After these two hexadecimal nibbles have been printed, a second space
is ‘displayed’. This brings us to the section of program which outputs the
ASCI| code as a series of eight bits. First, the original contents of the
accumulator are restored once more (TYA). Then this data is copied into
location PREG (@@F 1) and the program jumps to subroutine SHOWPR.
The contents of the accumulator are stored in location PREG for the
following reason. During a listing the contents of the status register are
printed out bit by bit. This is taken care of by the subroutine SHOWPR,
The original contents of PREG are irrelevant here, as this location is being
filled with new data.
After all the bits in the ASCII code have been printed, the program returns
from the SHOWPR routine and jumps back to the start of the ASCII
program. Once a new line has been prepared, the computer waits until
a new key is depressed, and so on. The ASCI| program is therefore a
continuous loop. This can be exited from by depressing the RST key on
the hexadecimal keyboard and starting the PM program anew, or by
depressing the BREAK key whiie an ASCI| character is being transmitted.
Since the main routine of the PM program is not concerned here, the text
‘WHAT?’ will not appear on the screen when a key not associated with
the PM program is depressed. Therefore, all the ASCII keys on the key-
board can be displayed in this manner.
The ASCII program in figure 21 can be entered very quickly:
ASCII 0000 20 E8 11 JSR-CRLF

0003 20 AE 12 JSR-RECCHA

0006 A8 TAY
0007 20 F3 11 JSR-PRSP
00BA 98 TYA

@o0B 2@ 8F 12 JSR-PRBYT

@OPE 20 F3 11 JSR-PRSP

?p11 98 TYA

@p12 85 F1 STAZ-PREG

0014 20 28 12 JSR-SHOWPR

0617 4C 00 00 JMP-ASCII
It does not look much, but it is well worth storing on cassette, thus:
S3, 1A (CR)
READY
To start the program, depress:
(SP) R
We can now depress any key or keys we like. Table 3 shows a number of
ASCIl key characters and their corresponding ASCIl code both in
hexadecimal and as a series of eight bits. The most significant bit is always
zero; the ASCII code itself only uses seven bits. Table 3 was actually made
with the aid of the ASCIl program in figure 21. Instead of the
Elekterminal, a full size printer was connected to the Junior Computer.
This provides more key functions than the Elekterminal. When the space
bar is pressed, the ASCIl code 2@ will appear. The commands CR and LF
give @D and QA, respectively. .
The ASCII program can be applied in the fourth and last program example,

168

O23L"‘Dt:LaH:x:CD"uch(')JJJ>'~o:o\1:nm4>u,m;—-3

Table 3. A ‘hard copy’ ASCII table which was printed with the aid of the ASCI|

program in figure 21.

30 60110000 P 50 @g1P10000 # 23 eolo0011
31 0011000] Q 51 A101@0¢1 S 24 00100100
32 90110010 R 52 A1A10010 $ 25 AA10ALA)
33 08110011 S 53 71010011 " 5E A141111¢
34 ag110100 T 54 01310100 & 26 00100117
35 0011017A) U 55 A41010101 * 2A Q0171010
36 Q11110 V 56 A1061¢110 (28 00101000
37 00110111 W 57 01410111 Y 29 G4C101601
32 09111000 X 58 (10110007 SF @1011111
39 ¢fa11100] Y 59 410110¢1 ~ S5F @Ql@11111
4] A1L000Q@1 Z S5A 01011910 + 2B 001010411
42 A1LQAARLA , 2C 00101100 $17E f1E11110
43 010007311 . 2E 00191110] 5D A1¢111@1
44 (1LOA010A 20 G2LAAA00 | 7C A1111100
45 B100A1G] / 2F a0171111 : 3A 00111010
A6 (100A110 f 7B A1111011 " 22 0190010
47 01000111 ''27 G010A111 b7 81111101
48 41001000 ; 3B 00111011 < 3C 040111100
49 91001001 \ 5C 01011100 > 3E 90111110
47 A1031A10 ' 5B A1G11011 ? 3F 00111111
4B (1001011 60 21100000 0D ANZA1101
4C (1001100 = 3D 60111101

4D 0100110 - 2D AO1011@1 2A (0AG101LA
4E 1001110 1 21 090100071

AF 91041111 R 40 GLAAGRAN

where any texts can be printed or displayed by first entering the relevant
ASCII codes.

4, Printing texts

This program example is called FINAL — quite appropriate as we are
nearing the end of Book 3 — and is shown in figure 22. The real reason
for calling it FINAL will be explained later on. Again, the PM subroutine
RECCHA is required to detect when a key is depressed. In addition, two
print subroutines contained in the PM program are used.

The Junior Computer is ideal for printing texts by way of the PM program.
BY this we mean any text that springs to mind, which the computer can
print out as often as required.

The FINAL program is a kind of international text routine. The keys N
(Dutch), D. (German), E (English) and F (French) acquire a special import-
ance, for depressing one of these will make the Junior Computer display a

169

86 STAZ - TEXTL |17

A9 LDA ##2

86 STAZ — TEXTH |18

ac JMP — TEXT 800F

A8 LDA # 09

85 STAZ - TEXTL 17

A9 LDA # 02

85 STAZ - TEXTH 18 |
TEXTL = 0817 S93F
TEXTH = 0918

c9 COMP # 46

yes

A9 LDA # 80
85 STAZ - TEXTL |17

A9 LDA #03

85 STAZ - TEXTH |18

29 AND #0F

A9 LDA # 89

85 STAZ - TEXTL 17

A9 LDA # #3
1334 85 STAZ - TEXTH |18
4c | JMP — FINAL 0990
INY ac WP — TEXT | oseF

c | M XTA l 81903 22

Figure 22, The FINAL program allows the user to display one of four language texts
on the screen by depressing the corresponding ASCII key.

170

short piece of text in one of the four languages. Obviously, the texts need
to be entered into RAM beforehand.

Why four languages? Well for one thing, the Junior Computer books are
published in four languages. At the same time, it gives the programmer an
idea of how to go about assigning different keys to perform different
tasks in his/her own software.

The texts are printed in a series of lines, with up to sixteen characters per
line. Pages @2 and @3 are available in the original RAM for storing the
texts. Each language is given an equal amount of memory space.

N: 0200...027F; TEXTH = (2; TEXTL = 00

D: 0280...02FF; TEXTH = 02; TEXTL =80

E: 0300...037F; TEXTH=03: TEXTL =00

F: @380...03FF; TEXTH = 03; TEXTL =80

This means that each text can consist of up to eight lines of sixteen
characters. The block of text must end with the End Of Text (EOT)
character @3, so that each block consists of no more than 127 characters.
They must be entered in ASCI| format, see Appendix 7.

The actual printing section of the FINAL program starts at the label
TEXT. First of all, the contents of the Y index register are made zero.
The contents of the Y register are then tested to see whether they are
equal to XF, where X=0...7. If so, a new line will have to be started,
before any more characters can be printed. This is accomplished by
copying the contents of the Y register into the accumulator (TYA) and
masking the four most significant bits (AND # @F). The Z flag can then
be examined by means of the BEQ instruction.

