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Feeling peckish?

How are you enjoying the Junior Computer so far? Everything to
satisfaction? Fine. In that case, you must be eager to digest Book 2, a
complete menu of computer facts and programming material.

Dig in, folks!

Now that we've got the Junior Computer up and running (Book 1) it is
time to construct and construe a number of “tools” with which to operate
the microprocessor as efficiently as possible.

This is where chapter 5 comes in. It presents the programmer with such
essential tools as the ‘editor’ and the ‘assembler’. These are highly effective
as they enable typing errors to be corrected and additional instructions
to be inserted at any point without having to re-enter the entire program.
The programmer now no longer has to calculate displacements (during
conditional branch instructions and absolute addresses (during jump in-
structions) himself: ali these tiresome chores are dealt with automatically
inside the Junior Computer’s EPROM.

Chapter 6 teaches the Junior Computer to ‘sing’. It includes several circuits
which, together with the peripheral interface adapter (PI1A}, turn the JC
into a keyboard instrument. Via the PIA the computer controls a loud-
speaker and in Book 3 it will be seen to use the same method to operate
a printer.

The remaining chapters (7, 8 and 9) provide a detailed description of the
monitor, the editor and the assembler, respectively, all of which combine
to form the EPROM brain. Once the user knows exactly how the Junior
Computer ‘ticks’, he/she will be able to write suitable programs personally.
Various subroutines introduced in the book will then be of great
assistance.

Finally, the appendix gives a clear and coherent summary of all the
available subroutines and listings.

After reading Book 2 and mastering the contents, the programmer will be
ready to add a printer and a cassette interface to the standard Junior Com-
puter. These peripheral devices, to be ‘served up’ in Book 3, will transform
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the machine into a full-fledged personal computer. Then the Junior
Computer will have well and truly ‘outgrown’ its name.

The authors.

P.S. Since nothing in this world is perfect — including the Junior Com-
puter! — we will lend a willing ear to any suggestions or comments
that readers might care to make.
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The Editor
and the Assembler

Typing in a program is a dull, irksome occupation. As was
shown in Book 1, each individual instruction has to be entered,
one byte at a time. But before this can be done, a fair amount
of paper work is involved:
— subroutine start addresses,
— displacements inherent to conditional branch instructions
and
— absolute addresses inherent to unconditional branch instruc-
tions (jump instructions) all have to be calculated first.
When the entire program has finally been entered into the
computer, it has to be checked for typing errors. Supposing one
byte happened to be left out somewhere in the middle of the
program. Does this mean retyping the whole lot? No — thanks
to the editor and the assembler — it doesn't!
The editor and the assembler are both stored inside the Junior
Computer’'s EPROM. The former allows new instructions to be
inserted at any given point in the program, even after entry;
in addition, it tracks down instructions and, if necessary, deletes
them. Thus, the keyboard and the editor act as a ‘pencil and
rubber’, so to speak, while data is being entered.
The editor also permits the programmer to type in symbolic
addresses, called ‘labels’. After this, the assembler steps in to
calculate subroutine start addresses, displacements in the event
of conditional branch instructions and absolute addresses for
jump instructions, and all without any human help! As a resulit,
program errors are reduced to a minimum and the user is saved
a great deal of unnecessary labour.



The Editor

Having studied the Junior Computer Book |, you should be familiar with
most of the instructions and address modes appertaining to the 6502
microprocessor. Various program examples were given which showed how
easy it is to program the JC. Up to now the data entered consisted en-
tirely of hexadecimal numbers. When the AD key was depressed the JC
‘knew’ it had to interpret the following key information as addresses.
Pressing the DA key, on the other hand, told it to store any entered data
in the actual address location displayed.

As far as short programs are concerned, such as those given in Book I, this
type of data entry is quite adequate. When more extensive programs are
involved however (with a length of, say, several hundred bytes), typing
errors can occur frequently and correcting them can become a very tedious
procedure. What do you do, for instance, if a few instructions have been
omitted from the middle of the program? Normally, this would mean
having to re-enter a large part of the program from the correction onwards.
What a waste of time and effort! Redundant instructions can be removed
by replacing them with NOP instructions (op-code EA), which is making
very poor use of the computer’'s memory space. Think how irritating it
would be, if, when entering a long program, you run out of memory!
Fortunately, this can now be avoided with the aid of one of the JC's
greatest assets: the EDITOR. This enables bytes to be inserted or deleted
anywhere within the memory area. When bytes are to be inserted, the
computer makes room for them by moving a data block further down in
the program. When bytes are to be deleted, the data block is moved up to
‘close the gap’. Block transfers and their respective programs were men-
tioned in Book | during the description of indexed and indirect address-
ing.

In short, the editor can save a lot of time and trouble where program
correction is concerned. Exactly how simple it is to enter and correct
programs will be seen later on in this chapter.

The Assembler

Another indispensable aid towards simple, error-free, high-speed program
entry is the assembler. As you will remember from Book |, branch instruc-
tions are often used. Before the displacement value of a branch instruction
can be calculated, it is important to know the start and destination ad-
dresses. It is only then that the monitor routine BRANCH (start address
1FD5) can calculate the displacement. The same applies to the instructions
JSR and JMP — the true jump address must be known. Thus, before a
program can be keyed in, you must be familiar with the absolute addresses
of the branch and jump instructions. Obtaining the correct addresses
numerically involves a great deal of writing. A more efficient method is to
let the assembler in the monitor program take care of it.

It fulfils the task quickly and simply and, above all, accurately. All that is
required is to depress the GO key and the computer will calculate all the
displacement values, absolute addresses of jump instructions and the
subroutine start addresses by itself. Incredible as it may seem, the JC
takes this painstaking job off the programmer’s hands and completes it in a
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matter of seconds. What is more, the assembler, the editor and several
other routines only occupy 1k of EPROM! This is possible as the 6502
microprocessor happens to have highly effective and powerful instructions
and numerous address possibilities.

The time has now come to take a closer look at the editor and assembler
and find out exactly how to use them.

Editing and assembly from start to finish

Before the editor and assembier can be put into operation, we need to

develop a program to be run on the Junior Computer. The program should

perform the following:

— convert an 8-bit binary number into decimal

— display the binary number in hexadecimal form next to the decimal
figure

— use the keyboard to enter the hexadecimal number

— use monitor routines to scan the six digit display.

The object of the exercise is to write a program as quickly as possible, free

of errors and which meets the above requirements. It is best to start by

constructing an algorithm which outlines the conversion of an 8-bit binary

number (@0 . .. FF) into decimal (B1g ... 2551¢). This is shown in figure

1. As can be seen, the algorithm is expressed in words. It should

be mentioned at this stage that it is always a good idea to write down a

complicated program in words first! Then a rough flow chart can be

produced leading to the actual program.

During the binary to decimal conversion program, BINDEC, a counter is

reset to zero and the hexadecimal number to be converted is stored inside

a buffer. The actual procedure is as follows:

1. The value BA (=101g) is repeatedly subtracted from the hexadecimal
number in the buffer until the buffer contents become negative. After

each subtraction the counter is incremented by one. This means that in the

end the counter will show how many subtractions were carried out before

the result became negative.

2. In order to represent a negative 8-bit number in an 8-bit processor, a
16-bit buffer is required consisting of two memory locations.

3. If the most significant digit of the 16-bit number is a ‘one’, the result of
the subtraction was negative and the program branches to the section

labelled UNITS. Here the processor will add @A to the negative buffer

contents. The result is a figure which can assume a value between @ ...9

and is the number of units of the decimal answer,

4. The contents of the counter are stored in the 16-bit buffer, after which
the counter is once again reset. The processor will now continue to

subtract @A from the buffer contents until a negative result is obtained.

The counter will again indicate the number of subtractions that were

carried out.

5. When QA is then added to the negative buffer contents, a figure is
obtained which can assume any value between @...9 and which

represents the tens of the decimal answer.

6. The counter will now contain a figure with a value from 0. ..2,
representing the hundreds of the decimal answer.



counter ~ 0@

hexadecimal
number ~ buffer

subtract A (= 101¢)
from buffer

resuit
negative

UNITS
?
no

increment
counter by one

add 9A (= 101g) correction!
to result

result is
X.10°

counter
buffer

counter >

subtract 0A (=1¢19)
from butfer

no
increment
counter by one

add 8A (= 1019}
to result

result is correction!
AALE

80915.5-1

counter
contents = Z.1¢*

Figure 1. Before we can work with the editor and the assembler, let us develop a
program that converts a hexadecimal value into a decimal. The editor and the
assembler will be seen to intervene as soon as the program is written in memory. The
flow chart contains a conversion algorithm.
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This is all very well in theory, but of course only a practical example can
prove that the algorithm really works. Let us therefore convert the
hexadecimal value @@91 into decimal in the same way as the program given
in figure 1.

number buffer: 0091 counter: 00
- QA

number buffer: 3087 counter: @1
- QA

number buffer: 007D counter: @2
- QA

number buffer: 0073 counter: @3
- BA

number buffer: @069 counter: 04
- QA

number buffer: 0O5F counter: @5
-  0A

number buffer: @@55 counter: @6
-  0A

number buffer: 004B counter: 07
-  0A

number buffer: 0041 counter: 08
- DA

number buffer: @037 counter: 09
- QA

number buffer: 302D counter: BA
- QA

number buffer: 0023 counter: 0B
-  0A

number buffer: @019 counter: 0C
-  0OA

number buffer: @0OF counter: @D
- 0A

number buffer: (3Q05 counter: OF
-  0A

negative result (— @0@5) counter unchanged

When QA is added to the negative number contained in the buffer the
result will be 5 once more. This will be the number of units contained in
the decimal answer. Thus, 911 = ZY 51¢.

The contents of the counter (BE) are now transferred to the number
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buffer and the counter is once more reset. The new buffer contents are
then worked on to provide the next number:

number buffer: OO@E counter: 00
- DA

number buffer: 0004 counter: @1
- DA

negative result (— @@@6) counter unchanged

When @A is added to the negative number contained in the buffer the
result will be 4 once more. This will be the number of tens contained in
the decimal result. Thus, 9116 = Z 451¢.

The counter contains 1, which represents the number of hundreds in the
decimal resuit. The complete answer is therefore: 9116= 1451¢p. The
methods used to present this figure to the computer’s display were de-
scribed in Book I.

Now the algorithm for the binary to decimal conversion program is ready
and the rough flow chart can be drawn up, as shown in figure 2.

Firstly, the display buffer is cleared. The computer then scans the key-
board and the display. The subroutine which the main program requires
was also dealt with in Book |, subroutine GETBYT (start address 1DGF).
If a command key is depressed, the processor will reset the N-flag
before returning to the main program. In this way, the display can be
cleared whenever a command key (it doesn‘t matter which) is depressed.

clear display (= 0¢0000)

return from subroutine
with one data byte

data byte > data byte ~ display buffer
INH
hexadecimal to
decimal:conversion
decimal value » indicate decimal value on
POINTH + POINTL display after conversion

80915 -5 -2

Figure 2. The general flow chart required to controi the display and scan the
keyboard during the hexadecimal to decimal conversion.
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Once the two data keys have been depressed, the microprocessor returns
from the GETBYT subroutine with the entered data byte in the accumu-
lator. This data byte is then transferred to the display buffer INH. It is at
this point that the binary-to-decimal conversion takes place according to
the algorithm drawn up previously. The decimal number obtained is also
transferred to the display buffers POINTH and POINTL.

Once again, the computer will scan the keyboard and display the hexa-
decimal and the decimal numbers via the GETBYT subroutine. The full
details of the flow chart are given in figure 3. The display buffer consists

a
DISPLAY FF 1000
.

A9 LDA # @0

85 STAZ —iNH F9

85 STAZ —POINTL FA 0@0Uead - display

85 | STAZ -POINTH | FB

FF 11490

_ ID6F scan keyboard and display, return with
l JSR ~ GETBYT l D& data byte in the accumulator

85 STAZ — INH F9 accumulator - display buffer

85 STAZ — HEXL D7 | accumulator - data buffer

4c JMP —DA

20 JSR—HEXDECI (D)  binarydecimal conversion

HEXH = D8 HEXL = D7 Y -register
data buffer + munter»l o« I [ ["]] ] L counter ]
POINTH =FB POINTL = FA INH = F3
display buffer l a1 ] L 45 J [ M J
. ) L s
T v
80915.5-3a decimal number hexadecimal

Figure 3a. The detailed version of the flow chart in figure 2. The display buffer INH
contains the hexadecimal value that is to be converted. After the conversion, the
decimal number will be stored in display buffers POINTH and POINTL. Memory
locations HEXH and HEXL and the Y index register act as temporary memory banks.
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of addresses OOF9 ... 0@FB. The data or number buffer occupies ad-
dresses @@D7 and @BD8. The memory locations reserved for the program
can be labelled as follows:

INH * $ 00F9

POINTL * $@OBFA display buffers
POINTH * $ 0¢FB
HEXL * $0eD7

HEXH * $0¢D8 data buffers
GETBYT * $ 1D6F monitor subroutine

During the program the Y register will be used as a counter instead of a
memory location. As can be gathered from figure 3, the main program
DISPLAY contains the two subroutines GETBYT and HEXDEC. Both are
different in that the start address of GETBYT is known, whereas that of
HEXDEC is not. This is no problem, as from now on the computer will be
able to calculate start addresses by itself. Thus, there is no need to assign a
start address to HEXDEC. In addition, the main program includes a jump
and a branch instruction. The destination address for the jump instruction
and the displacement value for the branch instruction are also calculated
by the computer, so that there is no need for the programmer to worry
about them either.

The subroutine HEXDEC, which is the practical version of the algorithm
we developed before, incorporates two subroutines, COMMUN and
SUBTRA, as well as jump and branch instructions. Here again, we needn’t
worry about which addresses belong to which subroutines and what
displacement values are required for the branch instructions. These tire-
some, time-consuming calculations can all be left to the computer to deal
with, which, after all, cannot go wrong!

The section of the monitor program which calculates the displacements of
branch instructions is called the assembler. It is started in the usual manner,
at address 1F51, by depressing the GO key.

For the assembler to function properly, the computer requires a tool to
prepare the programs so that the assembler can ‘digest’ them. This tool is
in fact the editor.

As we mentioned before, the computer calculates addresses and displace-
ments by itself. The question is: how does it know where to jump or
branch, if the programmer does not enter the start or destination ad-
dresses? Well, the programmer simply enters symbolic addresses into the
computer. From now on it is enough to enter JSR-SUBTRA, instead of
JSR-{23B, for they both mean the same thing as far as the JC is concerned!
Thus, the assembler’s task consists of allocating the absolute address 323B
to the symbolic address SUBT RA. However, the word SUBTRA cannot be
entered into the JC, as the only means of entering data is the hexadecimal
keyboard — there is no alphanumeric one at the present time. This means
that a label may only consist of hexadecimal characters which could, if we
are not careful, be interpreted as op-codes or operands. The computer
must therefore be able to distinguish between op-codes and labels. What in
fact is the difference between them? To find out, look at the appendix to
Book | where the op-codes of the 6502 microprocessor have been com-
piled in hexadecimal sequence. As the table shows, not all the hexadecimal
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HEXDEC FF12M

o

20 JSR — COMNUM calculate the units

85 STAZ —POINTL FA store units in the display buffer

84 STYZ — HEXL D7 counter contents to data buffer

20 IJSR — COMNUM calculate the tens

A2 LDX # 064

()

FF13¢¢
@A ASL — A shift the contents of the counter
CA DEX four places to the left

@ shifted four times?

5

95 ORAZ — POINTL FA  store units and tens in

85 STAZ — POINTL FA the display buffer

84 STYZ —POINTH FB  hundreds to display buffer

69 RTS return 80915-5-3b
c
COMNUM FF14 M
A9 LDY # 00 reset counter
84 STYZ — HEXH D8 reset high order data byte

290 JSR — SUBTRA Q15) subtract @A until result is negative

18 CLC clear carry

AS LDAZ ~HEX D7

69 ADC @A correct with 0A

60 RTS return 80915-5-3¢

Figures 3b and 3c. The actual hexadecimal to decimal conversion takes place in the

course of the HEXDEC subroutine. The COMNUM routine first calculates the units,

then the tens and finally the hundreds.
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e

38 SEC set carry

AS LDAZ — HEXL D7

E9 SBC #9A subtract §A until result is negative
85 STAZ —HEXL 07

AS LDAZ —HEXH D8

E9 SBC # 00

3¢

cs INY

ac JMP — SUBTRA

I

FF 16 60

80915-5-3d

60 return

Figure 3d. During the subroutine SUBTRA the processor carries out a 16 bit sub-
traction. The hexadecimal number DA is subtracted several times until it gives a
negative result. Here the Y index register acts as a subtraction counter.

numbers from @@ ... FF have been allocated op-codes. There are several
gaps. Even the hexadecimal number FF has no op-code. Let us give it a
pseudo op-code, in other words, an op-code unknown to the micropro-
cessor. Now the hexadecimal number FF can be used as a label. We could
have chosen any other unused number from the table, such as @4, D3 or
F7,but FF happens to be the easiest to enter.

The label SUBTRA still has a few other aspects worth considering.
SUBTRA is the program departure point, or to be more exact, the symbolic
start address of a subroutine. The pass-word to call up the subroutine is
JSR-SUBTRA (jump to subroutine SUBTRA). Since only hexadecimal
figures are used in the editor, subroutine SUBTRA will have to have a
number. This can be any number from @@ ... FF. Up to 256 such labels
can be used for identification purposes in a program.

It is now high time to put the above into practice with the aid of a few
examples, for from now on program entry will always involve the editor
and the assembler contained in the monitor program.
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BEGADH BEGADL
L @2 l w> FF 9200
G0E3  goE2 10 0201

a0 @292
A9 @203
@0 @204
85 9205
)
— L
— ==

ENDADH ENDADL
Lo ] e
809156-5-4

(139 GgE4

Figure 4. This is how the editor stores the initial instructions pertaining to the
DISPLAY program (figure 3a} in the Junior Computer’s memory. BEGAD and
ENDAD are pointers and define the work space.

The Editor
1. Structure of a label:
FF 15 a0 example
FF XX o0 general pattern
label indicator label number  label limiter

As can be seen a label is three bytes long. In order to enter a label into the
JC, six keys will have to be depressed. Figure 3 shows that the label
SUBTRA is replaced by FF 15 @@. Once the editor has been activated,
labels like this can be entered straight into the computer. An ASCII
keyboard (typewriter) will not be necessary.

Other valid entries include:

keyboard display

FF37 00 FF 37 00 label number 37
FFFAQ@ FF FA@0 label number FA
FFOG 00 FF 00 00 label number G0
Non-valid \abel entries include:
keyboard display

FF 21 FF 21 XX limiter missing
FF56 FF FF56 FF wrong limiter
FF FF 4100 although the correct limiter will appear in the

display after the label entry, it must be over-
written with 00.
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Once the entire label entry has been completed, the display buffer is
copied into the memory.

2. Structure of a JSR instruction:

20 14 00 example
20 XX 00 general pattern
op-code of JSR subroutine number  limiter

As usual, the jump to subroutine instruction is three bytes long. Now let
us return to figure 3. During the HEXDEC subroutine, COMNUM is called
twice. Usually, the instruction would be written as JSR-COMNUM. Subrou-
tine COMNUM has been given the label number 14, but any other number
would have been equally suitable. To the computer, 20 14 00 means: jump
to subroutine number 14, or to put it more precisely: jump to the subrou-
tine which starts with the label number 14. As you will remember,
FF 14 30 and COMNUM are the same in the flow chart.

Other valid entries for a JSR instruction include:

keyboard display

2039 00 2039 GG jump to subroutine 39

209A 00 2B 9A GG jump to subroutine 9A

2020 00 2020 GG jump to subroutine 20

Non-valid JSR entries include:

keyboard display

20 1 20 11 XX limiter missing
20719F 2071 9F wrong limiter
20 20 2830 although the required subroutine number and the

correct limiter appear in the display, this is a
coincidence and the entire instruction must be
entered. Only then will the display buffer be
copied into the memory of the computer.

3. Structure of a jump instruction:
4C 11 @0 example
4C XX 010 general pattern

op-code of JMP instruction label number  limiter

The jump instruction is also three bytes long. Towards the end of the main

routine DISPLAY, a jump instruction can be seen, JMP-DA, or jump to

label DA. The JC interprets 4C 11 @@ as: jump to label number 11. Again,

labels DA and FF 11 @@ are the same.

Other valid entries for a jump instruction include:

keyboard display

4C77@0 4C7700 jump to label number 77

4C2900 4C29008 jump to label number 29

ACOD 00 4COQOF jump to label number @@

Non-valid jump entries include:

keyboard display

4C 32 4C 32 XX limiter missing

4C 08 AA 4C (08 AA wrong limiter

4C 4C 24 00 again, the complete instruction must be entered
before the computer will copy it into the memory

The hexadecimal numbers following the JSR and JMP instructions do not

therefore constitute absolute addresses, but label numbers which the
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programmer is free to select. The true absolute addresses to be jumped to
are calculated by the computer during assembly. The JSR and JMP instruc-
tions are three bytes long and require the limiter byte . This fact must
be taken into account during program entry.

4. Structure of a branch instruction:

The 6502 microprocessor features eight branch instructions: BCC, BCS,
BEQ, BMI, BNE, BPL, BVC and BVS with the op-codes 9@, B@, F@, 30,
D@, 10, 5@ and 70 respectively. The displacement values for these instruc-
tions are calculated by the assembler in the monitor program. A branch
instruction entry has the following structure:

30 16 example
30 XX general pattern

op-code of BMI instruction label number

Other examples of branch instruction entries are:

90 34 BCC to label number 34

B@ F6 BCS to label number F6

F@® 19 BEQ to label number 19

3056 BMI to label number 56

D@ 9D BNE to label number 9D

1021 BPL to label number 21

50 A3 BVC to label number A3

70 EA BVS to label number EA

Thus, the numbers following the branch instructions are not displacements,
but label numbers which the programmer can select at will. The true
displacements are calculated by the JC during essembly. Branch instruc-
tions are two bytes long and so do not require the {imiter byte @@.

5. Further points to consider:

During program entry in the editor mode care should be taken to define
label numbers unambiguously. This means that a certain label number may
only be used once. The label numbers may be entered in any sequence.
Where the entry of branch instructions is concerned, it is important to
make sure that the range (—128...+127) is not exceeded, for if this
happens, the assembler will not report the error, but will calculate the
wrong displacement.

6. JMP, JSR and their defined addresses:

In many cases, a JMP or JSR instruction will lead to a definite address.
In other words, the computer is not supposed to assemble the instruction.
In figure 3 the computer is shown to jump from the main program to the
subroutine GETBYT at address 1D6F. This address is established by the
monitor program and may not change during assembly! To prevent such
instructions from being assembled, a safeguard has been built into the
assembler.

*A JMP or JSR instruction will only be assembled if a label number is
attached to it.
*A JMP or JSR instruction will not be assembled if its label number is
ambigiuous (already in use).
Example: JSR-GETBYT = 20 6F 1D
op-code of JSR ADL ADH
The low-order address byte (ADL) belonging to the JSR instruction is
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6F. The label number 6F does not appear in the program {figure 3) and so
the assembler will not assign an address to the JSR-GETBYT instruction
but will ignore it.

7. Entry of the remaining instructions:
Taking the load instruction (LDA) as an example:

keyboard display mnemonic address mode
A97F A9 7F LDA 7F immediate
AD821A AD 82 1A LDA-1A82 absolute

AS5E®B A5 E6 LDAZ-E6 zero page

ATFA A1 FA LDA-(FA,X) pre-indexed indirect
B1FA B1FA LDA-(FA)},Y post-indexed indirect
BDOOOG2 BD 00 02 LDA-020@,X absolute indexed, X
B9D122 B9D122 LDA-22D1,Y absolute indexed, Y

B531 B5 31 LDAZ-31,X zero page indexed,X

The validity of the above also holds for the remainder of the 6502 instruc-
tions. The computer will calculate the length of each instruction by itself.
For this it will use the monitor subroutine OPLEN which is almost ident-
ical to LENACC described in Book |. it enables the computer to control
the display irrespective of the instruction length. As you know, instruc-
tions that use implied addressing are only one byte long. For this reason
only the op-code field of the display will be lit when these instructions are
entered. The rest of the display will be ‘blanked’.

Instructions belonging to the above category have no symbolic addresses
allocated to them. That is to say, the programmer must define the address
locations from which data is to be read out or to which data is to be
written, before the program can be entered.

8. Definition of program memory space:

Before the editor can be activated, the memory space required for
storing the program must be defined. The boundaries are determined by
two address pointers located on page zero. The pointer BEGADH,
BEGADL (= BEGin ADdress High, BEGin ADdress Low) is stored in
locations:

BEGADL * $ 00 E2

BEGADH * $ 00 E3

The pointer ENDADH, ENDADL (= END ADdress High, END ADdress
Low) is stored in locations:

ENDADL * $ 09 E4

ENDADH™* $ 09 E5

BEGAD therefore always refers to the initial address and ENDAD to the
final address of the memory area in which the program is to be stored.
Two consecutive pages of memory, page 2 and page 3, are available in the
standard version of the Junior Computer. This amounts to 512 bytes,
which should be ample for most programs. It is therefore a good idea to
define this large area of memory space by means of the address pointers
before entering a program:

BEGADH, BEGADL = 02 @@ and

ENDADH, ENDADL = @3 FF

The relevant data can be entered into these pointers via the keyboard as
follows:
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ADQGE?2

DADO ADL of the BEGAD pointer
+ 02 ADH of the BEGAD pointer
+ FF ADL of the ENDAD pointer

+ 03 ADH of the ENDAD pointer

The pointers are located on page zero and the memory area in which the
program is to be run can be defined as 0200 ... @3FF. Other areas of
memory can also be ‘fenced off’ in the same manner.

Page@ $ 0000 ...Q0EQ

Page1 $ 0100 ...01F2

Page 1A $ 1A00 ... 1A79

There is only a limited amount of memory space available on these pages
as they are partly occupied by the monitor program and the stack. If the
limits of these areas are exceeded, the JC will report this as an error:
EEEEEE.

9. How to start the editor:

Once the required memory space has been defined, the editor can be
put into operation. The start address is 1CB5 and it can be initiated by
depressing the following keys:

AD1CB5

GO

The op-code portion of the display will now show 77 and the operand area
of the display will remain blank. This is the computer’s way of telling you
that the editor is functioning and is ready to store any instructions entered
inside the pre-determined operational memory area (work space).

10. Editor command keys:

As soon as the editor is activated, the functions DA, AD, +, PC and GO are
no longer valid. From now on, the second heading associated with these
keys (SEARCH, INPUT, INSERT,DELETE and SKIP) will become
effective. These keys enable instructions to be entered into the computer
(INSERT, INPUT), to be deleted (DELETE) or even to be searched for
(SEARCH). In addition, it is possible to jump from instruction to in-
struction via the SKIP command. Let us now examine each command in

turn.
INSERT

The INSERT command allows a new instruction to be inserted before the
one indicated on the display.

Whenever the pseudo-instruction 77 appears on the display the INSERT
key must be depressed without fail for the data to be entered as instruc-
tions. The INSERT key is therefore the first key to depress if a label or an
instruction is to be entered into the computer, once the editor has been
activated.

INPUT

The INPUT command enables a new instruction to be entered after lhe
one indicated on the display.

The programmer can select between the INPUT and INSERT commands at
all times. Whichever key was the last to be operated will then be valid. As
far as both are concerned, it should be noted that when they are used to
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enter labels or instructions, the following data will be shifted into the
display buffer one byte at a time. Only when the entire instruction has
been entered into the computer will it be copied from the display buffer
into the pre-determined memory area. This means that if an error occurs
when entering an instruction, either the INSERT key of the INPUT key
must be depressed several times before the error can be corrected. INSERT
will place the fresh instruction in front of the one previously displayed,
whereas INPUT will place it behind that instruction. Thus, each key will
retain its proper function. The result is a simple, yet highly effective pro-
cedure to enter and edit programs.

The DELETE command enables the displayed instruction to be erased
from memory.

The computer will fill up the memory locations which have now become
available. This is done by transferring (shifting) the data block immedi-
ately following the erased instruction upwards by the number of bytes
deleted. It ensures that no ‘gaps’ occur in the program once an instruction
is deleted. In other words, the instruction following the one just deleted
will appear on the display as soon as the DELETE key is pressed. Again,
by repeatedly depressing the INSERT or INPUT keys, new instructions
can be entered before or after the instruction shown.

v
The SEARCH command enables the computer to look for (and find) any
double-byte pattern in the memory area.
If, for example, we depress the keys SEARCH FF 11, the computer will
search for label number 11 and show it in the display. The SEARCH
command also manipulates the display pointer CURAD, also located on
page zero, which always points to the op-code currently on display. This
pointer is held in the following memory locations:
CURADL * $ 0@ E6
CURADH* $ 00 E7
Initially, the SEARCH command leads the display pointer CURAD to the
start address of the previously defined memory area. Since each instruc-
tion has a certain, specific length, calculated by the computer, CURAD is
moved from op-code to op-code (and not from memory location to
memory location). Through a set of simple comparisons, the computer can
establish whether or not the required bit-pattern has been found. Labels
are not the only things that can be searched for in this manner, any other
type of instruction can also be located; for example:
SEARCH A9 00,
SEARCH 4C 11 (figure 3) or
SEARCH 69 @A (figure 3).
Note that if the same instruction occurs more than once in a program, the
SEARCH command will only locate the first of them (the instruction
nearest the start of the memory area). In other words, it is unable to
discover two identical instructions in a row!
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The SKIP command enables the computer to jump from instruction to
instruction.
This command is used to run through a program step by step, so that it
can be checked for any errors in a matter of seconds.
Note: The INPUT command is essentially a combination of the SKIP and
INSERT commands. This creates the following analogies:
SKIP INSERT X X = INPUT X X (1 byte)
SKIP INSERT X X X X = INPUT X X X X (2 bytes)
SKIP INSERT X X X X X X = INPUT X X X X X X (3 bytes)
11. Cold start entry/Warm start entry:

There are two start addresses for the editor:
Cold startentry = 1CBb and
Warm start entry = 1CCA.
If the editor is started at the former address, it will add {and initialise) a
few pointers to page zero outside the memory area chosen by the pro-
grammer. Thus, before a program can be entered for the first time, the
editor must be started at address 1CBb5.
Warm start entry,on the other hand, makes it possible for the programmer,
to return to the editor after depressing the RST key. In this case, the
pointers on page zero will not be initialised. After starting the editor at
address 1CCA, the command keys INSERT, INPUT, DELETE, SEARCH
and SKIP will operate in their usual manner.
12. How to enter the program shown in figure 3:

press key: display: comments:

RST XX XX XX )

AD 0OE 2 00 E2 XX initialisation

DA o0 00 E2 60 set the BEGAD pointer

+ 2 00 E3 02

+ FF 00 €4 FF | set the ENDAD pointer

+ 03 00 E5 03

AD 1CBS 1C 85 20

GO 77 start the editor (Cold start entry}
INSERT FF1000 FF 10 00 enter label number 10 (DISPLAY)
INPUT A900 A9 00 LDA # 00

INPUT 85 F9 85 F9 STAZ-INH

INPUT 85 FA 85 FA STAZ-POINTL

INPUT 85FB 85 FB STAZ-POINTH

INPUT FF1100 FF 11 00 label number 11 (DA)
INPUT 206 F1D 20 6F 1D JSR-GETBYT (6F isnot a label number!)

INPUT 1010 10 10 BPL to label number 1¢

INPUT 85 E 85 XX error! Instruction is still to be entered
into memory

INPUT 85F9 85 F9 STAZ-INH

INPUT 85D7 85 D7 STAZ-HEXL

INPUT 201200 20 12 00 JSR-HEXDEC {label number 12 is HEXDEC)

INPUT 4C1100 4C 11 00 JMP-DA (label number 11 is DA)

INPUT FF1200 FF 12 @0 label number 12 (HEXDEC)

INSERT error! INSERT instead of INPUT
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INPUT 201400 20 14 00 JSR-COMNUM (label number 14 is COMNUM)

INPUT 85FA 85 FA STAZ-POINTL

INPUT 84 D7 84 D7 STYZ-HEXL

INPUT 201400 20 14 00 JSR-COMNUM (iabel number 14 is COMNUM)
INPUT A204 A2 04 LDX # 04

INPUT FF13060 FF 13 @0 label number 13 (HD}
INPUT 0 A CA @A EEEEEE press command key, otherwise error! ASL-A

INPUT CA CA DEX

INPUT DO 13 D@ 13 BNE to label number 13
INPUT O@5FA 05 FA ORAZ-POINTL

INPUT 85FA 85 FA STAZ-POINTL

INPUT 84 FB 84 FB STYZ-POINTH

INPUT 60 60 RTS

SEARCH FF 13 FF 13 00 search for label number 13
SKiP 0A

SKIP CA

SKIP D@ 13

SKIP 05 FA

SKiP 85 FA

SKip 84 FB

SKiIP 60

SKiP 77 77 means: depress the INSERT key!!!!
INSERT FF1400 FF 14 00 label number 14 (COMNUM)
INPUT 84DS8 84 D8 STYZ-HEXH

Note: The instruction LDY # @@ was inadvertently forgotten. It can be
inserted quite easily with the aid of the INSERT command. Thus:

INSERT AQO0O A0 00 LDY # 00
SKIP 84 D8 STYZ-HEXH

The instruction LDY # @@ has now been inserted in front of STYZ-HEXH.
This involved a fair amount of work for the computer, while the pro-
grammer could sit back and watch. Now the INPUT command will enable

us to continue, for a new instruction is to be entered after 84 D8. Thus:
INPUT 201500 20 15 @0 JSR-SUBTRA (label number 15 is SUBTRA)

INPUT 18 18 CcLC

INPUT AS5D7 A5 D7 LDAZ-HEXL

INPUT 690A 69 0A ADC # QA

INPUT 60 60 RTS

INPUT FF1500 FF 15 00 label number 15 (SUBTRA)
INPUT 38 38 SEC

INPUT A5D7 A5 D7 LDAZ-HEXL

INPUT E90A E9 0A SBC # 0A

INPUT 85D7 85 D7 STAZ-HEXL

INPUT A5DS A5 D8 LDAZ-HEXH

INPUT E900 E9 00 SBC # 00

INPUT 3016 30 16 BMI to label number 16
INPUT C8 c8 INY

INPUT 4C1560 4C 15 0@  JMP-SUBTRA (label number 15 is SUBTRA)
INPUT FF1600 FF 16 00 label number 16 (SUB)
INPUT 60 60 RTS
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The complete program has now been entered into the Junior Computer. It
is advisable to check that everything has been entered correctly. This can
be done as follows:

SEARCH FF190

SKIP

SKIiP

SKIP

Only when the entered program corresponds to the flow chart can the
assembler be started.

The Assembler

We have now entered a program into the computer with the aid of the

editor, a program containing symbolic addresses. These consist of label

numbers, subroutine numbers or labels to which the computer is to jump

or branch. Such a program is not able to run on JC, as in its present form

the microprocessor is unable to interpret the instructions. It is up to the

assembler to ‘shape’ the program in such a way that the microprocessor

can understand it. The assembler’s task consists of:

* removing all the labels from the program

* assigning the true absolute addresses to the JSR instructions so that they
are unambiguous

* treating the jump instructions likewise

* calculating the correct displacement values for branch instructions

* enabling the program to be stored in the programmable memory, after
assembly, in an acceptable form for the 6502 microprocessor.

How is the program stored in memory before assembly?

The start address of the program was chosen to be 020@. Figure 4 shows
how the editor stored the program in the computer’s memory, Since three
memory locations were reserved for each label, this program is consider-
ably longer than the assembled version will be. The start address of the
assembler is 1F51:

RST call the monitor program
AD1Fb51 enter start address
GO start the assembler

After the GO key is depressed, the display will be blanked for a fraction of
a second . . . all that is needed for the computer to assemble the program.
If the program was much longer, the display may remain blank for several
seconds. As soon as the program has been assembled, the computer will
return to the monitor program. The keys AD, DA, +, PC and GO will now
be valid once more.

How is the program stored in memory after assembly?

The Junior Computer features a Two Pass Assembler. This means that the
program is not assembled in one go, but in two stages, or ‘passes’.

25



label number 16

labet number 11

} BPL to label number 10

BEGAD @;) FF
" 9
02 90
a3 A9
(7] (]
95 85
[ ] F9
97 85
[2:] FA
9 85
9A FB
98 FF
c 1
@D (1]
(13 29
9F 6F
10 10
" 19
12 19
13 85
14 F9
15 85
16 D7
17 20
18 12
19 [
1A ac
18 1
ic [ 1]
0 FF
1€ 12
1F 90
20 20
2 14
22 90
23 85

.

JSR - fabel number 12

JMP - label number 11

label number 12

JSR - label number 14

JSR - 1D6F (monitor routine)

39

BPL to label number 16

c8

4ac

JMP - label number 15

FF

16

label number 16

CEN!

77

77 = end of program

-
e

pu—
D,

ENDA D

80915-5-6

Figure 5. The addressable work space starts at BEGAD and ends at ENDAD. The
memory space between the two pointers contains the program starting in this
particular example from label FF 18 8@ and ending with the EOF character 77. This
is called a file. It contains all the instructions that are used in the program, together
with their addresses and labels which have the symbolic op-code FF. The Junior
Computer cannot ‘digest’ the program in this form, as both the absolute addresses for
jump instructions and the displacements for branch instructions are as yet unknown.
The 6502 CPU will not be able to handle the edited data until the program has been
assembled.
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Pass one

The computer reads the entered program. At this stage it is only interested
in the labels written by the programmer and so will ignore all other instruc-
tions. 1f a label is encountered (featuring the characters FF), the label
number and its address will be stored in a symbol stack. The iatter acts
simply as a look-up table and is prepared by the computer without any
help from the programmer.

Once the label number and its address have been ‘saved’ in the symbol
stack, the computer will delete the label from the program. This is done by
shifting the entire program up by three bytes — the length of the label.
The label is overwritten by the instruction(s) immediately following and
therefore disappears from the program. The same procedure is repeated
until the processor has worked through the whole program from start to
finish.

In the example used, the start address was §20@, so the computer will start
here. The search continues until another label is found. This will then be
added to the symbol stack like its predecessor, along with its address.
Eventually, all the labels will have been removed from the program.
Everything the computer needs to know about the labels is now being
stored inside the symbol stack. This is a 256 byte software register capable
of storing up to a maximum of 256/3 = 85 labels. This should be more
than enough room to assemble programs in sections.

Pass two

Now the assembler will run through the entire program once more, starting
at address §200. As all the labels have already been deleted, the assembler
will concentrate on the following instructions only:

* JMP-

* JSR-

* branch instructions such as BPL, BMI, BEQ etc.

. These instructions are as yet succeeded by label numbers. When the JC
encounters one of the jump instructions, it will look to see which label
number follows. Every label number has its own absolute address, which
the computer can fetch from the symbol stack. How does it find the
correct address in the symbol stack? During the first stage of assembly,
remember, the computer saved the label number and its absolute address
in the stack. Now the computer will compare the label number behind the
jump instruction being assembled with those in the symbol stack. The
corresponding absolute address is then inserted after the instruction
thereby overwriting the label number and the limiter. The whole pro-
cedure is repeated until all the JMP and JSR instructions have been as-
sembled.

This leaves the displacement values for the branch instructions. The next
step for the computer, therefore, is to trace all the branch instructions
contained in the program. These are still followed by the label numbers to
which the branch is supposed to lead. Since the computer knows the
address of each branch instruction and since the destination address is
stored in the symbol stack, the displacement value can be calculated
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< label deleted
92 99 | A9
a [
92 85
a3 F9
[ 85
@ FA
96 85
o7 FB
L] 20
labe! deleted,
L] 6F JSR instruction
‘was not
oA 10
B 9 BPL instruction was assembled, the
s 3 calculated displacemant is F3
90 85
9E F9
oF 85
" D7
" 20
ISR & ion was
12 17 the absolute address was calculated
to be 8217
3 2
14 ac
JMP i ion was
15 o the absoluta address was calculated
to be 3208
16 92
17 20 .
JSR instruction was assembled,
18 2E the absolute address was calculated
to be 022E
19 02
1A 85
L. L=
-
30
BMI i was
4 the caiculated displacement is ¢4
c8
4ac
JMP i ion was
38 the absolute address was calculated
to be §23B
[ ¥
60
7 77 is the EOF character
(EOF = End Of File = End of program)

>

During assembly the program was shifted up from below. This
caused the symbolic addresses and the fabel numbers to be 80915-5-6
deleted.

Figure 6. After assembly, all the labels have disappeared from the file, which is why
the program looks shorter. The instruction op-codes are now followed by their
corresponding absolute addresses. Similarly, displacements have been assigned to the
branch instructions. Now the program is acceptable to the 6502 CPU.
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without any difficulty:
destination — source + 2 = displacement,
which can be translated as: the address location to be branched to, minus
the address location where the branch instruction is situated, plus two
equals the displacement value. The program given in figure 3 is shown in
its assembled form in figure 5.
We have now covered the operation of the assembler. It should be added
that the editor can also be used to run through an assembled program. The
following should then be taken into account:
* the editor should only be started by way of a warm start entry (address
1CCA)
* the pointers on page zero must be set manually:
BEGAD = CURAD
ENDAD = CEND (CEND = current end address)
Based on the example given in figure 3, the following keys are to be
depressed for the editor to be used on an already assembled program.