Next, the accumulator is loaded with the (following) character to be
printed. This is accomplished by using post indexed indirect addressing.
The memory locations TEXTH and TEXTL are loaded with data which
corresponds to the first address of the text memory range in question
(depending on which language was chosen).

Each piece of text must end with the EOT character, as otherwise the
TV screen will be filled with rubbish. As soon as an EOT character is
detected, the subsequent BEQ instruction brings the computer to the
beginning of a new line via the CRLF subroutine and then back to the
start of FINAL. Until this happens, the contents of the accumulator are
printed (PRCHA), the contents of the Y index register are incremented
and the next character to be printed is fetched from the text memory.
Now for the key routine. The FINAL program starts with the RECCHA
subroutine. When an ASCII| character is received, this is stored in the
accumulator. Next, a series of comparisons (CMP) and branches (BNE)
check whether the character in question belongs to one of the keys N, D,
E or F. If not, return to FINAL. If so, adjust the operand of the text
memory to the language selected.

Right, now it is time to enter the FINAL program. This is accomplished

as follows:
FINAL 0000 20 AE 12 JSR-RECCHA

0003 C9 4E CMP #4E

0005 DG 29 BNE GERMAN
DUTCH 0007 A9 00 LDA # 00

0009 85 17 STAZ-TEXTL

171

000B A9 (2 LDA # @2
000D 85 18 STAZ-TEXTH
TEXT 000F A0 00 LDY # 00
TXTA 0911 98 TYA
0012 29 OF AND # QF
0014 FO OE BEQ TXTB
TXTC 0016 B9 XX XX LDA-TEXT,Y
. 0019 C9 03 - . CMP # 03
001B FO@ 0D BEQ TXTD
001D 20 34 13 JSR-PRCHA
0020 C8 INY
0021 4C 11 00 JMP-TXTA
TXTB 0024 20 E8 11 JSR-CRLF
9027 4C 16 00 JMP-TXTC
TXTD 002A 20 E8 11 JSR-CRLF
@02D 4C 00 00 JMP-FINAL
GERMAN 0030 C9 44 CMP # 44
P032 DO 0B BNE ENGLSH
0034 A9 80 LDA #80
0036 85 17 STAZ-TEXTL
0P38 A9 (2 LDA #062
PO3A 85 18 STAZ-TEXTH
P@3C 4C OF 00 JMP-TEXT
ENGLSH @G@3F C9 45 CMP # 45
0041 DO 0B BNE FRENCH
0943 A9 00 LDA #00
0p45 85 17 STAZ-TEXTL
0047 A9 03 LDA #03
0P49 85 18 STAZ-TEXTH
0@4B 4C OF 00 JMP-TEXT
FRENCH 0@4E C9 46 CMP #46
0650 DB AE BNE FINAL
0052 A9 80 LDA # 80
PP54 85 17 STAZ-TEXTL
0056 A9 @3 LDA #@3
0058 85 18 STAZ-TEXTH
O@5A 4C OF 00 JMP-TEXT

This concludes the entry of the FINAL program. The IRQ jump vector
does not need to be defined as there is no BRK instruction in the program.
Theoretically, the program is an endless loop. It can, however, be left by
depressing the RST key on the hexadecimal keyboard. This will take us
back to the original monitor program. The PM program can then be started
as follows:

1000 GO RUBOUT :

Alternatively, the program can be exited from by depressing the BREAK
key on the ASCII keyboard while the text'is being printed. A third method
is to depress the ST key on the hexadecimal keyboard. The BREAK and
ST solutions will only work if the correct vectors were defined in accord-
ance with the start routine of the PM program.

172

M

HEXDUMP:

@200: 42 45 53 54 45 20 4D 45 4E 53 45 4F 21 44 49

@210:

@220: S5A 49 45 4E 53 20 49 4E 20 42 4F 45 4B 20 34

@230:

Now for the actual text(s). Let us start with the Dutch version:

200,230

00 10 28 3A 42 58 67 73 g2 oW ARSI DO B

57 41 53 20 48 45 54 20 44 4] 4E 2E 54 4F 54
a3

JUNIOR

M

HEXDUMP:

P280:
#290:
@2A0:
@2B0:

" 02C0:

Do not forget the EOT character, @3, at address location 0230, as other-
wise random data will be printed after the real text and this is likely to
continue for ever (unless there happens to be 03 somewhere). This random
data may well contain certain control functions, so that data may sud-
denly appear at the top of the screen and wipe out the existing text! In
other words, the EOT character is very important!

Next the German text:

280, 2BF

9 1 2.3 & ‘S5l
4C 49 45
57 41 52
54 45 2E
48 45 4E

9 A pSitos s g
42 45 52 20 4C 45 53 45 52 21 44 41
20 45 53 20 46 55 45 52 20 48 45 55
41 55 46 20 57 49 45 44 45 52 53 45
20 49 4E 20 42 55 43 48 20 34 21 21

JUNIOR

M

HEXDUMP:

A300:
9310:
0320:
B330:
0340:

The next one should be easy, it is English:

300,340

§ 1213 4 BERCNIES RN S 0 D B
44 45 4] 52 2@ 4D 52 2F 4D 52 53 2F 4D 49 53
4A 55 4E 49 4F 52 21 49 54 27 53 28 54 49 4D
54 4F 20 47 4F 2E 53 45 45 28 59 4F 55 2¢ 20
41 47 41 49 4E 20 49 4E 20 42 4F 4F 4B 20 34
@3

JUNIOR

173

F

54
20
21

53
2D
2D
g3

53
45
20
21

And finally, across the channel, for the French version:

M
HEXDUM

#380:
3390:
?3A0:
P3BO:
@3Ca:
@3Da:
@3EQ:

JUNIOR

P:
2

43
43
41
52
50
44
@23

380, 3E0

1

48
37
55
45
92
oy

2

45
45
4A
4E
45
20

3%44¢:58 67 %8B
52 53 20 4C 45 43 54
53 54-20 46 49 4E 49
4F 55 52 44 27 48 55
44 45 S5A 2D 56 4F 55
4D 49 45 52 45 53 20
4C 49 56 52 45 20 51

45
20
49
53
50
55

55
50
21
20
41
41

95 Af BS C

52
4F
20
41
47
54

Now the whole program is complete and can be stored on cassette:

S4,,5D (CR)

READY (press the pause button)
S5, 200, 231 (CR)

READY (press the pause button)
S6, 380, 3E1 (CR)

READY (press the pause button)
S7, 280, 2C0 (CR)

READY (press the pause button)
S8, 300, 341 (CR)

READY (press the recorder)

Right, now the start address of the FINAL program can be entered fol-

lowed by the key E. (You can try keys D, N and F later if you like).
The result:
(SP) R

174

DEAR MR/MRS/MISS
JUNIOR!IT'S TIME
TO GO.SEE YOU

AGAIN IN BOOK 4!