DAOGO } set CURAD pointer to 0200
+ 02

+ FF } set CEND pointer to @3FF
+ 03

AD1CCA warm start entry

GO start the editor

This procedure enables the SKIP key to be used to run through an as-
sembled program. The SEARCH command gives the programmer the
additional possibility to search for certain instructions inside the
assembled program. The INSERT, INPUT and DELETE keys should only
be used when entry or deletion of instructions will leave any jump or
branch instruction absolute addresses and length — as calculated by the
computer — unimpaired.

Important addresses for the editor and assembler:

1. Editor
Cold startentry : $ 1CB5
Warm startentry : $ 1CCA
Pointers belonging to the editor:
BEGADL * § 00E2§ begin address pointer
BEGADH * $ (QE3
ENDADL * $ 00E4} end address pointer
ENDADH * $ QOE5
CURADL * § GOEG} current address pointer
CURADH * $ QQE7
CENDL * 3 (BOES}
CENDH * $ Q0E9
2. Assembler:
Start address: $ 1F51
3. Further possibilities for the editor and assembler:
The ST key on the computer’s keyboard is linked to the NMI circuit.
The NMIl-vector can be programmed so that either the editor or the

current end address pointer
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assembler can be started by depressing the ST key. The NMi-vector is
stored in address locations:

NMIL * $ 1A7A low-order address byte

NMIH * $ 1A7B  high-order address byte

By loading the start addresses into these locations the programmer can call
up either the editor or the assembler with the ST key:

AD 1 A7 A cold start entry via ST key

DABS

+ 1C

or

AD 1A 7A warm start entry via ST key

DACA

+ 1C

or

AD 1 A7 A start the assembler via ST key

DA5 1

+ 1F

We have now reached the point where we are able to operate the editor
and assembler contained in the monitor program. These special features
make it possible to enter and alter programs quickly and efficiently. This
saves the programmer a lot of work — which is what computers are
designed for! The editor and the assembler enable programs to be stored in
memory in one ‘lump’, without gaps. This is very important when only a
limited amount of memory space is available.
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6

The Peripheral Interface
Adapter or PIA

The Junior Computer possesses a peripheral interface adapter
which, like the CPU, is contained in a 40-pin IC. This multi-
function device, called PIA for short, takes care of the entire
data exchange between the outside world and the Junior
Computer. The outside world can assume various forms: it can
be a hexadecimal keyboard, a seven-segment display, an ASCII
keyboard {simular to that of a typewriter), a printer or even a
servo from a model aircraft. This chapter will describe the way
in which the computer controls peripheral devices connected
to it, how it receives and transmits data via the PIA and how
this data is processed.

A computer without any inputs or outputs would be a virtually useless
machine, for then it would be unable to communicate with the operator,
who plays an essential part in the execution of a program. The situation
would be rather like that of a university professor who, having reached
a high level in scientific research, is unable to impart any knowledge to his
students due to a total lack of vocabulary. Similarly, if a computer did not
react to the inaptitude and inconsistency of the (human} programmer, the
fatter would never learn how to operate the computer correctly.

How can a computer communicate its ‘thoughts’ to the outside world?
The data exchange that takes place between the operator and the com-
puter is just like a conversation between two people. To be able to pass
on thoughts and ideas stored in his brain, man uses language. The computer
also has thoughts and ideas, stored in the memory in the form of processed
data. When such data is to be imparted to the outside world the computer
makes use of a printer or, as in the case of the Junior Computer, a six digit
{alpha) numeric display.

To be able to follow a conversation it is just as important to listen as it
is to talk, for this is the only way to receive information from the person
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you are talking to and in fact the only way to find out whether you are
“getting through’’ to him. The computer “listens” by means of a keyboard
on which the incoming data is typed. In large(r) computers this will be an
ASClI keyboard, but the basic Junior Computer is quite content with a
hexadecimal version.

Just as a person uses his mouth to speak and his ears to listen, the Junior
Computer transmits and receives information via the PIA, Therefore, the
PIA must have suitable inputs and outputs to receive and transmit data,
respectively. The term ‘‘data” refers to electrical signals which are either
logic @ or logic 1, and which change from one leve! to the other. The PIA
in the Junior Computer is a 6532 type. This LSI (large scala integration)
device contains 128 memory locations, a timer which can be programmed
in a number of ways, a flag register and an edge detector that can respond
to either positive or negative going pulses.

The PIA can be thought of as being a micro-microprocessor which can be
programmed to carry out various instructions by means of 19 special
‘registers’. Their operation and the numerous ways in which they can be
programmed will be fully explained in the course of this chapter.

An overall summary of the 19 registers is given in the following table:

1. PORT A and PORTB
— PAD: PORT A Data Register
— PADD:PORT A Data Direction Register
— PBD: PORT B Data Register
— PBDD:PORT B Data Direction Register
2. Timer start; interrupt request is disabled
— CNTA: CLK1T (division factor = 1)
— CNTB: CLK8T (division factor = 8)
— CNTC: CLKBAT (division factor = 64)
— CNTD: CLK1KT (division factor = 1024)
3. The flag register and timer
— RDFLAG read the flag register
— RDTEN read timer and enable IRQ
- — RDTDIS read timer and disable IRQ
4. Timer start; interrupt request is enabled
— CNTE:CLK1T (division factor = 1)
— CNTF:CLKS8T (division factor = 8)
— CNTG: CLK64T (division factor = 64)
— CNTH: CLKI1KT (division factor = 1024)
5. PA7 as the edge detector
— EDETA: sensitive to negative edge, PA7-IRQ disabled
— EDETB: sensitive to positive edge, PA7-IRQ disabled
— EDETC: sensitive to negative edge, PA7-IRQ enabled
— EDETD: sensitive to positive edge, PA7-1RQ enabled
Each register will be dealt with in turn.

PORT A and PORT B

The 6532 contains two ports: PORT A and PORT B. Together they
provide the input and output connections for the peripheral interface
adapter. Each of the sixteen lines can be individually programmed as an

32



input or an output. The operator can connect various forms of peripheral
equipment to any of the input/output lines. In the Junior Computer each
of the sixteen lines is fed to a multi-way connector, or port connector.
Figure 1 shows that the hexadecimal keyboard and display are also con-
nected to the PIA, so that the operator does not have the full 16 lines at
his/her disposal. The lines that can be used are PA7, PB@ and PB5. .. PB7.
If the keyboard and display were made redundant, however, all the port
lines would be available.

address bus

data bus

control bus

o s 1019 <

PORT CONNECTOR 31 PINS

28
- 1S [Zle

1

—

809156-1
r N

keyboard display

Figure 1. The hexadecimal keyboard and display are connected to the input/output
ports of the PIA. The remaining port lines, PA7, PB@ and PB5 . . . PB7 can be used

for the operator’s programs.
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The internal structure of the P1A

A similar diagram to that shown in figure 1b (Book 1, chapter 3) for the

microprocessor may be drawn for the PIA. It is given in figure 2.

The PIA is connected to the microprocessor by means of three buses: the

data bus, the address bus and the control bus. Thus, it is connected to the

CPU just like any other “normal” memory device. The three buses operate

as follows:

— The address bus selects internal memory locations.

— The data bus allows bi-directional data transfer between the CPU and
the PIA. The direction of data transfer is controlled by the R/W line
connected to the processor.

— The CPU transmits the following signals to the PIA by way of the
control bus:

* the R/W signal

* the ®2 clock signal

* the CS2 signal

* and the RES (reset) signal

The TRQ line of the PIA is also connected to the CPU by means of the

control bus. The PIA can therefore request an interrupt. How this is put

into effect will be discussed later.

This covers all the connections between the PIA and the microprocessor.

It is now time to take a closer look at the ‘internal organs’ of the PIA.

When discussing the PIA, hardware and software are equally important.

The operator sees the PIA as:

— Hardware: sixteen lines which can be independently programmed as

inputs or outputs. They are divided into two sections: port A and
port B. Both ports consist of eight lines each, that is to say, they are
8 bits wide. The port lines are called PA@ .. . PA7 and PBO . . . PB7.
The data bus is connected to the individual port lines and, as there are
two ports, it can be switched either to port A or to port B. Since the
data bus is bi-directional, the CPU may write onto the port lines, or
read data from them. When the microprocessor writes a certain bit
pattern onto port lines which have been programmed as outputs, this
pattern will remain stored on the output port lines, even after the write
operation has ceased (latch function of an output port line).
When the microprocessor reads one or more port lines which have been
programmed as inputs, the logic level present at that instant will be read
(there is no latch function for an input port line).

— Software: four registers for storing or retrieving data. They are:

PAD =PORT A Data register

PADD = PORT A Data Direction register

PBD = PORT B Data register

PBDD =PORT B Data Direction register

As can be seen, each port is made up of two registers:

1. a data register

2. a data direction register

The data direction register controls the direction of data transfer for
each individual port line. As this register is 8 bits wide, the CPU can
write a word into the data direction register by means of the data bus.
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PAD = Port A Data Register
PADD = Port A Data Direction Register
PBD = Port B Data Register
PBDD = Port B Data Direction Register

Figure 2. The internal view of the peripheral interface adapter (PIA). It contains two
ports, each with eight input/output lines. The contents of the data direction registers
determine whether a particular port line is to be used as an input or as an output. The
PIA is connected to the CPU by means of the address bus, the data bus and the
control bus.

This word will be a bit pattern of “‘noughts” and “‘ones” and will have

the following effect on the port lines:

— a nought in any position in the data direction register will program
the corresponding port line to be an input.

— a one in any position in the data direction register will program the
corresponding port line to be an output.

In the Junior Computer the four registers have been assigned the

following address locations:

PAD :$1A80
PADD : $ 1A81
PBD :$1A82
PBDD : $1A83

Now for a few examples to familiarise ourselves with port programming.

To start with, several port lines are to be programmed either as inputs or

outputs.

1. Ali the port lines belonging to port A are to be inputs, while all those
belonging to port B are to be outputs. The program will then look like

this:
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LDA # @0 ali bits in the accumulator are zero
STAPADD linesPA@...PA7 are inputs
LDA # FF all bits in the accumulator are ones
STA-PBDD linesPB@ ... PB7 are outputs
As you know, the individual bits in the port data direction register deter-
mine whether a port line is an input or an output. In the data direction
register PADD they are all noughts, so that the port A lines are all pro-
grammed as inputs. The CPU can now read the data on the port lines and
enter that data into the accumulator, the X register or the Y register. This
will be further described later on. In the data direction register PBDD all
the bits are ones, causing all the lines to port B to be programmed as
outputs. The CPU can now write any bit pattern onto the port lines by
way of the data bus. Again, this will be expanded on later.
2. Port lines PA4 and PB@ are to be outputs; the other port lines are to be

inputs. The following bit patterns are therefore entered into the two
data direction registers:
PADD b7 b6 b5 b4 b3 b2 b1 b

o 0 0 1 ¢ 06 © 0
PBDD b7 b6 b5 b4 b3 b2 b1 bd
o 0 0 0 0 0 9 1

The program for the above will be:
LDA # 10 load accumulator with required bit pattern
STA-PADD line PA4 is an output
LDA # 01 load accumulator with required bit pattern
STA-PBDD line PBO is an output
All the other port lines are programmed as inputs.

Reading from and writing to the port lines

We now know that the port lines can be programmed as inputs or outputs

by the information contained in the data direction registers, but how can

the microprocessor read or write data from or to them? This facility is

provided by the two data registers, PAD and PBD.

Reading port lines PA@ . .. PA7 and PB@ . . . PB7

When the data registers PAD or PBD are read, the bit pattern on the port

lines at that moment is transferred, via the data bus, to one of the internal

CPU registers. In other words, the port lines are an extension of the data

bus. If the processor is to read one or more port lines, they must be pro-

grammed as inputs.

The following example illustrates this:

LDA # 09

STA-PADD PA@...PA7 are programmed as inputs

LDX-PAD the bit pattern on the port lines is stored in the X register
of the CPU

If the bit pattern at port A is 1901011190,

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAQ Port A lines
1 0 1 0 1 1 1 @ bit pattern

the hexadecimal number AE will be stored in the X register.
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I1f the voltage on a particular port line is less than 0.4 V, the micropro-
cessor will interpret it as logic “@". The voltage must be greater than 2.4 V
for a logic ‘1"’ to be read.

Note: If a port line programmed as an input is connected to the output of
a gate, a transistor or another type of logic device, a current of up to
1.6 mA could be produced. This must be taken into account, especially
when connecting certain CMOS ICs, so as not to destroy the particular
device. When the microprocessor reads the port lines the bit pattern
present at that moment will be transferred to one of the CPU registers.
Port lines programmed as inputs do not therefore, have a latch function.

Writing to port lines PA@ .. . PA7 or PB@ ... PB7

When writing to data registers PAD or PBD, the bit pattern contained in
one of the CPU registers will be transferred to the port lines, which can be
considered as an extension of the data bus. If the processor is to write to
one or more port lines, they must be programmed as outputs. This is
illustrated by the following:

LDA # FF

STA-PADD PAfD...PA7 are programmed as outputs

LDX # C3

STX-PAD the bit pattern contained in the X register is transferred to

port A lines.
The contents of the X register is C3=11000011. This bit pattern will
appear on port lines PA7 . .. PAD:
PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAQ portA lines
1 1 0 0 [} 0 1 1

The hexadecimal number C3 will remain on the port lines until the next
write operation (latch function).

Note: If a port line programmed as an output is connected to the input
of a gate, a transistor or another type of logic device, these may not draw
more than 1.6 mA from the output port. The port lines are only capable
of driving one standard TTL load. If TTL compatibility is not required,
port lines PB@ . .. PB7 may be used as a current source to directly drive
the base of a transistor switch (maximum of 3 mA at 1.5 V).

Warning! The port lines of the PIA are not protected against excess voltage
or current. When they are directly connected to an external device such as
a printer, the voltage at the port lines should be prevented from exceeding
+7 V or from becoming negative, for then the 6532 is likely to go up in
smoke!!

First steps

Now that we have discovered all there is to know about port lines, it is

high time to write a short demonstration program which uses all four 1/0

registers. The program should achieve the foliowing:

1. At port A the state of eight switches is to be read by the CPU.

2. The Junior Computer is to convert this information into an audible
signal.

3. The signal is to be fed out of PB@. An amplifier must be provided to
control a small 8 £ loudspeaker.
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from port connector

809156-3

Figure 3. The hardware required for the DEMO program of figure 4. The bit pattern
produced by the {(closed) switches is read into the computer via port A, This
information is then converted into a squarewave signal which is fed to the
loudspeaker amplifier via port line PB@.

4. A circuit diagram must be drawn to show how these requirements are
to be met.
5. Subsequently, a flow chart must be drawn so that the program can be
entered into the computer via the editor and then assembled.
Points 1...3 will be fulfilled by the program itself. Point 4 tackles the
problem by producing a circuit diagram. This is given in figure 3 and shows
how eight switches S@ ...S7 are connected to port lines PA@...PA7.
Since the Junior Computer must read the state of these switches (whether
they are on or off), all port A lines must be programmed as inputs. An
audible signal is to be produced at PB@, this line must, therefore, be
programmed as an output. Transistor T1 is included to enable the signal to
be heard via a loudspeaker. This completes the necessary hardware to solve
the problem.
Next, the software, the program (point 5) must be developed. Figure 4
gives a program which converts the switch information into a particular
frequency or squarewave. It should be noted that this program is not
particularly elegant, but it serves the purpose of illustrating how the four
1/0 registers PAD, PADD, PBD and PBDD are controlled.
At the start of the demonstration program, DEMO, port lines PA® . . . PA7
are programmed as inputs and port line PB@ as an output. All the bits in
the data direction register PADD are zero and b in the data direction
register PBDD is a one. This situation will remain unchanged throughout
the program. The following part of our program involves the frequency
loop (label FREQ). Here, the processor reads the state of the switches
SO ...S7 into the accumulator. Prior to this we must decide whether a
closed switch corresponds to a logic one or to a logic nought level:
— a closed switch is logic 1
— an open switch is logic @
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A2 LDX #90 X<w

8E STX - PADD 1A81  All port A lines are inputs
E8 INX X=01

8E STX - PBDD 1A83 PBQ is output

@ _Ulree
AD LDA - PAD 1A80¢ read switch data
49 EOR # FF invert switch data
AQ LDY # 00 Y <00
8c STY —PBD 1A82 PBOis0
26 DELAY 12 wait a while
cs8 INY Y =01
8C STY - PBD 1A82 PBGis1
20 DELAY 12 wait a while
4ac JMP — FREQ 1 fetch new squarewave data
S

A>X

XX -1

X =907

809156-4

Figure 4. The flowchart of the DEMO program which, with the hardware from
figure 3, will produce a separate tone for each individual key (or combination of
keys). The program can be entered into the Junior Computer with the aid of the
editor and assembler contained in the monitor program.



After the bit pattern present on the port lines has been copied into the
accumulator (LDA-PAD), it must be inverted: EOR # FF. An audibie
signal must now be produced which is dependent on the switch informa-
tion. The easiest way to achieve this is to alternately set the output port
line PB@ high and low for a certain amount of time. This will effectively
produce a squarewave signal which can be rendered audible by means of
the loudspeaker interface connected to PB@.

The Y register is used to “swing’ the port line PB@ high and low. The
least significant bit (b@) alternates from nought to one and is copied into
the data register PBD. Subroutine DELAY determines the length of time
that is high or low. Here the CPU copies the bit pattern of the switch
information into the X register (TAX). Then the X register is decremented
until it becomes zero. The amount of time this process takes depends on
the state of the switches. Thus, the processor is able to generate a whole
range of frequencies.

Editing and assembling the DEMO program

Once the flow chart has been drawn up, the program can be entered into
the computer. It is to be assembled in page zero, where locations
0000 . . . DPED are available. For this reason the BEGAD pointer is set to
PP0B and the ENDAD pointer to @QEQ. By placing the start address of
the assembler 1F51 in locations 1A7A and 1A7B (the NMI vector), the
assembler can be started by pressing the ST key. The editor will then be
exited from via a non-maskable interrupt. The “‘keying-in” procedure
shown below illustrates how the DEMO program is entered:

keyboard display comments

RST

AD o 0 E 2 00E2 XX

DA o0 0OE2 00 -

. 0 o 0053 00 } BEGAD = 0000

+ E 0 0PE4 EQ _

N o o Goce 00 }  enpaD - ao0

AD 1 A7 A 1A7A XX

DA 5 1 1A7A 51 NMI vector = 1F51

+ 1 F 1A78B 1F } (start address of assembler)
AD 1 CB6S 1CB5 20 start address of editor
GO 77 editor running
INSERT FF1000 FF10 00 label 10: DEMO
INPUT A2 00 A200 LDX # 00

INPUT 8 E 8 1 1 A B8ES811A STX-PADD

INPUT E 8 E8 INX

INPUT 8 E 8 3 1 A B8ES831A STX-PBDD

INPUT FF 1100 FF 11 00 label 11: FREQ
INPUT A D8 0 1 A ADS®GIA LDA-PAD

INPUT 4 9 F F 49 FF EOR # FF

INPUT AD OO AQ 00 LDY # 00

INPUT 8 C8 2 1 A 8C821A STY-PBD

INPUT 2 61200 2012 00 JSR-DELAY (label 12)
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INPUT C 8 Ccs8 INY

INPUT 8 C 8 21 A 8CS821A STY-PBD

INPUT 2 01t 200 20 12 00 JSR-DELAY (tabel 12)
INPUT 4 C1 100 4C 11 00 JMP-FREQ (label 11)
INPUT FF1 20290 FF12 60 label 12: DELAY
INPUT A A AA TAX

INPUT F F1 300 FF13 00 label 13: DEL

INPUT C A CA DEX

INPUT Do 1 3 D@13 BNE to label 13
INPUT 6 0 60 RTS

ST XXXX XX start assembler via NM1{
AD o 000 0000 A2 start address of DEMO
GO start DEMO

Music on the Junior Computer

Tunes can be played on the Junior Computer by connecting a small key-
board to port lines. The melody played can be heard via a simple loud-
speaker interface. Construction of the Junior “piano’ involves the follo-
wing requirements:

1. The keyboard should have black and white keys similar to that of a
piano or organ.

2. The keys should be arranged in an electrical matrix and the entire
keyboard must be connected to port A.

3. The tones must be audible!!

A summary of the requirements is given in figure 5. It includes:

— a piano keyboard

— a key matrix with connections to port A

— an amplifier circuit connected to port line PB@.

As the keys are arranged in a matrix (figure 5), each key can be assigned

a certain value. The matrix format is 4 times 4. The rows are designated

as ROW@...ROW 3 and the columns as COL @...COL 3. The values

of the individual keys are also indicated. Figure 5 also shows an alternative
construction for the keyboard using Digitast switches.

Since all the keys are connected to only one port {port A), some of the

port lines must be used as inputs and some as outputs. Thus:

— Columns COL @...COL-3 are connected to PA@ .. .PA3. Since the
computer has to read the column information to calculate key values,
port lines PAD . . . PA3 will have to be inputs.

— Rows ROW®... ROW3 are connected to PA4...PA7 and must
become logic @ one after the other, so that the computer can detect
whether a key is depressed, identify it and calculate its value. As the
computer has to write certain patterns onto matrix rows ROW @ . .
.. ROW 3, port lines PA4 . . . PA7 must be outputs.

We have already seen how to connect a simple loudspeaker interface.

Again, PB@ ist to be programmed as the sound output.

This covers the mechanical and electrical structure of the “piano” key-

board. Let us now develop a short program that will enable a tune to be

played on the keyboard. It must be constructed step by step and should
comprise the following:
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Figure 5. The hardware required for the PLAY program (see figure 7). The keys are
arranged in a four-by-four matrix (5a). Each key will produce a separate note, The
frequency codes for each of these notes are contained in the look-up table DEL
{see figure 10). Figure 5b shows a possible layout for an inexpensive alternative to a
{proper) piano keyboard.
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— aroutine to calculate the values of the 16 keys

— aroutine to establish whether any key is depressed

— aroutine to “debounce” the keys

— a routine to allocate a particular frequency to each key that is
depressed

— a look-up table in which the 16 key frequencies are stored

Figure 6 shows the flowchart of a program to calculate the value of the

16 keys. Since it scans the key matrix given in figure 5 the |/0 lines of port

A must be programmed before the processor jumps to this subroutine

{KEYVAL). As we know, port lines PA7 ...PA4 are outputs and PA3 . .

.. PA® are inputs. Thus, the data direction register belonging to port A

must be loaded with the bit pattern 11110000 = F@. This can be accom-

plished by the instructions:

LDA # F0@

STA-PADD

All the 1/0 lines for port A have now been pregrammed and the subroutine

KEYVAL can be called. During its description the key matrix in figure 5

and the flowchart in figure 6 will be referred to.

At the start of the routine memory location ROW is loaded with the

value F7 (= 11110111). The Xregister operates as a row counter, its

contents determine which row of the keyboard matrix is being read into

the computer via port A:

X = @3 corresponds to ROW @

X =02 corresponds to ROW 1

X = 01 corresponds to ROW 2

X = @0 corresponds to ROW 3

Each time the X register is decremented, the processor moves the contents
of memory location ROW one bit position to the left and stores it in the
data register PAD. As a result, the matrix lines will each go low in
succession:

X register PA7...PA4

X =04 111
X=03 1110
X=02 101
X =01 1011
X=00 0111

As each individual matrix row goes low in turn, the processor can easily
establish which key has been depressed in which row. If no key is
depressed, port lines PA3...PAQ will all be high. The least significant
“nibble” (four bits) of the data byte will therefore consist entirely of ones.
If a single key is depressed, port lines PA3. .. PAQ will be 1110 or 1101
or 1011 or @111, If the least significant nibble contains several noughts,
it means that several keys in the matrix row in question were depressed
at the same time.

Since the entire range of port A data register is read (LDA-PAD) the four
most significant bits, which we are not interested in, must be masked
out:

LDA-PAD load information from port A into accumulator

AND # OF mask out four most significant bits (B@O@XXXX)
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Figure 6. The flowchart of the subroutine KEYV AL, which is used during the PLAY
program. This sUbroutine calculates the value of a depressed key and stores that value

in memory location KEY.
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Then by comparing this information with @F (CMP # OF) and branching
(BEQ), the processor establishes whether a key was depressed in the
matrix row being scanned. When a row is found to contain a depressed
key, the row number is saved in location TEMPX and the bit number of
the column (PA3 ... PA®} in location KEY.

In the next section of the program (KEYB) the X register will operate
as a column counter (before, it acted as a row counter). The processor
shifts the contents of KEY {= column information) one bit to the right
until the carry flag is zero. If after four shift operations, the carry flag is
still high, there must be a fault in the program and the computer will try
to calculate the key values once more (branch to label KEYVAL). If,
however, the carry flag has been reset, the program will ask in which
matrix row the key was depressed. This information is stored in the
memory location TEMPX. By a series of simple comparisons (CMP)
the true value of the key can now be established.

The value of the keys increases by four after each row. The keys in ROW 1
will therefore be four times greater than those in ROW 0, the keys in ROW
2 eight times greater and the keys in ROW 3 twelve times greater. By
simply adding this value to the column number, the true key value can be
found. Once the key value has been calculated, the computer stores it in
location KEY under the section of program labelled KEYC.

Finally, all the keyboard matrix rows are cleared before returning to the
main routine. This is important for the next subroutine KEYIN (figure 8a)
which is used to check whether any key has been depressed. If a key has
been depressed, one of the matrix columns (PA3...PA®) must be logic
0. Since KEYIN inverts the column pattern read (EOR # OF) it can be
seen that:

the contents of the accumulator = @@, if no key is depressed

the contents of the accumulator # @0, if a key is depressed.

The next subroutine is called DELAY (see figure 8b). It is used to
‘debounce’ a depressed key. The required delay is obtained by means of
the loop DELA.

Note: In chapter 7 of this book we will discuss the keyboard and display
routines in the monitor program of the standard Junior Computer. The
keyboard routine is very similar to the subroutine KEYVAL. Nevertheless,
there is a considerable difference as far as programming the /0 is con-
cerned.

In KEYVAL one section of the port A lines acts as an input and the other
as an output {matrix structure). In the case of the monitor routines
SCANDS, SCAND and GETKEY {described in the next chapter), the
whole of port A is programmed as an input and the whole of port B as an
output during keyboard scanning.

The flowchart of the main routine PLAY is shown in figure 7. This routine
assigns a certain frequency to each key that is depressed and renders a
tune audible via the loudspeaker. Each of the required port lines are
defined at the start of this program:

— PA7...PA4 are outputs

— PA3...PAQ are inputs

— PB#® is an output

When label PA is reached the Junior Computer waits for a key to be
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W9g PLAY

a9 | LDA #Fo
STA -~ PADD | 1A83  PA6...PA7 = outputs;
LDA #01 PA@ ...PA3= inputs
STA —PBDD | 1483  PB7 = output
STA—PBD |1A82  PBO=1
LDA #04
STA —PAD | 1A80  PA4...PA7=0

528828

key depressed?
debounce key

yes

@ calculate key value

A4 ILDYZ —KEY|pa Y « key value

A9 LOA # @0

8D | STA -PBD | 1482 PBO-¢
BE | LOX — DEL.Y| 1a9¢ fetch delay code

XX -1

X =a?

A9 LDA #@1
80| STA—P8D |1a82 P8O -1
BE | LDX —DEL Y} 1799 fetch delay code

2 Il ROW  * $00D9

KEY + $990A
key released? TEMPX ¢ $0908
DEL * $1a00

PAD .. $1n80

_ PADD * $1a81

6 x=0? PBD $1a82
PBOD * $1A83

809156-7

.

Figure 7. The flowchart of the main portion of the PLAY program. This program
decodes the value of a depressed key and converts it into an audible tone. During this
procedure the processor utilises the look-up table DEL to determine the actual
frequency of the note to be played.
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»
AD LDA - PAD 1A80  ioad key data
29 AND #0F mask least significant four bits
49 EOR #9F invert key data
60 RTS
80915-6-8a

Y <FF
Y <Y -1
Y =@?
80915-8b
EA NOP
EA NOP
EA NOP
EA NOP wait 16 us

69
J 80915-6-8¢

Figure 8. The flowcharts of the subroutines KEYIN, DELAY and EQUAL. are also
used by the PLAY program. Subroutine KEYIN detects whether or not a key is
depressed while DELAY ‘debounces’ the key. Subroutine EQUAL is incorporated to
ensure that the mark/space ratio of the generated squarewave signal is equal.
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depressed. This is detected by means of the subroutine KEYIN (figure 8a).
Once a depressed key is detected the program jumps to the subroutine
DELAY (figure 8b), which debounces the keyboard. After this, the
computer runs through the subroutine KEYIN once more to check whether
the key is still depressed. Only then will the computer calculate the value
of the depressed key by jumping to the subroutine KEYVAL (figure 6).
The key value is yet to be converted into a frequency. This happens after
label TONE. Before considering the details, let’s look at the TONE routine
as a whole:
— label TONE: the loudspeaker is switched ‘on’ for a certain length of
time. The actual duration will be determined by the pro-
gram loop TA...BNE...TA and will depend on the contents of the
X register. Before the computer reaches this program loop, it loads a num-
ber (delay) corresponding to the frequency of the depressed key into the
X register. The value of this frequency is stored in the look-up table DEL,
the sturcture of which will be considered later.
— label TB: the loudspeaker is switched ‘off’ for a certain length of time.
The off time is determined by the program loop TB..
..BNE ... TB. Again, the duration of the program loop depends on the
contents of the X register. As can be seen from the flowchart, the micro-
processor jumps repeatedly to the subroutine KEYIN to check whether
the key is still depressed. If so, a squarewave signal will appear at PBQ.
If, however, the key has now been released, the program will branch to
label PA where it will wait for a new key to be depressed.

The look-up table and frequency values

Before the values of the delays for each frequency can be calculated for
the look-up table, the program loops TA...BNE...TA and TB..
..BNE ... TB must be examined. At the start of TB the CPU jumps to
the subroutine KEYIN, carries out the subsequent BEQ instruction without
branching and, if a key is depressed, decrements the X register before
branching back to label TB. All the instructions require a certain period
of time for execution. The execution times for the relevant instructions
are listed below:

JSR-KEYIN = 6pus

LDA-PAD = 4us

AND # OF = 2us

EOR#OF = 2us

RTS = 6us

BEQ = 2 us no branch while the key is depressed
DEX = 2us

BNE-TB = 3 us branch is executed

total =27 us

The loop time therefore lasts 27 us times the contents of the X register.
The loop TA ...BNE ... TA must also last 27 us. Since no jump is made
to the subroutine KEYIN, the loop time will have to be corrected. That is
why the subroutine EQUAL (figure 8c) is included to supplement the
missing 22 us. This is shown in the form of a graph in figure 9.
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Figure 9. This is how the Junior Computer actually manages to produce a squarewave
signal at the output PB@. As can be seen, without the EQUAL subroutine the signal
would be asymmetric.

The above enables us to calculate the values for the look-up table. Figure
10 shows some figures on the keys which call for a few words of expla-
nation. If, for example, we take note ‘a’ with a frequency of 440 Hz,
the relationship between time and frequency will be:

T=1.

A frequency of 440 Hz therefore has a period of
1 =

330 Hz = 2273 us.

On a piano keyboard the frequency of each note either rises or falls from
key to key by a factor of 124/2 = 1.0594613. This enables frequencies
or periods to be allocated to all the keys, as shown in figure 10. Further-
more, the duration of both program loops is known to be 27 us and so the
exact delays for each key can be calculated.

Let's look at note ““a’’ again. lts period is 2273 us and so the value for the
delay in the look-up table must be:

23—;—3 = 8446 = $ 54 pis.

Once the delay values for each key have been calculated the look-up table
DEL can be completed. Since the microprocessor fetches the delay infor-
mation for each note from the look-up table twice, the played notes will
be an octave lower than those calculated.

It is now time to enter the complete program PLAY including its sub-
routines KEYVAL, KEYIN, DELAY and EQUAL into the computer. For
this we utilise the editor and assembler contained in the monitor program.

49



key period dec hex address

oF —E—— 60  3C < 1AGF
oe—Te 1703 | 63  3E <« 1AGE
00— 1804 |— 67 43 o 1AID
oc —le 1911 | 71 47 < 1A0C
98 —le 2025 | 75 4A < 1AGB
9A —te 2145 79  4E < 1AGA
220 Hz—09 —|e 2273 | 84 54 < 1AQ9
98 —@——‘ 89 59 < 1A¢8
07 —e 2551 95 SE < 1A07 (Y = key value)
06——@— 100 64 < 1A06
05— o 2863 [ 186 6A <« 1A05
94—t 3034 | 112 70 < 1A04
03_E—— 19 77 < 1A¢3
02—To 3405 | 126 7€« 1A02
01—@—- 138 8 <« 1A¢1
90 —1lo 3822 | 142 8E < 1AG0
80915610

Figure 10. The ‘software keyboard’ of the PLAY program. The frequency of the note
produced by each key of figure 5 is stored in the look-up table DEL (address location
1AG0).

Once the program has been assembled and the look-up table has been
entered (page 1A), the keyboard and the loudspeaker interface can be
connected to the PIA.

The complete “keying in”” procedure is given below:

key: display: comments:

RST XXXX XX

AD 2 0 E 2 O0E2 xx

DA o0 00E2 00 _

Y o 0 00E3 00 } BEGAD = 0000

+ E 0 OQE4 EOQ _

N o o O0CES 00 } ENDAD = G0EQ

AD T A7 A 1A7A xx _

oA 5 AT St L e ofswemblen
+ 1 F 1A7B 1F s

AD 1 C B S5 1CB5 20 start address of editor
GO 77 editor running
INSERT A 9 F 0o A9 FO LLDA# FQ

INPUT 8 D8 1 1 A 8D 81 1A STA-PADD

INPUT A9 0 1 A9 01 LDA# M1

INPUT 8 D8 3 1 A 8D 83 1A STA-PBDD

INPUT 8 D8 2 1 A 8D 82 tA STA-PBD

INPUT A9 0 0 A9 00 LDA# 00

INPUT 8 D8 @ 1 A 8D 80 1A STA-PAD

50



key:

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

MTOMMOBdNPOOTONDPDODPSWOTMPOPTNTTOOTMNTPBOPITONTEODTMDNTINNTINT

C OO WO NMNUOSOOUUOUONSIPTMNUOTESSDPSSTMMUOESISTMuONE,SeSSaSeT

WOSWWS OgNONMNNONOO

©ONOS S ©

NS QTN O©
- N ONSNSH

NONSQUONSS OO ON
WPNEOSID="TTMESROVOS

NS
N

S WONOND S = 0O =0 =
VS = -

- 0P N-=W

»H

e

S =

A=

eSS > >

SS > >

display:
FF 91 00
20 28 00
Fo 91
20 29 00
20 28 00
FQ 91
20 20 00
A4 DA
FF 92 00
A9 00

8D 82 1A

BE 00 1A
FF 93 00
20 31 00
CA

D@ 93
A9 91

8D 82 1A
BE 00 1A
FF 94 00
20 28 00
Fo 91

CA

D@ 94

Fo 92

FF 20 00
A9 F7

85 D9
A2 04

FF 21 00
CA

30 20

06 D9
A5 D9
8D 88 1A
AD 8D 1A
29 OF

C9 OF

Fo 21

86 DB
85 DA
A2 00

FF 22 09
46 DA
90 23

E8

EQ 04

Do 22

FQ 20

comments:

label 91: PA

JSR-KEYIN (label 28)
BEQ to PA (label 91)
JSR-DELAY (label 29)
JSR-KEYIN (label 28}
BEQ to PA (label 91)
JSR-KEYVAL (label 20)
LDYZ-KEY (@@DA)
label 92: TONE

LDA# 0G0

STA-PBD
LDX-DEL,Y (DEL = 1AQ0)
label 93: TA
JSR-EQUAL (label 31)
DEX

BNE to TA (label 93}
LDA # 01

STA-PBD

LDX-DEL,Y

label 94: TB

JSR-KEYIN (label 28)
BEQ to PA (iabel 91)
DEX

BNE to TB (label 94)
BEQ to TONE (label 92)
label 20: KEYVAL
LDA # F7

STAZ-ROW (0@D9)
LDX # 04

label 21: KEYA

DEX

BM1 to KEY VAL (label 20)
ASLZ-ROW (0@D9)
LDAZ-ROW (00D9)
STA-PAD

LDA-PAD

AND # OF

CMP # OF

BEQ to KEYA (label 21)
STXZ-TEMPX (@@DB)
STAZ-KEY (GODA)
LDX # 00

label 22: KEYB
LSRZ-KEY (@@DA)
BCC to ROWA ({label 23)
INX

CPX # @4

BNE to KEYB {label 22)
BEQ to KEYVAL (label 20)
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key:

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
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mn

Gt N AN WD wW

0O = Ul N D

mme ®

m

L=

FF 23 00
A5 DB
C9 03
Do 24
8A

4C 27 00
FF 24 00
C9 92
Do 25
8A

18

69 04
Do 27

FF 25 00
Co M

D@ 26
8A

18

69 08
Do 27

FF 26 00
C9 00

DO 20

8A

18

69 oC
FF 27 00
85 DA
A9 00

8D 80 1A
60

FF 28 00
AD80 1A
29 OF
49 OF
60

FF 29 00
AQ FF
FF 30 00
88

Do 30

690

FF 31 00
EA

EA

EA

EA

EA

60

comments:
label 23: ROWA
LDAZ-TEMPX (G@DB)
CMP # 03

BNE to ROWB (label 24}
TXA

JMP-KEYC (label 27)
label 24: ROWB

CMP # 02

BNE to ROWC (label 25)
TXA

CLC

ADC # 04

BNE to KEYC (label 27)
label 25: ROWC

CMP # M1

BNE to ROWD (iabel 26)
TXA

CLC

ADC # 08

BNE to KEYC {label27)
label 26: ROWD

CMP # 00

BNE to KEYVAL (label 20)
TXA

CcLC

ADC # 0C

label 27: KEYC
STAZ-KEY (@@DA)
LDA # 0@

STA-PAD

RTS

label 28: KEYIN
LDA-PAD

AND # OF

EOR # QF

RTS

label 29: DELAY

LDY # FF

label 30: DELA

DEY

BNE to DELA (label 3¢)
RTS

label 31: EQUAL

NOP

NOP

NOP

NOP

NOP

RTS



The program can then be tested for any errors that may have cropped up
during entry:

key: etc.
SEARCHA 9 F 0 A9 FOQ
SKIP 8D 81 1A
SKIP A9 @1
SKIP 8D 83 1A
SKIP 8D 82 1A
SKIP A9 00
SKipP 8D 80 1A
SKIP FF 91 00
SKIP 20 28 00
SKIP FQ 91
SKIP 20 29 00

Once everything is correct the assembler can be started:
key: display:
ST T XXXXXX

key: display:

AD 1AQ00 1A00 XX
DA 8 E 1A00 8E
86 1A01 86
1A02 7E
1A03 77
1A04 70
1A05 6A
1A06 64
1AQ07 5E
1A08 59
1A09 54
1AQA 4E
1A0B 4A
1AQC 47
1A0D 43
1AQE 3E
1AQF 3C

+ 4+ 4+ + A+ F o+
WWABBRPOOGOO NN
Omw~Nwp»mboOomdpS M

Finally, the program can be started:

key: display:
AD 0 0 0 0 O000A9
GO

Now you can have fun playing tunes on your Junior Computer!
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The interval timer

Another major feature of the Junior Computer is the interval timer which
is also incorporated in the 6532 multi-function device. This timer is pro-
grammable and operates independently from the microprocessor. This
means that while the timer is operating, the CPU is at the disposal of the
programmer, which is an obvious requirement if the operator is to work
efficiently and effectively with the microcomputer.

The interval timer and the PIA are both built into the same chip, thereby
reducing the component count and the overall cost. These two important
components increase the performance and versatility of the Junior
Computer considerably. However, before being able to operate the interval
timer we must know how it works. Let us therefore describe the internal
structure of the timer and then develop a few demonstration programs to
show how it can be used.

Block diagram
The block diagram of the interval timer is shown in figure 11, It consists
of three sections:
~ Programmable register - timer: The timer register is eight bits wide and
is connected to the data bus. It can be compared with an ordinary RAM
location, for data may be written to or read from it.
— Divider: The divider is connected to both address lines AQ and A1 and
to the clock signal 2. The programmable register and the divider com-
bined constitute the complete interval timer.
The interval timer may be compared to a pre-settable down counter (TTL
or CMOS). Such a device can be preset to a gertain binary number. Each
clock pulse will then decrement the counter by one until its contents reach
zero.
This is exactly how the interval timer in the Junior Computer works. The
clock signal @2 is the clock pulse for the interval timer which also counts
down. With the aid of the divider the clock signal can be divided by four
different factors. The dividing factor is determined by the information
presented to address lines A@ and A1. Thus:

A1l  AQ division factor

0 0 +1T

0 1 + 8T

1 0 + 64T

1 1 +1024T T =1 us (in the Junior Computer)

The clock signal ®2 is therefore divided by 1, 8, 64 or 1024 before it
decrements the contents of the timer register by one. The following
example serves to clarify this.
With the aid of the CPU the number $ 1E is entered into the timer register
and a division factor of 64 is selected by means of address lines A@ and
A1. The following will then be true:

$ 1E = 3010 and

30,0 times 64,4 equals 1920
In other words, when the timer register is preset to $ 1E and the division
factor is 64, the contents of the timer register will become zero after
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R/W PA7 A3 Al Aj

|

iRQ
< INTERRUPT PROGRAMMABLE
CONTROL REGISTER DIVIDER [e— &2
timer flag
PA7 fiag
D7 D6 D5 D4 D3 D2 D1 DB 809156-11

Figure 11. The block diagram of the interval timer contained in the PIA. It consists
of three basic units. The programmable register (timer) can be likened to a
presettable down counter. When data is entered into this register the interval timer
will start to count down. The rate at which it counts is determined by the divider
which allows division factors of 1, 8, 64 or 1924 to be selected. When the timer
reaches the end of its count, the interrupt flag contained in the interrupt control unit
is set.