D

53
5%
20
55
45
52

E

2C
52
20
58
53
45

F

20
20
20
20
20
20

175

Appendix 1

The main board plus a single RAM/EPROM card

Simple memory extension

Depending on circumstances, the memory range of the Junior Computer
may be extended without adding the interface board. We have already seen
how to provide extra memory with the aid of the interface board, but
there is an easier method, which is simply to connect a single RAM/
EPROM card to the main beard. Note that only one memory card can be
added in this manner, since the expansion connector of the basic Junior
Computer is not buffered.

The procedure is as follows:

1. Link points D and EX on the main board.

This enables memory on the RAM/EPROM card to be accessed ex-
ternally. Select lines K1 ... K5 are disabled when extra memory is being
addressed.

2. Link either pin 3 or pin 4 of IC8 (the output of gate N5, see figure 25
in chapter 10) on the RAM/EPROM card to the EX connection (pin
30c on the expansion connector of the main computer board) via the
connector on the RAM/EPROM card.
Why is this necessary? The output level of N5 is determined by the input
levels of gates N1 and N2. These are the connections V, W, X and Y, one
or several of which are used to provide connections to the. corresponding
pins of the main address decoder, IC5.
Provided the inputs to N1 and N2 are all logic one, their outputs will be
logic one and so the output of N5 will be logic zero. This means that point
EX is also logic zero, enabling the address decoder, IC6, on the main board
to operate as of old: the memory etc. on the main board is accessed. As
soon as one of the inputs of N1 or N2 becomes logic zero, because a 4k
address block is being accessed on the RAM/EPROM card, the output of
N5 will become logic one and the D input of IC6 on the main board will
also go high. Now memory situated outside the main board can be ac-
cessed. For further details about the operation of the address decoder
on the main board see figure 4 and table 1 in chapter 10.
The above leads to a number of important points to remember:
3. Do not address memory with the pins ‘D', ‘1’ and ‘F’ on the RAM/

EPROM card if the NMI, RES and IRQ vectors are located in the
original EPROM on the main board. Using these would cause the EX signal
to become logic one whenever addresses in the range @xxx, 1xxx and Fxxx
are accessed. This would prevent these locations from being selected
correctly on the main Junior Computer board (via IC6).

176

There is another reason for not connecting pins ‘0’ and “1°. Supposing the

operator wishes to fill the gap in the memory map between locations

0400 and 17FF on the main board with memory stored on the RAM/

EPROM card (locations between 1800 ... 19FF can not be used, as this

is part of the address range selected by K6). There will always be a 4k

block that is partly filled with RAM/EPROM card memory and partly

with main board memory. Reading main board memory inside such a 4k

block will cause the data buffers on the RAM/EPROM card to be enabled

for a ‘read’ process as well. In other words, there is a danger of multiple

addressing, as was described in chapter 10 (see figure 6).

4. The only point to be remembered when fetching the NMI, RES and
IRQ vectors from the EPROM located on the main board, is to ensure

that this EPROM can be addressed: pin ‘F’ of IC5 on the RAM/EPROM

card must not be used in this instance. Address lines A13...A15 will now

be inoperative and the vectors are fetched from the original EPROM (page

1F instead of page FF). Addresses FOPD . . . FFFF can not be used on the

RAM/EPROM card. This does not matter, as there is still plenty of room

left for one card on pages 20 ... EF. This amounts to over 52k of mem-

ory, more than the 24k maximum which can be located on a single RAM/

EPROM card (8k RAM plus 16k EPROM).

5. In order to fetch the various vectors from EPROM stored on the
RAM/EPROM card pin ‘F’ must be connected. This means that EPROM

will have to be located on page FF. The address iocations involved for the

various vectors are:

FFFA for NMIL;

FFFB for NMIH;

FFFC for RESL:

FFFD for RESH;

FFFE for IRQL;

FFFF for IRQH;

This subject is described in full detail in the latter part of chapter 10,
where several pages are devoted to the RAM/EPROM card.
At this stage it may be useful to recap on the octuple addressing problem.
As you will remember, page Ox of the memory situated on the main board
coincides with pages 2x, 4x, 6x, 8x, Ax, Cx and Ex and page 1x coincides
with pages 3x, 5x, 7x, 9x, Bx, Dx and Fx (where x=0...F). Well,
whenever an address which does not belong to a 4k block decoded on the
RAM/EPROM card is being accessed, the original address decoder on the
main board (IC6) is enabled. It all depends on how many of the 4k blocks
(or rather how many pins of IC5) on the RAM/EPROM card are being
employed. At least, octuple addressing is out of the question here. As far
as page 1x is concerned, double addressing or more will certainly occur if
the vectors are fetched from the original EPROM.
6. The two boards may be linked with short wires, connectors or a com-
bination of connectors and ribbon cable. Figures 19 and 20 in chapter
10 show how this can be carried out.
7. As only one RAM/EPROM card is involved, it can be powered from the
original (unmodified) Junior Computer power supply. However, it may
be necessary to install a slightly larger heatsink. Note that if 2708 EPROMs
are used, they require +12 V and —5 V supplies in addition to +5V. On

177

the other hand, 2716 devices only require +5 V. Therefore, 2716 EPROMs
should be no problem for the existing power supply.

Method number two

One way to prepare the RAM/EPROM card is to connect the output of
N5 on the RAM/EPROM card to pin D of IC6 on the main board by way
of cennector point 30c (point .EX). There is, however, another method
which involves the circuit shown in figure 1. This has the advantage that

RAM/EPROM
o—2
IC5,Pin 17 F 4 ka3 ®
IC5,Pin9 1 >—
IC5,Pin1 @ T [100n(2)
g 1 16V
819041 Na,Nb = 2/3 74LS10

it completely excludes octuple addressing (but not double addressing,
which is necessary anyway, when the vectors are located in the original
EPROM, so that page 1x coincides with page Fx). It also has a disad-
vantage: putting the idea into practice is a little more difficult. Either a
printed circuit board or a piece of Veroboard will have to be made and
mounted. Both are shown in figure 2.

®@P MO
8 2 s
1904~ L —I

If the vectors are located in the original EPROM, the link to pin ‘F’ of
IC5 may be omitted. Again, avoid connecting pins @ and 1 to points V,
W, X or Y, as the 4k address blocks concerned are not available for full
use in any case (part of them are included on the main board). What is
more, the data buffers are inclined to read data of their own accord,
leading to the multiple addressing headache. Apart from these two aspects,
the procedure is the same as before.