1920 us. Before we can describe the interval timer in detail however,
another important aspect of the 6532 IC has to be considered: the inter-
rupt flag register.

— Interrupt control: The interrupt control section of the interval timer
contains the interrupt flag register which consists of two flags: the timer
interrupt flag and the PA7 interrupt flag (to be discussed in greater detail
later). The interrupt flag register is also 8 bits wide, but only two are used
(b7 and b6) the remainder (b5...b@) will always be zero when this
register is read by the processor. The timer interrupt flag is set by the
interval timer (as you may have expected!) and the PA7 interrupt flag is
set by a positive or negative going pulse on port line PA7. When a read
operation is performed on the interrupt flag register, the bits are trans-
ferred to the processor on the data bus, as the diagram below indicates:

b7 b6 b5 b4 b3 b2 bl b@ bitNo.
[X X 0 0 0 & 0 a]

LI Sy

timer flag

The PA7 flag is reset when the interrupt flag register is read. The timer flag
is cleared when the timer register is accessed (either written to or read
from).

When is the timer flag set?

Bit b7 in the interrupt flag register is used as the timer flag. This is set
{b7 = 1) when the timer has reached a ‘time out’. With respect to the
previous example this will be:
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timer register contents

1E = 00011110
1E = 00011101
1C = 00011100
1B = 00011911

02 = p0000D10
01 = 0000DON1
00 = 000000 00
FF=11111111
FE=11111110
FD=111111M

comments

starting value of the timer register

after 64 us

after a further 64 us

after a further 64 us
: 30 x 64 us= 1920 us

until the timer register

is zero

after a further 64 us

after a further 64 us (time out)
after one us timer flag is set
after another us

after another us

after another us
after another us
after another us
after another us
after another us

02 = 000P0D10
01 = 00000001
00 = 00000000
FF=11111111
FE=11111110

It should now be clear how the interrupt flag register works in conjunction
with the interval timer. Once the CPU has entered a number — the initial
counter setting — into the timer register and the division factor has been
determined during the write operation by address lines A@ and A1, the
interval timer will start its ‘countdown’. With a division factor of 64.and
an initial counter setting of 1E = 30,0, the contents of the timer register
will become zero after 1920 us. The moment at which the timer register
contents becomes zero is termed the ‘time out’.

Points to note:

1. The timer flag in the interrupt flag register is reset (logic @) when the
timer register is read (read locations RDTEN or RDTDIS).

2. The timer flag is also reset when something is entered into the timer
register (write into locations CNTA ... CNTH). The timer flag is there-
fore always reset when the timer is started (when the initial counter
setting is entered).

3. The timer flag in the interrupt flag register is set (logic 1) after the time
out. In our example:
initial setting = 1E = 3@,
division factor = 64
time out after 30 x 64 us = 1920 us
the timer flag is set after 1920+ 1 = 1921 us
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4. After the time out the division factor is set to one automatically. This
is independent of the division factor which was previously selected. £
this were 64, for instance, then:

— before the time out the contents of the timer register are dec-
remented by one every 64 us

— after the time out the contents of the timer register are decremented
by one every 1 us. One microsecond corresponds to 1 MHz — the
clock frequency of the Junior Computer.

The interrupt flag register also controls the interrupt line connected to the

IRQ input of the microprocessor. If the interrupt flag (l) in the status

register of the CPU is reset, the 6532 can cause an interrupt request (IRQ).

The IRQ line will then go low.

The interrupt request line is controlled by both flags in the interrupt flag

register. |f either the timer flag belonging to the interval timer or the PA7

flag is set, the IRQ line can go low to cause an interrupt. The programmer,
however, is able to prevent the interrupt flag register from causing an IRQ.

Address line A3 is connected to the interrupt flag register and is used to

enable or disable the IRQ line:

— A3 = 0 to disable interrupt from timer to IRQ

— A3 =1 to enable interrupt from timer to IRQ

Summary

This completes the description of the interval timer block diagram. To sum
up, it consists of a divider, a programmable register {the timer} and an
interrupt control section. The latter contains the interrupt flag register in
which there are two flags: the timer interrupt flag (b7) and the PA7
interrupt flag (b6). These two flags can be used to control the interrupt
request line (IRQ) of the microprocessor. Note that the instructions SEl
and CLI (set interrupt disable and clear interrupt flag) in the main program
have an over-riding effect on the above.

The timer interrupt flag will be reset after a read or write operation from
or to the programmable register or after an interrupt occurs. This flag is
only set (b7 =1) one microsecond after a time out. (Note that if the
interrupt occurs at the same time that the timer is read, the interrupt flag
will not be reset).

In addition to its use as a peripheral input/output line, the PA7 pin can
function as an edge sensitive input. In this mode, an active transition on
the PA7 line will set the internal interrupt flag (b6 of the interrupt flag
register). Providing the PA7 interrupt is enabled, the IRQ output will then
go low. When this occurs, of course, the CPU will branch to an interrupt
routine.

Internal structure of the interval timer: timer mode

Now that the block diagram of the interval timer has been fully explained,

it is time to take a close look at the ‘insides’ of the device. Figure 12 gives

a clear indication of what the interval timer and the interrupt flag register

look like as far as the programmer is concerned.

1. The interval timer can be looked upon as having a total of eight data
registers. In the Junior Computer they have been given the names:
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CNTA, CNTB, CNTC, CNTD, CNTE, CNTF, CNTG and CNTH. Each
of these data registers can be individually addressed and have been
allocated locations 1AF4 . .. 1AF7 and 1AFC . .. 1AFF respectively.

2. The contents of the data registers can be altered by the processor by
means of a write operation.

3. Each data register has been assigned a specific division factor:

CLK1T =divide by 1; CNTA and CBTE

CLKS8T = divide by 8; CNTB and CNTF

CLKG4T = divide by 64; CNTC and CNTG

CLK1KT = divide by 1924; CNTD and CNTH

The division factor is effectively the number of ®2 clock pulses that
must pass before the contents of the programmable register (timer) are
decremented by one.

4. The interval timer is split into two sections of four data registers each.
One is made up from the registers CNTA . .. CNTD and the other from
registers CNTE .. . CNTH.

5. If the processor enters data into one of the registers CNTA .. .CNTD,
the interval timer will be started. The division factor will be determined
by which of the registers is being used. During the write operation the
timer interrupt flag will automatically be reset (b7 in the interrupt flag
register = @). In addition, the IRQ line will go high and the timer will be
inhibited from causing an interrupt. The timer interrupt flag will be set
after the timer has reached the time out (contents of the programmable
register = FF).

6. /RQ mode: If the processor enters data into one of the registers
CNTE ... CNTH, the interval timer will again be started. As above, the
division factor will be determined by which of the registers is used, the
interrupt timer flag will be reset and the IRQ line will go high. This
time however, the timer will be able to cause an interrupt. After the
time out has been reached, the timer interrupt flag will be set and the
IRQ line will be taken low causing an interrupt request (provided, of
course, that the interrupt flag in the status register of the CPU is reset:
CLI).

7. The computer is also able to read the instantaneous value of the con-
tents of the programmable timer register. When the data register
RDTDIS is read (address location 1AD4) the period of time remaining
(before the time out) can be determined. This read operation will cause
the timer interrupt request to be inhibited.

Figure 12, The data and control registers of the interval timer and the edge detector.
The interval timer is started by entering information into one of the data registers
CNTA ... CNTH. The amount of time left before, or elapsed since, a time out can be
established by reading one of the data registers RDTDIS or RDTEN. The former,
along with data registers CNTA ... CNTD, will place the interval timer in the polling
mode and disable the interrupt request line. The latter, along with data registers
CNTE ...CNTH, will enable the interrupt request line. The state of the flags in the
interrupt flag register can be examined by reading the data register RDFLAG. The
four control registers EDETA . .. EDETD determine the polarity of the pulse to be
detected on PA7. Control registers EDETA and EDETB place the edge detector in
the polling mode and control registers EDETC and EDETD place the edge detector in
the interrupt mode.
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disable timer —~ IRQ

IRQ fine: 1 us

|

time out

polting-
mode

division factor

~
CLK1T X X X

XXXXXJ

CLK8T F( X X

XXXXXl

CLK&4T r)( X X

XXXXXI

CLK1KT[ X X X

XXXXXI

-

XXXXXI

——l timer — moda :l.___.._._. —_——

enable timer — IRQ

1RQ line: 1 us

1 —_E p7=1

time out

L{ EEE

-
cu(ﬂrx X X

XXXXXI

CLK8T rx X X

XXXXX]

<

CLK6A4T rX X X

XXXXX]

CLK1KT rx X X

XXXXXJ

xxxxxj

name and
address

CNTA = 1AF4

CNTB = 1AFS

CNTC = 1AF6

CNTD = 1AF7

RDTDIS = 1AD4

CNTE = 1AFC

CNTF = 1AFD

CNTG = 1AFE

CNTH = 1AFF

RDTEN = 1ADC

i

flags

flag register

I polling — mode j

<READ [ ti:nar-flagE7thI¢ [o lalo la lo]

PA7-flag

name and
address

ROFLAG = 1ADS

A polling.

disable PA7 - IRQ
1

IRQ line: @

[ — ""l PA7 -- IRQ

enable PA7 — IRQ

1
IRQ line: ¢ ]—

mode

IRQ-

'Modo

edge

1[xxxxxxxxJ

J_F(xxxxxxx]

name and
address

EDETA = 1AE4

EDETB = 1AES

EDETC = 1AEG

EDETD = 1AE7

809156-12

On the other hand, when the data register RDTEN is read {address
location 1ADC) the remaining period of time can again be determined,
but this operation will enable the interrupt request.
By reading the data registers RDTDIS and RDTEN the interval timer
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can be switched from the polling mode (see section 8) to the interrupt
mode or vice versa. The read operation will not alter the contents of the
timer register, but will merely convey an idea of the state it is in at that
particular moment. If this takes place before the time out, the division
factor which was previously introduced will be maintained. When
RDTDIS and RDTEN are read after the time out, the elapsed time (the
period of time since the time out occurred) can be calculated by comp-
lementing the value read and adding one {two’s complement).

If we now return to our previous example and load data register CNTG
with an initial timer value of 1E (decimal 3@) the division factor will be
set at 64 and the interrupt will be enabled. The period of time between
the start of the interval timer and the |RQ line going low (and the timer
interrupt flag being set) will be (30 x 64) + 1 = 1921 us.

The operation of the interval timer and how its contents can be read in
the interrupt mode are illustrated by the following ‘flow chart’:

IRQMOD

(Clear interrupt flag - processor)

The interval timer is started by loading the value 1E into
data register CNTG. This enables the timer interrupt
request and selects a division factor of 64. (The timer
interrupt flag is reset).

LDA 1E
STA-CNTG

T t=0
i The processor continues with the main program execution
° totally independent from the interval timer
(A =0C)

LDA-RDTEN| . .. . ittt i e t=1152 us
. The data register RDTEN is read prior to the time out.
. The contents are @C (= decimal 12) therefore there are
. (12 x 64) + 1 = 769 us to go before the interrupt.

........................... t= 1920 us

C_RQ D t=1921 s

Tnterrupt Jump to the interrupt routine. If the data registers
routine RDTDIS and RDTEN are read during this routine, the
interrupt timer flag and the 1RQ line will be reset
(multiple interrupts!).
RTI Return from interrupt routine.
. The processor has returned to main program execution
. and continues to operate independently from the
. interval timer.



° (A = A4 = 10100100) = —92 decimal)

LDA-RDTEN| ... .. . . t=2013 us

. {Since the interrupt 92 us have passed, the two's

. complement of A4 is 5C (= 92 decimat).

. {The contents of the interval timer are decremerited by
. one every microsecond until it is restarted by the

. processor).

8. Polling mode: The timer can also be operated in what is described as
the polling mode. This means that the programmable timer register con-
tents can be tested periodically to see whether a time out has occurred.
In this mode of operation the interrupt request line is disabled by
writing into one of the data registers CNTA ... CNTD. The contents
of the interval timer can then be checked by reading the data register
RDTDIS (keeping the interrupt request line disabled). Alternatively,
the contents of data register RDFLAG (address location TAD5 can be
examined to see whether the timer interrupt flag (in the interrupt flag
register) has been set. Therefore, the properties of the interval timer can
still be used to their full advantage while leaving the interrupt request
line free for another (external) device.

The following example shows the same program sequence but this time in
the polling mode. For this a new instruction will be introduced, which was
not discussed in Book |: BIT. The BIT instruction enables certain bits in
any (programmable) memory location to be tested. Therefore, the con-
tents of the interrupt flag register can also be tested with this new instruc-
tion. (Actually, it’s been around for some time). The general operation of
the BIT instruction is as follows:

* AAM The contents of the accumulator are ANDed bit by bit with
the contents of the memory location. The previous contents of
the accumulator are not altered by this instruction (similar to
the CMP instruction). However, the Z-flag in the CPU status
register is affected by the result of the AND operation (Z =1
if result = @). Either zero page or absolute addressing can be
used for the BIT instruction.

* M; >N If the contents of the tested memory location are negative,
b7 of that location will be ‘one’ and, after the BIT instruction,
the N-flag in the CPU status register will be set. Effectively, b7
of the memory location is copied into the status register
(N-flag).

* M¢—>V If b6 of the tested memory location is ‘one’ the V-flag (over-
flow) in the status register will be set. Again, b6 is copied into
the status register.

As we know, the interrupt flag register in the interval timer consists of two

flags: b7 is the timer interrupt flag and b6 is the PA7 interrupt flag. The

state of these flags can therefore be determined by reading data register
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RDFLAG. By using the BIT instruction together with a suitable branch
instruction only five memory locations are required for the whole pro-
cedure. The relevant branch instructions for testing these flags are listed
below:
a. to test the timer interrupt flag (timer in polling mode):

BPL: branch if N-flag = timer interrupt flag =0

BMI: branch if N-flag = timer interrupt flag =1
b. to test the PA7 interrupt flag (PA7 in polling mode):

BVC: branch if V-flag = PA7 interrupt flag = 0

BVS: branch if V-flag = PA7 interrupt flag = 1
If the processor writes into one of the data registers CNTA . .. CNTD, the
interval timer will be started, the interrupt flag will be reset and the
interrupt request line will be disabled. The interval timer will then be in
the polling mode.
If we use data register CNTC (instead of CNTG) in our previous example,
the division factor will still be 64, but this time no interrupt is possible. To
detect when a time out occurs, therefore, we need to examine the contents
of the interrupt flag register to see when the interrupt flag (b7) is set. To
do this, all that is required is to examine the contents of the data register
RDFLAG as illustrated below:

(_POLMOD )

LDA 1E {initial value of timer = 1E)
STA-CNTC | e t=0
. (uP and timer operate independently)
LDA-RDTDIS| (A = 0C; not yet time out)
........................... t=1152 pus
. (Another 769 us to go)
. (uP and timer operate independently)
........................... t=1921 us
(time out)
LLDA-RDTDIS (A=A4=10100100 = —92 decimal)
........................... t=2013 us

(92 us have elapsed since the interrupt flag was set)

etc.
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The interval timer is again loaded with the initial value of 1E. This means,

as we now well know, that the timer interrupt flag will be set after 1921 us

(CNTC has a division factor of 64). The first time that the data register

RDTDIS is read the timer has not yet reached the time out therefore the

timer interrupt flag will not be reset (as it has not yet been set!!). The

processor and the timer will continue to operate independently until the
loop POLL. Here, the data register RDFLAG is continually interrogated
until the timer interrupt flag is set (1 us after the time out). As soon as the
interrupt flag is set the processor will continue with the main program
operation (again, independently from the timer}). When the data register

RDTDIS is read the second time, the timer interrupt flag will be reset and

will remain so until the next time out {256 us) or until new information is

entered into one of the data registers.

9. As we are well aware, the timer may operate either in the polling mode
or in the interrupt mode. In some instances it may be desirable to alter-
nate between the two modes of operation. This means, for example,
that if the timer is operating in the polling mode, and the timer inter-
rupt flag has not yet been set, the programmer can put the interval
timer into the interrupt mode without having to start it afresh. This can
be accomplished by storing the contents of the accumulator on the
stack, reading the data register RDTEN and then replacing the contents
of the stack in the accumulator. Thus:

. The interval timer is operating in the polling mode.
PHA Save the contents of the accumulator on the stack.
LDA-RDTEN Change to interrupt mode
PLA Restore previous accumulator contents
. The interval timer will now operate
. in the interrupt mode

It follows therefore, that the operation of the interval timer can also be
changed from the interrupt mode to the polling mode:

. The interval timer is operating in the
. interrupt mode
PHA | Save the contents of the accumulator
LDA-RDTDIS:. Change to polling mode
PLA Restore previous accumulator contents
. The interval timer will now operate in
. the polling mode
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In both cases, the contents of the programmable timer register are
unaffected and the division factor will not alter when the data register
is read.

10. Reading from and writing to the interval timer

a.

Reading the data registers RDTDIS, ROTEN and RDFLAG

The microprocessor is able to read the instantaneous value of the
data registers RDTDIS and RDTEN. From this information it can
calculate how much time is left before a time out occurs, or how
much time has elapsed since the time out.

Reading the data register RDTDIS causes the interval timer to be
placed in the polling mode and disables the interrupt request line.
The timer interrupt flag is set after a time out.

Reading the data register RDTEN causes the interval timer to be
placed in the interrupt mode.

When a time out occurs, the timer interrupt flag is set and the IRQ
tine is pulled low to cause an interrupt request.

By reading the data register RDFLAG, the processor can determine
whether or not the timer interrupt flag has been set or not.

The division factors 1, 8, 64 or 1024 are preset depending on
which of the data registers CNTA ...CNTH are written into.
Reading any of the data registers RDTDIS, RDTEN or RDFLAG
will not affect the division factor, if this is done before a time out.

If one of the data registers RDTDIS or RDTEN is read after a time
out, the timer interrupt flag and the interrupt request line will both
be reset. The timer interrupt flag will not be reset, however, if the
interrupt occurs at the same time the data register is read.

When the interval timer causes an interrupt request, the micro-
processor will branch to an interrupt {(sub)routine. It is advisable
to start this routine by reading the data register RDTDIS so that
the timer interrupt flag and the interrupt request line are reset.
This will prevent the same interrupt routine from being run when
the processor returns to the main program.

. Writing into data registers CNTA ... CNTH

Writing into one of the data registers CNTA ... CNTD causes the
interval timer to be started in the polling mode. The division factor
is also established and will not change until the time out occurs.
Writing into one of the data registers CNTE . .. CNTH causes the
interval timer to be started in the interrupt mode. The division
factor is again established and will not change until the time out
occurs.

When information is entered into one of the data registers CNTA ..
.. CNTH, the timer interrupt flag and the interrupt request line are
both reset.

This concludes the description of the interval timer. We have now dis-
covered how to use eleven data registers and the timer interrupt flag. We
are also familiar with the two modes of operation: the polling mode and
the interrupt mode. However, before we can put all this theory into
practice, yet another important aspect of the PIA is stili to be discussed:
the edge detector.
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Edge detection: the PA7 mode

The peripheral interface adapter is capable of detecting pulses. The struc-
ture of the edge detector is very simple; it has one input and one output.
Its input is port line PA7 and its output is the interrupt request line. The
edge detector can be programmed to activate the interrupt request line
when there is either a positive or negative pulse transition on the PA7
input line. When a pulse is detected, b6 in the interrupt flag register will be
set. If the microprocessor is to operate in conjunction with the edge
detector, port line PA7 must be programmed as an input.

The programmer has the option of preventing the edge detector from
causing an interrupt request. As shown in figure 12, the edge detector con-
sists of four ‘control registers’:
EDETA,; address location 1AE4
EDETB; address location 1AES
EDETC; address location 1AEB
EDETD; address location TAE7
The control registers EDETA and EDETC are used when a negative going
pulse is to be detected and registers EDETB and EDETD are used to detect
positive going pulses. When control registers EDETA and EDETB are used
the edge detector will be placed in the polling mode and the interrupt
request line will be disabled. When control registers EDETC and EDETD
are used the edge detector will be placed in the interrupt mode and the
interrupt request line will be enabled.

Two common applications for the edge detector are shown in figure 13.
The first of these uses port line PA7 as a serial data input and the second
uses all eight of the port A input/output lines (programmed as inputs) to
transfer a 7-bit ASCII code from a keyboard to the computer.

polling mode

interrupt mode

Serial input
As we know from Book |, the majority of data manipulated inside the
computer is transferred in parallel form (byte by byte). However, the
computer is also capable of transferring data serially.
Serial data transfer is an economical method of conveying information and
is absolutely necessary if the computer is to be connected to a printer,
a video terminal or other such peripheral device. The most often used
method of serial data transfer is the ASCIi (American Standard Code for
Information Interchange) code which, as can be seen from figure 13a,
consists of the following components:
1. one start bit
2. eight data bits (b@ ... b7)
3. one parity bit
4. two stop bits
More often than not, only seven of the eight available data bits are actually
used. A complete breakdown of the ASCII code will be given in the Junior
Computer Book I11.
A certain bit time, t2, is assigned to each bit in the serial data train. The
time interval between each (expected) data bit is therefore constant. The
duration of the start bit is 1% times the duration of the bit time, and, as
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there are two stop bits, the duration of the stop bits is twice that of the
bit time.
The transfer of serial data is always preceded by the start bit. This means
that when the serial data input line to the particular device is high, the
computer understands that there is no data to be input. However, when
the serial input line goes low it means that information is on its way. This
level transition can easily be detected by the edge detector of the periph-
eral interface adapter. In the given example the edge detector must be
programmed to react to a negative going pulse transition (the start bit
going low). Once the computer has recognised a start bit by means of the
edge detector, it is no trouble at all for it to read in the serial data train:

1. The start bit is recognised (negative going pulse on port line PA7)

2. The computer waits for 1% bit times and then ‘tests’ the signal level
on PA7. In other words, it checks whether the logic level at the serial
input is high or low. In this way it can assign the value @ or 1 to the
first data bit. One bit period later the second data bit will arrive at the
serial input. Again the processor tests to see whether the logic level is
high or low. This process is repeated until the last data bit (b7) is read
into the computer. Each bit is tested halfway through a bit period.

3. One bit period after the last data bit is read the parity bit arrives at the
serial data input. This bit is used for testing purposes and informs the
processor whether the serial data stream that has just been transferred
contains an even or odd number of ones or noughts. It is then a simple
task for the computer to establish whether an error has occurred during
the data transfer, )

4. The serial data transfer is then ended by two stop bits. It should be
noted that both stop bits have the opposite polarity to the start bit
(start bit is low, stop bits are high).

5. The microprocessor will then wait for the next negative going pulse on
the serial data input line (PA7). As soon as the edge detector receives
this information the above procedure is repeated.

Parallel input

As we know, the Junior Computer is also capable of reading paralle! input
signals at port A (or at port B for that matter). Figure 13b shows the
connections required to transfer data from an ASCIl keyboard to the
computer. When a key is depressed the (ASCII) code for that key is output
from the keyboard in parallel form. Seven of the available bits are used
for the actual code. As soon as the key code is stable on the data lines
b@ ... b6, the keyboard will generate a ‘strobe’ pulse. The eighth data bit
(b7) is used for the data strobe and when this line goes high the key code
will be accepted by the computer (as this is the line that is connected to
the edge detector). In other words, when a positive going pulse is detected
on port line PA7 the stable key data can be read into the computer.

These two applications illustrate the operation and possible uses for the
edge detector. When data is to be transferred between the computer and
certain peripheral devices connected to it, the edge detector becomes
absolutely indispensable. Several other uses for the edge detector will be
described in Book I1l.
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bl ... b6 = ASCII — Code
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Figure 13. Two practical examples of the possible uses of the edge detector: serial {a)
and paraliel (b) data entry into the Junior Computer via port A. It is clear that prior
to using the edge detector, port line PA7 should be programmed as an input.

Programming the edge detector

As far as software is concerned, the edge detector consists of four ‘control’
registers. As shown in figure 12, these are EDETA, EDETB, EDETC and
EDETD. When data is entered into one of these control registers, the edge
detector is programmed to react to a positive or negative going pulse on
port line PA7 (EDETA and EDETC for negative going pulses, EDETB and
EDETD for positive going pulses).

The edge detector operates in conjunction with the interrupt flag register
inside the PIA. Here, bit 6 is the flag for the edge detector and is referred
to as the PA7 interrupt flag. If, for example, the edge detector is pro-
grammed to react to a negative going pulse on PA7 and such a pulse
occurs, the PA7 interrupt flag in the interrupt flag register will be set. Of
course, if it is programmed to detect positive going pulses, the latter type
will cause the same reaction.

Similarly, such pulses can be used to control the interrupt request line. If
the programmer wishes to enable an edge detector interrupt request (by
entering any bit pattern into one of the control registers EDETC or
EDETD), the interrupt request line of the PIA will go low the moment
the PA7 interrupt flag is set. Thus, the following similarities exist between
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the timer interrupt flag and the PA7 interrupt flag:

— the timer interrupt flag is set one microsecond after a time out occurs.
Provided the timer has been programmed to enable the interrupt
request, the IRQ line will go low the moment the timer interrupt flag is
set.

— the PA7 interrupt flag is set when a pulse transition is detected at the
PA7 input. Provided the edge detector has been programmed to enable
the interrupt request, the IRQ line will go low as soon as the PA7 inter-
rupt flag is set.

Summary

The timer interrupt flag and the PA7 interrupt flag are both incorporated
in the interrupt flag register of the PIA. Both are independent of each
pther and both can be scanned in the polling mode by using the BIT
instruction:

BIT-RDFLAG test the timer interrupt flag
BPL has the timer interrupt flag been set?
i if so, continue; if not, loop

BIT-RDFLAG test the PA7 interrupt flag
BVC has the PA7 interrupt flag been set?
. if so, continue; if not, loop

By writing into one of the control registers the edge detector is pro-
grammed to respond to a positive going or negative going pulse on PA7.
Entering a random bit pattern into control registers EDETA or EDETB
prevents an interrupt request when the PA7 interrupt flag is set. If the
edge detector is to cause an interrupt request when a certain pulse is
detected, data will have to be entered into the control registers EDETC
or EDETD. The following examples should clarify the situation:

STA-EDETA or the edge detector responds to a negative going
STX-EDETA or pulse on PA7, the PA7 interrupt flag will be

STY-EDETA set, but the IRQ line is disabled

STA-EDETB or the edge detector responds to a positive going
STX-EDETB or puise on PA7, the PA7 interrupt flag will be
STY-EDETB set, but the |RQ line is disabled
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STY-EDETC set and the IRQ line is enabled
STA-EDETD or

STX-EDETD or
STY-EDETD

the edge detector responds to a positive going
puise on PA7, the PA7 interrupt flag will be

STA-EDETC or the edge detector responds to a negative going
STX-EDETC or pulse on PA7, the PA7 interrupt flag will be
1 set and the IRQ line is enabled

Further comments on the P1A

As we already know, the timer and the edge detector operate in conjunc-
tion with the interrupt flag register. The timer interrupt flag (b7) and the
PA7 interrupt flag (b6) are set after a time out and a pulse transition on
PA7 respectively. If the programmer permits the timer or the edge detector
to cause an interrupt request, the IRQ line will go low as soon as the timer
interrupt flag or the PA7 interrupt flag is set. To prevent the same inter-
rupt request from being caused several times, the IRQ line must be reset as
soon as the interrupt is serviced (in the interrupt routine). When resetting
the IRQ line, the following points should be borne in mind:

1. The interval timer causes an IRQ: |f the programmer has enabled the
interval timer to cause an interrupt request, the timer interrupt flag is
set after the time out and the IRQ line will go low. The processor will
now branch to an interrupt routine. At the start of this routine the IRQ
line must be reset, so that the same timer IRQ cannot be caused after
the return to the main program (RTI). The timer interrupt flag and the
IRQ line can be reset during the interrupt routine by writing into data
registers CNTA ... CNTH or by reading one of the data registers
RDTDIS or RDTEN. When one of the data registers CNTA .. .CNTH
is written into, the interval timer starts afresh and defines whether the
timer should cause a further interrupt request or not. When data
registers RDTDIS or RDTEN are read, the interval timer does not start
from scratch, but only defines whether the interrupt request is enabled
or disabled.

2. The edge detector causes an IRQ: |f the programmer has enabled the
edge detector to cause an interrupt request, the PA7 interrupt flag is set
after a certain pulse transition has been detected at the PA7 input and
the 1RQ line will go low. The processor will now branch to an interrupt
routine. At the start of this routine the IRQ line must be reset, to
prevent the same PA7 IRQ from being caused a second time once the
processor has returned to the main program. The PA7 interrupt flag and
the IRQ line can be reset by reading the contents of the interrupt flag
register RDFLAG.

3. The IRQ vector: Memory locations 1A7E and 1A7F in the Junior
Computer are reserved for the interrupt request vector. This means that
the computer is able to determine or alter the IRQ vector during the
course of a program. This enables the interval timer and the edge
detector to be allotted their very own interrupt routines.

By reading the interrupt flag register RDFLAG the processor can deter-
mine which of the two devices causes the interrupt request. If, for
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example, the timer interrupt flag was set, the processor will set the IRQ

vector to the start of the timer interrupt routine and otherwise to the

start of the PA7 interrupt routine. When very high processing speeds are
required, it is often necessary to incorporate several ‘interlaced’ inter-
rupt routines. This aspect will be considered in greater detail in

Book I,

4. The reset line RES: The Junior Computer is initiated when the reset
line is taken low. This line also affects various registers inside the PIA.
When the reset line (RES) goes low the following will happen:

1. The contents of all the input/output registers are cleared. Thus, all
port A and port B lines are declared inputs. Peripheral devices are
gow unable to inadvertently destroy the output registers PAD and

BD.

2. No interval timer or PA7 interrupt request can be caused. Thus, it is
impossible for the processor to branch to an interrupt routine — for
which no IRQ vector has yet been set.

3. The RES signal programs the edge detector to respond to a negative
going pulse on PA7. During the reset, however, the PA7 interrupt
flag may be accidentally set by a peripheral device. Before the edge
detector is used therefore, it is good practice to reset the PA7 inter-
rupt flag by reading the interrupt flag register RDFLAG.

This completes the discussion of the PIA. The following program

examples show how to utilise the interval timer and the PIA. The edge

detector has been deliberately omitted as it will be dealt with in the next
book. Figure 14 shows the complete block diagram of the 65632 IC. It
gives the internal structure of the PIA, the interval timer, the edge detector
and the RAM memory. The software configuration of these components
is shown in figure 15. The address locations required for the micropro-
cessor to access the various PIA registers are also shown. Address line A7 is

PAg PA7 [2:1] P87

DATA DATA
DIRECTION OQUYPUT PERIPHERAL PERIPHERAL ouTPUT DIRECTION
REGISTER REGISTER DATA BUFFER DATA BUFFER [#-— REGISTER REGISTER

A A B B
A v 8
EDGE DETECTOR
[ INTERNAL BUS ]
DATA pr
s oecopen cHp SELECT staric oior fae] nrERvaL
BUFFER LoGIC RAM Logic TIMER
i o I T‘ o .' 1 T T T r
of o7 A A6 RS cs1 C82 @2 Rmw RES iRG 80915-6-14

Figure 14, The block diagram of the muiti-function peripheral interface adapter. The
input/output ports, the data direction registers, the interval timer, the edge detector
and the 128 bytes of RAM are all interconnected via the internal {data) bus.
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l¢——————ADH=1A >e ApL————»|
—————1 -4 -A- i > -
A15 At4 A13 A12 [ At1 AIB A9 A8 [A7[ A6 [ A5 | A4 | A3 |AZ | A1 (AR {128 bytes PIA-RAM
X{g) X(@) Xxi@) 1 1 3 1 Xig|e | X X X X | X ] X [X|U1A00...1A7F)
1AB0 [ 1 [ X(@) | X(0) | X(0)| X(@) | @ | @ @ | PAD
1A81 | 1 | XI0) | X{@) | Xig)| X(@) | @ | @ 1 | PADD
1A82 | 1 | X(Q) | X(@) | X{@)| X(@) | @ | 1 ¢ | PBD
1A83 | 1 | Xi0) | X(0) | X(@}| X(8) | @ | 1 1 | PBDD
1AF4 | 1 [ X(1jx()] 1 [} 1 ') Q | CLKIT
. 1AFS [ 1 i xtnx{1)| 1 [} 1 ] 1 | CLK8T
disable
) 1AF6 [ 1 [ X{1) | X{t)]| 1 ] 1 1 @ | CLK64T
Timer-IRQ
TAF7 [ 1 [ X Xx{1)] 1 '] 1 1 1 | CLKIKT
TAFC| 1 | X{1) [ X{1}] 1 1 1 1] 9 | cLkaT
TAFD | 1 [ X{1) | X(1}} 1 1 1 @ 1 | CLKS8T
enable
. TAFE] 1 [ X{D [ X{1] 1 1 1 1 0 | CLK64T
Timer IRQ
1AFF [ 1 [ X{1) | X{(1)| 1 1 1 1 1 | CLKIKT
disable Timer-IRQ 1AD4| 1 | x(1) | X(@}|x(1)] @ 1 1X(@) |0 | RDTDIS
enable Timer-IRQ 1ADC | 1 | X(1) | X(@) | X{1)] 1 1 |X(@) |0 |RDTEN
1ADS | 1 | X(1) | X{(0) | X(1) | X(@) | 1 |X{@) |1 ! read flag register
disable PA7-IRQ 1AE4| 1 [ XM [ X() | @ | X(@) |1 1] @ | write neg EDET
disable PA7-IRQ 1AES | 1 [ X(1) [ X(1}| @ Xi@ |1 ] 1 | write pos EDET
enable PA7-IRQ 1AE6| 1 [ X{1)|X(1}| @ X(@ |1 1 @ | write neg EDET
80915-6-15 enable PA7-IRQ 1AE7| 1 [ X(1}[X(t} | ©@ Xi@ |1 1 1 [ write pos EDET

Figure 15. This table gives the information required to address the individual data
and control registers of the PIA. Address line A7 is used to select between the
128 bytes of RAM and the functions of the interval timer and the edge detector.

used as the RS line for the PIA (RS = RAM Select). When this line is low
the 128 RAM locations in the PIA can be addressed. If, however, RS is
high, the CPU can access the interval timer, the input/output registers or
the edge detector. Therefore, address locations 1A@@ . . . 1A7F belong to
the RAM memory and locations 1A8@ ... 1AFF will address the various
registers. It should be noted that not all the address locations from
1A80 ... 1AFF are actually used. This is because the address decoding
pertaining to the 6532 chips is incomplete.

Operating the interval timer in the interrupt mode
After all this theory concerning the interval timer etc, it is high time to put
what we have learnt into practice. For this purpose we will write two pro-
grams: INPUT and REPEAT. The first of these two programs will make it
possible to enter a tune into the Junior Computer with the aid of the key-
board given in figure 5. The tune can then be played back by means of the
second program.
Since the remainder of this chapter serves to explain how to program the
interval timer, we will refer to subroutines developed earlier for the PLAY
program. The subroutines KEYIN, KEYVAL and EQUAL are of particular
interest. We can also adopt the keyboard and loudspeaker interface with-
out having to modify anything.
The problem to be solved here concerns the entering of a tune into the
Junior Computer, which the computer will then repeat automatically.
What information do we have to enter into the computer? Two factors are
involved when playing a note:
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. The pitch or frequency of the note. In the PLAY program it was seen

how each key that was depressed was assigned a separate frequency.
The same principle also applies to the INPUT program.

. If the computer is to repeat the entered melody it must know the

length of time that each of the keys was depressed. Therefore, the
duration of each note must also be ascertained. This can be measured
quite simply by utilising the interval timer.

Thus, the computer must store both the frequency of the tone and the
period of time that each key was depressed. Two memory locations must
therefore be reserved for each note in the melody to be played. The
frequency of the note depends on the value of the key. Since there are
sixteen keys available, the value of each key will be between @ . .. F, The
interval timer will measure the time duration for which a key is depressed
and will assign a value of between @0 . . . FF to it.

The INPUT program

The entry routine INPUT must fulfil the following requirements:

1.

2.
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When a key is depressed a tone corresponding to the value of that key
should be heard from the loudspeaker.

Simultaneously, the computer must determine the length of time that
the key was depressed for. Since two events are apparently happening
at the same time, usual program techniques will no longer be valid. For
this reason we will have to resort to using interrupt routines so that we
are able to execute two parallel events on the Junior Computer.

. Every key that is depressed must have a particular value assigned to it.

This is specified by the computer during the KEYVAL subroutine.

. It must be possible to scan the keyboard at a very high speed. This in

fact poses no problems due to the subroutine KEYIN. Once a depressed
key is detected, it must be debounced, which is taken care of by the
(well known) DELAY routine.

. When the key is released, the loudspeaker should go quiet and the

value of the key together with the length of time it was depressed
must be stored. These values must be stored in the memory locations
0100 . .. 01D8 of page 1. If this memory area happens to be filled, the
computer must jump back to the monitor program and ignore the key-
board.

. Before a melody can be stored in the Junior Computer, the ‘melody

memory’ must be prepared. This involves filling the entire melody
memory with the ‘dummy’ value 77 and setting a pointer to the initial
are location.

. The key value must be stored first followed by the length of time that

the key was depressed. {f, for instance, the keys 9, A, B and C (values)
are depressed in that order, the following information must be stored
in the melody memory:

Address: Data:

0100 @9 = key value
0101 WW =00 ... FF = duration of depressed key
0102 QA = key value



0193 XX =00 ... FF = duration of depressed key

0104 0B = key value

9105 YY =00...FF =duration of depressed key
0106 @C = key value

0107 Z2Z =00 ...FF =duration of depressed key
0108 77 =dummy value

0109 77

91D7 77

91D8 77 = end of melody memory

All the above requirements are met by the INPUT program, the flow chart
of which is shown in figure 16. Initially, the program disables the interrupt
request line with the instruction SEI. As a result, no accidental interrupts
can be caused. The computer then sets the IRQ vector to point to address
location 1A20, the start address of the interrupt routine IRQIN (figure
17a), which determines the length of time a key is depressed. We will
return to that later.

Next, the input/output ports of the PIA are programmed. As shown in
figure 5, the keyboard matrix is connected to port A. Lines PA7 ...PA4
are programmed as outputs and lines PA3 ... PAD are programmed as
inputs. The loudspeaker interface is connected to port tine PB®. This line
will therefore have to be programmed as an output.

Furthermore, the NOTE pointer for the melody memory (figure 17b} has
1o be set. This pointer indicates an address location on page 1, in which
the value of the next key to be depressed is to be stored. Initially, there-
fore, this pointer will point to address location @100. The end address of
the melody memory is 01D8. If the NOTE pointer exceeds this address,
the Junior Computer must jump back to the monitor program. Thus, the
value $ D8 is stored in location ENDL. A comparison of the low order
address byte of the NOTE pointer with the contents of ENDL will deter-
mine whether or not the memory area is full.

The computer has now reached the label INA. Here, the melody memory
area from locations G100 . . . @1D8 are filled with the dummy value of 77.
The computer then scans the keyboard. If no key has been depressed, it
will remain in the loop KEYSCN -BEQ-KEYSCN. If, however, the
contents of the accumulator are not equal to zero following a return from
the KEYIN routine, a key must have been depressed. The key is then
debounced by the subroutine DELAY - (figure 8b) and if the key is still
depressed after this, the processor will jump to the subroutine KEYVAL
(figure 6) where it will calculate the value of that key. Since there are
16 possible keys, the value will be in the range 00 . . . OF. The calculated
key value is then stored in location KEY after the return to the main
program, The flow charts of all the subroutines involved are given in
figures 6 and 8. They were described in detail in relation to the PLAY
program.

And now the fun begins!! Once the value of the depressed key has been
determined, the computer has to produce a tone from the loudspeaker. To
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78 SEI disable interrupts
D8 cLD binary arithmetic

A9 LDA #2¢
8D | STA—IRQL [1A7E
A9 | LDA #1A
8D | STA—IRQH |1A7F
A9 | LDA #F9
8D} STA —PADD | 1481
A9 LDA # 901
8D | STA —PBDD |1A83
8D | STA -PBD 1A82
8D |STA — NOTEH [ 30DD

NOTEH <91 ~
Lov — 00 Y- 0109

1RQ-vector points to start address of
interrupt
routine IRQIN
{1A20)
PA7 ... PA4 =outputs
PA3...PAd = inputs
PB7 ...PB1 = inputs
PBy = output

AQ
8Cc | STY —PAD |1a80 PA7...PA4 =a/f
84 |STY — NOTEL|0@DC NOTEL <00
A¢| Loy #D8 Y <D8
84 | STY — ENDL | 0ODF  ENDL < D8
A9 LDA #77 A <77
ROW * $06D9
C) KEY * $00DA
TEMPX * $e0DB
.
91 | sTAz-inOTELLY | DC 77 ~pl NOTEL $a90C
NOTEH * $PODD
88 DEY Y<¥Y -1
LENGTH * $00DE
60 CPY #FF ENDL * SMJOF
X DEL * $1A00
all locations
77? IRQL * $1A7E
IRQH * $1A7F
IRQIN * $1A2¢
RESET * $1C10
CNTA * $1AF4
CNTG * $1AFE
PAD * $1A80
key depressed? PADD * $1A81
PBD * $1A82
debounce PBDD * $1A83
key depressed?
20 KEYVAL calculate key value
Ag| LDA#00 reset tone length
85 |STA—LENGTH| DE
A9| LDA#FF start interval timer
A 8D | STA —CNTG |1AFE 80915-6-16
58 cLl enable interrupts
A4|LDYZ —KEY | DA load key value

®

achieve this the processor uses the same look-up table (DEL) as it did for
the PLAY program (see figure 10). This is done following the label TONE
— this section of the program is identical to that of the program PLAY.

Meanwhile the length of time the key is depressed must also be calculated.
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(e

A9 LDA # 90

8D| STA-P8BD

1A82 PBO =0

BE{ LDX — DELY

1A00 fetch delay

| @ wait 22 us

XX -1

X=0?

AS| LDA#®1

8D | STA -PBD

1A82 PBG=1

BE | LOX ~ DEL,Y

1A@9 fetch delay

8D |STAZ -~ CNTA

AS |LDAZ~-NOTEL

XeX=1

X=@?

] 1aAFa  disable IRQ

bC A < NOTEL

AQ LDY # 00
91 | STAZ-INOTELLY
ce INY

AS JLDAZLENGTH
9 STAZ -(NOTEL),Y
E6 [INCZ — NOTEL;
F6 |INCZ — NOTEL]

4ac | JMPKEYSCN

L 1

C5 [CMPZ — ENDL| OF
1?
o BEQ @ memory full
yes
no
98 TYA

ac

DC key value » p1
DE

DC duration- p1 -
DC

NOTE “<NOTE +2

12 wait for next key

DELAYS

DEL: 1AG0
1A01
1A02
1A03
1Ag4
1A05
1A06
1AG7
1A08
1A09
1AGA
1A¢8
1A0C
1AQD
1AQE
1AGF

JMP — RESET

809156-16

8E
86
7€
77
79
BA
64
5E
69
54
4E
aA
47
a3
3E
3c

1C10

Figure 16. The flowchart of the INPUT program is very similar to that of the PLAY
program given in figure 7. The main difference is that this time the played melody is
stored in the memory of the Junior Computer.
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This is done by means of interrupt programming. A few more instructions
have been inserted between the jump to soubroutine KEYVAL and the
jabel TONE. These instructions perform the following operations:
*The contents of memory location LENGTH will be equal to the length
of time the key is depressed. Before the computer can produce a tone
for the specific key, the contents of LENGTH must be reset (LDA 00,
STAZ-LENGTH). The value $ FF is then entered into the programmable
timer register CNTG to start the interval timer. As we (should) know
{by now), this will enable the interrupt request line and preset the division
factor to 64. This means that the timer interrupt flag will be set and the
interrupt request line will go low 16,321 microseconds after the data
register CNTG was written into (255 x 64) + 1 = 16,321 us).

48 PHA save accumulator contents
E6 INCZ — LENGTH DE increment LENGTH by one
A9 LDA #FF
8D STA —CNTG 1AFE  start interval timer
68 PLA restore previous accumulator contents
a9 RTI
80915-6-17a
NOTEH
—
NOTE ) emmee [ (1] I 9 NOTE 1
——
LENGTH 1
NOTE 2
LENGTH 2
NOTE 3
LENGTH 3
NOTE 4
LENGTH 4
77
77
| . —. smm——
—_
77
[ o l o8 77 809156-17b

Figure 17. The interrupt routine IRQIN (a) is used by the INPUT program to
determine the length of time the key is depressed. Figure 17b shows how the key
value and its duration are stored in the melody memory.
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When the interval timer is started the interrupt request line of the PIA is
enabled. The next instruction in the program (CLI) clears the interrupt
flag of the CPU and enables its interrupt request line. Therefore, if the
interval timer causes an interrupt request the CPU will be able to acknowt-
edge the interrupt.

Only now will the computer start producing a tone. For this it fetches the
value of the depressed key from location KEY followed by the frequency
of the note to be played from the look-up table DEL. The loudspeaker is
then switched on and off in exactly the same way as for the PLAY
program. While the tone is being produced the keyboard is scanned by the
subroutine KEYIN to check whether the key is still being depressed. While
the key remains depressed, the Junior Computer will continue to produce
a tone.

As the interval timer operates independently from the CPU, the timer will
cause an interrupt request after 16,321 us. The interrupt request line will
then be pulled low and the computer will branch to the interrupt routine
IRQIN (figure 17¢). At the start of the interrupt routine the contents of
the accumulator are saved on the stack (PHA) and then the contents of
location LENGTH are incremented by one. The CPU then restarts the
interval timer (LDA #FF, STA-CNTG) and enables the |RQ line once
more. The interval timer will again operate independently from the CPU.
Before returning from the interrupt routine the previous accumulator
contents are restored (PLA).

Once the computer has returned to the main program it will recommence
producing the tone until the key is released. After 16320 us the interval
timer will have again reached a time out following which the computer will
branch to the interrupt routine once more, thereby incrementing the
contents of location LENGTH by one. The maximum duration that can be
measured while a key is depressed is therefore:

255 x 64 x 2’53= 4161600 us = 4.1616 seconds

[ initial timer value ] [ division factor ] | maximum contents of LENGTH |

(not counting the time required by the processor to service the interrupt
routine). Thus, while producing a tone, the computer can simultaneously
measure how long a key is depressed. The maximum duration can there-
fore be up to four seconds. If this period is exceeded, the processor will
measure an incorrect time. No error will be reported (to keep the program
as simple as possible).

Each time an interrupt request occurs the computer will leave the tone
producing routine {TONE) to which it returns once the interrupt routine
has been executed. The CPU then runs through the subroutine KEYIN to
check whether the key has been released. If the key has been released, the
processor will return to the TONE routine with a value of zero in the
accumulator. Thus, the processor will stop producing the tone and will
branch to the STORE routine. All the details concerning the key that has
just been released will have been stored in memory locations KEY and
LENGTH.

In the meantime, however, the interval timer could have caused another
interrupt request which would lead to miscalculation of the length of time
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the key was depressed. To prevent the interval timer from losing control of
the situation after leaving the TONE loop, further interrupt requests are
disabled. For this reason the data register CNTA is loaded with zero,
although any of the data registers CNTA ... CNTD could have been used
instead. By writing into one of these data registers the interval timer is
prevented from causing an interrupt request.

The computer then compares the low order address byte of the NOTE
pointer with the contents of location ENDL to find out whether or not all
of the melody memory area has been filled up. If so, the CPU will return
to the monitor program. If not, the processor will transfer the contents of
locations KEY and LENGTH into the melody memory. The dummy value
of 77, which was present previously, will be overwritten by the data
concerning the key. The CPU will then modify the NOTE pointer
(2 x INCZ-NOTEL) so that it points to a new address where the value of
the next key to be depressed will be stored. The computer will then wait
until the next key is operated.

The memory area from 0200 . . . @3FF was chosen for the INPUT program.
After editing the program the assembler is started with the ST key. How-
ever, before this can be done, and before the editor is started, the correct
NMI vector data will have to be stored in locations TA7A and 1A7B. These
two locations should contain the start address of the assembler program
(1F51).

After the INPUT program has been assembled, the look-up table (DEL)
and the interrupt routine will have to be loaded, into the Junior Computer.
When everything has at last been loaded, the INPUT program can be
started. Provided, of course, that the keyboard is connected. As in the
PLAY program, a tune can then be played on the keyboard. The only
difference being that this time the tune will be stored in the melody
memory. The details for the entry of the complete INPUT program are
given below:

key: display: comments:

RST XXXX XX call monitor

AD GOE2 00E2 XX

DA 00 00E2 @0

. 02 0053 0 } BEGAD = (200

+ FF 00E4 FF

N 03 05 03 } ENDAD = 03FF
AD 1 A7A 1A7A XX

DA 51 1A7A 51 } NMI vector = 1F51
+ 1 F 1A7B 1F (start assembler with ST)
AD 1C865 1CBS 20 start editor

GO 77 editor running
INSERT FF1000 FF 10 00 label 10: INPUT
INPUT 7 8 78 SEI

INPUT D8 D8 CLD

INPUT A9290 A9 20 LDA #20

INPUT 8D7E1A 8D 7E 1A STA-IRQL
INPUT A91A A9 1A LDA #1A

INPUT 8D7F1A 8D 7F 1A STA-IRQH
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key: display: comments:

INPUT A9 FOQ A9 FO LDA #F0
INPUT 8D811A 8D 81 1A STA-PADD
INPUT A901 A9 01 LDA #01

INPUT 8D831A 8D 83 1A STA-PBDD

INPUT 8D821A 8D 82 1A STA-PBD

INPUT 85DD 85 DD STAZ-NOTEH

INPUT AQO0OQ AD 00 LDY #00

INPUT 8C801A 8C 80 1A STY-PAD

INPUT 84 DC 84 DC STYZ-NOTEL

INPUT AQDS AQ D8 LDY #D8

INPUT 84 DF 84 DF STYZENDL

INPUT A9 77 A9 77 LDA #77

INFPUT FF1100 FF 11 00 label 11: INA

INPUT 91 DC 91 DC STA-(NOTEL),Y
INPUT 838 88 DEY

INPUT COFF CO FF CPY #FF

INPUT DO 11 Do 11 BNE to INA (iabel 11)
INPUT FF1200 FF 12 00 label 12: KEYSCN
INPUT 202800 20 28 00 JSR-KEYIN (label 28)
INPUT FO12 Fo 12 BEQ to KEYSCN (label 12)
INPUT 202900 20 29 00 JSR-DELAY (label 29)
INPUT 202800 20 28 00 JSR-KEYIN (label 28)
INPUT FO12 FO 12 BEQ to KEYSCN (label 12)
INPUT 202000 20 20 00 JSR-KEYVAL (label 20)
INPUT A900 A9 00 LDA #00

INPUT 85 DE 85 DE STAZ-LENGTH

INPUT A9 FF A9 FF LDA #FF

INPUT 8DFE1A 8D FE 1A STA-CNTG

INPUT 58 58 CLI

INPUT A4 DA A4 DA LDYZ-KEY

INPUT FF1300 FF 13 00 label 13: TONE

INPUT A9090 A9 00 LDA #00

INPUT 8D821A 8D 82 1A STA-PBD

INPUT BEOQ®O1A BE 00 1A LDX-DEL.Y

INPUT FF1400 FF 14 00 label 14: TA

INPUT 203100 20 31 00 JSR-EQUAL (label 31)
INPUT CA CA DEX

INPUT DO 14 DO 14 BNE to TA (label 14)
INPUT A9 01 A9 01 LDA #01

INPUT 8D821A 8D 82 1A STA-PBD

INPUT BEQ@O1A BE 00 1A LDX-DELY

INPUT FF1500 FF 15 00 label 15: TB

INPUT 202800 20 28 00 JSR-KEYIN (label 28)
INPUT FQ16 F® 16 BEQ to STORE (label 16)
INPUT CA CA DEX

INPUT DO15 DO 15 BNE to TB (label 15)
INPUT FOQ13 F@ 13 BEQ to TONE (label 13)
INPUT FF1600 FF 16 00 tabel 16: STORE
INPUT 8DF41A 8D F4 1A STA-CNTA



key:

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

80

A5DC
CS5DF
Fo17
98

A0 OO
g1 DC
c8

A5 DE
91DC
E6DC
E6DC
4C1200
FF1700
4Ci1D1C

FF2100

©
O
©
e
-
> >

FF2300
A5 DB
c903
Do 24

8 A

og O
PSSO TO
NS NN
oI N DN
e

ee

display:
A5 DC
C5 DF
Fo 17

98

AD 00

91 DC
c8

A5 DE

91 DC
E6 DC
E6 DC
4C 12 00
FF 17 00
4C 1D 1C

FF 20 00
A8 F7

85 D9
A2 04

FF 21 00
CA

30 20
06 D9
A5 D9
8D 80 1A
AD 80 1A
29 OF
C9 OF

FO 21

86 DB
85 DA
A2 G0

FF 22 00
46 DA
90 23
E8

EQ 04
DO 22

FO 20

FF 23 00
A5 DB
C9 03

D0 24

8A

4C 27 00
FF 24 00
C9 02
D@ 25

8A

comments:
LDAZ-NOTEL
CMPZ-ENDL

BEQ to ST (label 17)
TYA

LDY #00
STA-(NOTEL),Y

INY

LDA-LENGTH
STA-(NOTEL),Y
INC-NOTEL
INC-NOTEL
JMP-KEYSCN (label 12)
label 17 (ST)
JMP-RESET

last INPUT instruction
label 20: KEYVAL

LDA # F7

STAZ-ROW (@@D9)
LDX # 04

label 21: KEYA

DEX

BMI! to KEYVAL (label 20)
ASLZ-ROW (@0D9)
LDAZ-ROW (G0D9)
STA-PAD

LDA-PAD

AND # QF

CMP #0QF

BEQ # KEYA (label 21)
STXZ-TEMPX (00DB)
STAZ-KEY (@@DA)
LDX #00

label 22: KEYB
LSRZ-KEY (G@DA)
BCC to ROWA (label 23)
INX

CPX #04

BNE to KEYB (label 22)
BEQ to KEYVAL {label 20)
label 23: ROWA
LDAZ-TEMPX (@@DB)
CMP # 03

BNE to ROWB (label 24)
TXA

JMP-KEYC (label 27)
label 24: ROWB

CMP #02

BNE to ROWC (label 25)
TXA



key:

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

18
6904
D27
FF2500
coe1
D226

8 A

NS NNS
S 0O N
(=
S

L=
(@]

2700

OMO=S0DOTQo O
CTTMO©ODPSO©NS ©®

w >
o ©
o e g
S-S
>

60
FF2800
AD8O01A
290F
490F
60
FF2900
ADFF
FF3000

display:

18

69 @4
Do 27
FF 25
C9 o1
Do 26
8A

18

69 08
Do 27
FF 26
C9 oo
DO 20
8A

18

69 0C
FF 27

85 DA

A9 00
8D 80
60
FF 28
AD 80
29 OF
49 OF
60
FF 29
AQ FF
FF 30
88
DO 30
60
FF 31
EA
EA
EA
EA
EA
60

00

00

00

1A

1]
1A

00

00

e0

comments:

cLC

ADC # 04

BNE to KEYC (label 27)
label 25: ROWC

CMP #01

BNE to ROWD (label 26)
TXA

CLC

ADC # 08

BNE to KEYC (labei 27)
label 26: ROWD

CMP # 00

BNE to KEYVAL (label 20)
TXA

CLC

ADC #0C

labet 27: KEYC
STAZ-KEY (0@DA)
LDA # 00

STA-PAD

RTS

label 28: KEYIN
LDA-PAD

AND #0OF

EOR # OF

RTS

label 29: DELAY

LDY #FF

label 30: DELA

DEY

BNE to DELA (label 30)
RTS

label 31: EQUAL

NOP

NOP

NOP

NOP

NOP

RTS

Now that the INPUT program, including all its subroutines, has been
entered into the Junior Computer, a check can be carried out to ensure

that there were no errors during entry:

key.

SEARCH FF 10

SKIP
SKIP
SKIP
SKIP

display:

FF 10
78
D8
A9 20
8D 7€

00

1A

comments:
INPUT begins at label 10
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When we are certain that everything has been entered correctly we can
assemble the INPUT program. This can be carried out quite simply by
pressing the ST key. The next task is to enter the interrupt routine IRQIN
(figure 17a) and the look-up table DEL (figure 10). When entering the
interrupt routine the editor must be used, but this routine is not to be
assembled!!

key: display: comments:

AD QOE?2 0BE2 xx

DA 20 @0E2 20

+ 1A G0E3 1A 1A20 } 128 bytes
+ 79 O0E4 79 PiA-RAM
AD 1CBS 1CB5 20 start address of editor

GO 77 editor running

INSERT 4 8 48 PHA

INPUT EG6DE E6 DE INCZ-LENGTH

INPUT A9 FF A9 FF LDA #FF

INPUT 8 DFE1A 8D FE 1A STA-CNTG

INPUT 6 8 68 PLA

INPUT 4 9 40 RTI

RST

That takes care of the interrupt routine, and as for the look-up table:

key: display:

AD AQO 1AQ0 xx
1A00 8E
1A01 86
1AQ2 7E
1AQ3 77
1A04 70
1A05 6A
1A06 64
1A07 5E
1A08 59
1A09 54
1AQA 4E
1A08 4A
1AQC 47
1AQD 43
1AQE 3E
1AQF 3C

o
>

1
8
8
7
7
7
6
6
5
5
5
4
4
4
4
3
3

o+ F o+ o+
OmwNPmMbOmMEPONmMOmM

Now that everything has been entered, the program can be started:

key: display: comments:
AD 0200 320078 INPUT program start address
GO

The INPUT program can be left in one of three (preferred) ways:
* by depressing the RST key
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*

by filling the entire available melody memory with data; the processor

will then jump to the monitor program

* by depressing the ST key. In this instance the NMI vector will have to
point to the start address of the following REPEAT program (0000).

This means that once a melody has been entered, it can be played back as

often as required by pressing the ST key.

Warning! The Junior Computer should not be switched off after entering

the INPUT program, as the REPEAT program is still to be entered.

Although INPUT and REPEAT are two entirely separate programs, the

one is not much use without the other.

The REPEAT program

The REPEAT program is capable of reproducing the melody entered into
the memory during the INPUT program. In other words, the Junior
Computer is capable of repeating performances to perfection!! The fol-
lowing requirements must be met for the computer to be able to replay a
stored melody:
1. The computer is to convert the value of the key stored in memory into
a note. During this process it will make use of the look-up table DEL.
2. Immediately following the key value of each note in the melody
memory is the code for the length of time the note was held. With the
_ aid of an interrupt routine, this value will have to be converted back into a
definite time period. For this operation the interval timer will be in the
interrupt mode.
3. To prevent the notes from ‘running into’ each other a short interval
should be inserted between each note. The Junior Computer uses the
interval timer to obtain this pause without any outside heip. The interval
timer will be operating in the polling mode for this operation.
4. As soon as the entire melody has been replayed, the computer should
jump back to the monitor program.
The flowchart for the REPEAT program is given in figure 14. As it is very
similar to the INPUT program in many ways it can be summarized very
briefly.
To start with, the processor is again inhibited from acknowledging an
interrupt request. The IRQ vector is then set to point at the start address
of the interrupt routine. In this instance it points to address location
1A30 (for the INPUT program it pointed to address location 1A20) so
that both programs can be run independently.
Since the loudspeaker interface is connected to port line PBO, this line
must be programmed as an output. The NOTE pointer must also be set,
initially it points to address location @100, where the first key value of
the melody to be repeated is stored. The next instruction (STA-CNTA)
simply clears the timer interrupt flag and resets the interrupt request
line. This is just a safety precaution and ensures that the IRQ line will not
be low when the next instruction is executed {(CLI = clear interrupt flag =
enable interrupt request) which will enable the CPU to accept interrupt
requests.
Now the microprocessor will have arrived at label FETCH. This is where
the interval timer is started. The initial value of the programmable register
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REPEAT ) 19

78 SEI disable interrupts KeY : spapA
D8 cLD binary arithmetic NOTEL $ponC
NOTEH *  $p@DD
A9 LDA#30 |RQ-vector = LENGTH *  $P0DE
8D § STA—IRAL |1A7E startaddress DEL * $1A00
] i g R
8D | STA —IRoH |1a7¢| (1A30) IRQRE  *  $1A30
A9] LDA #01 RESET * $1C1D
8D | STA--PBDD |1A83 P8O = output RDFLAG * $1ADS
s0[ STA_PBD |1482 PB1=1 CNYA  *  $1AF4
85 [STAZ NGTEH | DD 91~>NOTEH e :}ﬁ:‘
A9] LDA#D9 } 999 pep + sam
85 | sTaz - NOTEL | DC 90 >NOTEL PBDD *  $1A83
8D [STA —CNTA |14F4
58 ] reset IR‘Q line
enable interrupts
DELAYS
@ DEL: 1A¢¢0 8E
1A01 86
1A92 7E
a9[ oA #FF } start interval 1A03 77
8D | STA —CNTG [ 1AFE S timer 1A04 70
Moz s 1405 6A
81| tpAz-iNoTEL)Y { DC load key value 1406 64
85 [STAZ _KEY| DA  keyvalue-KEY 1407 SE
c8 INY Y=Y+1 1408 59
A 81 | Loaz-inoTeL)y | DC toad duration 1409 54
85 |'STAZ - LENGTH| DE duration~> LENGTH 1A0A - 4E
A4 LDYZ — KEY | DA Y « key value 1498 4A
1A0C 47
1AGD 43
B 80915.6-18a 1AQE  3E
1A0F  3C

Figure 18. The flowchart of the REPEAT program. This program enables the Junior
Computer to replay a previously stored melody. It uses the same look-up table (DEL)
as the INPUT program.

is $ FF and the division factor is again 64, as during the INPUT program.
By writing into the data register CNTG the interrupt request line of the
PIA will be enabled. The interval timer will now operate independently of
the main routine until it reaches a time out (16320 us). The computer
therefore has plenty of time (relatively speaking!) to fetch the key value
and the length of time the key was depressed from memory. The key value
is then converted into a frequency with the aid of the look-up table DEL.
This occurs at label TONE.

The loudspeaker is switched on and off at labels TONEA and TONEB
respectively. The loop times during this process should be exactly 27 us
as during the INPUT program. For this reason two delay loops are required
instead of just the one for the INPUT program: EQUALA provides a delay
of 22 us and EQUALB provides a delay of 17 us.

The computer will continue to produce a tone .until the interval timer
reaches a time out and causes an interrupt request. The processor will then
branch to the interrupt routine at address location 1A30 (the IRQ vector
was set to this location at the start of the program). This interrupt routine
performs the exact opposite operation of that in the previous program:
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® ®
(=De

A9 LDA #09
8D STA —PBD | 1A82 PBI=0
BE | LDX - DEL,Y| 1A9¢ fetch delay

LDA #@1

A9

80| STA —PBD | 1a82 PBY =1
—

BE} LDX — DEL,Y{ 1Aa@¢ fstch delay

®@

DE A “LENGTH

P ryemvmn

duration over?

wait 17 us
XeX-1

X=0?

X o4

LDA #3¢

STA —~ CNTD | 1AF7 start interval timer

€6 [Tincz -NoTEL | D

[+
€6 | iNCZ _NOTEL ‘oc’} NOTE < NOTE +2

as[ Loveee
B1 [onz-morey | OC A<pi

[=:] CMP #77

4ac

80915-618b
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EQUALA 22us

EA NOP
ac] P -eaquaLs 1430

[+ ] DEC — LENGTH $UDE
AS LDA # FF
EA NOP 8D STA —CNTG 1AFE
ac JMP — EEND 68 PLA
e

80915-6-19h

60 RTS

80915-6-19a

Figure 19. The subroutines EQUALA and EQUALB {(a) are required by the REPEAT
program to ensure that the frequencies of the replayed notes are exactly the same as
‘the previously ‘recorded’ ones. The interrupt routine IRQRE (b) determines the
length of time the note is to be played.

this time the contents of location LENGTH are decremented by one.
During the REPEAT program therefore, the processor produces a note
(from label TONE) until the contents of LENGTH become negative, as a
result of several interval timer interrupts.

When this situation occurs, the program will branch to label TONEC.
Before the next note is fetched from the melody memory and played, the
computer must insert a short interval so that the individual notes do not
‘run’ into each other. To achieve this the interval timer will have to be
used once more, this time in the polling mode. At label TONED the
interval timer is prevented from causing a further interrupt request. The
instructions LDA #30 and STA-CNTD start the interval timer in the
polling mode, reset the interrupt flag in the interrupt flag register and set
the division factor to 1024, By using data register CNTD the interval timer
is unable to cause an interrupt request after the time out.

Once the interval timer has been started, the processor will remain in the
delay loop POLL-BPL-POLL until the timer interrupt flag is set (after
4 x (48 x 1024) + 1) = 196,612 us). This procedure is repeated four times,
as the X register is decremented by one after each time out. This means
that the total time spent in the delay loop is increased by a factor of four
to give a total delay in the region of 0.2 seconds. After this time the
computer increments the NOTE pointer by two so that it points to the
location of the next note to be fetched and played. Before fetching this
note however, the processor tests to see whether or not the NOTE pointer
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has already arrived at the end of the melody. This can be detected by the
presence of the dummy character 77. Once all the notes stored in the
melody memory have been played, the Junior Computer will return to the
monitor program.
Shown below are the steps involved in order to enter the REPEAT
program from the hexadecimal keyboard (mustn‘t get confused must
wel!l). It should now be fairly easy to assemble the program on page @
{start address 00@0), all the steps involved have been covered thoroughly.
Finally, a well known melody has been provided for readers who may
suffer from tone-deafness — have fun with it ...

key:
AD
DA

+

+

+

AD
DA

+

AD
GO
INSERT
INPUT
INPUT
INPUT
INPUT
iINPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

m
N

s—_g-—_emesee
~
>

OmM~=poassea

[e0)
(3]

FF1000

D8
A930
8D7E1A
A9 1A
8D7F1A

MOSUO®®OS
A OSONW-=
> > >

P TGO P ®®R® D>
-
s
15

©OTMEOQgUOOQOo®

m -

F
8DFE1A
A0OQO
B1DC
85 DA
cs8
B1DC
865 DE
A4 DA
FF1200
A90GO
8D821A

display:
GPE2 xx
00E2 00
0Q@E3 00
OQE4 EO
O0E5 00
1A7A XX
1A7A 51
1A7B 1F
1CB85 20
77

FF 10 00
78

D8

A9 30

8D 7€ 1A
A9 1A
8D 7F 1A
A9 01

8D 83 1A
8D 82 1A
85 DD
A9 00

85 DC
8D F4 1A
58

FF 11 00
A9 FF

8D FE 1A
A0 00

81 DC
85 DA
Cc8

Bt DC
85 DE
A4 DA
FF 12 00
A9 20

8D 82 1A

}

comments:

Q0EQ

0000

NMI-vector = 1F51

(start assembler with ST}

start address of editor

editor running
label 10: REPEAT
SEI

CLD

LDA # 30
STA-IRQL

LDA #1A
STA-IRQH

LDA # 01
STA-PBDD
STA-PBD
STAZ-NOTEH
LDA # 00
STAZ-NOTEL
STA-CNTA

CcLi

label 11: FETCH
LDA #FF
STA-CNTG

LDY # 00
LDA-(NOTEL),Y
STAZ-KEY

INY
LDA-(NOTEL),Y
STA-LENGTH
LDYZ-KEY

label 12: TONE
LDA #00
STA-PBD
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INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

BEOOD1A
FFi30¢0
201800
CA

DO 13
A9 01
8D821A
BEGO1A
FFi1400
A5 DE
3015
201900
CA

Do 14
FO12
FF1500
A204
FF1600
A930
8DF71A
FF1700
2CD51A
1017
CA

DB 16
E6DC
E6DC
Aooo
B1DC
co977
DO 11
4C1D1C
FF1800
EA
4C1900
FF1900
EA
4C2000
FF2000
60

BE 00 1A
FF 13 00
20 18 00
CA

DO 13
A9 01

8D 82 1A
BE 00 1A
FF 14 00
A5 DE
30 15

20 19 00
CA

D0 14

FO 12
FF 15 00
A2 04

FF 16 00
A9 30
8D F7 1A
FF 17 00
2C D5 1A
10 17
CA

Do 16

E6 DC
E6 DC
A0 60

B1 DC
Ccg 77
Do 11

4C 1D 1C
FF 18 00
EA

4C 19 00
FF 19 00
EA

4C 20 00
FF 20 00
60

LDX-DEL,Y

tabel 13: TONEA
JSR-EQUALA (label 18)
DEX

BNE to TONEA (label 13)
LDA #01

STA-PBD

LDX-DEL,Y

label 14: TONEB
LDAZ-LENGTH

BMI to label TONEC (label 15)
JSR-EQUALB (label 19)
DEX

BNE to TONEB (label 14)
BEQ to TONE {(label 12)
label 15: TONEC

LDX # 04

label 16: TONED

LDA # 30

STA-CNTD

label 17: POLL
BIT-RDFLAG

BPL to POLL (label 17)
DEX

BNE to TONED (label 16)
INCZ-NOTEL
INCZ-NOTEL

LDY # 00
LDA-(NOTEL},Y

CMP # 77

BNE to FETCH (label 11)
JMP-RESET (monitor; RESET = 1C1D)
label 18: subroutine EQUALA
NOP

JMP-EQUALSB (tabet 19)
label 19: EQUALB

NOP

JMP-EEND (labe! 20)
label 20: EEND

RTS

Before assembling the program it should be verified:

key:

SEARCHFF 10

SKiP
SKIP
SKIP
SKIP
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display:
FF 10

78

D8

A9 30

8D 7E 1A



The majority of the finger work is now complete. All that remains is to
enter the interrupt program IRQRE. As with the previous interrupt
routine, this routine must not be assembled:

key: display: comments:

AD OOE2 BBE2 XX

DA 30 00E2 30

* 1A 00E3 1A 1A30

+ 79 @0E4 79

AD 1CBS 1CB5 20 start address of editor

GO 77 editor running

INSERT 4 8 48 PHA

INPUT C6DE C6 DE DECZ-LENGTH

INPUT A9 FF A9 FF LDA #FF

INPUT 8DFE1A 8D FE 1A STA-CNTG

INPUT 68 68 PLA

INPUT 4 0 49 RT!

RST

All that needs to be done now is play a tune. First we start the INPUT
program:

key: display: comments:

AD 0200 3200 A9 start address of the INPUT program
GO biank

The display will remain blank until the processor returns to the monitor
program. To enter a short melody:

key: display: comments:
024577999 blank as these keys are
975555442 depressed, their value and
2220 duration are stored in the

melody memory
To replay the melody now that it has been entered:

key: display: comments:
AD gaeao (3000 78 start address of the REPEAT program
GO blank the display will remain blank until the
entire melody has been repeated;
0000 78 depressing the GO key will start the

REPEAT program once more

This brings us to the end of this chapter. We have discovered how to
program the interval timer, the edge detector and the input/output ports
of the peripheral interface adapter. We are even able to amaze our relatives
and friends by playing musical (?) tunes on the computer. By the way, a
source listing of all the programs mentioned in this chapter is given in the
appendix at the back of this book.

This chapter will serve as a useful reference when it comes to connecting
peripheral devices such as printers, video terminals (elekterminal) etc. to
the Junior Computer. Book 111 will introduce a cassette interface for the
system which will include the software required to store programs on (and
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retrieve them from) standard audio cassettes. Again, the PIA will be used
to contro! the tape recorder and to produce the FSK signal. The Junior
Computer will then evolve into a real mini-computer and will be well on
the way to becoming a complete personai computer which will be capable
of understanding high level languages such as BASIC. However, before that
point is reached, we must understand completely how all the routines
contained in the monitor program, including the editor and the assembler,
work and how they can be incorporated into user programs.
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The Monitor program
Basic ‘housekeeping’ software

For the programmer to be able to communicate with the Junior
Computer, the machine must be capable of receiving and trans-
mitting information in a form that is understandable to both.
The computer must be able to decode information entered from
the keyboard and output the processed data to the display.
Therefore, the computer needs to be programmed to recognise
various input and output parameters. This is where the monitor
software comes in.

By monitor software is meant a program, usually stored in
ROM (Read Only Memory), which provides the user with all
the control functions required to operate the system satisfac-
torily. A monitor program typically contains a number of
(sub)routines which perform such chores as program loading,
debugging and general ‘housekeeping’.

The monitor program of the Junior Computer contains a large
number of subroutines which, for instance, indicate address
and data information on the display, decode the data and
command keys and execute the particular command function
encountered (AD, DA, +, PC and GO). One of the advantages of
the monitor program is the fact that the programmer is able to
incorporate one or more of its subroutines into his/her own
program without having to develop them first,

Furthermore, the IRQ and NMI vectors are stored in RAM, so
they can be changed during the main program if required.
This is essential if more than one interrupt routine is to be used
with a single interrupt vector. All this (and more) will be
discussed in the course of this chapter.
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A review of the monitor

The monitor program of the Junior Computer is stored in EPROM. In
computer jargon such a program is a ‘resident’, insomuch as it is perma-
nently available — as soon as the power supply is turned on. The monitor
program requires a few memory locations in page zero to be kept ‘free’ for
its own use. These locations contain data which the computer must refer
to frequently and (if necessary) update in order to carry out certain
tasks. You may recall from Book 1 that many programs ended with the
break (BRK) instruction. When the computer encountered this instruction
the contents of the internal CPU registers were stored in page zero. This
was so that the programmer could examine these registers before the
Junior Computer returned to the monitor program and altered their
contents.

Basically, the Junior Computer monitor program can be compared to a
delay loop. When the computer is in this loop, it periodically scans the
keyboard (waiting for a key to be depressed) and the contents of the three
display buffers (POINTH, POINTL and INH) are multiplexed to the
display.

If the programmer presses one of the five command keys, the computer
will perform the operations corresponding to these keys. If, for example,
the AD key was depressed, the computer will interpret the next data entry
(keys @ ... F) as being an address. If the DA key was depressed, the fol-
jowing data will be stored in the address location shown on the display.
You should be totally familiar with the functions of the other command
keys from Book 1.

There are a humber of ways in which to ‘jump’ to and from the monitor
program:

1. Jumping to the monitor program
* Via the RST key: the Junior Computer will then jump into the monitor
program and will immediately initialise the two input/output ports of
the periphera! interface adapter. After this the computer will wait in a
‘loop’ until a key is depressed. The Junior Computer may now be ‘spoken
to’ via the command keys AD, DA, +, PC and GO by the data keys @ . . .F.
* Via a non-maskable interrupt: the monitor program may also be ac-
cessed via the NMI vector. If the NMI vector is set to point at address
location 1C@P, the computer will save the contents of the internal CPU
registers. The computer will then enter a loop where it once again scans
the keyboard and the display. Again, it will wait until one of the above
mentioned keys is depressed. The PIA will not be initialised if the NMI
vector is pointing to address location 1C@0.
* Via an interrupt request: the monitor program may also be entered via
the 1RQ vector. This is, however, only possible when the interrupt flag
in the status register of the CPU is reset (CLI). If the IRQ vector is
pointing to address location 1C@@, the situation will be identical to that of
the NM! vector above.
* Via the BRK instruction: as we know from Book 1, the BRK instruc-
tion utilises the |RQ vector. If this instruction is to be used to enter the
monitor program, the 1RQ vector must be pointing to address location
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1CO0. The Junior Computer wifl then store the contents of the internal
CPU registers and will enter a loop as in the cases of RST, NMI and |RQ.
* Via the JSR instruction: the programmer is able to incorporate the
subroutines of the monitor program into his/her own program. The
RTS instruction at the end of each subroutine ensures that the processor
will return to the user program upon completion of the subroutine.
* Via the JMP instruction: the programmer may include a ‘jump to
monitor’ instruction at the end of his/her program, By doing this the
Junior Computer display will light when the end of a user program is
reached as an indication to the programmer that the processor has com-
pleted the allotted task. If a JMP instruction is to be used to enter the
monitor program, the jump should always lead to address location 1C1D
(JMP-1C1D or 4C 1D 1C)). Jumping to this address will initiate a reset
sequence and the PIA will again be programmed to scan the keyboard and
display. Here too the Junior Computer will wait in a loop until a key is
operated.

2. Jumping from the monitor program

* Via the GO key: the most common method of leaving the monitor pro-
gram is to depress the GO key. After this the processor will start oper-

ating from the address shown on the display. The display will then go

blank.

* Via a non-maskable interrupt: the processor can also leave the monitor
program by means of the NMI vector. If the interrupt routine concludes

with an RTI instruction, the monitor program will be returned to upon

completion of the routine. If, however, there is no return to the monitor

program, the input/output lines of the PIA should all be programmed as

outputs immediately after leaving the monitor program to ensure that the

display does not light inadvertently. This can be accomplished quite

simply via the following program sequence:

(PHA) (save accumulator contents)

LDA 00

STA-PBD all display cathodes are ‘off’

STA-PAD all display segments are ‘off’

(PLA) (restore previous accumulator contents)

It should be noted that the contents of the accumulator need only be

saved if the accumulator is to be used by the interrupt routine. This is why

the instructions PHA and PLA are shown in parentheses.

* Via an interrupt request: the processor can also leave the monitor pro-
gram by means of the IRQ vector, provided that the interrupt flag in

the CPU status register is reset, The situation will then be the same as that

for the non-maskable interrupt.

As a reminder, the NM!l and 1RQ vectors are stored in page 1A of the

Junior Computer memory. They have been allocated the following address

locations:

NMIL: $ 1A7A

NMIH: $ 1A7B

IRQL: $ 1A7E

IRQH: $ 1A7F

The contents of the above memory locations determine where the pro-
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cessor branches to after an 1RQ, NMI or BRK instruction. Both interrupt
vectors can be set either manually or by the program itself.

So far we have been recapping on chapter 3 of Book 1 to make sure that
you will fully understand the following section.

The basic flowchart of the monitor program

The basic flowchart of the monitor program is shown in figure 1. It is
composed of the usual flowchart symbols. The monitor includes three
inputs and two outputs. The flowchart does not, however, allow for the
monitor to be exited after an interrupt.

& o

SAVE RESET

1C89 ... 1CIC 1C1D ... 1C32

store all
program (re)initialise @

data

I !

@ 1C33...1C44

JSR JSR
4 ious display address
user’s variou: and corresponding
monitor @

program . data; place key
5 RTS ‘subvouunos RTS value in

accumulator

1ca9...1c58 LV 1C5C .. .1CB4 ‘ @

restore execute
previously routine{s)
SCAND 1D88 .. .1DCB saved data ® pertaining to
SHOW 1DCC . .. 1DDE dopressed key
CONVD 1DDF ...1DF8

GETKEY 1DF9 .. .1EIF I
Lookup table 1F@F .. .1FIE
RT
3

} 80915-7 -1

Figure 1. The basic flowchart of the Junior Computer monitor program. The various
entry and exit points are clearly indicated {1 . .. 5). The address locations shown in
the figure correspond to those given in the program listing at the back of this book.
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The ins and outs of the monitor program
Input © leads to the label RESET. The CPU will enter the monitor
program at this point if the RST key is depressed. The RESET label can be
found at address location 1C1D. From this point on the processor will
initiate the PIA and reset the stack pointer. The CPU status register is also
preset — exactly how will be discussed later. What is important to know at
this stage is that between the labels RESET and START the Junior Com-
puter is programmed to control the display and scan the keyboard. In
addition, the computer will operate in the binary mode (CLD) and the
interrupt flag in the status register will be set. The Junior Computer will
therefore not acknowledge any interrupt requests.

Summary: There are various methods of entering the monitor program via

input @:

— by depressing the RST key

— by means of a JMP instruction: JMP-1C1D

— via a non-maskable interrupt: the NMl vector points to address location
1C1D.

— via an interrupt request (if the interrupt flag is reset): again, the IRQ
vector should point to address location 1C1D.

— via the BRK instruction: the BRK instruction utilises the IRQ vector.
If this instruction is to be used to jump to the monitor program, the
IRQ vector must point to address location 1C1D.

Input @ will lead to the label SAVE. This routine starts at address location

1CO0. Between the two labels SAVE and START, the contents of the

internal CPU registers are stored in page zero at the following address
locations:

PCL at address location @OEF

PCH at address location @OF®

status register at address location @@F 1

user stack pointer at address location OOF2

accumulator at address location O@OF 3

Y register at address location POF4

X register at address location GOF5

Warning!! The monitor program should only be entered via input @ with

the aid of one of the interrupt vectors. Only then can the CPU registers

PCH, PCL and the status register be saved in the correct manner.

The stack pointer will then also be pointing to the correct address location

as if the monitor program had been left via the GO key. Note: {f the user

program alters the contents of either of the PIA data direction registers,
the input/output lines will not be re-initialised immediately!

Summary: There are various methods of entering the monitor program via

input ©.

— by depressing the ST key: this causes a non-maskable interrupt. The
NMI vector must therefore be pointing to address location 1C@@. The
NMI vector is stored at locations 1A7A and 1A7B.

— via the STEP mode: this also uses the NMI vector. Many of the pro-
grams given in Book 1 were run in the STEP mode. In this mode

the individual program instructions will be executed one after the other

each time the STEP key is operated. The processor will carry out the
instruction being shown on the display and will then save the contents of
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all the CPU registers in page zero. The next instruction will then appear on
the display. Before the Junior Computer can operate in the STEP mode,
the NMI vector must be pointing to address location 1C00 (label SAVE).
This step-by-step procedure will be dealt with in greater detait later on.
— via a non-maskable interrupt caused by a peripheral device (such as a
printer): here too the NMI vector must point to address location 1CQ0.
— via an interrupt request (as long as the interrupt flag in the status regis-
ter is reset — 1 = @): in this instance the IRQ vector must be pointing to
the start of the SAVE routine (1A7F = 1C, 1A7E = 00).
— notvia the BRK instruction: the BRK instruction should not be used to
jump repeatedly into the monitor program via input @. Just to be on
the safe side, we should never branch to the monitor program via a BRK
instruction and input @ as this could easily cause the wrong program coun-
ter value to be stored on the stack (PC + 2) and the stack itself to exceed
its limits.
Input @ leads to various subroutines contained in the monitor program.
The operator may incorporate these into his/her own programs by calling
them up with a jump-to-subroutine (JSR) instruction. Each of the sub-
routines ends with instruction RTS (return-from-subroutine) to ensure
that the processor always returns to the user’s main program (output ®).
This brings us up to date on all the tasks which the Junior Computer per-
forms between the labels RESET and START and between the labels
SAVE and START. From the START label onwards the Junior Computer
enters a loop which can only be exited by operating the GO key.
Once in the loop the computer will call up various monitor subroutines
and scan the keyboard and display. If a key is depressed, the processor will
check to see whether it was the GO key. If it wasn’t, the Junior Computer
will remain in the loop. If a command key was depressed, the particular
command will be carried out; if a data key was depressed the value of the
key will appear either in the address or data section of the display (de-
pending on which command key was depressed previously). The same
procedure will then begin all over again at label START.
If some time during the loop the GO key is depressed, the processor will
exit from the monitor program via the RT! (return-from-interrupt) instruc-
tion, In other words, the monitor program would normally be left via
output @,

The STEP mode

Any discussion of the monitor program must of course include a word or
two on the STEP mode. In this mode the hardware and the software of
the Junior Computer work ‘hand in glove’. To fully understand this mode
of operation we will refer to the circuit diagram of the Junior Computer
which was given in chapter 1 of Book 1 (figure 4). This shows that pin 7
of the microprocessor (IC1) is connected to one input of the NAND
gate N5. The other input to this gate is connected to the chip select
signal K7. The output of the gate, when switch S24 is closed, is connected
to the non-maskabie interrupt line of the microprocessor. When the Junior
Computer is operated in the STEP mode the LED (D2) above the STEP/
GO key will be lit.