Method number three

In addition to the hardware *modifications already mentioned, there is
yet another method. This is drawn in figure 3. Use a 74159 instead of the
74154 for the main address decoder, IC5, on the RAM/EPROM card. This
operates in exactly the same manner as the 74154, except that the outputs,
0...F, are now open collector outputs. This means that each one has to
be connected to the +5 V supply via pull-up resistors, so as to provide the

178

——02 ” ‘expansion connector

o memory-board connector

74159

Y b B
oy Ly aK
LTl N > 4k
g\ 4K
FTTE e - 4k

819043

correct logic levels. The main difference being that the outputs of the
74159 can be interconnected whereas the outputs of the 74154 can not.
Linking outputs @ and 1 of IC5 and then connecting them to pin D of IC6
on the main board (by way of the EX line), means that only addresses
0000 ... 1FFF may now be accessed on the main board. By the way,
only a certain part of this address range is in fact connected to usable
memory or 1/0.

Pin F can also be linked up to enable the vectors to be fetched from the
original EPROM. Do not forget to mount pull-up resistors at each output
(2...E or 2...F) that is used to decode a 4k address block on the
RAM/EPROM card.

179

Appendix 2

Using the PIA RAM with the original monitor routine

Supposing we wish to use the original monitor routine, rather than the
Printer Monitor (PM), and we wish to write a program to perform a bit
of decimal arithmetic. This will involve the use of the instruction SED
(F8) to allow the instruction sequence to be executed correctly. An
example of this is given in figure 1a in the form of the DECADD routine.

e
0100 DECADD

1400 cLD D8
0104 cLC 18 1401 JIMP — SAVE acee 1c
101 LDA # 13 A9 13
0103 SED 8

0104 ADC #08 69 08 NMI (STEP)
1A78 1A7A ;
IRQ (BRK)
81905-1a > Label BINAR

1A7F 1A7E
STEP: ON 81905-1b

The relevant data is entered, the NMI and IRQ jump vectors are made to
point at address 1C0Q (start of the SAVE routine in the monitor program),
the STEP switch is turned on and the following keys are depressed:

key display
ADD100GO P101A9 (instruction CLC is executed)
PC H101A9
GO D103F8 |, (instruction LDA is executed)
PC 0102F8 ~ + 4
GO 010469 (instruction SED is executed)
(AD) 0 1040xx
0 D400xx
F D40Dxx (??)
1 4001 xx

After the SED instruction (decimal arithmetic) was carried out, the
programmer wanted to examine the contents of the status register (DOF1)
to see if the D flag had been set. The AD key was put in parentheses,
because the computer will automatically be in the address mode if the
monitor program is entered by way of the SAVE or RESET routines. The
monitor does not respond to the F key, nor to the PC key, when the
programmer decides to continue.

What is going on? Once the SED instruction has been processed, the
computer is ready for decimal arithmetic. For the monitor to respond
correctly, however, it requires a binary (hexadecimal) operation. For this
reason the RESET routine includes the CLD instruction, see figure 3a. The
SAVE routine, however, does not! There is no harm in including the CLD
instruction in the SAVE routine. After all, the contents of the status
register are stored during the SAVE routine and restored during the
GOEXEC routine after the GO key is depressed (see chapter 7 in book 2).
So it does not matter if any of the flags are altered during the monitor
routine as they are all resorted afterwards.

The consequences

It is not that the monitor program becomes completely useless during a
decimal arithmetic operation, contrary to what you might expect from the
above. It can be seen from figure 2 that a number of keys have been
assigned a different key function. These are keys A ...F which have
now become AD, DA, +, GO and PC. Keys RST and ST will remain the
same as before, but the numeric key functions A ...F are no longer
available. The index dollar sign in figure 2 indicates the normal function
of the key, whereas 10 indicates a decimal arithmetic operation.

The reason for this distinction is that the monitor works on the basis
of the key value of the depressed key. This is illustrated in figure 16 on
page 130 of Book 2. The values are first obtained in binary and are then
operated on in decimal, as a result of which several are unmodified as
shown in figure 2 (the right-hand diagonal of each square).

ec/12 [gD/13 QE/14 OF/15 14/20
+10 0y C, X X
Cs Ds Es i) PCs
a8 [} 9A/10 @B/11 10/16 13/19
810 9y AD; DAo X X
85 o As Aoy || |oos
J ‘ % |
9a s 96 07 117 NMI
410 510 6w 710 X
ST
e) 5 s 7s DAg
ge [2] @z 03 12/18 RST
O o] Tio 2 310 x
1 2 *$
= s e = 81905-2

181

The upshot of it is that the command key functions have now been as-
signed to different keys. The numeric key functions A .. . F are not avail-
able, which means that while the computer is in the monitor routine no ad-
dresses containing bytes A ... F can be keyed in. The only way to reach
such an address is to enter the address closest to it with purely decimal
numbers (@...9) and then depress the plus key (=key C!) until the
required address appears: on the display ... Obviously, this is far from
perfect and having command keys in different places only complicates
matters further.

Something will have to be done about this!

Solution number one: change the EPROM

The problems with decimal calculations in the monitor can all be elimi-
nated by shifting a few instructions around as shown in figure 3b. Now, a
jump to the SAVE routine automatically leads to a CLD instruction.
This can be accomplished by relocating the START label and exchanging
the SEI and CLD instructions. The latter instruction will no longer belong
to the RESET routine but the main monitor routine, beginning at the
START label. The following three memory locations inside the original
EPROM will have to be altered:

IC1B: 32 (previously 33)

IC31: 78 (previously D8)

IC32: D8 (previously 78)

The EPROM will therefore have to be reprogrammed. The D version of the
EPROM will still be available in its original form, however, as there is
another way around the problem.

Solution number two: add a little monitor routine in the PIA RAM

1. Mount the module mentioned in chapter 10 (figures 8b, 11 and 12) on
the main board of the Junior Computer. Practical details are given in

the relevant text,

2. Link select line K7 of the address decoder, IC6, on the main board
to one of the select inputs of the module and link the select line K6

of the address decoder to the other module select input (this link can be

connected to resistor R15).

3. Key in the program BINAR shown in figure 1b (BINAR stands for
BINary ARithmetic), storing it on page 1A (or 1B, it makes no differ-

ence). This will have to be repeated whenever the Junior Computer is

switched on, as the memory involved is volatile (RAM).

4. Load the NMI jump vector with the start address of BINAR (step
mode). If the user program ends with a BRK instruction, the same will

have to be done for the IRQ vector.

5. Turn the STEP switch ON, enter the start address and depress GO.
Stepping through the program'in, figure 1a will no longer cause the

monitor (or the programmer!) any difficulty. All keys will operate as

normal.

By the way: The snags involved in stepping through a program also apply

when the program is run through in one go. Having the IRQ jump vector

(BRK) pointing to ICOD would partly disable the monitor because the

182

cLD D8
I SEI 78
1c1 I — START l
C1A JMP — ST, START
1c33
81905-3a |

1co0 1c1p RESET

1C1A I JMP — START I

81905-3b L

D flag would still be set after the BRK instruction. There is, of course, a
different solution for running a decimal arithmetic program. This is to
make sure that the transfer from decimal to binary takes place aftgr the
addition and before the BRK, in other words, before the computer jumps
to the monitor routine. This is indicated in figure 4. The program can not,
however, be run completely without certain measures being taken.

183

@100 DECADD

0100 cLc 18
9101 LDA #13 AR 13
9103] . sED F8
0104 ADC # 098 €9 [}
0106 CLD D8
IRQ (BRK)
1A7F 1A7E
STEP: OFF 81906-4

What exactly did we do in steps 1...5? We added the binary correction
(CLD) to the SAVE routine and disabled the step facility for a program
stored in the PIA RAM. If things are not too clear, take another look at
chapter 10 (including figure 9). The following test will show how vital the
module is. Leave out points 1 and 2, but carry out all the others. Then
step through the program in figure 1a. The first NMI we come across will
take us to BINAR at address 1AQ0, but the instructions in this subroutine
will not be carried out. This is because only one instruction is dealt with at
a time and this particular one led to the NMI. The program will therefore
not jump to SAVE in the original monitor program and so the program
counter can not be updated. This means that the GO key can not be
depressed to move on to the next instruction. The display will be unlit.
Hence, the module (or modified EPROM) is an absolute must.

184

Appendix 3

The vectors and bus board memory

Alternative solutions to modifying the EPROM

As it was stipulated in chapter 10, bus board memory can only be added
by locating EPROM on page FF with the various vector data stored at
addresses FFFA ... FFFF. This can be somewhat of a nuisance. Suppos-
ing, for instance, that the user is only interested in adding extra RAM in
the form of one or more 16k dynamic RAM cards (to be described in
book 4). Just for the sake of six EPROM bytes the operator would be
obliged to purchase a relatively expensive RAM/EPROM card. Surely,
there must be a cheaper solution?! In fact, there are two, both being
inexpensive — they do require a little extra work, but then the result is
well worth it.
The two options are:
1. Fetch the vectors from the original EPROM on the main board after all
(even though bus board memory is connected).
2. Connect a vector memory card to the bus board.
Now for a few more details.
1. Fetch the vectors from the original EPROM and pretend that no bus
board memory is connected.
We know from chapter 10 that the inclusion of any bus board memory
means having to link up points D-EX and R-S (WITH). Otherwise (that is,
if no extra memory is connected) point D will be connected to ground and
the link between R-T (WITH) will have to be made. In the latter case, the
vectors are located in the original EPROM on the main board. Well,
according to figure 1, the same thing now applies even if bus board mem-
ory is connected. The wire links R-S and D-EX must now be removed!
Four NAND gates (two ICs) are added. The output of N103 is connected
to point D and the output of N101 is connected to point R.

How does this work?

Provided that not all four of the inputs to N101 are logic one, the output
of N101 will be logic one (NAND gate operation). Thus, here it makes no
difference and the link from point R to +5 V (S) is maintained. As soon as
all four address lines A12... A15 are logic one (which will be the case
when all Fxxx addresses are accessed, including therefore the vector
locations FFFA ... FFFF), the output of N101 will be logic zero thus
establishing a link between point R and ground (T). This is the first
requirement for fetching vector data from the original EPROM.

185

remove

ex Voo
/@/. X o
.] EX = 8K0
l—o‘ N103 j—o@
A15
s PR
A12 1
5V
S 1 /16 V Tant.
P "
WIT 'S,,
7; P
) Ic
(WITH) 17
N101,N102 = 74LS13 = IC101 PROM
N103,N104 = %74LS00 = 1C102 S{80ed

Now for the second requirement. If the four address lines A12... A15
are all logic one, pin D of IC6 on the main board will have to be logic zero.
This is achieved by way of the inverter N102 (N101 and N 102 combined
constitute an AND gate) and the AND gate comprised of N103 and N104.
If the 8K® signal then becomes logic zero when a vector is fetched, point
D of IC6 will go low instead of high.

Putting figure 1 into practice will require a certain amount of construc-
tional skill. It is best to build the circuit on a small piece of Veroboard and

+) 5V (Pins 1a,c)

1u/16 V Tant. = . .['] ['].f].r].
Imm R101 . R108

16
i 3 10a!
v? | 7 DB7
L 10c!
13] D Y6 6 DB6
DB5 9a!
25¢1 120c € vys |5 =
] 101 c!
26a! Ape nys va | a DB4 -l
26c! a8 0] a vals DB3 =
i CE c
ABO 151 CE v2'l2 D82
DBl 7a!
- M = el
a5l AB15 1 14 5t & DBY
19! AB12 2 I 3
!
;0:' A 4 8 (pins 4a,c/16a,c/32ac)
21a! A 5 | N101
21! A 1C101* = 82523 R101* ... R108* = 3K3
22a! A 1 of
22¢! AR 3214 © 828123 *320 toxt
i7 N101 =1C102 = 741830
a and c-pinning: module connector 819062

186

place it close to the vertical link board between the main and interface
boards. The pin assignments of IC101 and 1C102 can be found in figure 18
in chapter 10. Use may be made of the non-buffered address lines A12 .
.. A15. Do not forget to remove the wire links R-S and D-EX,

Clearly, the address range Fxxx (4k block) may not be used for con-
necting bus board memory, as the data bus buffers on the interface board
are disabled for the entire range.

If you feel that this particular solution is rather tricky, an easier one —
albeit slightly more expensive — is given below.

Solution number two: the vector memory card
Take a piece of Veroboard 10cm wide by 5 or 6 cm long. Mount a male
connector (like that shown in figure 19a in chapter 10) on one of the long
sides. Place the circuit shown in figure 2 on the board and plug the vector
memory card thus obtained into a female connector on the bus board.
Make sure that the connector pins are correctly positioned.

How does it work?

A 32 byte PROM of the same type as that for the interface board was
chosen (if IC101 is an 82S123 type, no pull-up resistors are required).
Now, however, all eight bits are employed. The required vector data is
programmed into_six of the 32 available memory locations. Provided that
the chip enable (CE) pin is logic one, the data output of the PROM will be
disabled and will not, therefore, affect the data bus. This happens when
not all of the address lines connected to the inputs of N101 are logic one.
The situation changes radically when the eight address lines are all logic
one, which is the case when any address belonging to page FF is being
accessed. This would be one of the vector locations FFFA ... FFFF.
Data is now transferred from the PROM to the data bus, provided a read
operation is involved. (Whenever vector data is being fetched by the pro-
cessor, the computer is undergoing a read operation).

The A...E address inputs of the PROM are connected to address lines
ABO. .. AB4 respectively. This provides more than enough decoding for
the vector memory locations. The PROM must be programmed as follows:

address EDCBA (hex) data (hex)

00...19 00

1A 2F (NMIL)
1B 1F (NMIH)
1C 1D (RESL)
1D 1C (RESH)
1E 32 (IRQL)
1F 1F (IRQH)

Although the original EPROM is not being used to obtain vectors, it does
perform the task of looking after the RESET routine and transferring data
from the vector PROM to jump vector stored in PIA RAM (IRQ, BRK and
NMI). Since the PROM is being decoded by thirteen address lines, the loss
in bus board memory will only concern a single page of 266 (= FF) bytes.
Page FF, however, is part of a 4k block which is therefore no longer avail-
able for locating RAM/EPROM card memory.