An address location containing an instruction will now be shown on the
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display. If the programmer wishes to execute that particular instruction
all he/she needs to do is depress the STEP key. The processor will then
leave the monitor program via output ® and start operating from the
address shown by fetching the instruction from memory. While the com-
puter is fetching the instruction, the SYNC output of the microprocessor
{(pin 7) will go_high. At this time the EPROM (IC2) is not being accessed
therefore the CS line (K7) will also be high. This means that the output of
N5 will go low to cause a non-maskable interrupt. The processor therefore
executes the instruction currently shown on the display and then services
the interrupt. The computer will then jump to address location 1C00
(label SAVE) via the NMI vector.

The processor will now have entered the monitor program once more.
This means that the EPROM will be addressed and line K7 will be low. No
further NMI will occur as the output of N5 will now be high.

During the SAVE routine the contents of all the internal CPU registers are
stored in page zero and the program counter is loaded with the address
location of the next instruction to be executed. The new contents of the
program counter are then loaded into the display buffers POINTH and
POINTL. After the START routine the computer will display the next
instruction and its corresponding address. If the STEP key is then pressed
once more the complete procedure described above will be repeated.

The interrupt vectors and the BRK instruction

Up to now we have only been interested in where to store the NMI and
IRQ vectors so that the CPU is able to service an interrupt. Now it is time
to find out exactly how the processor fetches these interrupt vectors
from memory locations 1A7A, 1A7B and 1A7E, 1A7F. The complete
procedure is shown in detail in figure 2. The memory map to the left of
the diagram can be split into two sections. The upper section consists of
RAM locations, where the operator’s program is stored. As you know, this
is made up of pages @, 1, 2, 3 and the 1/8 k of RAM in the PI1A (page 1A).
The lower section is where the monitor program is stored in the EPROM,
To clarify the interrupt procedure in the Junior Computer and to keep the
diagram as simple as possible only the most important locations have been
selected. All the various possibilities of how to jump into and exit from
the monitor program are given to the right of figure 2. By monitor pro-
gram we mean the section contained in the EPROM that we dealt with in
Book 1 and the six memory locations for the NMI, reset and IRQ vectors
at addresses 1FFA ... 1FFF. The following points provide all the
necessary information about these vectors:

1. The RST key

When the RST key is depressed the processor examines the contents of
address locations 1FFC and 1FFD to obtain the reset vector. These
locations permanently point to address 1C1D (they are stored in the
EPROM). The processor will therefore branch to the RESET label shown
in figure 1 (output ®). This same label can however also be accessed by
jumping from the user’s main program via a JMP instruction.

2. Non-maskable interrupt

As far as the Junior Computer is concerned, a non-maskable interrupt can
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Figure 2. Diagrammatic representation of the interrupt procedure of the monitor
program. The points marked 1, 2, 4 and 5 correspond to those given in figure 1.
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be initiated in three different ways:
* by depressing the ST key
by a peripheral device connected to the NMI line of the control bus.
This line is fed to the external world via the expansion connector.
by the output of N5 going low when the computer is in the STEP
mode.
Whenever the NMI input line of the microprocessor is taken low (no
matter how), the computer will perform a set procedure {see figure 2).
The processor will acknowledge the interrupt upon completion of the
current instruction’s execution. Following the interrupt acknowledge, the
processor disables further interrupts by setting the interrupt flag in the
status register. The CPU then pushes the contents of all the internal regis-
ters onto the stack (page zero). The program counter is then loaded with
the NMI vector which will be fetched from memory locations 1FFA and
1FFB. In the case of the Junior Computer, this vector points to address
location 1F2F, The processor will therefore jump to this address and carry
out the instruction it finds there, which is an indirect jump instruction.
As we know from Book 1, an indirect jump causes the processor to obtain
the absolute address from the contents of the indirect address location.
As the instruction at locations 1F2F ... 1F31 is 6C 7A 1A (jump indirect
to address location 1A7A), the processor will effect a jump to the address
contained at locations TA7A and 1A7B and from there will start the
interrupt routine.
Figure 2 shows that locations 1A7A and 1A7B contain @@ and 1C respec-
tively. This means that the Junior Computer will service the interrupt
from location 1COP, which, as we know, is the address of the SAVE
routine in the monitor program (input @). As address locations TA7A and
1A7B are in fact RAM locations, the interrupt vector can point to any
address (not necessarily in the monitor program),
3. Interrupt request
Before the processor can acknowledge an interrupt request, the interrupt
flag in the status register will have to be reset (CL1). An interrupt request
can be initiated in four different ways in the Junior Computer:

by a peripheral device connected to the IRQ line of the contro! bus.

This line is fed to the external world via the expansion connector.
* by means of an interval timer IRQ
* by means of an edge detector IRQ
by the BRK instruction
Whenever the IRQ input line of the microprocessor is taken low (provided
the interrupt flag is reset), the computer will perform a set procedure. The
programmer however, must ensure that the interrupt request line is reset
before returning from the interrupt routine, so that the processor is unabie
to service the same interrupt request more than once (see chapter 6).
Figure 2 again illustrates the various steps taken during the IRQ
procedure.
The processor will acknowledge the interrupt request upon completion of
the current instruction’s execution. Following the interrupt acknowledge,
the processor disables further interrupt requests by setting the interrupt
flag in the CPU status register. The CPU then pushes the contents of all
the internal registers onto the stack {page zero). The program counter is

*

(see chapter 6)

*
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then loaded with the IRQ vector which will be fetched from memory
locations 1TFFE and 1FFF.

In the case of the Junior Computer, this vector points to address location
1F32. The processor will therefore jump to this address and carry out the
instruction it finds there, which is an indirect jump instruction. As the
instruction at locations 1F32...1F34 is 6C 7E 1A (jump indirect to
address location 1A7E), the processor will effect a jump to the address
contained at locations 1A7E and 1A7F and from there will start the
interrupt request routine.

Figure 2 shows that locations 1A7E and 1A7F contain 00 and 1C respec-
tively. This means that the Junior Computer will once again jump to the
start of the SAVE routine {input ®@). As before, the |RQ vector can point
to any {addressable) location.

4. The BRK instruction

Although the BRK instruction was used in many of the program examples
given in Book 1, this useful instruction was not fully described. All the
more reason to do so now:

Imagine that the processor is manipulating a program which the operator
has entered into the computer. At the end of the program the processor
encounters a BRK instruction (op-code 90). As we know, the BRK instruc-
tion utilises the 1RQ vector, that is to say, the following procedure will be
exactly the same as that for an interrupt request (see point 3). Before
fetching the IRQ vector, the B flag in the status register is set and the
contents of the internal registers are pushed onto the stack. Note that in
this instance the low order byte of the program counter is incremented
twice before being stored on the stack. This means that if, for example,
the BRK instruction was located at address §22A, the saved value of the
program counter will be $22C not #22B! Therefore extreme care must be
taken when using this instruction.

One advantage however, is that the BRK instruction can be used to ‘debug’
a suspect program (section). When the operator decides that a particular
program is not functioning correctly, the BRK instruction can be used to
overwrite the first byte of an existing instruction. The program under test
will then operate normally up to this point, where the processor will
branch to the address location pointed to by the IRQ vector. As the
(absolute) IRQ vector is stored in RAM, the BRK instruction can be used
to jump to any part of addressable memory. In figure 2 the IRQ vector
(contents of locations 1FFE and 1FFF) is pointing to address location
1F32. The computer will therefore execute the indirect jump instruc-
tion it finds there and will continue operation from location 1C00 (start
of the monitor program).

5. The interrupt flag versus the break flag

When the processor acknowledges an interrupt it automatically sets the
interrupt flag in the status register. When executing a BRK instruction it
automatically sets the break flag in the status register.

Why the need for these flags? Simple. Both the interrupt request and the
BRK instruction utilise the IRQ vector. If there were no flags there would
be no way to determine which of the two operations caused the interrupt
in the first place. If, for example, several visual display units are connected
to a central computer and are operated via the two interrupt lines (NMI
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and IRQ), several interrupt routines would have to be nested. If the
interval timer is also being used, the number of possible nested interrupt
routines would increase even more. As the Junior Computer has 16 input/
output lines it is theoretically possible to connect as many as 16 peripheral
devices to these lines simuitaneously. To detect whether an interrupt was
caused by hardware or software, the status register can be examined to
check whether or not the break flag is set. This can be done quite simply
by including the following series of instructions at the start of the initial
interrupt routine:

PLA load contents of status register
PHA restore onto stack

AND 19 mask break flag

BNE branch to break routine if set

continue if not
This interrupt routine could then determine which of the peripheral
devices was responsible for the interrupt (presuming of course that it was
not the BRK instruction).
An important difference between the interrupt flag and the break flag is
that the interrupt flag can be set or reset during a program, but there are
no instructions to set or reset the break flag. The latter is set when a BRK
instruction is encountered and is only reset when the interrupt flag is set
following an interrupt request.

Using the BRK instruction for debugging

When debugging a program, it is quite feasible that the operator frequently
needs to utilise the BRK instruction to branch to an interrupt. This can be
compared to the jump-to-subroutine (JSR} instruction, but in this instance
the total instruction length is shortened to one byte {instead of three). For
this reason, the value for the program counter contained on the stack will
correspond to the address location two bytes higher than that immediately
following the BRK instruction. This does not usually cause any problems
during the debugging as, once the interrupt routine has been completed,
the processor will return to the main program to carry out the instruction
following the one which was ‘patched’ over by the BRK instruction, pro-
vided it is a two-byte instruction.

old code %236 LDA (AD)
®237 3F
0238 01

3239 next opcode

patched code 9236 BRK (0Q)
0237 NOP (EA)
0238 NOP (EA)
9239 next opcode
Thus the following analogies can be made between the JSR and BRK
instructions:
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jump to subroutine {absolute) starting at
address location XXYY

execute subroutine

return to main program

—BRK jump to interrupt routine pointed to by the contents of the |RQ vector
after saving the value of the program counter (+2) and the contents of
the status register on the stack

YY (first memory location after the one containing BRK)

XX {second location)

L start address of interrupt routine

execute interrupt routine

—RTI return to main program

If, however, the operator wishes the computer to continue main program
execution from the address location immediately following the BRK in-
struction, the value of the program counter will have to be altered before
the return-from-interrupt instruction is encountered. This can be ac-
complished by including the following program section:

PLA fetch status from stack
STA-MEM into MEM

PLA fetch low order PC (PCL)
STA-MEM+1 into MEM+1

PLA fetch high order PC {PCH)
STA-MEM+2  into MEM+2

SEC set carry

LDA-MEM+1 subtract one from PCL
SBC# M

STA-MEM+1

LDA-MEM+2  subtract one from PCH
SBC# 00 if corrected PCL = FF
PHA corrected PCH back to stack
LDA-MEM+1  corrected PCL via A

PHA back to stack

LDA-MEM status via A

PHA back to stack

RTI return to main program
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It may well transpire that the contents of the status register are altered
during the course of the interrupt routine. If the operator wishes to use
this new information in the main program — provided the old status
register is not required — the above sequence can be modified so that only
the new contents of the status registers are saved:

BRK jump to interrupt routine pointed to by the contents of the |RQ vector
after saving the value of the program counter (+2) and the contents of
the status register on the stack

start address of the interrupt routine

. execute interrupt routine

the interrupt routine has been completed and the processor should now
jump back to the main program. The new status register information is
required in the main program and will therefore have to be saved.

.
.

PLA adjust the stack pointer, in order to
PHP replace the old status with the new one
{continue with the program on p. 102)

The new contents of the status register can now be examined by the
operator during the execution of the main program.

This concludes the description of all the inputs and outputs of the monitor
program. The rough flow chart (figure 1), the BRK instruction and the
interrupts have all been explained in detail. The BRK instruction and the
interrupt structure of the 6502 microprocessor enable programs to be
tested and corrected both quickly and efficiently, even though the pro-
grams are getting longer and longer! The next step is to examine the
monitor program in greater detail — instruction by instruction.

The monitor program

As can be seen from figure 1, the monitor program contains three major
routines: RESET, SAVE and START. These routines can be evaluated by
examining each instruction in turn. The flow charts and diagrams of the
monitor program enable the beginner to understand just how the Junior
Computer operates. There is, of course, another reason for describing the
monitor program in detail: by studying the fiow charts etc. the newcomer
can assimilate his/her thought processes with those of professional pro-
grammers. This educational aspect should be borne in mind when reading
the following passages.
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RESET

Before the Junior Computer is able to communicate with the operator, via
the keyboard and display, it needs to be brought into a certain initial
condition. This is carried out by means of the RST key. As we already
know from chapter 6, the peripheral interface adapter first has to be
programmed to provide the correct input and output lines for the key-
board and display. internal CPU registers, such as the stack pointer and the
status register also have to be initialised.

When the RST key is depressed the CPU ‘instinctively’ examines the
contents of address locations 1FFC and 1FFD to ascertain the reset vector
which is, of course, address 1C1D. The processor will therefore jump to
this location and arrive at the label RESET (point 1 in figure 1).

As can be seen from figure 3, the processor then defines which of the /0
lines of port B are to be programmed as outputs. By storing the data 1E in
the port B data direction register (PBDD) port lines PB1 ... PB4 become
outputs. Hopefully, you will remember from book | that certain of the
memory locations contained on page zero are reserved for the purpose of
saving the contents of the internal CPU registers. One such location is
called PREG. This is where the contents of the processor status register are

— e
LDA #1E
1E > PBDD;
STA —PBOD PB1...PB4 are outputs
LDA #94
PREG < 00009100
STAZ - PREG
LDA #493 93—>A

STAZ — MODE A —~>MODE (00FF) {AD-mode}

STAZ — BYTES A —>BYTES (80F86) instruction length 3)

LDX # FF FF X

XS X - stack pointer

STXZ — SPUSER X - programmer stack pointer

cLD D <0 (binary mode)

SEI 1 <1 {ignore IRQ)

START
(fig. 7)

Figure 3. The RESET-routine is executed when the Junior Computer is (re)initialised.

809157 -3
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saved. [f the monitor program is left by depressing the GO key
immediately after the RST key (see figure 1), the contents of memory
focation PREG must have a particular value. The reason for this will
become clear later.

Initially, @4 is stored in location PREG. This corresponds to the interrupt
flag being set and all the other flags in the status register being reset. The
processor then enters a positive number (@3) into the address location
MODE. If the contents of location MODE are not equal to zero the Junior
Computer will operate in the AD {(address) mode, if however the data held
there is equal to zero, the DA (data) mode will be employed. In addition,
the processor enters the value @3 into focation BYTES. This means that
three bytes are to be indicated on the six displays: two address bytes and a
single data byte.

At this stage it is useful to remember chapter 5 where programs
were entered into the computer with the aid of the editor. In this instance,
the display has a variable length which depends on the instruction shown.
If the value contained in BYTES is @1, only the two extreme left hand
displays will be lit. If BYTES contains #2, on the other hand, the two left
hand and the two centre displays will be lit. However, all the displays
will be lit if the content of BYTES is 03.

After this, the CPU will set up the stack pointer to point at address lo-
cation @1FF. Since the stack pointer in the 6502 microprocessor is always
situated on page 1, only the low order byte of the pointer value will have
to be set (the high order byte will always be ©1!). The corresponding
instructions are: LDX #FF and TXS. As the stack pointer must also be
saved in page zero, the low order byte will also have to stored in location
SPUSER.

The two subsequent instructions (CLD and SEI) ensure that the Junior
Computer is operating in the binary mode and that any interrupt requests
are inhibited. When the CPU finally reaches the label START, the reset
sequence has been completed.

SAVE

The next item in the monitor program to be discussed is the SAVE
routine. As we know from figure 1, the SAVE routine is entered by way
of input @ of the monitor program. This section of the monitor saves the
contents of all the internal CPU registers in page zero. The SAVE routine
is also utilised when the computer is in the step mode.

The way in which the CPU registers are saved can be seen from figure 4.
As mentioned previously, the SAVE routine is accessed in the step mode
by way of a non-maskable interrupt. We also know (or should do by now!)
that the high and low order bytes of the program counter and the contents
of the processor status register are stored on the stack (in that order) after
a non-maskable interrupt. Prior to the NMI the stack pointer would be di-
rected to location @1xx. The CPU will store the value of the high order
byte of the program counter at this location and will then decrement the
low order byte of the stack pointer. Now the stack pointer will be pointing
to location @1xx — 1. This is where the processor stores the low order byte
of the program counter and the stack pointer is once again decremented
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SAVE

STAZ —- ACC

PLA

Il

STAZ — PREG

I

PLA

STAZ - PCL

STAZ — POINTL

PLA

i

STAZ — PCH

STAZ — POINTH

SAVEB

STYZ - YREG

STXZ - XREG

®— TSX

STXZ — SPUSER

LDX #01

STXZ — MODE

JMP — START

START
(figure 7}

80915 -7 - 4a

1Ced . . .1CIC I

A > ACC (90F3)
P>A

A —>PREG (9UF1}

PCL—>A

A —>PCL (9EF)
A~ POINTL (#GFA)
PCH—>A

A~ PCH (0gFQ)

A ~>POINTH (@0FB)

Y = YREG (89F4)

X = XREG (90F5)

SP>X

X > SPUSER {(00F2) b

} MODE (0OFF) + 00
- AD-mode

#IXX-2 P

1XX-1 PCL
g1XX PCH
FIXX +1 data

bbb

highest position
in stack

0O

®
1
(Cox ]®

4

stack
pointer

80915-7-4b

Figure 4a. The detailed flowchart of the SAVE routine, which is executed after a
jump to monitor via an interrupt.

Figure 4b. The state of the stack and stack pointer at certain moments during the

SAVE routine.
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by one. This means it will now be pointing at location B1xx — 2. The
contents of the status register are then stored at this location and the stack
pointer is decremented to point at location §1xx — 3.

By this time the processor will have reached the label SAVE in the moni-
tor program (see figure 4). Firstly, the contents of the accumulator are
stored in location ACC (B@F3). The routine continues by fetching the
previous contents of the status register from the stack (PLA) and storing it
in location PREG (@@F1). At the beginning of the next section of the
SAVE routine (SAVEA) the processor encounters another PLA instruc-
tion. This obtains the low order byte of the program counter from the
stack, which is then saved in locations PCL (@PEF) and POINTL (@OFA).
The following PLA instruction fetches the high order byte of the program
counter from the stack. This is then saved in locations PCH (@@F@®) and
POINTH (pOFB).

Just to recap briefly: before reaching the label SAVE, the stack pointer
was directed to address focation @1xx. After the interrupt the CPU saved
the high and low order bytes of the program counter and the contents
of the status register on the stack. Once the processor reaches the label
SAVE, the stack pointer will be directed to address location B1xx — 3.
Between labels SAVE and SAVEB the processor carries out three PLA
instructions, therefore the stack pointer will again point to address lo-
cation @1xx (in other words it will resume its original state).

Thus, up to now, the processor has used the stack as a temporary memory
to save the value of the program counter and the contents of the status
register in page zero. The display buffers have also been renewed as the
value of the program counter has been entered into locations POINTH
and POINTL. The contents of the rest of the CPU registers are yet to be
saved. This is accomplished after the label SAVEB where the contents of
the Y register are stored in location YREG (@@F4) and the contents of the
X register are stored in location XREG (0@F5).

The value of the stack pointer is the final parameter to be saved. This is
stored in location SPUSER with the instructions TSX and STY X-SPUSER.
The state of the stack pointer has remained unaltered since the last PLA
instruction. Therefore the low order byte of the stack pointer, xx, can be
accessed from location SPUSER.

When the processor has reached this stage in the routine the contents of all
the internal registers will have been saved. The processor then goes on to
fulfil an important task. It enters a number that is not equal to zero into
address location MODE (B@FF). As a result, the Junior Computer being in
the step mode, after carrying out an instruction wiil automatically switch
to the address (AD) mode. This prevents the programmer from inadvert-
ently overwriting a machine instruction with incorrect data.

The processor has now reached the label START and will once again con-
trol the keyboard and display. By depressing the GO key the Junior
Computer will leave the monitor program (see figure 1) and branch to the
user’s program. The following passage deals with the process involved step
by step.
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Leaving the monitor program

As we know, the Junior Computer remains inside a loop in the monitor
program. Here it constantly multiplexes the display and scans the key-
board waiting for a key to be depressed. If the programmer depresses the
Go key, the computer will leave the loop and will branch into the user’s
program. From Book 1 we know that when the GO is depressed the
Junior Computer will start work from the address shown on the display
at that particular moment. As soon as it has left the monitor program, it
no longer worries about the keyboard and display, but devotes its entire
attention to the user’s program.

Figures 5a and bb clearly show what happens when the computer leaves
the monitor program by way of the GO key. Figure 5 shows the actual
program steps, which are virtually the reverse of the SAVE routine, while
figure b shows the state of the stack and the stack pointer.

fig.
a ( '“l 8 1Ca9 . . .1C58
LDXZ ~ SPUSER SPUSER (MIF2) > X
O TXS X > stack pointer
1
LDAZ — POINTH POINTH (8@FB) > A
PHA A —>stack
®
LDAZ — POINTL POINTL (MFA) > A
PHA A —stack
®
LDAZ - PREG PREG (G@F1) > A
PHA A > stack
®
LDXZ ~ XREG
LDYZ - YREG
LDAZ - ACC
® b
RTI
01Xx3 ampty 1
O 91XX-2 contaents PREG 4‘-‘—'@ — @
d 91XX-1 contents POINTL "—-C) ¢ ] @
3
a1xXx contents POINTH <—® (oxx__ D
80915-7-5a GIXX +1 data e ) 1
stack pointer
+
highest position
in stack
80915-7-5b

Figure 5a. The detailed flowchart of the routine that is executed after the GO key is
depressed. This routine is the exact inverse of the SAVE routine in figure 4a.

Figure 5b. The state of the stack and stack pointer at certain moments during the
routine of figure 5a.
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First the CPU obtains the address of the user stack from location SPUSER
and stores that address in the stack pointer (LDXZ-SPUSER, TXS). This
means that the stack pointer will once again indicate the address 01xx.
The contents of the display buffers, POINTH and POINTL, are then also
placed on the user stack, in that order. The stack pointer will then, of
course, be indicating address location @1xx — 2. This means that the
contents of POINTH and POINTL will be used as the new program
counter. The original contents of the status register are stored on the
stack (LDAZ-PREG, PHA). The stack pointer now indicates location
B1xx — 4.

Once the new program counter and the previous contents of the status
register have been placed on the stack, the contents of the X and Y index
registers and the accumulator are restored to their original values. This
ensures that all the internal CPU registers contain specific data and the
Junior Computer can branch into the user’s program quite happily. This is
actually carried out via the RTI instruction. As you will remember, fol-
lowing an RTI instruction the contents of the status register and the low
order and high order bytes respectively the program counter are pulled
from the stack. In this instance the value of the program counter is
obtained from the contents of POINTH and POINTL. This enables the
processor to leave the monitor and continue program execution from the
address currently on display — the start address of the user program,

Note: If the Junior Computer happens to be in the step mode, it will
execute the program sequence shown in figure ba when the GO key is
depressed. It will branch to the address shown in the display which
contains a machine instruction and will carry out this instruction. However,
when the opcode for the instruction is being loaded into the instruction
register the CPU will generate a non-maskable interrupt (NMI) via its
SYNC output. The processor therefore completes the current instruction
and then deals with the interrupt.

In the step mode the NM! vector points to address location 1C@@, which
is the start of the SAVE routine. Now the CPU executes the program
sequence shown in figure 4, saving the contents of all registers and
switching the computer to the address (AD) mode. After this sequence
the processor again arrives at the START label where it once more
¢nters the loop and takes care of the display and scans the keyboard. The
next machine instruction, together with its address, appears on the display
and the computer waits until the GO key is depressed once more. When
the GO key is depressed the processor branches to the address currently
displayed to carry out the instruction shown and the whole procedure is
repeated.

How the Junior Computer responds to a depressed key

This section of the chapter discusses the way in which the Junior Com-
puter responds to any key that is depressed. To start with, the computer
discovers whether or not a key is depressed in the loop section of the
monitor program. The identification of the particular key, or rather the
calculation of its value, takes place in a subroutine. At the end of the
subroutine the key value will be held in the accumulator. As already
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discussed in Book |, the following values have been assigned to the various
keys:

0:00 6:06 c:0C +:12

1:01 7:07 D:¢D GO:13

2:02 8:08 E:QE PC:14

3:03 9:09 F:Q0F {illegal key: 15)

4:04 A:GA  AD:10Q

5:05 B:0B DA:11

Figure 6 illustrates the complete key recognition sequence. A series of
compare (CMP) instructions each followed by a branch-if-not-equal
(BNE) instruction filter out the value of the depressed key. The CPU
branches if the depressed key does not have the same value as that under
comparison and passes on to the next compare instruction. If the two
values are the same, the processor performs the relative operations per-
taining to that particular key.

The keyboard of the Junior Computer can be divided into two separate
sections: one for the data keys and one for the command keys. We have
already seen what happens when the GO key is depressed. If the command
key AD is depressed, the contents of address location MODE are made not
equal to zero (93). The processor will now interpret the next keys to be
depressed as an address. By means of the subsequent BNE instruction the
program branches to the START label via STEPA.

(figure 7)

LDA ##9 %A

JMP - STEPA

POINTH < POINTH + 1

POINTL < POINTL + 1 LDAZ - PCL PCL (BIEF)
STAZ - MODE | A ~MODE (@GFF) POINTL =00 ? STAZ - POINTL | —POINTL
LDAZ - PCH PCH (00F0)

STAZ - POINTH ~+POINTH

LDA #03 93—>A

STAZ — MODE A ~MODE (JUFF)

MP - START

START
(figura 7}
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If however, the DA key was depressed, the contents of location MODE
would be made equal to zero. The computer will then interpret the next
keys to be depressed as being data to be stored in the address indicated
and then shown on the display.

As we know, the computer increments the address shown on the display
whenever the + key is depressed and then it displays the data contained
in this new address. If the contents of POINTL were FF before the + key
was depressed, for instance, this would now become 0@. This means that
the contents of the address buffer POINTH must also be modified, that is
to say, they must be incremented by one. A BNE instruction detects
whether or not this second correction is necessary. In either case the pro-
gram again branches to START via STEPA.

When the PC key is depressed, the computer copies the current position
of the program counter into the display buffer. Only a few instructions
are required and as the contents of the program counter and the display
buffers themselves are all situated on page zero, the actual routine is very
short indeed. Once this has been accomplished the monitor program once
again branches back to START.

By now we should know how the PC key works: If a program is executed
in the step mode, it may be necessary to examine the contents of some,
or all, of the internal CPU register. As these are all saved on page zero, the
user’s program will have to be left for a while. By depressing the PC key

ADDRES

ADLOOP

STAZ - KEY

A (= haxadecimall > KEY {80E1)

LDYZ - MODE MODE (Q@FF} Y

data or address?

address

ASLZ - POINTL

shift bits from
POINTH, POINTL
4 positions to the loft

hexadecimal
keys remain

ROLZ ~ POINTH

LDA — (POINTL), Y | A «contents (POINTH, POINTL)

ASL - A

ASL— A shift right
four bits

to loft

four bits

ASL - A

ASL - A

@ ORAZ - KEY key value -> right four bits LDAZ ~POINTL | POINTL $4FA—A

STA — (POINTLY, ¥ | A~ sddress (POINTH, POINTL) ORAZ - KEY right four bits -+ (POINTH,
|POINTL) < KEY (PPET)

IMP — STEPA STAZ —POINTL | A ~POINTL (9GFA)

JMP — STEPA

Figure 6. The detailed flowchart of the key recognition sequence. Al the function
keys are tested individually. The processor performs separate routines for each key
according to its function. Details of the routine belonging to the GO key are given
in figure 5, In the case of a hexadecimal key, a choice is made from two possible
routines depending on whether the computer is in the address or data mode.




the previous contents of the program counter will be restored into the
display and when the GO key is depressed the computer will continue
operation from the point it left off before the registers were examined.

Up to know, the monitor program has been able to establish whether one
of the command keys have been depressed. As each key has its own par-
ticular value, only the key values between @ and 14 may arise. Nevertheless,
there is a possibility that the Junior Computer may calculate the wrong
key value due to mains interference or contact bounce. Normally speaking
this should not be possible, but for greater security the processor will
ignore any key value greater than 14 in the section of program labelled
ILLKEY. Following this the program (yes you've guessed it!) jumps back
to START via STEPA (do not pass GO, do not collect £ 200!!).

Modification of data

If the programmer did not depress a command key, but a data key, the
monitor program will branch to the DATA label. From this point on the
computer processes the data keys @ . . . F. The value of the depressed key
is first stored in address location KEY (@@E1) leaving the accumulator free
for other tasks. The contents of location MODE are then loaded into the
Y index register.

As far as the monitor program is concerned, the data now contained in
the Y register can have one of two values: the data can either be equal to
zero, or not equal to zero. If, for instance, the contents of the Y register
are equal to zero, the depressed key will be interpreted as data entry. If,
however, it is not equal to zero, the computer knows that the programmer
would like to enter a new address and that the information stored in
location KEY must be transferred to the address area of the display. A
branch instruction (BNE) distinguishes between an address and a data
entry: LDYZ-MODE, BNE-ADDRESS.

If the contents of the Y register are equal to zero, data is to be entered
and the branch to the label ADDRESS does not occur. The Junior Com-
puter shifts the information from the depressed key into the display from
right to left. These are the two right hand digits on the display printed
circuit board. The series of instructions to shift the data display one digit
to the left operate as follows:

By using pre-indexed indirect addressing (the value contained in the Y
register is equal to zero) the CPU loads the contents of the memory lo-
cation indicated by the address pointers POINTH and POINTL (the data
currently on display) into the accumulator. The value of the depressed
key contained in location KEY has not as yet been shifted into the display.
Assuming that the data now contained in the accumulator consists of bits
P ...w, the result after four shift left instructions will be as follows:

P gr s t uv w ... contentsofaccumulatorafterloading

gr s t uv w @ ... contentsof accumulator after the first ASL
instruction

r s t uv w@ @ ... contentsofaccumulator after the second ASL
instruction

s t uv w® 0 @ ... contentsof accumulator after the third ASL
instruction

t uv wo ¢ @ @ ... contentsof accumulator after the fourth ASL
instruction



After these four shifts the four most significant bits of the data byte are
lost and are replaced by the four (previously) least significant bits. The
four least significant bits of the data byte have now been made zero by
the shift process.

The contents of address location KEY are 0@0@xxxx, where xxxx corre-
sponds to the actual value of the depressed key. By ORing the contents
of the accumulator with the value contained in location KEY the
following result is obtained:

t uv w@ 0 0 @ ... contents of accumulator before the ORA instructicn
@ 8 0 0 x x x x ... contentsof memory location KEY
t u v w x X X X ..., result{inaccumulator} after the OR operation

As can be seen, the result is that the four most significant bits remain
unchanged and the four least significant bits become equal to the value of
the depressed key. This effectively shifts the key value into the accumu-
lator from right to left. The data byte thus obtained is stored in the
location, again indicated by the address pointers POINTH and POINTL,
shown on the display. Finally, the processor once more jumps back to
START via STEPA.

The inclusion of the label STEPA may appear rather superfluous at first
sight, especially as it is immediately followed by a further jump instruction
which leads the processor to the tabel START. However, the 6502 micro-
processor is unable to jump directly to any location outside a range of
* 128 bytes. For this reason the processor must jump to START indirectly
by way of STEPA.

Modification of address

Just as the processor can modify data stored in the RAM section of the
computer’s memory, so new address information can be entered. In other
words, the contents of the two memory locations constituting the address
pointer, POINTH and POINTL, can be altered (after having depressed the
AD key). This procedure is carried out during the ADDRESS section of
the routine shown in figure 6. After loading the X index register with 04,
the section of program ADLOOP — BNE — ADLOOP is performed four
times in succession. The contents of POINTL are shifted left four times,
the contents of POINTH are rotated left four times and the contents of
the X register are decremented by one four times.

During the shift instruction the most significant bit of POINTL is moved
into the carry position and the least significant bit becomes zero. During
the rotate instruction the most significant bit of POINTH is lost and the
contents of the carry flag replace the least significant bit.

Let us examine this in greater detail. If we suppose that the values of the
bits of

the four most significant bits of POINTH are h i j k, and

the four least significant bits of POINTH are | m n o, and

the four most significant bits of POINTL arep g r s, and

the four least significant bits of POINTL aret u v w, and

the initial state of the carry flag is x, the following will happen:
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hi §j ki mno | X | par s t uv w |, . . initially

hi j k1 mno||lp||[arstuvw@® |. . .after ASL-POINTL B
ij kil mnopllh|larstuvw ...afterROL-POINTH}X_
ij k1 mnoop|laj{rstuvw®®]...after ASL-POINTL
ikl mnopaqfli/lrstuvwo®?® ...afterROL-PO|NTH}X=
ikl mnopajl|r| stuvw®0 |...after ASL-POINTL

kl mnopar|li||[stuvwooo® ...afterROL-POINTH}X=
kl mnopar]||[s||tuvw®@®® .. _after ASL-POINTL

Il mnopagr s _ﬂ tuvw0o ¢ 0 0 ..afterHOL-POINTH} X=

The four most significant bits of POINTH have been replaced by the four
previous least significant bits and the four least significant bits have been
replaced by the four previous most significant bits of POINTL. The four
most significant bits of POINTL have been replaced by the previous four
least significant bits of POINTL and the four least significant bits have
been made zero.

The contents of address buffer POINTH can now remain as they are, but
the contents of POINTL require modification. This is carried out by
loading the contents of POINTL into the accumulator and ORing it with
the data contained in location KEY (which, as we know, is the actual
value of the depressed key). The result is exactly the same as that for the
data key:

t uv w@ @ 0 0 ... contentsof accumulator before the ORA instruction
@ 0 0 0 x x x x . contents of memory location KEY
t U v w X X X X ... result{inaccumulator) after OR operation

The final result is then replaced in POINTL before the computer jumps
back to START via STEPA.

Since a hexadecimal key is represented by four bits of a byte and each of
the six displays is capable of displaying four bits of information, it will be
quite clear why there is no need to shift around all the information con-
tained in the display buffers.

All the monitor software, apart from block C of figure 1, has now been
discussed in detail. Further instructions are required to actually show the
contents of the display buffers on the display and to ascertain which of
the keys were depressed. These instructions are part of several important
subroutines which are about to be described .

Keyboard and display routines

communicating with the Junior Computer

Immediately after the START label the Junior Computer examines the
keyboard and multiplexes the display. The routines involved display the
contents of the display buffers, establish whether a key has been depressed
and, if so, which one. The display isactivated immediately after the START
label as its duty is to report back to the operator. The START label is
reached after one of the keys to have been depressed by the operator, via
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one of the key routines previously described, has finished. Although
the routine for the GO key only partly takes place in the monitor pro-
gram, even after one (step mode) or all the instructions of the user’s
program have been executed, the processor will return to START via the
SAVE routine in due course. |f this does not occur the programmer will
have forgotten to include the BRK instruction at the end of the program
{section) in question. Alternatively, the processor may ‘sit’ in the monitor
loop and wait for new program data to be entered.

The final method of reaching the START label is to depress the RST key
(initialise the Junior Computer). The instructions contained in the pro-
gram section belonging to block C in figure 1 are shown in figure 7. Ob-
viously, more instructions are used than are actually shown due to the sub-
routines involved. The SCAND subroutine (see later for greater detail)
ensures that the contents of the three buffers, POINTH, POINTL and INH
are displayed and that any depressed key is detected. The contents of the
accumulator at the end of the SCAND subroutine will be equal to zero
when no key is depressed, but will have a non-zero value when a key is
depressed. The subroutine GETKEY simply loads the accumulator with
the value of the depressed key.

As fas as figure 7 itself is concerned, something should be said about the
BNE and BEQ instructions. A BNE instruction causes a branch if the
contents of the accumulator are not equal to zero. Thus, the BNE instruc-
tion in figure 7 tests to see whether a key is depressed. The opposite holds
for the BEQ instructions: the processor will only branch if the contents
of the accumulator are equal to zero. In other words, the two BEQ instruc-
tions in figure 7 detect whether the key has been released.

When a key is depressed, any change in the display will occur immediately
after it is depressed — not when it is released. The machine can therefore
only handle one depressed key at a time, so that the key must be released
before any other can be depressed. This is because of the combination of
the first jump to the SCAND routine and the associated branch-if-not-
equal-to-zero instruction (the processor will remain in this loop until a key
is depressed).

The second jump to the SCAND routine and its associated branch (BEQ)
instruction ensures that a depressed key is detected. Then a third jump to
the SCAND routine takes place before the jump to the GETKEY routine.
This may seem superfluous, but it effectively eliminates any effects of
contact bounce between the release of one key and the depression of the
next (see figure 8).

Let us assume that a depressed key produces a logic level of @ and a key
that is not depressed a logic 1 level (the voltage level on the port lines
PA® .. .PA6). When a key is depressed at moment t1 the curve produced
should, ideally, be similar to that shown in figure 8a. In practice, however,
contact bounce causes the effect shown in figure 8b. At moments t3
and t5 the contact bounce produces a logic 1 (non-depressed key) after the
key was depressed at moment t1, resulting in a situation where the key is
apparently not depressed.

Software ensures that the key is not actually detected until after moment
t6 in figure 8b, in other words, after the effects of contact bounce have
died away. Thus, the apparently superfluous jump to the SCAND routine
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I JSR — GETKEY l
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Figure 7. The flowchart for the program section that scans the keyboard and
multiplexes the display. Obviously, the flowchart is not complete due to the various
subroutines involved.

fills the time lapse between moments t1 and t6 and the problem is solved.
The loop including the second jump to SCAND and the BEQ instruc-
tion (figure 7) is left soon after the period t1 — t2 when a key is depressed.
After the third jump to SCAND and the associated BEQ instruction no
branch will occur and the subroutine GETKEY will be reached soon after
moment t6.

Contact bounce will also occur when a key is released before another one
is depressed. Similar to the previous situation, the key will apparently
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Figure 8. When a key is depressed (or released) a specific change in logic level is
involved (8a). The key is depressed at moment t1 and released at moment t7. In
practice, however, errors could arise from contact bounce (8b). After a key has been
depressed there are moments (t3 and t5 to be precise) when the logic level is high
instead of low. By means of the monitor software the key is not accessed until after
moment t6, after the contact bounce has subsided.

still be depressed. However, by the time the SCAND routine has been
completed for the third time, the contact bounce will have subsided and
the processor will be ready to detect any new key depressed.

Before we go into the subroutines SCAND and GETKEY in detail, let us
examine the hardware involved in multiplexing the display and recognising
which key is depressed.

From software to hardware

Display multiplexing

As we know, the programmer enters information into the computer
through the use of the keyboard and the computer ‘replies’ via the six digit
display. We also know that during this process the input/output (1/0)
section of the peripheral interface adapter (PIA) has an important task to
fulfil. The input section is the keyboard via which data is entered into the
computer and the output section is the display which is controlled by
software.

The relevant section of the circuit connected to ports A and B is shown in
figure 9. Port B is programmed solely as an output and is connected to
inputs A ...D of IC7. Depending on the bit pattern present on these
inputs, one of the ten outputs of IC7 will be low (logic zero). Six of the
ten outputs are connected to the common cathode of a display. For one or
more segments of a display to light, the cathode of that display must be
grounded and so the corresponding output of IC7 must go low. The
following truth table may be drawn up for the BCD to decimal decoder:

Table 1
PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB@ display to be turned on
1 1} Di1
Di2
Di3
Di4
Di5
Di6

oo } ADH (POINTH buffer)

} ADL (POINTL buffer)

X X X X X X
—_—eeea
ee -9

X X X X X X

1
0
1
1/
1

X X X X X

1
1
1
1]
(1]

X X X X X

} data (INH buffer)



Where a port output is indicated with an x the bit may be a @ or a 1 as the
corresponding port line is not connected.

If a display is switched on and all of the outputs of IC11 are high, all
seven segments of that display will light and an ‘8’ will appear. By turning
off certain segments it is possible to display all the hexadecimal
numbers from @...F (and other characters besides — more about this
later). This is accomplished by making port A an output and using itasa
‘segment switch',

Let us suppose that we wish to turn off segment ‘c’. The corresponding
inverter output, pin 12 of 1C11, must go low. For this to happen the
inverter input, pin 5 {connected to PA2), must go high. In other words,
a certain segment pattern is obtained by outputting a specific bit pattern
on port A. If a particular bit is high the corresponding segment will not
light; if it is low, it will.

Table 2 indicates all of the bit patterns required on the output lines of
port A to produce the relevant hexadecimal display. The corresponding
identification of a segment display is shown in figure 10.

Table 2

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAG hexadecimal

X X X X X X X X X XXX X X X X
e -8 -0Qeeae~~a
-0 QA -~ =2 -+
SRR S R N N I R =R )
—, 0008 -~0e e —~9e -0
~ L0009 R 2980
N R R R R RN R R ~R ¥ .
PR = P R R R =R R =R~ GNP P R ™)
TMOOWPOONONDWN =

During segment control port line PA7 can be used as an input as there is
nothing connected to this line. The bit patterns shown in table 2 are stored
in the monitor program EPROM (iocation 1FQF tot 1F1E). They are, of
course, represented in hexadecimal form (see source listing in the appendix
of this book).

Detecting a depressed key

As shown in figure 9, every key has two contacts. One is connected to an
output of I1C7 and the other to one of the (output) lines of port A. The
21 keys are arranged in a matrix of three rows and seven columns. All the
keys in one row have a common connection to a certain output of IC7.
Keys in the same column are connected to a single port line.

118



c?
w
1Y gl
ROW/CATHODE SELECT Vvee
c7
74148
$ 1 2 3 a S 13 7 GND 8 9
ﬁ’é’:‘“AT ) o ? T l m W
c2 825
HI- amh
a7 R7 | R8 | R9 | R10| A11| A12} A13]
b =1 [<] [<] i1 [<] [E] (<
2] 18] (3] 18] 2] |8] |2
Di1 Di2 ji2 Di3 Jiz pia i L Di 5 jr i 6 iz
H O OF OF : 7 :
5
: 6
J L’ —’ ! J ’ :
0 "
[ par K
= 2
61 2
| P82 2!
5V b3 2
m I
16 5] | 13 2 Y — 2 = 1
Segment  4fo o | 1C11 = £
driver Z ULN 2003 5V 73
- 1
9| 2| 3 4| B 6| 7
of 1 1) jl af ol af o] spo] jle/
$3 S4 SS S6 ST S8 S9 ROW ¢
1§ sfot ofol apet 8po] cfol of o]
$10 S11 $12 $13 '$14 515 $16 ROW 1
e) o] Fo/AfIJoaa’+ oo o/aflf/
s17 $18 19 $20 S21 $22 $23 AOW 2
g 8 F 9 9 4 3
g 8 8 8 8 3 g
ol ol -l o - o 15-7-9
g8 3 2 3 3 3 80

Figure 9. A closer look at the keyboard and display section of the Junior Computer
circuit diagram.

g
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T
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d 80915~7-10

Figure 10. The segments of a display are identified by the lettersa . .. g. The bit
pattern on port lines PA@ . . . PAG light up the various segments required to produce
a particular character on the display.
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In order to detect whether a key has been depressed, port A lines have to
be programmed as inputs. If it is correctly controlled via port B, one of the
first three outputs of 1C7 (@, 1 or 2) will be low. When a key is depressed
the same logic zero will appear at one of the (output) lines of port A. In
this manner a depressed key can be detected and identified without error.
The matrix row is determined by the bit pattern on port lines
PB@...PB4 and the column by whichever of port A lines goes low. The
two tables below sum up the situation:

Table 3

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO® rowof depressed key

D C B A
X X X 1] 1} Q 1] X row @ (keys 0,1,2,3,4,5,6)
x X X 1]} 1] Q 1 X row 1 (keys 7,8,9,A,B,C,D)
X X X Q [t} 1 0 X row 2 (keys E,F,AD,DA +,

GO and PC)

This establishes which row the depressed key is situated in. The column
of the particular key can be determined from:

Table 4
PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAQ
column
keys @, 7 and E
keys 1,8 and F
keys 2, 9 and AD
keys 3, A and DA
keys 4, B and +
keys 5, C and GO
keys 6, D and PC

__—em = = = ao,
[ S ays
[ YL SO

?
1
1
1
1
1
1
@

X X X X X X X

N — Y GOy
g Y YT IERY \
R Y YO N

Now back to the software.

The subroutine SCAND — minus AK

Before going through each instruction in this subroutine, it might be a
good idea to summarize the sequence of events first. Inside the SCAND
there is another subroutine called SHOW, which also contains a subroutine
called CONVD. The subroutine nesting thus formed is shown in figure 11.
It involves the display section of SCAND, or rather, everything that
happens before AK, the key detection portion of SCAND.

The contents of the two address buffers, POINTH and POINTL, together
with the contents of the data buffer INH, must be displayed. Each display
is controlled by half of the data byte contained in each of the three
buffers. In the subroutine CONVD, the displays are activated in turn for a
certain period of time. During the SHOW subroutine, the processor estab-
lishes which part of the buffers is to be displayed — which display is to
become active after the jump to CONVD. There are two jumps per display
buffer from SHOW to CONVD. As there are three display buffers, this
means that there are three jumps from SCAND(S) to SHOW.
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Figure 11. The subroutine nesting that occurs during the SCAND section of the
monitor program. The instructions pertaining to the various subroutines are shown
as shaded rectangles.

Thus, during the execution of the SCAND routine all six displays will
light. Since there is a short delay loop (the second jump to SCAND plus
the associated BEQ instruction in figure 7) the displays are in fact
accessed periodically. This is termed software controlled display multi-
plexing.

The instructions used in the subroutine SCAND are given in figure 12, The
first of these cause location INH to be used as a data buffer: the contents
of the memory locations indicated by POINTH and POINTL are entered
into INH. (In the editing mode the three display buffers are used for
other purposes). The program then moves on to the next section,
SCANDS. This starts by programming port A lines (which will act as a
segment switch) as outputs. The X index register is then loaded with 08.
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LDY # 00
LDA — (POINTLLY

STAZ — INH

'

{POINTH, POINTL) — INH (dOF9)

LDA #7F
PA® ... PAS = output
STA - PADD
LDX #@8
LDYZ - BYTES enable display (Di 1)
fetch length
LDAZ — POINTH POINTH > A
JSR — SHOW
DEY
N more bytes to
display?
yes
LDAZ — POINTL | POINTL—A
I JSR — SHOW
DEY
no more bytes to
display?
yes
LDAZ — INH INH > A

I SR — SHOW l

0

LDA #00

STA — PADD

PAD...PA7
input

LDY #463
LDX #09

ONEKEY

LDA #Ff

scan 3 rows

reset row counter

A< 1un

STX - PBD
N
INX } anable next row
INX
AND - PAD
DEY input row pattern
no all rows
scanned?
yes
LDY #06
turn display off
STY - PBD
ORA # 80 sothit?7 =1
EOR # FF invert key pattern
80915-7-12

Figure 12. The detailed flowchart of the SCAND subroutine. It is structured so that
the second half of it, AK, can be used as a separate routine by the programmer.
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This value is transferred to the display control, IC7, via port B during the
CONVD subroutine. The X index register thus controls the display digits
via port B and IC7 and is modified during subroutine SHOW and CONVD
so that it always indicates the next display to be switched on.

Next, the Y index register is loaded with the contents of location BYTES.
This determines how many of the displays are to be lit. When the RST
button is depressed, location BYTES is loaded with §3. This means that
the contents of all three data buffers (POINTH, POINTL and INH) are to
be displayed. Then the accumulator is loaded with the contents of
POINTH and the processor jumps to the SHOW subroutine. The data
contained in location POINTH is split into groups of four bits each and
these are presented to the corresponding displays during the SHOW and
CONVD subroutines, that is, to displays Di1 and Di2 (see figure 11).
After this the Y index register is decremented by one and the processor
returns to the SHOW subroutine to display the contents of POINTL in
displays Di3 and Di4. The Y index register is then decremented and the
contents of INH are transferred to displays Di5 and Di6. All that remains
is to program port A lines as inputs in preparation for the program section
AK to follow later.

The use of the Y index register as a display buffer counter may seem
superfluous here, seeing as the number of buffers to be displayed has
already been determined. However, the SCANDS subroutine is also used
for editing purposes when the length of the display varies. Thus it is
necessary to use the Y index register as a counter in this subroutine.

The subroutine SHOW

At the start of this subroutine (see figure 13) the contents of the buffer to
be displayed are held in the accumulator. Each of the two halves of a
buffer data byte has its own display digit. This means that there are always
two jumps involved from SHOW to CONVD. The latter subroutine oper-
ates by using the accumulator as an index to obtain the correct seven
segment information to be displayed. This means the most significant bits
of the data byte held in the accumulator must be zero.

Since the multiplex operation controls the six displays from left to right,
the four most significant bits need to be presented first followed by the
four least significant bits. Therefore, by repeating the instruction LSR-A
four times in succession the four least significant bits are replaced by
the four most significant bits and the four most significant bits become
zero. In order that the four least significant bits can be displayed after-
wards the accumulator contents are saved on the stack before the shift
operation by means of the instruction PHA. The stack will then be used as
a temporary store. The buffer counter contents are also saved as the Y
index register is required for other tasks during the subroutine CONVD.
Now, the CONVD subroutine can be called up to convert the (previous)
four most significant bits of the data byte into a seven segment bit pattern
to be shown on the display. Exactly how this conversion takes place will
be seen later.

After the return from subroutine CONVD to subroutine SHOW the
original state of the accumulator is restored. It will again contain every-
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PHA save display
STYZ — TEMP save Y display
LSR —A
LSR - A get four most
LSR - A significant bits
LSR-A
JSR — CONVD
PLA Stack > A
AND # @F 4 MSBs < 0008

l ISR ~ CONVD l

LDYZ — TEMP TEMP (§9FC) > Y

80915-7-13

Figure 13. The detailed flowchart of the SHOW subroutine which assembles the data
to be displayed in the accumulator.

thing to be displayed on the two relative displays. Now, the four least
significant bits are to be displayed and the four most significant bits
removed. This is accomplished by ANDing the contents of the accumu-
lator with @F. A further jump to the CONVD subroutine causes the four
least significant bits of the data byte to be presented to the appropriate
display.

Upon the processor’s return from CONVD to SHOW the original state of
the buffer counter is restored (LDY-TEMP), so that the computer is able
to take care of the next data buffer to be displayed.

The subroutine CONVD

As mentioned previously, this subroutine obtains the seven segment code
for the particular four data bits to be displayed. During the process a hexa-
decimal number must be converted into a corresponding seven segment
code. Before the CONVD subroutine can be called the four least significant
bits of the data byte in the accumulator must correspond to the value of
the depressed hexadecimal key and the four most significant bits must be
zero. The complete subroutine is illustrated in figure 14.

Initially, the hexadecimal value to be displayed is transferred into the Y
index register. Post-indexed indirect addressing is then used to load the
accumulator with the corresponding value from the look-up table. If, for
example, the figure ‘D’ is to be displayed, the accumulator must contain
the seven segment code of 21. The accumulator contents are then
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TAY
fetch
LDA - LOOK,Y pattern and
output to port A LOOK: a4 ‘0’
STA — PAD 79 ‘1"
STX = PBD output digit enable 24 2
LDY #7F 3 3
# 19 ‘4’
12 ‘5’
92 8"
DELAY 817
49 | '8
waita 19 9
while 48 ‘A’
DEY 3 ‘8"
46 ‘c’
21 ‘D
96 | ‘E’
J JE | 'F’
STY —PAD turn segments off
LDY # 96 turn
STY - PBD display off
INX
enable next digit
INX

80915-7-14

Figure 14. The detailed flowchart of the CONVD subroutine which transfers the data
in the accumulator to the Y index register and thus obtains the correct seven segment
code from the look-up table.

transferred to port A and the contents of the X index register to port B,
which now functions as a display digit selector. The display digit will light
according to the bit pattern obtained from the look-up table. The question
now is: for how long does it remain lit? The answer being: for the duration
of the loop DELAY-BPL-DELAY. The processor remains in this loop until
the N flag is set. Thus, a display is switched on for a little more than
630 us. When the delay loop is over the Y index register will contain the
value FF. The processor transfers this bit pattern to the port A lines
thereby switching off all the display segments. The instruction for this is
STY-PAD. The following instructions (LDY # 06 and STY-BPD) place the
‘display selector’ into the neutral position and the unconnected output of
IC7 (pin 4) becomes active and none of the display cathodes will be low,
At the end of the CONVD subroutine the X index register is incremented
twice in order to enable the next digit to be displayed.

Note: The four most significant bits of the accumulator contents must be
equal to zero before the jump to CONVD, as otherwise the contents of
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the Y index register would become greater than @F and that would mean
exceeding the highest address of the look-up table (1F1E). As there is
still memory following 1F1E, segments would light at random and give an
incorrect indication.

Section AK of the SCAND subroutine

The AK section completes the SCAND subroutine and serves to detect
whether a key is depressed. As we know, the keys are arranged in a matrix
of three rows and seven columns (see figures 9 and 16). The bit pattern
presented to the port B lines determines which display is ‘on’ and which
row is to be scanned for a depressed key at a particular moment. Port B
is controtled by means of the X index register. As a reminder, the contents
of the accumulator at the end of the SCAND subroutine will not be equal
to zero if a key is depressed.

At the start of the AK routine all port A lines are pulled “high’ by internal
resistors (these lines were programmed as inputs immediately before the
AK routine). The Y index register is then loaded with @3 and is used as a
row counter. There are three rows to scan: ROW®, ROW1 and ROW2.
The contents of the X index register determine which of the three is
selected via port B. The hexadecimal value FF is then loaded into the
accumulator (ONEKEY). The contents of the X index register are then
transferred to port B and ROWS is taken low (see table 3). The value in the
X index register is then incremented twice in preparation for the following
row. The contents of the accumulator are then ANDed with the bit
pattern presented to the port A input lines. The value in the Y index
register is then decremented by one. In the end, after the loop AKA-
BNE-AKA three times, the number of zeros in the accumulator will
correspond to keys that are depressed simultaneously in any column
(COL® . .. COLS). Normally, however, only one key will be depressed
at a time (and the processor is so fast that if two keys were depressed at
the same time only one would be ‘seen’). If, for example, one of the keys
3, A or DA in column 3 were depressed, bit 3 in the accumulator would
be zero after the AND instruction. The display/row selector {IC7) is then
placed in the neutral position (as in the CONVD subroutine) with the
instructions LDY # @6, STY-PBD. Further details of this can be found in
tables 1 and 3.

The penultimate instruction (ORA 80 — not counting the RTS instruc-
tion) causes bit 7 in the accumulator to become one. This is important as
port line PA7 could well be used as an interrupt input in conjunction with
a peripheral device such as a printer. This means that bit 7 could be either
high or low at any time. Preparation is now complete for the final instruc-
tion (EOR # FF) which inverts all the bits in the accumulator. Any of the
bits bd . . . b6 in the accumulator could be zero after the loop AKA-BNE-
AKA if a key was depressed. After the inversion that bit will be one and
the rest zero. This means that the contents of the accumulator will not be
equal to zero if no key is depressed. Thus, the sole purpose of the AK
routine is to test to see if a key was depressed or not. The following
subroutine to be discussed calculates the actual value of the depressed
key.
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The subroutine GETKEY

Once the processor has determined that a key has indeed been depressed
the next task is to calculate the value of the key. This is accomplished
during the subroutine GETKEY. Figure 16 shows the layout of the keys
in the matrix and also indicates the values allocated to the particular
keys.

The series of instructions contained in the GETKEY subroutine are shown
in figures 15a and 15b. To make things clearer, the section of program
labelled ONEKEY (see figure 12) is shown again. At the start of the
GETKEY subroutine the hexadecimal value 21 is loaded into the X index
register. As a result, ROW® will be scanned at the next jump to ONEKEY,
The Y index register is loaded with @1, as ONEKEY must only deal with
one row. If a key was depressed after the return from ONEKEY, the
contents of the accumulator will not be equal to zero. The following
BNE instruction will then enable the program to branch to KEYIN. If
no such key was discovered, the value contained in the X index register
is tested. If this value is not equal to 27 the program will branch back to
label GETKEA and the subroutine ONEKEY will be called once more.
Why must the contents of the X index register be compared with 27? At
the start of the GETKEY subroutine the value in the X register is made
equal to 21 and so ROW@ will be accessed. During the subroutine
ONEKEY the X index register will be incremented twice, making its value
23. As this does not equal 27, subroutine ONEKEY is run again, although
this time ROW1 will be accessed. After the return from ONEKEY the
value in the X index register will be 25. If no key in ROW1 was depressed,
the processor must again jump to ONEKEY after which the value in the X
index register will be 27,

Now all the rows have been scanned and if still no key is found to have
been depressed there must be an error somewhere. In that case, the com-
puter must not branch to KEYIN and start calculating the key value.
Instead, after the compare instruction, the accumulator is loaded with 15
to instruct the computer to ignore the ‘depressed’ key and to go back to
scanning the keyboard.

From label KEYIN onwards the computer calculates the value of a valid
depressed key. The coordinates of the various keys are given in figure 16.
The KEYIN routine starts by loading the Y index register with the value
FF. The processor then shifts the contents of the accumulator to the left
at least twice. Prior to this the accumulator contained seven zeros and a
one (the one indicating the column of the depressed key). The contents
of the accumulator are shifted left until the carry flag is set. After each
shift the state of the carry flag is tested and if it is not set the value in the
Y index register is incremented. Therefore, the value in the Y register now
indicates the column of the depressed key. With respect to the keys in
ROW®, the value in the Y index register will be equal to the value of the
key. However, with respect to ROW1 and ROW?2 the values §7 and QE
respectively have to be added. Hexadecimal @E is twice the value of 07.
These additions are taken care of in the program section labelled
KEYINC in figure 15a. However, before the program has reached that
point, the contents of the X index register, the row information, is trans-

127



GETKEY

LDX #21

start at row @

LDY # FF

KEYINA

shift left untit
Y = key vatue

XA

A>X

YA

TXA

AND #0F

mask

four most

LSR - A

TAX

TYA

LDY #81
lJSR — ONEKEY

CPX #27

LDA #18

} get one row

key depressed?

yes

KEYINC

cLc

ADC # @7

each row scanned?

key value < 15

return if invalid key

80915 -7 - 15a

X+ g2
no
yes

Figure 15. The detailed flowchart of the GETKEY subroutine which determines
whether a valid key has been depressed and if so assigns the correct value to it.
The program section labelled ONEKEY (see figure 12) has been repeated here for
‘the sake of clarity.

ferred to the accumulator. Its value will be 23 for a key in ROW®, 25 for
a key in ROW1 and 27 for a key in ROW2. This value is then masked by
the instruction AND # 0F to remove the four most significant bits of the
byte. The contents of the accumulator are shifted right one bit position,
which effectively divides the value in the accumulator by 2. Thus, it
follows that the contents of the accumulator now become 01 for a de-
pressed key in ROW®, @2 for a key in ROW1 and @3 for a key in ROW2.

This value is then transferred to the X index register and the contents of
the Y index register are transferred to the accumulator. After the label
KEYINC either the value §7 or OE is added to the column number, de-
pending on the row of the depressed key. The processor does not enter
the loop KEYINC-BNE-KEYINC if the key was in ROW®, as the value
in the X index register (after label KEYIND) will already be zero. When
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ONEKEY

LDA #FF

STX - PBD

INX

INX

AND - PAD

DEY

<>

LDY #06

STY — PBD

ORA #80

EOR # FF

RTS

80915 -7 - 16b

the processor returns from the GETKEY subroutine the value of the
depressed key will be contained in the accumulator.

To fully understand how the subroutine works let us see what happens
when key ‘C’ is depressed. To start with the X index register is loaded
with the value 21 and the Y index register with the value @1. Then we
jump to subroutine ONEKEY. Here the accumulator is loaded with FF
and the value contained in the X index register (= 21) is transferred to the
(output) lines of port B. This effectively grounds one side of all the
switches connected to ROWQ via IC7. Key ‘C’ however, does not belong to
ROW@, but to ROW1. Thus the following situation will occur when the
keys in ROW@ are read via port A:

11111111 accumulator (A-FF)
x1111111  port A

x1111111  AND with FF
11111111 OR with 80
00000000 EOR with FF

Since the contents of the acumulator are zero, the processor does not
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Figure 16. The keyboard matrix showing the key values and the corresponding row
and column data.

branch to label KEYIN. During the subroutine ONEKEY the contents of
the X index register will also have changed:

00100001
00100001
00100001

1 =2
0 =2
1 =2

1 (initially)

2 (after first INX)
3 (after second INX)

Upon the return from ONEKEY the BNE instruction causes the processor
to react to the last register contents, or rather to the last state of the
Z flag. The last instruction to affect the Z flag was EOR #FF in the
ONEKEY subroutine. Since the ‘C’ was depressed, the processor will not
branch to KEYIN as the Z flag is high. The processor then tests to see
whether the contents of the X index register are equal to 27 yet. But as
we have only jumped to the ONEKEY subroutine once so far, the contents
of the X index register will be 23. The processor therefore branches back to
GETKEA, the Y index register is loaded with @1 once more and we jump
back to ONEKEY. The accumulator is once again loaded with FF and the
new contents of the X index register are transferred to the port B (output)
lines. The common connection of all the keys in ROW1 will now be low.
This is where key ‘C’ is situated and the bit pattern on port A will there-

fore be:

x1111101

PA1 = column 1 (see figure 16)

and after ANDing with PAD the accumulator contents will be:

x1111101
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After ORing this with 80 the contents of the accumulator will be:
11111101

Finally, after the Exclusive OR with FF the accumulator will contain:
00000010

Meanwhile, the contents of the X index register have become 25. When
the processor returns from ONEKEY the BNE instruction is encountered
once again. Since the contents of the accumulator are no longer zero

(00POBOG10) the processor will branch to KEYIN. Here the accumulator
contents are shifted left until the carry flag (C) is set:

carry contents of Y
flag register after
ASL-A and before
BCS
X 00000010 FF start
] 00000100 FF after the 1st ASL-A
0 00001000 00 after the 2nd ASL-A
0 00010000 01 after the 3rd ASL-A
] 00100000 02 after the 4th ASL-A
/] 01000000 03 after the 5th ASL-A
0 10000000 04 after the 6th ASL-A
1 00000000 @85 after the 7th ASL-A

After seven shift instructions the carry flag has been set and the program
branches to label KEYINB. Since the ‘C’ key is the one depressed, the
contents of the X index register will be 23 and the contents of the Y index
register will be 5.

The contents of the X index register are then transferred to the accumu-
lator:

00100101  accumulator contents before ANDing with
op001111  OF

P000P101  accumulator contents after ANDing
000PPO10 accumulator contents after LSR-A (= 02)

The contents of the accumulator {@2) are again transferred to the X index
register and the contents of the Y index register (@5) are transferred to the
accumulator. As the accumulator contents are not negative the processor
branches to label KEYIND (via the BPL instruction). Here, the X index
register is decremented by one, making its contents one. Since this is not
zero the processor branches back to KEYINC, where the value @7 is added
to the contents of the accumulator (the key column). This means that the
value now contained in the accumulator is 85 + @7 = @C, which is the final
value of key ‘C’. The contents of the X index register are then
decremented once more to become zero, so the processor does not branch
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back to KEYINC, but continues until it reaches the RTS instruction. The
correct value of the depressed key will, therefore, be held in the accumu-
lator after the return to main program execution.

This brings us to the end of chapter 7. We have discussed a total of 181
bytes of the main monitor program together with 152 bytes of monitor
subroutines, There are, of course, 1024 bytes of monitor program con-
tained in the EPROM. The remaining subroutines will be discussed in the
following two chapters concerning the editor and the assembler.
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The Editor program

The ‘intelligence’ behind simple program entry

This chapter is devoted to the subroutines used by the editor
section of the monitor program. What happens inside the Junior
Computer when information is entered into the memory in the
editor mode via the command keys INSERT, INPUT, DELETE
etc.? How does the editor store a program so that it can be
processed by the assembler? All these questions will be answered
with the aid of flowcharts during the course of this chapter.

As mentioned previously, the EPROM contains three separate sections:
the main monitor program which controls address and data display, the
editor and the assembler. Of these three it is the editor which takes up
most memory space. Chapter 5 showed us how effective the editor
routine can be when rather lengthy programs are entered into the com-
puter. Now it is time to examine the editor section itself, which consists
of a large number of subroutines, in much greater detail.

These subroutines are structured so that they can be incorporated into
user programs if required, thereby saving a lot of time and effort when
developing programs. One subroutine has already been introduced in
Book |: the subroutine GETBYT, which ‘reads’ two hexadecimal keys and
enters their value into the accumulator.

The editor responds to the five command keys SEARCH, INSERT, INPUT,
SKIP and DELETE and to the data keys @ ... F. When one of the keys
SEARCH, INSERT or DELETE is depressed, the processor expects either
two, four or six data keys to follow. This is because the 6502 micro-
processor instructions vary in length. They can be one, two or three bytes
long. In the case of the SEARCH command, the Junior Computer requires
four data keys to be depressed, as a specific 16 bit (two bytes) pattern
must be traced in the (programmable} memory.

Before we deal with the main section of the editor and its associated sub-
routines, let us take a look at a general survey of the special characteristics
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inherent to the editor which were not discussed in chapter 5. There we saw
how the editor could be used, whereas this chapter will illustrate how the
processor performs all the operations required by the editor routine(s).

Characteristics of the editor

Before the editor can be run, the start and end addresses of the memory
range in which the program is to be stored must be keyed in to
the memory locations BEGADH, BEGADL and ENDADH, ENDADL
respectively. It is possible to enter instructions into the Junior Computer
by using the editor without having to activate the assembler afterwards. In
this instance, however, the program must not contain any labels, as the
microprocessor itself is not able to decode the label identifier FF. It
follows, therefore, that if there are any labels in the entered program, the
assembler will have to be started once editing is complete. As you know,
the assembler removes all the labels from a program entered via the
editor.

The editor also makes use of another pseudo-instruction that the 6502
microprocessor would otherwise ignore. This is the ‘End Of File’ (EOF)
character 77. This is automatically entered after all the other program
instructions. When using the editor to enter a program it is a good idea to
Jeave at least six memory locations clear between the end of the program
and the end address of the available memory (ENDADH, ENDADL).
Otherwise it will be very difficult to start the assembler, as the symbol
table prepared by the assembler could overwrite the tail end of the user
program {see chapter 9 for further details).

Once the editor has been started, we can enter instructions into the Junior
Computer with the command keys INSERT and INPUT. Whenever a
complete instruction is keyed in, the occupied memory space will ‘grow’
by one, two or three memory locations. The exact amount is determined
by the opcode of the entered instruction. At the same time, the EOF
character will be shifted down by the same number of spaces. If, for
example, a two byte instruction is keyed in, the EOF character will move
down by two memory locations.

However, if the DELETE key is depressed, quite the opposite happens.
The instruction shown on the display will be erased from the Junior
Computer’s memory, leaving a gap which the editor will fill by moving up
the data block following the deleted instruction by the requisite number
of address locations. Here again, the position of the EOF character will be
adjusted: it will be moved up by the same number of bytes.

The SEARCH function is used to track down a particular two-byte
‘pattern’ within the defined memory area of the Junior Computer. This
could be either an opcode plus first operand byte, or a label with the
pseudo opcode FF plus the label number. The search starts off at the
beginning of the defined memory area (BEGADH, BEGADL) and ends
at the address containing the opcode of the double byte in guestion.

This also happens during the SKIP function, which traces the instruction
immediately following the one currently on display. Both the SEARCH
and SKIP functions can report an error. {f, for example, the former is used
to try to find a non-existent double-byte pattern, the display will show
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EEEEEE until the SEARCH key is released. Then a random instruction
will be shown on the display, which is where the Junior Computer stopped
searching. The SKIP function also has this facility. The EOF character
indicates the end of an entered data block made up from instructions and
labels. If the processor discovers more instructions behind the EOF charac-
ter, the message EEEEEE will again be shown on the display until the
SKIP key is released.

The address pointers in the editor

The memory range which is used by the editor to store data and which
runs from BEGAD to ENDAD is called a ‘file’. This can be either a com-
plete page or a data block. Four address pointers are required to take care
of file management. They are:

1) BEGAD: This is stored in memory locations OPE3 and @QE2 —
BEGADH and BEGADL respectively. This pointer thus establishes the start
address of the file in which the editor is to store the program data.

2) ENDAD: This is stored in memory locations QOE5 and PPE4 —
ENDADH and ENDADL respectively. This pointer therefore defines the
end address of the file in which the editor is to store the program data.

3) CURAD: This is stored in memory locations OBE7 and GPEG —
CURADH and CURADL respectively. CURAD is an abbreviation for
‘CURrent ADdress’. The editor requires this pointer to control the seven
segment display on the Junior Computer. Since al! the instructions in the
file are shown on the display, the address pointer CURAD will change
constantly during editing. It will always point to the instruction currently
being displayed.

4) CEND: This is stored in memory locations OPE9 and POES —
CENDH and CENDL respectively. CEND is an abbreviation for ‘Current
END address’. Like CURAD, it will change constantly during the editing
procedure. It will change whenever the command keys INSERT, INPUT or
DELETE are used to enter or erase program instructions. The address
pointer CEND is used to point to the address location immediately
following the EOF character 77. If, for instance, the EOF character is
located at address 259, CEND will be pointing to location §25A.

The current address pointer CURAD and the end of program pointer
CEND are initialised as soon as the editor is activated. In the case of a
‘cold start entry’ (see chapter 5) CURAD will point to the start address of
the program file. This is where the EOF character 77 is stored initially,
which is what is seen on the display each time a cold start entry into the
editor is made. As no instructions have, as yet, been entered, CEND will
point to BEGAD + 1. The initial situation as described is illustrated in
figure 2a.

In addition, the editor features a ‘warm start entry’. When the editor is
started in this mode it operates as normal, but without affecting the cur-
rent address pointer CURAD, the end of program pointer CEND or the
EOF character. As discussed in chapter 5, the editor can be activated by
depressing the GO key or the ST key. The start address for a cold start
entry is ICD5. This address must be stored in the NMI vector if the editor
is to be started with the ST key. The same is of course true of the warm
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start entry. In this mode the editor is started from address 1CCA. The
editor can be left with the aid of either the RST key or the ST key. The
latter method will involve modifying the contents of the NMI vector
(see chapter 5).
In the editing mode the display buffers will no longer contain address
information and corresponding data, but instructions to be executed.
These buffers are still called POINTH, POINTL and INH although they
perform an entirely different function to that described in chapter 7. Data
contained in POINTH will still be displayed on Di1 and Di2, data con-
tained in POINTL will be displayed on Di3 and Di4 and the data contained
in INH will be displayed on Di5 and Di6. The functions of the display
buffers during the editing mode are as follows:

During data entry the display is filled from left to right.
* The computer accepts data one byte at a time, so that two data keys

have to be depressed before the entered byte appears on the display.
* When entering instructions, the computer will first evaluate the opcode

to determine the length of the instruction. This is to see whether the
instruction is one, two or three bytes long. Once the opcode has been
evaluated therefore, the computer will know how many displays to enabie
(Di1...Di2, Di1...Di4or Di1...Di6).
During the editing routines the display buffers will contain the following:
POINTH: will always contain the opcode of an instruction or the pseudo
opcode of a label.
POINTL: will always contain the first operand byte (if present) or the
label number.
INH: will always contain the second operand byte (if present) or the
limiter byte of a label.
Before considering the editor software in detail, it may be as well to say a
few words about the functions INSERT, INPUT and DELETE. The initial
situation is illustrated in figure 1a. Here the address pointer CURAD is
pointing to opcode 3. This opcode, together with the two operand bytes
following it, is shown on the display. The EOF character is located at
address xxxx — 1 and the end of program pointer is pointing to address
location xxxx. If the programmer wishes to enter a new instruction such
as LDA #FF, for instance, immediately after the one currently on display,
the INPUT key must be used (see figure 1b). The hexadecimal code A9FF
will then be loaded into the address locations behind the instruction that
was previously on display {opcode 3 plus the two operand bytes) and the
processor will move all subsequent bytes down by two memory locations.
The EOF character will also move down two places as the instruction
LDA #FF is two bytes long. If, however, the programmer wishes to enter
the new instruction immediately before the one currently on display, the
INSERT key must be used. This is shown in figure 1c. Here the hexadeci-
mal code for the instruction LDA # FF is placed in front of the instruc-
tion that was previously on display. Again, all subsequent bytes (and the
EOF character) are moved down two address locations. In both instances,
the EOF character will be located at address xxxx + 7 and CEND will
point to location xxxx + 2.
In chapter 5 we mentioned the fact that during cold start entry the first
instruction must always be entered by means of the INSERT key. The

136



OP Code 1 OP Code 1 OP-Code 1
Y v 2 oo 2
oroe s oo 3
}86658 = Y
— A9
07 Coe 4 e F 09 Cods 3
—1} ASF,
OP Code 5 OP Code 4
oo s
OPCode S
oot
N ———— = i
= =
OP Code
oo o
X e .
XXXX + 1 EQOF = 77 XXXX + 1 EOF = 77 AAXX ¢ 1
xooxx 2 o) xooox e pr—
XXXX +3 7 XXXX + 3 XXX ¢ 3
p— —— —
w o
- EEEE e EEEEEE e

Figure 1. The difference between the INPUT and INSERT functions. When an
instruction is entered into the file using the INPUT command (1b) it is placed behind
the instruction currently on display. When the INSERT command is used (1c) it

is placed in front of the current instruction. Figure 1a shows the initial situation,
where CURAD is pointing to opcode 3.

reason for this is illustrated in figure 2. The initial situation is given in
figure 2a. From figure 2b it can be seen what happens when the label
FF 1500 is entered into the Junior Computer memory using the INPUT
key. The EOF character will remain where it was and the label FF 15 00
will end up behind it — with disastrous results!

The correct procedure for a cold start entry is given in figure 2c. Here the
programmer uses the INSERT key before keying in the label. This means
that the label is correctly positioned in front of the EOF character. As the
label is three bytes long, the EOF character has moved down three address
locations. At this moment in time the complete file consists of the label
FF 1500 and the EOF character 77, starting at BEGAD and ending at
CEND. The more instructions that are stored in the file, the further down
the EOF character will drop. The CEND pointer will then also be moved
further away from the BEGAD pointer, indicating that the file is growing
all the time.

The effect of the DELETE function is illustrated in figure 3. Let us
suppose that the instruction LDA # FF is situated somewhere in the file
and is followed by the label FF 3B ). We now wish to erase the instruc-
tion LDA #FF (hexadecimal code A9FF) from the file. Once the instruc-
tion has been located, using the SEARCH function for instance, the
display will show the code AGFF and the DELETE key can be depressed.
This has the opposite effect of the INPUT and INSERT keys in that the
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Figure 2. When the editor is started via a cold start entry, the pointers CURAD and
BEGAD will both indicate the EOF character 77 (2a). If the INPUT function is used
to enter the label FF 15 0@ (2b) it will be stored after the EOF character, which is,
of course, incorrect. The correct procedure is to use the INSERT function {2c) so
that the label is stored before the EOF character.
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Figure 3. When an instruction is to be erased from the file, the DELETE function is
used. This effectively shifts the entire data block upwards in the file so that the
unwanted instruction is overwritten.

instruction currently on display is erased from memory and the complete
section of file following it is moved up two locations. This means, of
course, that the EOF character and the CEND pointer also move up two
places. The file will now be two bytes shorter than it was previously.

The basic flowchart of the editor

The basic flowchart of the editor section of the monitor program is shown
in figure 4. This can be compared, to a certain extent, to that given in
figure 1 of chapter 7. As can be seen, there are various similarities and
various differences between the two.

Taking the similarities first: the ‘warming up session’ required before the
computer can operate in the editor mode can be likened to the RESET
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routine which initialises the main section of the monitor. Furthermore, the
central {abel CMND in the editor resembles the START label in the main
monitor section. Even the individual operations that the processor per-
forms between the labels CMND and SEARCH can be compared to block
C in figure 1 of chapter 7: in both sections the computer scans the key-
board and multiplexes the display. After the SEARCH labei in figure 4 the
processor scans each of the command keys (SEARCH, INSERT, INPUT,
SKIP and DELETE) in turn to ascertain which of the functions the pro-
grammer wishes to execute.
This covers the similarities between the two basic flowcharts. What about
the differences? In contrast to the main monitor routine, the editor has no
clear exit point from which it can be left. Once the editor is up and
running by way of a cold or warm start entry, it cannot be left by depress-
ing one of the command keys as in the case of the GO key in the main
monitor routine. As fas as the computer is concerned, the editor is an
infinite loop which can only be exited from by depressing one of the
hardware keys RST or ST.
The label ERRA constitutes a further difference. It belongs to a section of
program in the editor which causes the ‘text’ EEEEEE to be displayed
whenever the programmer is guilty of an operational error. The operation
of the main monitor routine is so elementary that there is no real need for
any error messages. However, when instructions are entered in the editing
mode, it is very easy to make mistakes which the computer must bring to
the attention of the programmer.
Errors will be reported in the following instances:
The programmer uses the SEARCH function to trace a certain two-byte
pattern which is supposedly situated somewhere in the file. If this
particular pattern turns out to be non-existent, the Junior Computer will
display the error message EEEEEE until the SEARCH key is released.
* The programmer uses the SKIP function to quickly run through a file.
Eventually the programmer reaches the EOF character, but inadver-
tently depresses the SKIP key once more. As we know, the file must end
after the EOF character. Therefore, the computer will once again display
EEEEEE as an indication that the programmer has exceeded the bound-
aries of the file which extends from BEGAD to CEND.,
* The computer will also report an error whenever the programmer
depresses the wrong key. An example of this is when the programmer
depresses a data key when the processor is waiting for a command key.
There is one final difference between the two basic flowcharts. It is clear
from figure 4 how the various command keys are tested, but where does
the computer process the data keys @ ...F when the machine is in the
editing mode? It is common knowledge by now that the data keys are
intended for the purpose of entering instructions, in other words opcodes
and operand bytes. In fact, the hexadecimal keys are taken care of during
the SEARCH, INSERT and INPUT routines, which is the reason for all
the branches back to the SEARCH label in the basic flowchart {figure 4).
During these routines the GETBYT subroutine, which is familiar to us
from Book I, is used to fetch the information from two data keys de-
pressed in succession and to combine the data to form a single byte. The
GETBYT subroutine will only accept hexadecimal keys and will ignore
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command keys. As a result, it is possible for the programmer to switch
over to command entry during data entry {by depressing one of the keys
SEARCH, INPUT, INSERT, SKIP or DELETE) without the wrong data
being stored in the file.

The contents of the three display buffers will not be copied from the
display into the file until the programmer has entered the entire instruc-
tion. If the programmer therefore depresses a command key while entering
an instruction, the editor program will branch to the SEARCH label and
will then take care of the new command. If, however, the programmer has
typed in the whole instruction, the program will branch to the centre
jabel CMND. The editor will then wait for a new command key to be de-
pressed and will once again branch to the relative command key routine.

warm cold
start start

1&

warming
up

CMND - —

display 1,2

or 3 buffers;

wait for new
key

SEARCH

SEARCH- INSERT- INPUT-
routine routine routine

I
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The detailed flowchart of the editor

Now that we have discussed the basic flowchart of the editor, it is time to
take a much closer look at the routines etc. involved. The detailed flow-
chart of the editor program is given in figure 5, albeit without the
initialisation routine required for a cold start entry. This routine, which
prepares the memory of the Junior Computer for data entry is given in
figure 6.

As can be seen from the two figures, the editor is made up from a number
of subroutines which we will get to understand more fully when discussing
the overall program. By the way, as with most of the subroutines con-
tained in the monitor EPROM, it is possible to incorporate these routines
in your own programs. This can, in fact, save a great deal of time and
effort when developing programs.

Figure 4. The basic flowchart of the editor section of the monitor program.
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Figure 5. The detailed flowchart of the editor routine, apart from the cold start entry
section,
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Cold start entry

The detailed flowchart of the section of program that is executed when
the editor is activated via a cold start entry is given in figure 6. The editor
program starts with the subroutine BEGIN, which is shown in detail in
figure 7. This consists of only four instructions, but it is extremely import-
ant for both the editor and the assembler. The BEGIN subroutine ensures
that the contents of the display pointer CURAD are the same as the
contents of the address pointer BEGAD. As you know, BEGAD points to
the start address of the file where the programmer intends to store his/her
series of instructions and labels.

After returning from the BEGIN subroutine, the processor makes the
contents of the variable end address pointer CEND equal to BEGAD +1
with the aid of the X and Y index registers. This is quite logical when you

Cold Start
°l I 1CB5 ... 1CCO I

EDITOR

l BEGIN CURAD = BEGAD

LDYZ — BEGADH | Y <BEGADH

LDXZ - BEGADL X <BEGADL

INX BEGADL <BEGADL +1

BEGADL =¢0?

BEGADH < BEGADH + 1

STXZ — CENDL X > CENDL

STYZ — CENDH Y = CENDH

LDA #77 A <77 (= EOF)
LOY #09
STA — (CURADL),Y A — contents
CMND
(tg.5} 8091586

Figure 6. The detailed flowchart of the section of program that is executed when the
editor is started via a cold start entry.
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BEGIN

LDAZ — BEGADL | A < BEGADL

STAZ - CURADL | A ~>CURADL

LDAZ — BEGADH | A <~BEGADH

STAZ ~ CURADH | A > CURADH

RTS
80915-8-7

Figure 7. The subroutine BEGIN simply ensures that the contents of the pointers
CURAD and BEGAD are equal.

consider that the memory location being pointed to by CURAD is to be
loaded with the EOF character 77 and that CEND is to point to the mem-
ory location following the EOF character.