187

SR SN FESORUER S I8 ROHESSRRYRERED
ESAF R SRSSSSREEEES8 2 SR8 RBILKASIEISN
ENSREEBEEIRESS S50 ECSESLEE0893RIS8R

585 R nBSERCARERS I8V ERLZE8R385828

BERFSSS22EKRRES8RSRR0ERENYErEZRRES

BR8RFrERRRTSE RSS2 RALKELERINIRAREd =, 8
SEXSER3SS39 0 ARS8 SRANINEESRESR2S8D20SEIQ

— N \O 2D =2 o o™ ™M
B L ES SIS SRESKNERSEERRRNISRLLIALRRISRELSE

BE AR B IS B SSOR SRR RE8ERYSRSIRSLI=ERELI858

SESSRRRESRPNCEARSSASRRALORELPRESES SIS ISTRE

CEEEEE R REE PR EERE MER R P ENEEEE T EEE

£ [£3] B oym o) © <t o)) o
BEERSE 0SRS5S R8I E0ERFRRERLSERB 883 &EERE

PSSP ES BRI NN RN S BERBANESIAEREERIS232

LN BEEREASMRESBE S TS SN 888K ITELILBS5R

SRS R RS mwmmemm MMAHQJ.And

60 48 49 TF
8D 78 1A
@@ 85 FB 60

8 18 6D 6E 1A

8
2
9

@ 30 0C C9 3A 30
4
6
8
E

9 2
F 60 C9 40 30 03
@B 6E 6B 1A CA D¢

0
1A
D
FB

)
2
9
)

)

CA
9
D
E
E
0
)

F4
60
7F 8D
8D 8

20 F3
PC70: 68 6

¢B8@: D@ 02
@B90

g7 6
E5 @
16 F
@B6@: 20 F3

16 2
PACO: OA 6

PA30: 1A 2
PA
6E

D@ 29
F6 1A
PBF@: 64 @C

3
-
-
.
.
.
.
o
-
-

@AD@: AD 6C
OAE@:

8D
PBA@: 1A C9
@BB@: F3 @B
@BCA: 70 @B

PnQB: A9 O
gAl@: AD 7
PA40B: A5
@AS@: 20
dneb: 04
") NR

PA8P

@A90: 20 9
[):¥:X"H

@ABO

OAF@:
@BOG: E7
@B10:
@B3@: FO@ A
@B4@: CE 6
@B5@:
@B70:
@BD@: 14 88
PBE@

@Cc20: OB C
AC30: 18 6
@Cca@: F7 2
@C50: 8D 6
ACe60

PA20:

C6CC5898@8 8 gSSF_/l

8@ 858888@8 8 8518 \O

~ QX UONgS U N ® MOI[WE ANAD NN fo0] 0 | N O oo
m ﬂvmarﬂanznbnuA“ﬂ nLMuﬁvD_A”mM%nvmw7

<B8SHCSRSARSCE BN SYR2583888588E2S

~ O) O o~ aom O O N Ll s) @ [N

N M| = [oy 0NN (o)) O = [)W SWe ol SW = < N
o 0] A“Qunmnd P;mmro_ﬁhw mmﬁr = A Q @ Mu [o o iy = § | umﬁz ﬂumwumnd
NAON@LUNO [O OO LN LW n oS (SHeolle sl S

7,umnmnb o <G numwn“E mearreadA~rpea S RVF.A“W“nunu,O_A”%"%mwmw
SR A M|INNLN N O salfcclm Mool o noose N o) ~

o~ O™ NN L L F_@Az,omwmunuwwWwAhmna [y € — R.MwFLWW4

A@pmwoO N0 O UULUWY S W) nmoexOnM~ N

O O < <

T O \©

C9 11 D@ @3
F9 85 F9 AD

Appendix 4

(e}
8
£
7

88 D@ F

The hex dump
for the TAPE MONITOR (TM) program

ava S MmN M oY ™ [o ol] O I O r—t n oY <
< 5 CANAQA—~~ © o nuumnpnuwfb m& 8 m_!“m

n N [SEca ST ol [¥e) ~ ™M Tg) - N = N N ™ o

™ A_Ihmaznu.l,bnumwmwﬂ.Mm7'ﬂim R_WWRVMMA.U M_!hmﬁﬂ P D_Amﬂ.ﬂ“m <L
] =2 0 (o] 0 OO AN [O o o

o o O (o) va wumwwwﬁumwwwﬁvRvPiﬂ.Baz A B W~1&%“Wumwmfm

J 0

2
[%]
E
/]
4
8
1
)
5
9
9
E
9

P940: 68 1A
1A

0950:

C
0
9
2
5
)

:1 @8 1€
@8F@: D@ @5
#990: 2E O

D
[}
7
8

9 D
1E A
4C B

¢8B@: 00 CC
1A 4C
29

#8C@: DO @6
98D0:
@8EQD
@9B@: 1C DO
@9C@l: @8 @9
@9E@: 7D 8D

@9F@: 8D 77

2800: 20
#810: A2 @
#820: 1A 8
9830
0840 :
@850: 21 @
#860: DO 1
#880: 1A A
#4890 :
p8A0:
#910: 1A D
9920: 1A 8
@930: DO E
@960: D@
2970
@98@0: AD
#990: E3
@9A0: F9 A
@9D@: 06 42

189

188

=5

&wmwmmmwmmmmwmnmmm
BEESSRSESSSSISRIRER

o n QN0 ~= Lo N] LD
n.ﬂ.an,b.l,1,0aumwmammmu9uRvwhm NN

s3I 8 SNSRBYRIALGERS

OO CRMN~

mOMOUE M NN M M L~ LN < OO

o O < SN R K=l yoNS—~HS8 8 W0~ rREQOW < N A = o)
mwwwmwmwnuqz,buw nuwunmhmhm mwﬂ.ﬂvluﬁqwmnmwan;1*au4.ognz_b A.umnao.mw14,oql A“1*1*1*mww.n“

~ Q<

QMM
—~ & RS ~

SR PELED R B £ EEEE A TR EE T

SRS ERCCSES 8RR SABE ISR SNRNRNNRIEIISITINYBIBE

AR R8 R SR A0S RCCRCEACSBERIRNISPINNFEEERERBES
SeB R AR RS SR A SRS R 89S o SREEBIARRARIIEBB8HISRIARGEE
R¥S8R R RIS R AB RS NS N8RS SAR T SC0ARSRIRNTBIER
QEpwOYedsos e~ pnoe 2 -~8 0 n S

ovewqa

SR LSS RAS B NS B SR A8 RR L RAREES8 S ESS8E 8T

ons
oM

~¥83

528
8

1240: 9B

Appendix 5

1250: @7
1260: 1A
1270: 1E

The hex dump
- for the PRINTER MONITOR (PM) program

1280: F8

hmhmmwmuum mmummwwuaVDLD.ﬂvﬂud_R,Q,:JA:B

@~ N —t SN~ N M <€ <€ < 00O

ShESRASSANARSSSSANENTITAZIOINONSIROLNEBAR

1290: 4a

1270: 20
12B@: 1A

2SAR2EIRITSRE8SS

m
a
&}
m
<<

#s &5 2 34458 5 6627 84,9

1000: D8 78

1A
12D@: 1A

12C0:

1
)
D
)

BRSPS SR TR e

5e 2

1400: 5A 4

1A

1A
1479: AD
1480:
1490:
14D@: F3

1
79

A5 F9
14A0: 11

12E@: 18
12F@: 1A
1300: 5F
1310: 1E
1320: 5E
1330: EA
1340: 82
1350: 91
1360: @9
1379: AE
1380: FE 8
1390: 12 3
1320: 68 12
13B0:

13C@: 49 4F
13D@: @3 41
13E0: 3Aa 2
13F@:

1410: 45 5
1420: 30
1430: 60
1440: Fo
1450: F@
1460:

14B@: F5
14C0:

14E0: 86
14F@: F9

0B m =2 —
®© © OaW“A.b

EEFRIABRILTER
MM“mthMhm MmN~ U N

n S s Ko X)) o AN O
1+1*Rvﬂumwmwﬁv1*mwwu1*ﬂuA“mwmuqu"A

OMAS~Ln (S oy m
A.P.I.W.A_F,AmwmﬂD mwnu1* mwmmMﬂw

—~ OV NODR— D S RSTST [;| D ™

ﬂ:Uny.U_UAA.B.UAU.JnL,bazﬁwﬁz .U,b.U_UAA,L.L
O D « O D~ N 7,MNPA1meAa_u.L Aua)nm BRS n,1*nu1*1xn“nmuw mwmwnumm“whwuw

QECUCENNFSINOIRLNS U N~ =~ 00 m o
Qu7,umq4umnb == NN ON O~ A“mw.a.l mmmwn»1xnuﬂn1¢m%hw numwmmmwmwﬂﬂ

ﬁvo,nu_ﬂ.ﬂ,b.J.B .Uﬂ.p‘7.14nw,b1*ﬂunva.a.id oa
(S S =47.9.14P.mwmm%m4. N O~ —~ F.nuum1;ﬁuwu9.mw7.n.mwﬂﬂAumummmwumm“

o N MNMCEIVIINAHANNOANIAIEOTNINN AR O R T O~
A_mehmmw1;049.7.9u049.w.A“F.Anbnrnﬂoaﬂun.149.1*ﬂu141uw.wuﬁv1*ﬂHmwmwmm

5 F4 20 8F
26 20 D6 11
20 D6 11 A9
D6 11 20 28

C B 11 C9

7
1
1
1
2
A
5
A

ol TR m] MnhooNOTRVINANUNLOS o =2 ™M aam o~ o

NCATEHIINIICUOESNTL~AINRNINQCORNANMNS £ S N =
WO~ O N A“nuum_A_A,L [y 00 — € [y — OO A"mmauoaoo.l mwv.MM1L.1 n.mmuw.D”wmm

(=)] O~ =2 DT Z|IO NN ~ 0N o~ n N
835 BRSNS R IR BN LYY SHNRBTI][IESS

-~ mo NOOAANUALNRENIND AN S = Q0o

ﬁvﬂ,naumnm_A BOUOSO L & kN O~ A“nu“w.l w.uwﬁthm w.mwaamwnu Aumwuwmwmw
NN RN ELOAVINES S & © 00) ™
nnnunu7,namm9.1+nuw‘ﬂ.n.A A"7.oenuqdmwmw1.wuo‘ mmﬁuo.n.mwm“14mwm“mwmwma

D
E
8D 5D
1060: 46 12
@E A5
10 C9
85 FA AD
1
5

1010: 1A E8

1020: A2 02
CF 8
12 4
5F 10

1030:
1040:

1050
1076: 20 AE

1080: C9 2D

1090:
10B0: 6A 10

18C@: F1 48
10E@: 12 A@
10F@: A5 F0@
1100: 01 20
1110: 12 Ap
1129: 50 D@

1130:
1140:
1160: 9B 12
1170:
1180: 12 A5
1200: A5 FA

10A@: 2E D@
10D@: D6 11
1150: EE 20
11F0: 34 1
1210: F3 1
1220: FA A
1230: 67

191

190

Appendix 6

RAM test program

Test the reading and writing skills
of your Junior Computer

Any expansion of the Junior Computer must necessarily involve an exten-
sion of the available RAM capacity. This can be done either on the inter-
face board or by using a bus board with one or more RAM/EPROM cards
and/or 16k dynamic RAM cards connected to it. It is absolutely vital that
all the RAM locations can be written to and read from correctly.

The program shown in figure 1 tests whether the read and write operations
are being carried out successfully. The program should be entered into the
original RAM on the main board by means of the editor and the assembler
routines in the monitor program. The programmer has a certain amount of

LDY # 00
JSR — INIT
LDAZ — NUMBER

STA — (ADPNT).Y
JSR — COMPAR

®

WRB

ﬁ

e[®

81909-1a

192

JSR = INIT

B1 | LDA — (ADPNT)LY | 05

cs CMPZ — NUMBER 04

16

JSR — NXTADD

@@

JSR — DISPLY
JMP = START

MONITOR

freedom in his/her choice of start address, which explains the labels pro-
vided in figure 1. For the test program to be stored in original RAM! it
follows that the basic section of the Junior Computer should be working
perfectly.) : _ }

The program itself is split up into several routines: a write routine (fig-
ure 1a), a read routine (figure 1b) and four subroutines (figures 1c . . . 1f).
During the write operation, all the memory locations from FIRST'to
LAST are loaded with data which is specified in memory location
NUMBER. Once data has been loaded into all the memory locations in the
test block, the LAST address will appear on the display, including the data
contained in location NUMBER. The READ routine in figure 1b enables
all the memory locations in the test block to be read ('prowde.d, of course,
the program is entered correctly!). The data which is read is then com-
pared with the written data (the contents of NUMBER). As soon as the

4ac

81909-1b

193

194

AB
85

s

AS

INIT

A

LDAZ — FIRSTL

STAZ — ADPNTL

LDAZ — FIRSTH

STAZ — ADPNTH

RTS

LDAZ - ADPNTL

STAZ - POINTL

STAZ — POINTH

LDAZ — ADPNTH| 06

81909-1¢

81909-1d

81909-1e

£t

A6 LDXZ — ADPNTL § 05
E4 CPXZ — LASTL 92

@

Do BNE

A6 LDXZ — ADPNTH || 96

E4 CPXZ — LASTH 03

Do BNE
DONE @
60 RTS 60 RTS
81909.1f
z=1 z-0

computer detects a discrepancy, it jumps back to the monitor program.
The address that contains the incorrect data will then appear on the dis-

play.
How to use the program

1. Enter the routines shown in figure 1 into the computer memory with
the aid of the editor and the assembler. Note the start addresses of the

WRITE and READ routines, respectively, afterwards.