How is CEND made equal to BEGAD + 1? First of all, the contents of the
X index register (= BEGADL) are incremented by one. If the contents of
BEGADL were FF prior to this, the contents afterwards will be @@. This,
of course, means that the contents of BEGADH will also have to be
increased by one. The processor checks out this situation by means of a
BNE instruction and if true the contents of the Y index register
(= BEGADH) are also incremented. Since the pointer BEGAD is not
allowed to change during the entire editor routine, the two index registers
are used as temporary storage locations. The two subsequent instructions
(STXZ-CENDL and STYZ-CENDH) ensure that CEND = BEGAD + 1. The
three final instructions in this section of program simply store the EOF
character 77 in the memory location being pointed to by CURAD. Now
the initial situation as given in figure 2a will have been achieved.

Keyboard and display
the SCAN subroutine

The program section between the labels CMND and SEARCH in figures
4 and 5 is restricted to scanning the keyboard and multiplexing the dis-
plays. This is where the processor determines whether one, two or all
three display buffers are to be enabled and whether any key in the Junior
Computer keyboard matrix has been depressed. Once a depressed key has
been detected, the processor will calculate its value in the usual manner.
These tasks are carried out in the subroutine SCAN, the detailed flowchart
of which is given in figure 8.

At the beginning of this subroutine, the X index register is loaded with
@2 and the Y index register is loaded with 00. As a result, from the label
FILBUF onwards, the contents of three consecutive memory locations
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Figure 8. The SCAN subroutine is responsible for scanning the keyboard for a
depressed key and multiplexing the display. At the end of this subroutine the value

of the depressed key will be held in the accumulator.
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contained in the file are copied into the three display buffers POINTH,
POINTL and INH as follows:

1. X=02 Y =00: contents of CURAD - POINTH (QOFB)

2. X=01 Y =01: contentsof CURAD+1 - POINTL (@@FA)

3. X=00 Y =02: contentsof CURAD+2 — INH {0OF9)

4. X =FF; the subsequent BPL instruction does not lead to another
branch and the processor reaches the subroutine OPLEN. This subroutine
is almost identical to the LENACC subroutine described in Book I. The
OPLEN subroutine calculates the length of the instruction from the
opcode that the display pointer CURAD is pointing to. After returning
from OPLEN the length of the instruction to be displayed will be stored
in the RAM location BYTES (@QF6).

Once the length of the instruction is known, the processor can determine
whether it should only display the contents of POINTH, the contents of
POINTH and POINTL or the contents of POINTH, POINTL and INH.

As mentioned previously, the subroutine SCAND looks after the scanning
of the keyboard and the multiplexing of the display. The subroutine
SCANDS is also familiar to us from chapter 7, for it is the subroutine
SCAND minus the first program section. In that section of program the
display buffer INH is loaded with the contents of the memory location
being indicated by the address pointers POINTH and POINTL. The
processor does not require this particular section in the editor mode. Since
SCANDS and the associated subroutines were all described in chapter 7,
there is no need to go into them again. You can always refer back to that
chapter to refresh your memory.

Once the subroutine OPLEN has been completed the processor moves on
to label SCANA. This section of the program up to the final (RTS) instruc-
tion has also been described in chapter 7. Just to recap, this section of
the program waits for a key to be depressed, debounces the depressed
key and finally calculates the values of the key via the subroutine
GETKEY. Upon the return from GETKEY the value of the depressed key
will be held in the accumulator. The editor command keys have the
following values:

SEARCH : keyvalue 14 (same as the PC key)

INSERT : keyvalue 10 (same as the AD key)

INPUT : keyvalue 13 (same as the GO key)

SKIP : keyvalue 12 (same as the + key)

DELETE : keyvalue 11 (same as the DA key).

The testing of the various keys is accomplished with the aid of a CMP
instruction followed by a BNE instruction. When a command key is
detected, the processor will not branch at the next BNE instruction and
the computer will concentrate on dealing with the particular task per-
faining to the depressed key (see figures 4 and b).

Reporting an error
EEEEEE!

In the event of an operational error, the program section following the
label ERRA in figure 5 will be executed. We have already discussed the
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possible causes of an error report. The first group of instructions in this
section of the program simply enters the hexadecimal value FF into the
three display buffers POINTH, POINTL and INH. The memory location
BYTES is then loaded with the value §3, as when an error is reported all
six digits of the display must be enabled. The program section continuing
on from label ERRB consists of a wait loop where the keyboard and dis-
play subroutine, SCANDS, is executed. The display will continue to show
EEEEEE until the key which caused the error to be reported is released.
Once this has been done the processor will jump back to the central label
CMND.

The SEARCH routine

As would be expected, whenever the SEARCH key is depressed the

routine labelled SEARCH is executed (see figure 5). We already know that

the value of the depressed key is held in the accumulator when the pro-

cessor returns from the SCAN routine. The computer then determines

whether the SEARCH key was depressed with the aid of two instructions

immediately following the SEARCH labei {CMP # 14, BNE). The program

section pertaining to the SEARCH function has to meet the following

requirements:

1. It must be able to trace any two-byte pattern situated anywhere in the
file.

2. The search should start at BEGAD and end as soon as the required bit
pattern has been found.

3. If the required two-byte pattern can not be traced between BEGAD
and CEND, the computer must report an error.

The SEARCH routine starts by calling the subroutine GETBYT twice.

Although this subroutine is familiar to us from Book |, the finer details

have yet to be discussed.

The subroutine GETBYT

The detailed flowchart of the GETBYT subroutine is given in figure 9.
Its task is to combine the values of two depressed data keys into a single
byte and hold the result in the accumulator. This subroutine will only
accept hexadecimal keys and will ignore command keys.

The values of the two depressed keys are stored as one byte in the accumu-
lator by shifting the value of the first one into the four most significant
bits of the accumulator and ORing it with the value of the second. At the
beginning of the GETBYT routine, the subroutine SCANA is called up.
This is the second section of the subroutine SCAN illustrated in figure 8,
which a. establishes whether the old key has been released; b. establishes
whether a new key has been depressed; c. calculates the value of the new
key.

Command keys have a value of 10 or higher, whereas hexadecimal keys
have a maximum value of @F. Therefore, the two instructions (CMP # 10,
BPL) at the start of the GETBYT routine determine which type of key
was depressed. |f a command key was depressed, the value of the N flag
will be zero and the processor will branch back to the SEARCH routine
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LDX # FF N=1

80915-8-9

Figure 9. The subroutine GETBY T combines the values of two depressed keys into
a single byte and holds the result in the accumulator.

via the RTS instruction. If, on the other hand, a hexadecimal key was
depressed, the processor will return from SCANA with the value of that
key stored in the accumulator. If this was the first data key, the contents
of the accumulator will be changed from @x to x@ (where x denotes the
value of the depressed key) after the four shift operations (ASL-A). This
value is then stored in the temporary location NIBBLE (B@FE).

In order to read the second data key the subroutine SCANA is called once
more. {This is why the contents of the accumulator were saved before-
hand). When the processor returns from SCANA the second time a further
test is carried out (CMP# 10, BPL) to determine whether the second de-
pressed key is a command key or a hexadecimal key. In the case of the
latter, the routine will ignore it and the processor will again branch back
to the SEARCH routine.
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If the second key happens to be a data key, with an assumed value of @y,
the data byte in the accumulator will become xy after the instruction
ORAZ-NIBBLE. Here x represents the value of the first hexadecimal key
and y represents the value of the second data key. The final instruction
in the GETBYT subroutine loads the value FF into the X index register,
which sets the N flag. Now it can easily be determined whether a command
key or a data key was depressed during GETBYT by examining the N
flag.

It should be added at this point that the subroutine GETBYT is very
versatile. The programmer will soon see just how easily this subroutine can
be incorporated into his/her own programs.

Now to get back to the SEARCH routine shown in figure 5. After the sub-
routine GETBYT is called the first time, the N flag is tested to see whether
a command key was depressed. This lets the computer know whether or
not to branch back to the label SEARCH by way of the BPL instruction.

If two data keys were depressed during the GETBYT subroutine, they will
both form the part of the two-byte pattern to be searched for. This will
then be transferred to the display buffer POINTH and will be displayed
the second time that GETBYT is called. While the computer is servicing
the GETBYT routine the second time it will wait for the remaining half of
the two-byte pattern to be entered. If, during this routine, a command key
is depressed, the processor will once again branch back to SEARCH and
will wait for a completely new two-byte pattern to be keyed in.

However, if two data keys are depressed, they will constitute the second
half of the bit pattern to be looked for. The combined value of these two
keys will then be stored in the display buffer POINTL. This means that the
two display buffers, POINTH and POINTL, have become the temporary
storage locations for the particular two-byte pattern to be traced.

At this stage the processor knows what pattern to look for between the
labels BEGAD and CEND and the search can commence. To start with,
the subroutine BEGIN is called, which makes the contents of pointer
CURAD equal to those of BEGAD. The following section of the
program, starting at label SELOOP, is executed until the required bit
pattern turns up in the file. Once this has occurred, the processor will
branch back to the central point CMND and the pattern will appear on the
display during the following subroutine SCAN. Should the pattern in ques-
tion prove to be non-existent, the processor will branch from SELOOP to
label ERRA to report an error.

The search

How is the search for the particular two-byte pattern carried out? What
happens is that the processor compares all the instructions and labels in
the file to the bit pattern stored in the two display buffers POINTH and
POINTL.

The section of program concerned commences at label SELOOP. Here
the contents of the Y index register are made to equal 0@. During this
routine the Y register is used as an index to access the various instructions
and/or labels contained in the file. The accumulator is then loaded with
the contents of the location indicated by the current address pointer
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(CURAD) and compared with the contents of the display buffer POINTH.
If the contents of POINTH are not equal to the opcode or label identifier
pointed to by CURAD, then the length of the instruction (or label) must
be calculated and the current address pointer updated accordingly. This is
accomplished by the subroutines OPLEN and NEXT respectively. During
the subroutine OPLEN address location BYTES is loaded with the length
of the instruction pointed to by CURAD. During the subroutine NEXT
(see figure 19) the contents of BYTES are added to the contents of
CURAD and a check is made to see whether the value of CURAD is
already greater than the value of CEND. I this is so, the processor will
branch to ERRA to report an error. This will indicate that the bit pattern
being searched for does not exist in the file.

If the contents of POINTH are equal to the opcode or label identifier
pointed to by CURAD, the contents of the Y index register are
incremented by one. Then the contents of the location indicated by
CURAD + 1 is compared to the contents of the display buffer POINTL.
Should the data contained in the address location pointed to by
CURAD + 1 be equal to that contained in POINTL, then the required bit
pattern will have been found. The processor will then branch back to
CMND to display the bit pattern. Thus, the SEARCH function allows
labels or instructions of any length to be tracked down anywhere in the
file.

If the contents of POINTL are not equal to the contents of the location
indicated by CURAD + 1, the search must continue. Once again the length
of the label or instruction is determined by the subroutine OPLEN and
the contents of the current address pointer updated accordingly. Provided
the contents of CURAD are less than those of CEND the processor will
branch back to SELOOP to continue the search for the required bit
pattern.

Thus, the SEARCH function compares two pairs of bytes with each other.
The two stored in POINTH and POINTL are compared to those stored in
the locations indicated by CURAD and CURAD + 1 respectively. In the
subroutine NEXT the CURAD pointer is updated so that it now points to
the location containing the next byte of the instruction (or label number)
to be examined. Although what happens during the NEXT subroutine
should be perfectly clear, it may be a good idea to examine the details
a bit closer.

The subroutine NEXT

The detailed flowchart of the NEXT subroutine is given in figure 10. After
the carry flag has been reset, the low order byte of the CURAD pointer is
increased by the value contained in location BYTES, The latter location
contains the length of the instruction currently on display. Following this
the value 00 plus the contents of the carry flag are added to the high order
byte of CURAD. This ensures that the 16 bit addition of CURAD +
BYTES results in the pointer indicating the next instruction (or label) to
be examined.

The second part of the NEXT subroutine is devoted to testing whether or
not the current address pointer has exceeded the file boundary imposed by
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NEXT
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CURADH < CURADH — CENDH

80915-8-10

Figure 10. The NEXT subroutine moves the current address pointer down the file
by the number of memory locations contained in location BYTES. In addition, it
checks whether the CURAD pointer is greater than the CEND pointer.

the contents of the current end address pointer (CEND). This involves a 16
bit subtraction, which is virtually the opposite of the previous addition.
Firstly, the carry flag is set. Then the low order byte of CEND is subtracted
from the low order byte of CURAD. Finally, the high order byte of CEND
is subtracted from the high order byte of CURAD. The result of the
complete subtraction will affect the N flag in the status register. |f, after
the return instruction, the N flag is reset (N = 0), the contents of CURAD
are greater than those of CEND and the processor must report an error, If,
however, the N flag is set (N = 1), the contents of CURAD are less than
those of CEND and all is well. The processor will then return to SELOOP
and continue the search. The state of the N flag is tested upon the return
from NEXT with the aid of a BMI (Branch if Minus} instruction which
causes the processor to branch back to SELOOP if the N flag is set. If the
N flag is not set it must be reset and therefore the BPL instruction directs
the processor to ERRA.

The INSERT routine

To understand how the INSERT routine works we need to go back to
figure 5, the editor flowchart, once more. The first two instructions
(CMP # 10 and BNE) determine whether or not the INSERT key was
depressed. If the computer returns from the SCAN routine with the value
10 in the accumulator, the INSERT key will have been depressed and the
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INSERT function must be carried out. The INSERT routine performs the

following task:

1. It reads an instruction entered from the keyboard and places it in the
display buffer. At the same time, the length of the instruction is
determined.

2. Once the entire instruction has been entered into the display buffer, it
must be copied into the work memory immediately before the instruc-

tion currently on display. This obviously involves moving the remainder of

the file downwards by the corresponding number of bytes.

Two subroutines have been provided in the editor program to meet the

above requirements: the subroutine RDINST (= ReaD INSTruction) and

FILLWS (= FILL Work Space). What exactly do these subroutines do?

The subroutine RDINST

The detailed flowchart of the RDINST subroutine is given in figure 11,
The purpose of this subroutine is to enter a one, two or three byte instruc-
tion into the display buffer of the computer. It starts by calling up another
subroutine, GETBYT. This, as we know, enables two hexadecimal keys
to be read into the computer. These will correspond to the opcode of the
instruction to be entered. Upon the return from GETBYT, the opcode will
be held in the accumulator and from there will be transferred into the
display buffer POINTH. If the programmer depressed a command key
during the GETBYT routine, the processor will return to the editor main
;outine in the usual manner with the N flag in the status register reset
N =9).
Once the opcode of the instruction has been transferred to POINTH, the
processor is able to determine the length of the instruction. For this
purpose, the subroutine LENACC is called, which is part of the subroutine
OPLEN we mentioned before. {These two subroutines will be discussed
in greater detail towards the end of this chapter). Once the length of the
instruction has been obtained, it is stored in three memory locations:
BYTES, COUNT and TEMPX.
After decrementing memory location COUNT, the processor tests to see
whether the opcode is followed by any operand bytes which are also to be
read into the display buffer. If the instruction is only one byte long, the
processor will branch to the label RDA where the X index register is
foaded with the value FF. This instruction causes the N fiag to be set.
If the computer returns from the subroutine RDINST with the N flag set,
the entire instruction will have been entered into the display buffer. This
can now be copied into the work memory in front of the instruction
previously on display.
If the processor returns to the editor main program from the subroutine
RDINST with the N flag reset, the programmer must have depressed a
command key when entering the instruction. Part of the instruction will
now be in the display buffer, but this must not be transferred to the com-
puter work memory.
By setting or resetting the N flag during the subroutine RDINST the pro-
cessor is able to check on its return to the main editor routine whether the
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Figure 11. The RDINST subroutine enters
display buffers.
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entered instruction is to be copied from the display buffer into the file, or
whether the computer should deal with the new command function.

Now then, back to what happens when an instruction of more than one
byte is read in. If after the first time the contents of memory location
COUNT are decremented they are not equal to zero, the instruction will
either be two or three bytes long. For this reason the subroutine GETBYT
is called once more, during which the first operand byte of the instruc-
tion is read into the accumulator. This is then stored in the display buffer
POINTL after which the contents of location COUNT are again
decremented. If this becomes equal to zero at this point, the instruction
to be entered will be two bytes long and the processor will return to the
editor main routine with the N flag set. If, however, the contents of
COUNT are still not equal to zero, the instruction concerned will be three
bytes long. The subroutine GETBYT will, therefore, be called a third time.
The processor is then able to read in the second operand byte of the
instruction. Once this is accomplished, it is stored in the display buffer
INH. The processor then returns to the main editor routine with the N
flag set.

Upon the return from the RDINST subroutine the state of the N flag is
tested with the aid of the BPL instruction, which causes a branch to
SEARCH if the N flag is reset. If the N flag is set at this point in the
INSERT routine the processor is directed to the subroutine FILLWS.

Subroutines FILLWS and ADCEND

The task of the FILLWS subroutine is to transfer the contents of the
display buffers into the computer file and update the current end address
pointer CEND. The latter is in fact accomplished during the subroutine
ADCEND — more about this later.

The detailed flowchart of the FILLWS subroutine is shown in figure 12.
At the beginning of this routine the subroutine DOWN is called (see figure
15). The DOWN subroutine will come up for discussion later as it is a
relatively complicated subroutine. For the moment it is sufficient to
know that the DOWN subroutine makes space available in the computer
work memory for the new instruction to be inserted. We already know
that the current address pointer, CURAD, indicates the address of the
instruction currently on display. Since a new instruction can be one, two
or three bytes long and must be inserted before the instruction shown,
the subroutine DOWN must move the entire data block between CURAD
and CEND down by the corresponding number of bytes. As soon as space
has been made, the new instruction can be copied from the display buffer
into the file.

Prior to the subroutine FILLWS being called (see figure 5), the processor
will have calculated the length of the instruction and stored the result in
location BYTES. When the processor jumps from FILLWS to DOWN, the
data block between the pointers CURAD and CEND is then moved down
by the number of memory locations contained in BYTES, If, for instance,
the entered instruction is two bytes long, the hexadecimal number 02 will
be contained in location BYTES. The subroutine DOWN will then move
the block of data between the pointer CURAD and CEND down by two
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Figure 12, The subroutine FILLWS makes room for a new instruction to be copied
from the display buffers into the file.

memory locations.

It should now be fairly clear how the subroutine DOWN helps to make
room for a new instruction to be copied from the display buffer into the
file. Upon returning to the subroutine FILLWS (figure 12), the next stage
is to update the current end address pointer, CEND. This is the task for
the subroutine ADCEND (= ADvance Current END address pointer =
move CEND pointer down by the value of BYTES). The detailed flow-
chart of the ADCEND subroutine is given in figure 13. This routine
simply adds the contents of location BYTES to the address pointed to
by CEND. The 16 bit addition is performed in exactly the same way as for
CURAD in the NEXT subroutine. Firstly, the carry flag is cleared. The
value contained in location BYTES is then added to the low order byte of
CEND. Finally, the value @@ plus the contents of the carry flag are added
to the high order byte of CEND.
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Figure 13. The ADCEND subroutine is called by the subroutine FILLWS (figure 12).
Its function is to increase the value of CEND by the contents of location BYTES —
move the CEND pointer down by the number of bytes corresponding to the length
of the new instruction.

As soon as the processor returns from the ADCEND subroutine, the X
index register is loaded with the value #2 and the Y index register with the
value @@. The process that follows, after the label WS, simply copies
the contents of the display buffers into the file starting from CURAD and
ending when the value in the Y index register is equal to that of BYTES.
Both pre-indexed and post-indexed indirect addressing are used in this
section of the program. The procedure can be summarised as follows:
1. The contents of INH + @2 (= POINTH = the opcode of the instruction
to be entered) are transferred to the contents of CURAD + 0@ (X = 02,
Y =00). The contents of the X index register are then decremented and
those of the Y index register are incremented. The value in the Y index
register is then compared with the contents of BYTES to check whether
there are any further operand bytes to be transferred. If there are:
2. The contents of INH = @1 (= POINTL = the first operand byte of the
instruction to be entered) are transferred to the contents of
CURAD + @1 (X=01,Y = @1). Again, the contents of the X index register
are decremented and those of the Y index register incremented. Then the
value contained in the Y index register is once more compared to the con-
tents of location BYTES to check whether a further operand byte is to be
transferred. If so:
3. The contents of INH + @@ (= INH = the second operand byte of the
instruction to be entered) are transferred to the contents of
CURAD + @2 (X =00, Y = 02). The contents of the X index register are
again decremented and those of the Y index register incremented. When
the contents of the Y index register are compared to those of location
BYTES this time they will have to be equal as the contents of BYTES
can not exceed @3. This means that the processor will not effect a branch
this time, but will continue to the return instruction.
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Once the contents of all the display buffers have been inserted into the file
between CURAD and CEND, the processor will leave the FILLWS routine
and go back to the INSERT routine (see figure 5). The Z flag will always
be set at this stage and so at the end of the INSERT routine the processor
branches back to the central point CMND via a BEQ instruction. The
editor will then continue to wait for a new command key to be entered.

The INPUT routine

The INPUT routine is very similar to the INSERT routine, therefore, apart
from a few minor differences which we'll examine here. The purpose of
the routine was explained in chapter 5 and is: to read in a new instruction
from the keyboard into the display buffer and copy the new instruction
into the file immediately after the one currently on display.

The INPUT routine is also illustrated in figure 5. The first two instructions
(CMP # 13 and BNE) determine whether or not the INPUT key was de-
pressed. If so, the subroutine RDINST is executed which, as we know,
reads an instruction entered from the keyboard and copies it into the
display buffer. If a command key is depressed during this subroutine, the
processor will branch back to the central label CMND via the following
BPL. instruction.

If, on the other hand, the entire instruction has been entered, the sub-
routine OPLEN will be called. At this moment the current address pointer
will still be pointing to the ‘old’ instruction in the file. The computer then
determines the length of this instruction with the aid of the OPLEN
subroutine. Following this the subroutine NEXT is called, which moves
the current address pointer, CURAD, down by the equivalent number of
bytes to the length of the old instruction shown on the display.

The pointer CURAD will now indicate the address where the new instruc-
tion should be stored in the file. After the return from the NEXT sub-
routine, the contents of location TEMPX are transferred to location
BYTES. As you know, the contents of location BYTES represent the
length of an instruction. What, however, does the location TEMPX con-
tain? To find out, let us reconsider part of the RDINST subroutine
(figure 11). During this subroutine the instruction length information is
stored in location TEMPX after the return from LENACC. The processor
uses this information in the INPUT subroutine before jumping to the
EILLWS subroutine. During the latter routine the new instruction is
inserted immediately after the old one. As the current address pointer,
CURAD, has not altered since the NEXT subroutine, it will already be
pointing to the newly entered instruction upon the processor’s return to
the central CMND point. The SCAN subroutine proceeds to display the
new instruction and the computer will wait for a further command key to
be depressed. :

The SKIP routine

The purpose of the SKIP subroutine (as mentioned in chapter 5) is to
check through a program that has been entered with the aid of the editor.
The SKIP function simply steps through the entered program one com-
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plete instruction at a time whenever the SKIP key is depressed. The entire
instruction, be it one, two or three bytes long, will appear on the display.
Once more, the detailed flowchart of the SKIP subroutine is shown in
figure 5.

The two initial instructions (CMP # 12 and BNE) determine whether or not
the SKIP key was depressed. If so, the only thing to be altered is the
position of the current address pointer, CURAD. We already know which
subroutine moves the CURAD pointer down by one, two or three bytes:
the NEXT subroutine (figure 10).

During this subroutine the processor checks to see whether the CURAD
pointer has already exceeded the current end address pointer, CEND. If
so, an error will have to be reported. The program will branch to label
ERRA via the BPL instruction. The display will show the ‘message’
EEEEEE until the SKIP key has been released. Otherwise the processor
will branch back to the central CMND label via the BMI instruction and
the processor will wait for the next command key to be depressed.

The DELETE routine

The final command key routine of figure 5 to be described is the DELETE
routine. As we know from chapter 5, its purpose is to erase a particular
instruction from the computer memory. The DELETE function has to
effectively move the complete data block starting at the instruction
immediately following the one currently on display and ending at the
pointer CEND up by one, two or three bytes. The actual number of bytes
the block is moved up depends on the length of the instruction to be
erased (the one currently on display). As a result of the data block being
moved up, the current instruction will be overwritten.

As can be seen from the detailed flowchart in figure 5, the DELETE key
is detected in the usual manner (with the aid of the instructions CMP # 11
and BNE). Once the DELETE key has been depressed, the processor
jumps to the subroutine UP. As expected, this is the subroutine which
moves the data block up by the required number of bytes. (This sub-
routine will be described in detail later).

Since deleting an instruction will cause the file to be shortened by one,
two or three memory locations, the current end address pointer CEND will
also have to be shifted upwards. This is accomplished by the subroutine
RECEND (= REduce Current END address = move CEND pointer up by
value of BYTES). The detailed flowchart of the RECEND subroutine is
shown in figure 14. 1t simply performs a 16 bit subtraction. In fact, it is
the exact opposite of the subroutine ADCEND shown in figure 13 ( the
16 bit addition). The operation of the RECEND subroutine should hardly
need explaining by now. All that happens is that the contents of address
location BYTES are subtracted from the contents of the current end
address pointer CEND. When the processor returns from the RECEND
routine a jump is made back to the central label CMND where the com-
puter once again waits for a new command key to be depressed.

This completes the description of ali five command routines contained in
the editor program. However, three subroutines were only mentioned
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1EEA ... 1EF7

SEC c=1

LDAZ — CENDL

SBCZ — BYTES CENDL < CENDL — BYTES

STAZ — CENDL

LDAZ — CENDH

SBC #00 CENDH <CENDH - T

-t

STAZ -- CENDH

RTS CEND < CEND —BYTES

80915-8-14

Figure 14. The subroutine RECEND is the opposite of ADCEND (figure 13). Its
function is to decrease the value of CEND by the contents of location BYTES —
move the CEND pointer up by the number of bytes corresponding to the length of
the instruction to be erased.

briefly and it is time to examine these in greater detail. The three sub-
routines in question are: DOWN, UP and OPLEN/LENACC.

The subroutine DOWN

As mentioned previously, the DOWN subroutine is called by the FILLWS
subroutine. The latter was used for the INSERT and INPUT functions,
when space for the new instructions had to be made in the file. In other
words, the processor had to move a data block down by one, two or three
bytes depending on the length of the instruction to be entered. Essentially,
this is the task of the DOWN subroutine. The detailed flowchart of the
DOWN subroutine is shown in figure 15, while the operation is illustrated
in figure 16.

During the DOWN subroutine the processor makes use of a new address
pointer MOVAD (= MOVe ADdress). This pointer will always indicate a
byte in the file that is to be moved down by one, two or three memory
locations. The first four instructions in the DOWN subroutine therefore
make the contents of MOVAD equal to those of CEND. The move address
pointer will indicate the same address location as the CEND pointer, which
is the memory location following the EOF character 77.

By now the processor has reached the label DNLOOP. This is where the
actual moving of the data block takes place. Firstly, the value contained
in the Y index register is made equal to zero. The contents of the address
location indicated by the MOVAD pointer are then loaded into the
accumulator (Y = 00). The contents of location BYTES are then trans-
ferred to the Y index register. The value in the accumulator is then stored
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LDAZ — CENDL

STAZ - MOVADL

MOVAD = CEND

LDAZ — CENDH

STAZ — MOVADH

LDY #9@

LDA - (MOVADL),Y

LOYZ - BYTES

STA ~ (MOVADL),Y

LDAZ - MOVADL

CMPZ — CURADL

ST
A - contents MOVAD + BYTES

[

LDAZ —~ MOVADH

CMPZ - CURADH

SEC

LDAZ — MOVADL
S$BC #91

STAZ ~ MOVADL

LDAZ — MOVADH
S8C # 99

STAZ — MOVADH
JMP — DNLOOP

MOVADL = CURADL?

A < MOVADH

MOVADH = CURADH?

A < MOVADL

MOVADL <~MOVADL -1
A~ MOVADL

A —MOVADH

MOVADH <~ MOVADH - C
A~ NOVADH

MOVAD <~MOVAD - 1

809168-18

Figure 15. The DOWN subroutine shifts a data block in the file down by o_nd, two or
three memory locations. This makes room for a new instruction to be copied from
the display buffer.
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Figure 16. The operation of the DOWN subroutine. In the given example the data
block is moved down three places as the contents of memory location BYTES
equals @3.

in the address location indicated by the MOVAD pointer plus location
BYTES (Y = BYTES).

Subsequently, a comparison is made between the two pointers CURAD
and MOVAD. If the pointer MOVAD is not equal in value to that of
CURAD, there are more bytes to be moved down in the file. The processor
will then decrement the value of the pointer MOVAD after the label
DNA, meaning that MOVAD will move up one memory location in the
file. After jumping back to the label DNLOOP the processor will also move
the data byte pointed to by MOVAD down by the number of locations
indicated by the value contained in location BYTES. Thus, the procedure
described above is repeated until the two pointers MOVAD and CURAD
are equal. Once this is so, all the bytes in the data block will have been
moved down in the file by the requisite number of memory locations. The
processor is then able to insert the new instruction in the {now) vacant
space immediately following the address indicated by the pointer
CURAD.

A graphical representation of the way in which the DOWN subroutine
operates is given in figure 16. The MOVAD pointer will always indicate the
data byte to.be moved down in the file. After every ‘shift’ operation the
processor will decrement the pointer MOVAD, so that it gradually moves
up in the file. This means that its starting value will be equal to CEND
and its final value will be equal to CURAD. In figure 16 the contents of
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location BYTES are equal to @3. Therefore, three consecutive memory
locations will be vacated (following CURAD) in which the new instruc-
tion can be entered.

In the standard version of the Junior Computer a file will be no longer
than 512 bytes. Such short files will only require the use of the DOWN
subroutine for very brief periods, since few data bytes are to be shifted.
When the computer is expanded, however, a file could well be two to four
kilobytes long. If an instruction is to be entered near the beginning of such
a long file via the INSERT or INPUT routines, the Junior Computer will
spend several seconds in the DOWN subroutine. This can be seen on the
display which will go dark for some time!

The subroutine UP

The UP subroutine is the reverse of the DOWN subroutine and, as we
know, is called during the DELETE function. The latter is used to erase
certain instructions from the file. This means that the data block in the
file will have to be shifted up by one, two or three bytes, depending on
the length of the instruction to be deleted, to compensate for the erasure.
This is, of course, the task of the UP subroutine. The detailed flowchart
of the UP subroutine is given in figure 17, while the operation is illustrated
in figure 18.

The address pointer MOVAD is again made use of during the UP sub-
routine. Again, this pointer will indicate the byte in the file that is to be
repositioned. The first four instructions in the UP subroutine therefore
make the contents of MOVAD equal to those of CURAD. Whereas the
DOWN subroutine started the transfer from the bottom of the file, the UP
subroutine starts at the top.

By now, the processor will have arrived at the label UPLOOP. This is
where the actual movement of the data block takes place. Firstly, the
contents of location BYTES are loaded into the Y index register. The
contents of the address location pointed to by MOVAD + BYTES is then
loaded into the accumulator. The value in the Y index register is then
made zero and the value in the accumulator stored in the address location
indicated by MOVAD. The value of the move address pointer is then in-
cremented so that it is ready for the next data byte location. If the low
order byte of the MOVAD pointer is zero, the high order byte will also
have to be incremented.

This brings us to label UPA. From here on the processor simply determines
whether or not the contents of the move address pointer have exceeded the
value of the current end address pointer. If not, the processor will branch
back to label UPLOOP and move the next data byte in the file up by the
number of spaces corresponding to the value held in location BYTES
until such time as the two pointers (MOVAD and CEND) are equal.

Once this is so, all the bytes in data block will have been moved up in the
file by the requisite number of memory locations. The processor will
then have overwritten the instruction previously on display thereby
deleting it from the file.

Little needs to be said about the graphical representation of the UP
subroutine (see figure 18) as it is virtually identical to that of the DOWN
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80915817
Fi.gure 17. The UP subroutine is the reverse of the DOWN subroutine in that it
shifts a data block in the file UP by one, two or three memory locations. This enables

unwanted instructions to be erased from the file.
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Figure 18. The operation of the UP subroutine. In the given example the data block
is moved up three places as the contents of location BYTES equals 03.

subroutine (figure 16) — albeit in reverse. Again, the contents of location
BYTES are 03. Initially, the MOVAD pointer and the CURAD pointer
are equal. The MOVAD pointer always indicates the address of the data
byte to be moved up three places in the file. After every shift operation
the processor will increment the contents of the MOV AD pointer, so that
it gradually moves down the file. This means that its starting value will be
equal to CURAD and its final value will be equal to CEND.

The subroutine OPLEN/LENACC

Part of the OPLEN subroutine should be familiar to us from Book I,
chapter 4: the subroutine LENACC. During this subroutine the processor
calculates the length of an instruction. Before LENACC can be called the
instruction opcode must be held in the accumulator, for without the
opcode the length of the instruction can not be calculated. When the sub-
routine OPLEN is called, therefore, the instruction indicated by the
address pointer CURAD is (automatically) entered into the accumulator.
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Figure 19. The OPLEN subroutine calculates the length of a particular instruction,
the opcode of which is indicated by the current address pointer. The actual
calculation starts after the label LENACC.
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The detailed flowchart of the OPLEN subroutine is given in figure 19.
There is a slight difference between the LENACC section of the subroutine
described in Book |, chapter 4, page 132, and the LENACC subroutine as
contained in the EPROM of the Junior Computer. The two index registers
(X and Y) have been interchanged — this has no effect on the operation of
the routine.

As you will remember from Book |, the lengths of the various 6502 micro-
processor instructions can be determined from a look-up table. This table
was previously called LENTBL, but is now called, quite simply, LEN (see
tabie 1).

Table 1 LEN
1F1IF 02 X =00; column® (mainly 2 byte instructions)
1F20 02 X=01; column1 (only 2 byte instructions)
1F21 02 X =02; column2 (LDX IMM)
1F22 01 X=03; coiumn3 {empty ‘1 byte instruction’)
1F23 02 X=04; column4 (mainly 2 byte instructions)
1F24 02 X =05; column5 (only 2 byte instructions)
1F25 @2 X =06; column6 (only 2 byte instructions)
1F26 01 X=07; column?7 (EOF character ‘1 byte instruction’)
1F27 01 X =08; column8 (only 1 byte instructions)
1F28 (02 X=09; column9 {mainly 2 byte instructions)
1F29 01 X =0A; column A (mainly 1 byte instructions)
1F2A @1 X =0B; columnB (empty ‘1 byte instructions’)
1F2B @3 X =0C; columnC (mainly 3 byte instructions)
1F2C 03 X=0D; column D (only 3 byte instructions)
1F2D 03 X =0E; columnE (mainly 3 byte instructions)
1F2E 03 X =0F; column F (label FF ‘3 byte instruction’)

The look-up table , LEN, was compiled with the aid of the condensed
instruction code table shown in figure 20 (this can also be found on pages
130 and 131 of Book 1). Note that columns 7 and F are no longer empty.
They contain the EOF character 77 and the label identifier FF respect-
ively. Full details of this table and the LENACC subroutine were given in
Book I, therefore there is no need to describe them fully here. However,
since the subroutine OPLEN/LENACC is used quite often, a summary of
the main points would not be amiss:
1. After the subroutine OPLEN is called, the accumulator is loaded with
the opcode of the instruction which is being pointed to by the current
address pointer CURAD. This pointer will indicate a normal instruction
opcode, the label identifier (pseudo-opcode) FF or the EOF character
77.
2. From LENACC on, the Y index register is loaded with @1 and the
instructions BRK, RT! and RTS (single byte instructions) are filtered
out with the relative compare instructions, If the opcode of one of these
three instructions is held in the accumulator, the contents of the Y index
register (1) will be stored in location BYTES (= instruction length).
3. The next instruction to be filtered out is the JSR instruction. As this
instruction is three bytes long, the Y index register is first loaded with
@3. The following compare and branch instructions direct the processor
to store the value @3 (Y register) in location BYTES if the opcode held in
the accumulator is that of the JSR instruction.
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most significant four bits

most significant four bits

least significant four bits

? 1 2 3 4 5 6 7
0| BRK {1){ ORA {IND,X) {2} ORAZ (2ilAsLz (2
1| BPL (2)| ORA (INDLY (2) ORA Z,X (2) | ASL Z,X (2)
2| JsR {3)] AND (IND,X) {2 BITZ (2}ANDZ (2[ROLZ (2)
3| 8Mm (2)] AND (INDLY (2) AND Z,X (2) | ROL Z,X (2}
4] 8T {1)| EOR (IND,X) {2) EORZ (2{LSRZ (2)
s|avc (2)| EOR (IND),Y (2) EOR Z,X (2} | LSRZ,X (2)
6| RTS {1){ ADC {(IND,X} {2} ADCZ (2)|RORZ (2)
7|8vs (2){ ADC (IND)Y {2 ADC Z,X (2} | ROR 2,X (2) | EOF 77 (1}
8 STA {IND, X} {2} STYZ {2)|STAZ (2}|STX2Z (2
9| BCC (2)] STA(INDLY (2 STYZ,X (2} STAZX (2)|STX 2Y (2
Al LDY#  (2)f LDA(INDX) {2}| LOX# (2} Lo¥YZz (2| LDAZ {2){wDX2Z (2
8| scs (2)| LDA (INDLY (2} LDY 2,X (2)| LDAZX (2| LDX Z,Y (2}
ClcPy# (23| CMP (IND,X) (2} CPYZ (2/CMPZ (2|DECZ .(2}
D| B8NE (2)| CMP (IND),Y (2) CMP 2,X (2) | DECZ,X (2}
E{ CPX#  (2){ SBC(IND,X} (2) CPXZ (2)|SBCZ (2[INCZ (2)
F| BEQ (2)} SBC (INDLY (2) SBCZX {2)] INCZ,X (2}
Ieast significant four bits
8 9 A 8 [o D E L
e PHP (1) ORA# {2} AsLA (1) ORA ABS (3| ASLABS (3) °
1} CLC (1)| ORA ABS,Y (3} ORA ABS X (3)| ASL ABS,X (3) 1
2] PLP (1)) AND# (2}l ROL A (1} BIT ABS (3)| AND ABS (3)] ROL ABS  (3) 2
3| SEC (1}] AND ABS,Y (3} AND ABS,X (3)| ROL ABS, X (3) 3
4| PHA (1)) EOR# 2l sra (1) JMP ABS (3} EORABS (3)| LSRABS (3) 4
5/ CU (1)| EOR ABSY (3) EOR ABS,X (3)| LSR ABS,X (3) 5
6| PLA (1)} ADC# (2{ ROR A (1) JMPIND {3) [ ADCABS (3}| ROR ABS (3) 6
7| set (1| ADC ABS,Y (3) ADC ABS,X {3)| ROR ABS,X (3) 7
8| DEY (1) TXA (1) STY ABS (3)[STAABS (3)| STX ABS  (3) 8
9| TYA (1)) STAABSY (3| TXS (1) STA ABS,X (3) 9
Al TAY (1)] LDA# (2 TAX (1) LDY ABS (3){LDAABS (3)| LDX ABS (3) A
B{CLV (1}| LDAABSY (3] TSX (1) LDY ABS,X(3) | LDA ABS,X (3)] LDX ABS,Y (3) -3
cliNy (1] cmP 4 (2] DEX (1) CPY ABS (3){CMPABS (3)| DECABS (3) c
D|CLD (1)| cMP ABS,Y (3) CMP ABS,X (3)] DEC ABS,X (3} D
E| INX (1) sBC # (2 NOP (1) CPX ABS (3)|SBCABS  (3)] INCABS  (3) €
F{SED (1)] sBC ABS.Y (3} SBC ABS,X (3)| INC ABS,X (3] |Label ¥F (3){ F
80915-20

Figure 20. Both the EQF character 77 and the label identifier FF have been included
in the condensed instruction table. This table is used to compile the look-up table
LEN (table 1).

4. The next step in the OPLEN subroutine is to filter out all three byte
instructions of column9 in figure 20. This is accomplished by
masking the five least significant bits (AND # 1F) and comparing the
result with the value 19. If the opcode contained in the accumulator
belongs to one of these instructions the value @3 (Y index register still
contains @3) will be placed in location BYTES.
5. Finally, if none of the above points apply, the length of the instruction
must be obtained from the look-up table LEN. This is accomplished by
masking the four least significant bits of the opcode (AND #OF) and
transferring the result into the X index register. The Y index register
is then loaded with the value obtained from the table, which is then
transferred to location BYTES.
We should now be totally familiar with the operation of the editor section
of the monitor program. The various editor subroutines will prove to be
a great help to the programmer when developing future programs. The
complete source listing pertaining to the editor can be found in the
appendix to this book.
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The Assembler program

Tidying up the edited program

Once a program has been entered into the Junior Computer by
means of the editor routine, it has to be ‘reshaped’ into a form
that the 6502 microprocessor can understand. This is the task
of all the subroutines used by the assembler section of the
monitor program. When a program is entered with the aid of
the editor, the operand of a jump or branch instruction will
usually be a label number, in other words, a symbolic address.
Even the labels themselves are pseudo-instructions which the
processor is unable to understand. For these reasons, the
assembler must remove all labels from the program, replace
the symbolic addresses of jump instructions with their ‘real’
addresses and replace the label numbers of branch instructions
with their actual displacement values. This chapter therefore
describes the way in which all this is dealt with by the various
subroutines used during the assembler program.