2. The following memory locations on page @@ are used:

POP® FIRSTL first address in test block

@001 FIRSTH first address in test block

000p2 LASTL last address in test block

0003 LASTH last address in test block

0004 NUMBER test data

@P@P5 ADPNTL read/write address pointer

PPP6 ADPNTH read/write address pointer

Enter the FIRST and LAST addresses according to the choice of test

block. It is preferable not to use @@ or FF is a actual test data.

3. Start the WRITE routine. At the end of this the last address plus the
test data is shown on the display.

4. Start the READ routine. If at the end of this the last address of the test
block is indicated on the display, all the RAM belonging to that test

block is all right. If, on the other hand, an address appears which is lower

195

than LAST (the data being incorrect, that is to say, the contents of the
displayed address do not correspond to the contents of NUMBER), the
section up until that particular address will be all right. Note the relevant
address.
5. If everything is functioning correctly, try a different set of test data just
to make sure, and repeat the above procedure. It is just feasible that
incorrect data corresponding to the test data could be located some-
where in the test block. A double check is necessary, as when the com-
puter is first switched on the RAM memory locations will be filled with
random data.
6. If one error has cropped up, there are likely to be others. To check this
make the contents of FIRST equal to that of one location above the
‘wrong’ address and start the READ routine once again. Point 6 can be
repeated as often as is deemed necessary. It sometimes happens that the
programmer discovers a whole string of wrong addresses. It is well to find
out first whether such a range does in fact correspond to RAM. After
all, it might equally belong to EPROM, PIA or VIA memory. Do not panic
if such a situation occurs, for this test program merely checks memory
which can be written into and read from.
7. If there is something wrong with the RAM, the hardware involved will
have to be checked thoroughly. Things to look out for include the
address decoding systems and the wire links as well as faulty ICs.
Make sure that certain sections of memory belonging to pages @ and @1
have not been included in a test block! It would be a pity if an unnecess-
ary oversight made the test program go haywire. Part of the program range
would then be overwritten and very strange things would happen!)
Use the ST key. When the programmer hits upon an error and would like
to check for others (see point 6), he/she may depress the ST key and call
the interrupt routine shown in figure 2. In other words, the contents of
FIRST do not have to be altered and the start address of the READ

®
(00063)
68 PLA
68 PLA
68 PLA
A0 LDY #06
8c STY - PBD 1A82
A0 LDY #00
4ac JMP - RDC 0037

NMI

=D

1A7B 1A7A

819092

196

Table 1.

WRITE

WRA

WRB
READ

RDA

RDB
RDC

INIT

NXTADD

EXIT
DISPLY

COMPAR

DONE
NXTCHK

0007

0009
poeC
POOE
0010
0013
P15
0018
0018
0O1E
0021

0023
0026
0028
0O2A
pp2C
002F
0031

0034
0037

PO3A
003D
003F
0041

0043
0045
0046
0048
004A
004C
004D
004F
0051

0053
0055
0056
0058
005A
@05C
0O5E
0060
0062
0063
0064
0065
0066
0068
0068
006D

A0 00
4C 37 00

LDY # 00
JSR-INIT
LDAZ-NUMBER
STA-(ADPNT),Y
JSR-COMPAR
BNE WRB
JSR-DISPLY
JMP-START
JST-NXTADD
JMP-WRA
LDY # 00
JSR-INIT
LDA-(ADPNT),Y
CMPZ-NUMBER
BNE RDB
JSR-COMPAR
BNE RDC
JSR-DISPLY
JMP-START
JSR-NXTADD
JMP-RDA
LDAZ-FIRSTL
STAZ-ADPNTL
LDAZ-FIRSTH
STAZ-ADPNTH
RTS
INCZ-ADPNTL
BNE EXIT
INCZ-ADPNTH
RTS
LDAZ-ADPNTL
STAZ-POINTL
LDAZ-ADPNTH
STAZ-POINTH
RTS
LDXZ-ADPNTL
CPXZ-LASTL
BNE DONE
LDXZ-ADPNTH
CPXZ-LASTH
BNE DONE
RTS

PLA

PLA

PLA

LDY # 06
STY-PBD
LDY # 00
JMP-RDC

197

routine does not have to be re-entered. After the ST key is depressed, the
READ routine will continue from label RDC. This section prepares the
computer for reading the next address location. The program will stop
whenever it encounters incorrect data at a certain address. This should
then be noted and the ST key depressed once more. This method does
have one slight disadvantage: the programmer may inadvertently pass the
final address in the test block, LAST, by depressing the ST key too often.
As soon as LAST appears in the-display, stop depressing the ST key!

A different approach

Instead of using the method outlined above, the RAM can also be tested
with the aid of the monitor routine. Whenever a numeric key is depressed
in the data mode, the instruction STA - (POINTL), Y is carried out. During
the multiplexing of the display the instruction LDA - (POINTL),Y is
carried out at regular intervals. This is none other than a write operation
followed by a read operation.

The next step:

AD x x x x XXXX YY

DAz z XXXX ZZ

Here, xxxx stands for an address belonging to the test block. The data zz
must be chosen to be completely different from yy. If after typing in the
data no zz appears, something must have gone wrong. The whole test
block may be examined in this manner: depress the plus key and note any
erroneous data, etc.

P.S. An assembled version of the test program shown in figures 1 and 2
(including the ST key routine, NXTCHK) is provided in table 1. The pro-
gram was located on page @0. The start address of WRITE is @007, that of
READ is 0021 and the ST key routine starts at address #063. Do not for-
get to make sure the NMI jump vector is pointing to this latter address!
Also, make sure that the FIRST address is higher than PO6F (the end of
the program)!

198

character

CHOIDIPOVOZZrAR«—IOTMMOUOWPOONOADWN—-S

ASCII character code.

ASClI-code
(hexadecimal)

30

character

N<XsS<

space

|
I ~@# - ~wVER ~ | Q0 — s+ -+ .
t !

A

Appendix 7

ASCl |-code
(hexadecimal)

56

199

) bie Copotets

gors LT

¥

5]

e

Book 3 describes a number of steps that need to be taken
to transform the single-board, basic Junior Computer into
a complete personal computer system. This involves adding
an interface board to allow the machine to communicate
with the outside world (its operator) in an ‘adult’ manner.
The interface board provides additional 1/0, a cassette
interface, an RS 232 interface and an internal connection
with the buffered bus board.

The hardware extensions complete the physical develop-
ment of the computer and the sophisticated software in
Book 4 enables the machine to fully utilise its additional
memory capagity by extending its communication skills.
As a result, a number of peripheral devices, such as a printer
or a video terminal, can be ‘hooked up’ to the computer.

Elektor Publishers Ltd.
Canterbury

ISBN 6905705 09 2