Chapter 5 introduced us to the benefits to be derived from using the
editor and the assembler. When entering a program with the aid of the
editor it is no longer necessary to know the start addresses of the sub-
routines to be called or the displacement values of the branch instruc-
tions. For now we can use labels, or so-called symbolic instruc-
tions. By using labels instead of actual addresses, the computer can be
made to relieve us of a considerable amount of tedious calculations
(what else are computers for?). Programs can be keyed in to the memory
banks of the Junior Computer with the aid of the editor and without any
difficulty. Once the program has been assembled we can be sure that all
the subroutine start addresses and displacement values of branch instruc-
tions are correct. This means that the time consuming job of stepping
through programs to look for errors can be reduced to a swift, last minute
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check. Another advantage is that the editor and assembler enable programs
to be stored in the available memory as compactly as possible.

The basic flowchart of the assembler

It was mentioned in chapter 5 that the assembler contained in the monitor
program of the Junjor Computer is a ‘two pass’ assembler. This means that
the actual assembly procedure is carried out in two stages. The basic flow-
chart of the assembler is given in figures 1 and 2. In order to appreciate the
two phases involved, the basic flowchart has been divided into two sec-
tions.

As the obvious place to start is at the beginning, let us first take a look at
figure 1. The label ASSEMB (start address 1F51) heads a section of pro-
gram which carries out all the necessary preparations before the actual
assembler main routine can proceed. This involves setting the various
address pointers to the correct positions.

Next we come to label PASSA which is where the first phase of the main
assembler program starts. Here, the processor will only concentrate on
labels entered by the programmer with the aid of the editor, all other
instructions will be ignored. How does the processor track down each
of the labels? This is a relatively simply task. As we already know, the
processor is able to determine the length of any given instruction with the
aid of the OPLEN subroutine. We also know that the NEXT subroutine
can be used to ‘skip’ from instruction to instruction. By combining these
two subroutines the processor simply runs through the entire program
(section) and examines the first byte of each instruction encountered.

If a label is involved, the value of this first byte will be FF (the label
identifier). The processor will then take note of the address which contains
this pseudo-instruction. In addition, it will store the label number
following the identifier. Both the address and the label number are stored
in what is called the ‘symbol stack’. This is virtually nothing more than a
scratch pad and can be compared to the computer’s normal stack situated
on page 1. The only real difference between them is that the stack pointer
is controlled by the microprocessor itself (hardware controlled) and the
pointer belonging to the symbol stack is controlled by the program (soft-
ware controlled). Nevertheless, they both have one thing in common and
that is that they ‘expand’ upwards from the bottom.

Now to get back to the first phase of the assembly process. Once the pro-
cessor has found a label in the file and the address of the pseudo-instruc-
tion together with the label number have been stored on the symbol
stack, the label must be deleted from the file. The subroutine which takes
care of this was introduced in the previous chapter, namely the UP sub-
routine which was called during the DELETE function. Since a label is
always three bytes long, the data block starting immediately after the
label and ending at the address indicated by the CEND pointer will be
moved up by three bytes. This deletes the label from the file which is now
three bytes shorter. Obviously, the end address pointer, CEND, will now
have to be readjusted so that is also moves up three places in the file. Now
the opcode of the instruction following the deleted label will have moved
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Figure 1. The basic flowchart of the first phase of the assembler. During this phase,

the processor removes all the labels from the file and stores the label number and

its associated address on the symbol stack.
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Figure 2. The basic flowchart of the second phase of the assembler. During this
phase, the label number and limiter byte following jump instruction opcodes are
replaced by the actual jump address. At the same time, the label number following
a branch instruction is replaced by the actual displacement value.
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to the address where the label identifier was situated previously. The above
procedure is clearly illustrated in figures 3a and 3b.
Once the label has been erased from the file and all the relevant infor-
mation concerning it has been stored on the symbol stack, the processor
will search for the next label. This means that the processor continues to
jump from instruction to instruction while testing each one to see if the
the first byte has the value FF. Whenever the label identifier, FF, is
encountered, the same procedure takes place:

1. The address location where the label identifier is found is stored on the
symbol stack (first the high order byte followed by the low order byte).

2. The label number following the identifier is obtained and is also stored
on the symbol stack. This means that three important parameters

concerning the label are stored on the symbol stack: the high and low

order bytes of the address where it was found and the label number. The
exact structure of the symbol stack will be discussed in detail later.

3. The label is removed from the file. The instruction immediately follow-
ing the label will now be located at the address where the label was
previously.

4. The file is examined for more labels and if none are found the process
will be stopped.

This procedure is also illustrated in figure 3. Four stages of a label search
operation during the first phase of assembly are shown. In figure 3a the
processor encounters a label at address §200. Once all the required details
concerning the label have been stored on the symbol stack, the label can
be erased from the file. This situation is shown in figure 3b. As a label is
always three bytes long, the data block following it has been shifted up
three places. Thus the opcode of the instruction following the label will
now be situated at the old address of the label. At the same time, the file
will have become three bytes shorter.

The processor then continues the search for another label, which it finds at

address location 0208. The required parameters are again stored on the

symbol stack and the label is removed from the file {figure 3c). The next
label will be found at address 9217 and the above procedure is repeated to
produce the final result as shown in figure 3d.

This covers just about all there is to say initially about the first phase of

the assembly routine. Now it is time to take a look at the second phase

(PASSB). As stated previously, the basic flowchart of the second phase

of the assembler operation is shown in figure 2. By this time all the labels

will have been removed from the file. After the label PASSB the processor
will examine all the instructions remaining in the file, starting with the
first one. However, the only instructions the processor is interested in are
those referring to a label number. We know which instructions these are

from chapter 5:

* the JMP instruction with the opcode 4c

the JSR instruction with the opcode 20

* the branch instructions BCC, BCS, BEQ, BMI, BNE, BPL, BVC and
BVS.

During the second assembly phase, the processor assigns the correct

addresses and displacement values to the above instructions. For this

reason the three different types of instruction are filtered out of the file

*
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one after the other. The processor is quite capable of determining the type
of instruction from its opcode. If the processor encounters the opcode 4C
(the JMP instruction) it ‘knows’ that there is a label number following.
The address of the label was stored on the symbol stack together with the
label number during the first phase of assembly (PASSA).
The computer will now interrogate the symbol stack until it finds a
label number identical to the one following the opcode 4C. When this
has been found, the processor will fetch the corresponding address from
the symbol stack and place it behind the opcode 4C. The address consists
of two bytes, therefore the label number and the limiter byte which were
previously behind the opcode will now be replaced by the actual jump
address in the process. The JMP instruction (with the opcode 4C) has
now been assembled.
The next instruction the computer checks for is the JSR instruction. If
the computer comes across the opcode 20 the symbol stack is once more
interrogated for the address corresponding to the label number following
the JSR instruction. As before, the processor places this address behind
the instruction and thereby assembles it. The procedure is identical to that
for the JMP instruction.
As we know, the 6502 microprocessor features eight branch instructions.
If the processor encounters the opcode of a branch instruction, the label
number following it must be replaced by the actual displacement value.
A branch instruction is assembled as follows:
The processor checks to see which label number follows the opcode of
the branch instruction. An absolute address corresponding to that label
is stored in the symbol stack.
The processor searches for the label number in the symbol stack. Once
this has been found, the corresponding absolute address will also be
known.
The computer will now know the address containing the opcode of the
branch instruction and the absolute address of the label number. From
this the processor can calculate the required displacement value for the
branch instruction,

The processor places the displacement value it has calculated immedi-

ately behind the branch instruction to be assembled.
In certain instances the processor may come across a JMP, JSR or branch
instruction that does not require assembly. As mentioned in chapter 5,
there are certain times when the jump instruction refers to a particular
address that is already known during editing. If this is the case, the instruc-
tion will not be followed by the label number and the limiter byte 0@.
Also, the label will not have been stored in the symbol stack during the
first phase of assembly as the label identifier FF will be absent. In other
words, the label is non-existent in the file and so the processor was unable
to store the label number and its corresponding absolute address on the
symbol stack during PASSA. If the Junior Computer encounters such an
instruction during the second phase of the assembly procedure, the instruc-
tion wiil not be assembled. This means that no data is altered after the
opcode. For the sake of clarity, the assembly block has been left out
of figure 2.
Up to now, we have discussed the general procedure during assembly. We
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have discovered that the assembler processes the file produced by the
editor in two stages. During the first phase the processor removes all the
fabels from the file and stores all the fabel numbers and associated ad-
dresses on the symbol stack. During PASSA the processor is only
interested in those instructions that start with the pseudo-opcode FF.
Once all the labels have been deleted and all the label numbers and their
absolute addresses have been stored on the symbol stack, the computer
will start the second phase of the assembly operation (PASSB).

During this second phase the processor is only interested in the opcodes
4C, 20 and those belonging to the various branch instructions. These
are still followed by label numbers (and in the case of the jump instruc-
tions by the limiter bytes). The processor will then track down the label
number situated behind the opcode of the instruction being assembled
in the symbol stack. Each label number on the symbol stack has a corre-
sponding absolute address, which will be placed in the file directly after
the opcode as far as jump instructions are concerned. With respect to
branch instructions, the processor will calculate the displacement value
from this address. The organisation of the symbol stack still remains to be
considered. Now that we know the basics of the assembly procedure, we
can go in to it in greater detail and discover more about the symbol stack
in the process.

The detailed flowchart of the assembler

The detailed flowchart of the assembler routine will again be discussed
in two phases. The first phase of the assembler (PASSA) is shown in figure
4. This is the section that deletes the labels from the file and stores their
numbers and associated absolute addresses on the symbol stack.

The assembler starts from the label ASSEMB at address location 1F51.
During the first part of this program section the processor sets various
address pointers and initialises the symbol stack.

Before continuing with this description, a few general remarks should
be made. The assembler program is closely related to the editor program,
In other words, the assembler makes use of many of the subroutines used
by the editor. For this reason, it would be useful to study chapter 8 again
at this stage, if the way in which the editor subroutines operate is not fully
understood.

The assembler uses an address pointer that has not yet been mentioned,
namely: TABLE. This is stored in address locations @QED and @QEC
{TABLEH and TABLEL respectively).

These two memory locations contain the address indicated by the TABLE
pointer. This address pointer always indicates the highest address on the
symbol stack. The lowest address will be TABLE + FF, meaning that the
symbol stack is 2566 bytes long. The first seven instructions following the
label ASSEMB ensure that the address pointer TABLE is initially loaded
with an address which is 2566 (= FF) memory locations in front of the
ENDAD (end address) pointer. This is also illustrated graphically in
figure 5.

Next, the assembler routine uses another new memory location called
LABELS. This is situated at address @@EE. When the contents of LABELS
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Figure 4. The detailed flowchart of the first phase of assembly.
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CURADL : GdE6
CURADH : G9E7
LABELS : 0QEE
TABLEL : 0EC
TABLEH : GUED

Figure 5. The pointer TABLE + LABELS enables the processor to control the data
transfer to or from the symbol stack. The symbol stack is ‘filled’ from bottom to
top during the assembly process. First the label numbers and then the contents of
the current address pointer CURAD are stored on the stack.

are added to those of the address pointer TABLE, the result will be the
actual address to which the symbol stack pointer is directed at that mo-
ment. This will therefore be equal to TABLE + LABELS. During the first
phase of assembly the symbol stack pointer will always indicate the first
available vacant location in the symbol stack. If a label is found during
this first phase of assembly, the label number will be stored in the first
spare location of the symbol stack followed by the low order address
byte in the next spare location followed by the high order address byte in
the third spare location.

By now it should be fairly clear as to how the symbol stack is organised.
Once all the pointers have been initialised, the symbol stack pointer will
indicate the same address location as the ENDAD pointer {see figure 5 for
details). Immediately before the label PASSA the subroutine BEGIN is
called. This is a short subroutine which has already been described in
chapter 8, figure 7. It simply ensures that the contents of the pointers
CURAD and BEGAD are the same. As you know, the BEGAD pointer
indicates the start address of the file.

PASSA

Now the processor has reached the label PASSA, thereby initiating the
first phase of the actual assembly process. To start with, the processor
jumps to the subroutine OPLEN (see chapter 8, figure 19). This subroutine
calculates the length of an instruction and stores the result in memory
location BYTES. This informs the processor how many places the current
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address pointer (CURAD) should be shifted for the next instruction to be
examined.
The Y index register is then loaded with @@ so that it can be used as an
index to load the accumulator with the opcode of the instruction indi-
cated by the current address pointer CURAD. The two subsequent instruc-
tions (CMP # FF and BNE) test to see whether this instruction is actually
the pseudo-opcode of the label {the label identifier FF). If not, the pro-
cessor will branch to the section of program headed by the label NXTINS
(= NeXT {NStruction) as shown in figure 4.
During the NEXT subroutine (chapter 8, figure 10), the processor directs
the current address pointer to the following instruction by adding the
contents of location BYTES to the previous contents of CURAD. This
subroutine also tests to see whether the current address pointer, which
should be still pointing to the opcode of an instruction, is still situated
between the pointers BEGAD and CEND, or whether it has already
exceeded the CEND pointer. If it is still within the file boundaries, the
processor will branch back to label PASSA and go on to examine the next
instruction for the label identifier FF. The length of this instruction will
again be calculated during the OPLEN subroutine. The above procedure
is repeated until all the labels have been removed from the file.
If, however, the processor encounters the label identifier FF, it will not
branch to label NXTINS, but will deal with the label in question. It is now
time to find out exactly what this entails. To do this we need to look at
figures 4 and 5. Figure 4 shows the details of the first assembly phase
while figure 5 shows part of the symbol stack. Following the {non) branch
instruction BNE, the process is as follows:
1. The instruction INY increases the contents of the Y index register

from 0@ to @1. The following instruction (LDA- (CURADL), Y) causes
the accumulator to be loaded with the contents of the location indicated
by CURAD + 1. This means that the label number following the identifier
is now held in the accumulator.
2. The contents of location LABELS are stored in the Y index register.

The ensuing instruction (STA- (TABLEL), Y) transfers the number of
the label being examined to the symbol stack. The actual address in the
stack in which it is stored will be indicated by the temporary pointer
TABLE + LABELS. Since the contents of location LABELS were made
equal to FF at the beginning of the assembler routine, which was when the
symbol stack pointer TABLE was made equal to the contents of ENDAD-
FF, the first label number will be stored in the location indicated by the
end address pointer ENDAD.
3. DEY

LDA-CURADH

STA-(TABLEL),Y)
The processor has encountered the label identifier FF. The current address
pointer CURAD will still be directed at the address location where this
was found. Once the Y index register has been decremented, the high
order byte of this address will be loaded into the accumulator. The pro-
cessor now stores this on the symbol stack at the location indicated by
TABLE + LABELS — 1. The high order byte of the label address will
now be stored on the symbol stack one location above where the label
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number was previously stored.
4. DEY

LDA-CURADL

STA-(TABLEL),Y)
The processor now loads the low order address byte of the location con-
taining the label into the accumulator in the same manner as before. Next
it is stored on the symbol stack at the address TABLE + LABELS — 2. The
low order byte of the label address will therefore be stored one memory
location above the high order byte of the iabel address previously stored.
5. DEY

STY-LABELS
The Y index register has now been decremented three times in succession,
or rather, the symbol stack pointer has been shifted up by three places.
The pointer TABLE + LABELS is again pointing to an address in the
symbol stack where the next label number is to be stored, provided of
course that there is another label with the pseudo-opcode FF present in
the file.
6. JSR-UP

JSR-RECEND
All the necessary information regarding the label and its address have now
been stored on the symbol stack. Thus, the label is no longer required and
can be deleted from the file. It is the subroutine UP (chapter 8, figure 17)
which, as you know, performs this task by shifting the remainder of the
data block up by three memory locations, starting at the opcode of the
next instruction and ending at CEND. After this shift operation, the file
will have been shortened by three bytes and so the CEND pointer will
also have to be shifted up three locations. This is carried out by the sub-
routine RECEND (chapter 8, figure 14).
7. JMP-PASSA

At this stage, the Junior Computer examines the remaining instructions
in the file to see whether any of them possess the pseudo-opcode FF.
Upon encountering further labels in the file, the fabel number and the
address where it was found is stored on the symbol stack. Again, the labels
can be erased from the file. If the instruction turns out to be of a different
kind, the assembler program (see figure 4) will branch to the section of
program labelled NXTINS and skip from instruction to instruction until
it finds a label.
During the NEXT subroutine, which repositions the current address
pointer to indicate the following instruction opcode, the processor checks
whether or not the CURAD pointer has overstepped its mark,by exceeding
CEND. If the processor has reached the end of the file, the first phase of
assembly will be complete and the processor will proceed to PASSB after
the subroutine BEGIN has been executed. This starts the second phase of
assembly.
In chapter 5 it was mentioned that at least six memory locations must be
kept clear between the pointers ENDAD and CEND. If the programmer is
not sure whether his/her program is the right length, he/she can check to
see whether there are six free locations between the two pointers (before
the assembler is started). This can be accomplished by examining the
contents of the various pointers in page zero:
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the address of CENDL is B0ES

the address of CENDH is B@E9

the address of ENDADL is 0PE4

the address of ENDADH is B0E5

What about the six memory locations that seem so vital? As you may
remember, the label number and the absolute address belonging to it are
stored on the symbol stack, therefore occupying a total of three locations.
The symbol stack starts at the address indicated by ENDAD. When a label
is removed from the file, the file becomes three bytes shorter, in other
words, the CEND pointer moves up three locations. When another label is
removed from the file there appears to be adequate room for it and its
address to be stored on the symbol stack in the locations just vacated.
Therefore, the question is, why insist on six memory locations, when three
seem to be ample? To find out, let us take another look at the UP sub-
routine in chapter 8, figure 17. This is where the labels are removed from
the file. When one is deleted, the data block following it is moved up three
bytes. This is also illustrated in figure 18 of chapter 8. When the data
block moves up, the UP subroutine also moves up another three bytes
behind the pointer CEND. These are superfluous to the assembler, so that
if only three spaces were left available between the two pointers CEND
and ENDAD, the last data at the end of the file before the CEND pointer
would be overwritten by new data.

Part of the symbol stack after the first phase of program assembly using
the example from chapter 5 (figures 1 ... 4} is given in figure 6. All seven
label numbers and their associated addresses are stored on the symbol
stack. It can be clearly seen that the symbol stack is filled with data from
bottom to top, the lowest label being the first to be deleted from the file.
The first label number is 10 and it is situated at address 020@. The last
label to be assembled has the number 16 and can be found at the absolute
address §24C. This was the last label in the file before the EOF character
and so it will be stored at the very top of the symbol stack. At this point
in time the symbol stack pointer TABLE + LABELS will indicate the
address @2EA.

PASSB

This label heads the second phase of assembly. The detailed flowchart of
this section of the assembier program is given in figure 7. To start with, the
current address pointer is in the same position as the BEGAD pointer.
This was the last operation of the first phase of assembly (see figure 4).
During the second phase the processor checks through all the remaining
instructions in the file, for initially (during pass one) the computer was
only interested in labels featuring the pseudo-opcode FF (the label
identifier). Now that these have all been removed from the file, the pro-
cessor can concentrate on instructions which need to be assembled. These
will all have a label number after the opcode. The instructions the pro-
cessor is now interested in are:

¥ JMP instructions

JSR instructions and

branch instructions.

*

*
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Figure 6. Part of the symbol stack after the first phase of program assembly using the
example from chapter 5. The end address pointer ENDAD indicates address location
@2FF.

However, these could also be followed by absolute addresses or actual
displacement values, in which case they must be ignored. Nevertheless,
conditional and unconditional jump instructions have to be dealt with
separately during this phase, which we shall describe right away.
Just as in the program section headed by the label PASSA, the section
labelled PASSB starts by calling the OPLEN subroutine to ascertain the
length of the instruction and therefore the number of memory locations
that the CURAD pointer must be shifted down in the file in order to
indicate the next instruction. After the Y index register has been loaded
with 90, the next instruction (LDA- (CURADL), Y) transfers the opcode
of the instruction under examination to the accumulator. The processor
then filters out the two jump instructions, JMP and JSR, and then moves
on to filter out the various branch instructions:
1. CMP #4C

BEQ
filters out the JMP instruction which has the opcode 4C.
2. CMP #20

BEQ
filters out the JSR instruction which has the opcode 20.
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Figure 7. The detailed flowchart of the second phase of the assembly procedure.
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3. AND #1F

CMP #10

BEQ
filters out all the branch instructions which have the opcodes 10, 30, 50,
70, 90, BO, DO and F@. These opcodes correspond to the instructions
BPL, BMI, BVC, BVS, BCC, BCS, BNE and BEQ respectively. Because the
contents of the accumulator (the opcode) are masked by the value 1F, the
five least significant bits of the data byte will remain unchanged, but the
three most significant bits will be zero. If the opcodes of the branch
instructions are considered, it will be apparent that the four least signifi-
cant bits are always zero. Thus, by masking the five least significant bits of
the opcode with 1F the result will invariably be 10. By comparing the
result with the value 10, the processor can establish whether the opcode
being examined belongs to a branch instruction or not.
If neither a jump instruction nor a branch instruction is involved the
opcode will belong to an instruction that does not require assembling. The
processor can then deal with the next instruction in the file after it reaches
the label PB. As we know, the NEXT subroutine points the current address
pointer CURAD to the address containing the opcode of the following
instruction.
If the processor has not yet reached the end of the file, the assembler
program will branch back to label PASSB to calculate the length of the
next instruction via the subroutine OPLEN before dealing with it. The
procedure just described above will then be repeated.
If, however, a jump or branch instruction is involved, it will have to be
assembled, For this the Junior Computer will have to place the absolute
addresses (previously stored on the symbol stack) behind the jump instruc-
tions. With regard to the branch instructions, on the other hand, the
displacement values will have to be calculated and then placed behind the
opcodes. The way in which the computer carries out these tasks with the
aid of the symbol stack can be seen as follows:

JMP and JSR instructions

All the unconditional jump instructions are assembled from the label
JUMPS (figure 7) on. Here the absolute jump address is traced from the
symbol stack and then placed behind the opcode of the actual jump
instruction.
After incrementing the Y index register (the value therein will now be @1)
the subroutine GETLBL is called. This is shown in detail in figure 8 and
will be described fully later on. All we have to know about this subroutine
at this stage can be expressed in a few words:
1. The subroutine GETLBL searches for the label number behind the
opcode of the jump instruction being assembled on the symbol stack.
Once this is found on the symbol stack, the processor has access to the
absolute address corresponding to it.
2. The address concerned is fetched from the symbol stack. Before
returning to the main-assembler routine, the subroutine GETLBL stores
the two bytes of the label address in two internal CPU registers:
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GETLBL
A «label
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number
LDY # FF Y < FF
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il

LDY =01 Y <o
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Figure 8. The detailed flowchart of the GETLBL subroutine. This subroutine obtains
the label number and associated address from the symbol stack. The high order byte

of the label address will be held in the X index register and the low order byte in the

accumulator upon the return from this subroutine.

the high order byte of the label address will be stored in the X index
register

the low order byte of the label address will be stored in the accumu-
lator.

3. If the processor can find the required label number on the symbol stack
it will return from the GETLBL subroutine with the Z flag reset.
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4. If the computer can not find the label in question it will return to the
main assembler routine with the Z flag set.
Let us assume that the processor has found the label number on the
symbol stack during the GETLBL subroutine. It will then return to the
main assembler routine with the high order byte of the label address in the
X index register and the low order byte of the label address in the accumu-
jator. The Z flag will have been reset, therefore there will be no branch to
the label PB at the next BEQ instruction. The Y index register will still
contain the value @1. The following instruction (STA- (CURADL),Y)
ensures that the low order byte of the label address is stored immediately
behind the opcode of the instruction being assembled. Then the high
order byte of the label address is transferred from the X index register into
the accumulator and the Y index register is incremented once more. The
next instruction (STA- (CURADL), Y} places the high order byte of the
label address immediately behind the low order byte in the file.
Before assembly, the jump instruction was stored in the file like this:
Opcode, xx, §@. Where the opcode is either 20 or 4C, xx is a random label
number and the value @0 represents the limiter byte. After assembly the
jump instruction is stored in the file with the two correct operand
bytes:
Opcode, ADL, ADH. The opcode will be the same, but the operand bytes
ADL (= low order byte of the label address = low order byte of the absol-
ute jump address) and ADH (= high order byte of the label address = high
order byte of the absolute jump address) have replaced the label number
and the limiter byte. The entire jump instruction has now been assembled.
The correct absolute address for the jump instruction has been fetched
from the symbo! stack and stored behind the opcode of the jump
instruction.

Branch instructions

If, during the second phase of assembly, the processor comes across a
branch instruction in the file, it will have to calculate the required displace-
ment value corresponding to that instruction. This will mean removing the
label number from behind the opcode of the branch instruction. This type
of instruction is assembled from the label BRINST onwards. Firstly the Y
index register is incremented (the value in the Y index register will now be
$1) and the processor jumps to the GETLBL subroutine. This is where the
processor obtains the absolute address belonging to the label number and
to which the branch must take place from the symbol stack. If the com-
puter can locate the required label number on the symbol stack it will
return from the subroutine GETLBL to the assembler main routine with
the Z flag reset. As before, the high and low order label address bytes will
be held in the X index register and the accumulator respectively. Now how
can the processor calculate the actual displacement value of the branch
instruction and store it behind the opcode? To answer this question we
must assess exactly what the computer ‘knows’ about the branch instruc-
tion being assembled at this moment in time.
1. Upon its return from the GETLBL subroutine, the computer knows
the label address to which the proposed branch is to take place. The
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low order byte of the label address is stored in the X index register and the
high order byte in the accumulator. These two address bytes constitute the
destination address, in other words, the location to which the processor
must branch.
2. The current address pointer CURAD informs the computer of the
address where the opcode of the branch instruction being assembled
is actually situated. This will be the source address, in other words, the
location fram which the processor is to effect the branch. This will consist
of the contents of the current address pointer, stored in memory locations
OPEG and OBE7.
3. From the source and destination addresses the computer is able to
calculate the actual displacement value:
Displacement = destination address — source address — 92.
The reason for subtracting the extra two units is because after a branch
instruction has been decoded the program counter of the CPU will
be pointing to the opcode of the next instruction. Once the displacement
value has been calculated, this will have to be inserted behind the branch
instruction being assembled. The penultimate instruction of the section
of program labelled BRINST (STA- (CURADL),Y) replaces the label
number behind the branch instruction with the displacement value. At the
same time this will complete assembly of the branch instruction.
Now that we have become familiar with the main assembler routine, let
us examine the main points of the two phases involved once more:

Phase one:

The absolute addresses of the labels together with the actual label numbers
are stored on the symbol stack. Then the processor deletes the label from
the file and shifts the data block following it up by three memory
locations. Thus the label is overwritten. During the shift operation the
next label in the file moves up three positions. In the first phase of as-
sembly, therefore, the opcodes of the labels not yet removed from the file
keep their locations. The symbol stack contains all the information re-
quired concerning the labels erased from the file. Label numbers and
addresses remain unchanged during the entire assembly procedure.

Phase two:

Once all the labels have been removed from the file, all the required
information concerning them will have been stored on the symbol stack
and the second phase of the assembly procedure can begin. This is where
the computer checks through the file for all the instruction opcodes
followed by a label number. The opcodes for the JMP, JSR and branch
instructions are filtered out of the file. In the case of jump instructions,
the processor searches the symbol stack for the label number situated
behind the instruction opcode being assembled. This gives the processor
access to the address of the label, which is the absolute jump address and
which is inserted directly behind the opcode of the jump instruction in
the file.

Where branch instructions are concerned, the displacement value still has
to be calculated. it is found by subtracting the source address from the
destination address and the result is stored in the file directly behind the
opcode of the branch instruction.
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The subroutine GETLBL

The central subroutine of the assembler program is the GETLBL sub-

routine. During this subroutine the processor obtains the address of the

particular label from the symbol stack — provided of course there is a

JMP, JSR or branch instruction to be assembled in the file. The function

of this subroutine can be described as follows:

1. Search for the label number on the symbol stack.

2. Once this has been found, fetch the label address from the symbol
stack. Place the high order byte of the label address in the X index
register and the low order byte of the label address in the accumulator.

3. If the label number is not present in the symbol stack, return to the
main assembler routine with the Z flag in the status register set.

As can be seen from the detailed flowchart of the GETLBL subroutine
in figure 8, the first instruction loads the label number into the accumu-
lator (at this time the contents of the Y index register are #1). The con-
tents of the Y index register are then made equal to FF. Before we con-
tinue with the description of the GETLBL subroutine, the following
points should be kept in mind:

* The address indicated by the symbol stack pointer TABLE + LABELS
is the highest vacant location in the symbol stack. During the second

phase of assembly, the symbol stack increases from address TABLE + FF

(= ENDAD) to address TABLE + LABELS.

* TABLE + FF contitutes the ‘bottom’ of the symbol stack, whereas the
top of the stack is formed by TABLE + LABELS. All the relevant

table information is stored between these two (‘piled on’ during PASSA).

* The search for a label number on the symbol stack starts at the bottom,
at address TABLE + FF, and ends at the top, at address TABLE +
LABELS.

Back to the program. After the label SYMA the processor checks whether

or not the symbol stack pointer has already reached the top of the symbol

stack. The instruction used to find this out is CPY-LABELS. The sub-
sequent comparison (CMP- (TABLEL), Y) compares a label number on
the symbol stack to one in the file. What exactly is the procedure for this?

Before this comparison takes place the situation is as follows:

1. During PASSB the processor has encountered the opcode of an instruc-
tion which is followed by a label number. This instructions needs to be
assembled, therefore the GETLBL subroutine is called.

2. The label number situated behind the opcode of the instruction must
then be loaded into the accumulator.

3. At the moment the symbol stack pointer is pointing to the address
location TABLE + FF. This is where the first label number was stored

on the symbol stack. The processor now compares the label number in the

accumulator to the one on the symbol stack by means of the instruction

CMP- (TABLEL), Y). If the label numbers are different, the processor

will branch back to the label SYMNXT, where the Y index register is

decremented three times in succession.

4. Since the contents of the Y index register will not be zero at this point,
the processor will branch to the label SYMA. Following this the pro-

cessor compares the label number in the accumulator with the next label

number on the symbol stack. .
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5. If the two label numbers are still different, the Y index register is again
decremented three times so that the symbol stack pointer indicates the

position where the next label is stored. If, however, the two label numbers

are the same, the label number concerned will have been found.

6. The label number has now been found on the symbol stack. The
address belonging to it can now be obtained from the symbol stack.

First, the high order byte of the label address is retrieved from the symbol

stack. The instructions for this purpose are:

DEY

LDA- (TABLEL), Y

TAX

As the Y index register is decremented by one, the symbol stack pointer

will indicate the location where the high order byte of the label address

is stored. This is then loaded in the accumulator and from there trans-

ferred to the X index register. Following this the contents of the Y index

register are decremented once more, which causes the symbol stack

pointer to indicate the location where the low order byte of the label

address is stored. This is then loaded into the accumulator. The two

instructions which perform this operation are:

DEY

LDA- (TABLEL), Y

At this stage in the proceedings the high order byte of the label address

will be held in the X index register and the low order byte of the label

address will be held in the accumulator.

7. The subroutine GETLBL has yet another purpose:

* If the label number on the symbol stack was found to be the same as

that of the instruction being assembled, the Z flag in the status register

will have to be reset.

If the required label number was not found on the symbol stack, the

Z flag in the status register will have to be set.

To reset the Z flag the processor uses the instruction LDY # @1 directly

before the label SYMB. This instruction can only be carried out if the

computer has found the required label number on the symbol stack.

If, however, the processor has searched through the entire symbol stack in

vain, the Z flag will have to be set. If the label number does not happen to

be present on the symbol stack, the search will be discontinued when the

symbol stack pointer has reached the top of the symbol stack. This is the

only time that the pointer TABLE + Y will indicate the same address as

TABLE + LABELS. By comparing the pointer LABELS and the contents

of the Y index register, the processor is able to determine whether or not

the required label number is present on the symbol stack. This comparison

takes place after the label SYMA:

CPY-LABELS.

If indeed the label number turns out to be non-existent the result of this

comparison will be zero. This in turn means that the Z flag will be set as

mentioned and the processor will return to the main assembler routine

immediately by way of the label SYMB.

Now that we have discussed the assembler routine, we can appreciate why

it is so closely related to the editor routine. They both utilise the same

subroutines. This is a great advantage for the programmer, for once he/she
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has mastered their operation, they can be incorporated into his/her own
programs. The source listing of all the subroutines described is given in
the back of this book. This is very practical, regardless of whether the sub-
routines are used by the main monitor, editor or assembler routines. It is
very useful for the novice programmer to understand how the same sub-
routine(s) can be used for different tasks. In addition, the source listings
for the sample programs given in chapters 5 and 6 are also provided at
the back of the book.

The BRANCH routine

On several occasions in Book | it was mentioned that the EPROM con-
tained a program which allows the calculation of displacement values
pertaining to branch instructions. This program is called BRANCH and
starts at address location 1FD5. The program is in fact an infinite loop
(see figure 9) which can only be left by depressing either of the keys RST
or ST, or by way of an external interrupt (NMI or IRQ).

Once the BRANCH routine has been started, the display will show
00 00 00. The programmer is now able to enter the low order byte of the
address containing the opcode of the branch instruction. This is then
shown on the two left hand digits of the display.

Following this the programmer is able to enter the low order byte of the
address where the processor is to branch to. This will then be shown on
the two centre digits of the display. Finally, the two right hand digits will
show the actual displacement value.

When data is entered, only the low order bytes of the source and desti-
nation addresses have to be keyed in, as the 6502 processor can only
branch 127 bytes forwards and 128 bytes backwards.

Once a displacement value has been calculated, the display will again show
00 00 80 if any of the command keys are depressed. The same will occur
during the entry of the next two address bytes.

With regard to the BRANCH routine we can be fairly brief, since the
displacement values are of course calculated along the same lines as
described in figure 7:

To start with, the computer is placed in the binary arithmetic mode and
the display buffers POINTH, POINTL and INH are loaded with the value
@#0. The subroutine GETBYT is then called after the label BR. As we
know, this subroutine combines the values of two hexadecimal keys into
one byte and holds the result in the accumulator and returns to the
BRANCH routine with the N flag set.

If during the GETBYT routine a command key is depressed, the N flag
will be reset and the processor will branch back to the label BRANCH
upon the return from subroutine GETBYT. This also causes the display
to be reset.

Once the two key values have been stored in the accumulator, the latter’s
contents are transferred to the display buffer POINTH. This means that
POINTH now contains the low order byte of the address at which the
opcode of the branch instruction is located. The subroutine GETBYT is
then called a second time to obtain the low order byte of the destination
address. This is then transferred to the display buffer POINTL in the
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1FD5 ... 1FF7

BRANCH
CLD D «® (binary arithmetic)
LDA #¢0 A <90

STAZ — POINTH @@ > POINTH

STAZ - POINTL @ *POINTL

STAZ — INH @@ > INH

I GETBYT I fetch ADL of source address

oEGE

STA - POINTH ADL opcade - POINTH

L GETBYT fetch ADL of destination address

i ofGE

yes

STAZ ~ POINTL ADL of destination address - POINTL

cLc C=9;C =1 (= borrow)

SBCZ — POINTH ADL of destination address — ADL of source address

STAZ - INH displacement + 1 —>INH
DECZ — INH INH < INH = 1
JMP — BR calculate next disptacement value

80915-9-9

Figure 9. The detailed flowchart of the BRANCH subroutine. This routine enables
the programmer to calculate the displacement values of branch instructions.

same manner as before. The Junior Computer can then go ahead and
calculate the displacement value.

At this time the accumulator still holds the low order byte of the desti-
nation address. After clearing the carry flag the processor subtracts the low
order byte of the source address (POINTH)} from the contents of the
accumulator. Since the carry flag was reset before the subtraction took
place (which incidentally is strictly not allowed!!!) the result will be
one location short. Although the wrong result is therefore stored in the
display buffer INH, the processor decrements the contents of INH so
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fast that it is never noticed. The value contained in the display buffer
INH will now be correct. The program then branches back to label BR
and there the subroutine GETBYT shows the low order bytes of the
source and destination addresses and the calculated displacement value
on the display.

This brings us to the end of Book Il. In both Books | and |1 we have tried
to show the reader how to develop useful programs as simply as possible
on a small computer. This in fact covers the description of the standard
version of the Junior Computer. This does not mean, however, that it
is the end of the Junior Computer. This book terminates with an appendix
containing a summary of the subroutines described and a source listing of
the entire monitor program with extensive commentary, a real treasure
for software enthusiasts. Those of you who have successfully come to
terms with Book | and Il may look forward to reading Book Iil, for here
the Junior Computer develops into a powerful personal computer by
means of an elaborate, yet inexpensive hardware expansion system,

Happy programming!
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Appendix 1

The program listing of the EPROM

The monitor, the editor and the assembler

The next ten pages contain a survey of the EPROM contents. It is the ‘expanded’
version of Appendix 3 in Book 1, which showed the contents in the form of a hex
dump (in bytes only).

The listing includes the following:

1.

2.
3.
4

o

11.

SOmN

A survey of all the RAM memory locations in page @@ (temporaries) and in page
1A (PIA addressing and locations for the NMI and I1RQ jump vector).
The main monitor routine (1C00 . . . 1CB4).
The main editor routine (1CB5 . . . 1D4C).
Subroutines as part of:
a. the editor: SCAN (1D5C. .. 1D6E);
b. the editor and the BRANCH routine: GETBYT (1D6F . .. 1D87);
c. the editor and the monitor: SCAND(S) (1D88. .. 1E1F, including SHOW,
CONVD and GETKEY);
d. the editor: RDINST (1E20... 1E46) and FILLWS (1E47 . .. 1E5B);
e. the editor and the assembler: OPLEN/LENACC (1E5C . .. 1E82);
f. the editor and the assembler: UP (1E83. .. 1EA5);
g. the editor: ADCEND (1EDC. .. 1ED2);
h. the editor and the assembler: BEGIN;
i. theeditor: ADCEND (1EDC. .. 1EE9);
j- the editor and the assembler: RECEND (1EEA . .. 1EF7) and
NEXT (1EF8. .. 1F9E).
Look-up table LOOK, used by the monitor and the editor {subroutine CONVD)
(1FOF ... 1F1E).
Look-up table LEN, used by the editor and the assembler (subroutine OPLEN/
LENACC (1F1F... 1F2E).
Subroutine GETLBL, used in the assembler (1F35 . .. 1F5@).
The main assembler routine (1F51 ... 1FD2).
The displacement calculation routine BRANCH (1FD5 . .. 1FF7).
Six EPROM locations to establish the NMI, RES and IRQ vectors
(1FFA. .. 1FFF) and six locations for the two JMP-IND instructions involved
(see chapter 3 in Book 1) (1F2F ... 1F34).
N.B. Locations 1FF8 and 1FF9 are not used. When the EPROM is programmed
they are filled with FF.
All the labels and names of memory locations that are used in the monitor,
the editor and the assembler, in alphabetical order, plus the corresponding
address.
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1ce9 LOYS ORG S1CAB VERSION D

SOURCE LISTING OF ELEKTOR'S JUNIOR COMPUTER
WRITTEN BY A. NACHTMANN

DATE: 7 FEB. 1988

THE FEATURES OF JUNIOR'S MONITOR ARE:

HEX ADDRESS DATA DISPLAY (ENTRY VIA RST)
HEX EDITOR (START ADDRESS S$1CBS)

HEX ASSEMBLER (START ADDRESS $1F51)

EDITOR'S POINTERS AND TEMPS IN PAGE ZERO

1ceo KEY * $88E1

1ces BEGADL * $@BE2 BEGIN ADDRESS POINTER
1cee BEGADH * $8BE3

1ces ENDADL * $8PE4 END ADDRESS POINTER
1coe ENDADH * S@BES

1coe CURADL * $PBE6 CURRENT ADDRESS POINTER
1cee CURAPH * $8BE7

1coe CENDL  * $POEB CURRENT ADDRESS POINTER
1Co8 CENDH * $BBEY

1CP0 MOVADL * $BOEA

1ico9 MOVADH * SOOEB

1cep TABLEL * S@BEC

1cee TABLEH * S@QED

1ce0 LABELS * SOPEE

1c00 BYTES * $@OF6 NUMBER OF BYTES TO BE DISPLAYED
icee COUNT * SBOF?

MPU REGISTERS IN PAGE 2ERO

3] P+ Sooew
C PCH F
1C00 PREG  * soorl = FLAGZ
1Ce9 SPUSER * $60F2
1Co0 acc o+ $00F3
1co0 YREG  * so0F4
1co8 XREG  * $00FS

HEX DISPLAY BUFFERS IN PAGE ZERO

1coe INL * $@0F8
1Co8 INH * $OOF9
1coe POINTL * $0OFA
1coe POINTH * $0OFB

TEMPORARY DATA BUFFERS IN PAGE ZERO

1Co0 TEMP * $8BFC
1co0 TEMPX * $BBFD
1ceo NIBBLE * S@OFE
1cee MODE * $@PFF (@ = DA MODE, @ = AD MODE)

MEMORY LOCATIONS IN THE 6532-IC

1cee PAD * $1A88 DATA REGISTER OF PORT A
1cee PADD  * $1A81 DATA DIRECTION REGISTER OF PORT A
1co8 PBD * $1A82 DATA REGISTER OF PORT B

1ce0 PBOD  * $1A83 DATA DIRECTION REGISTER OF PORT B

WRITE EDGE DETECT CONTROL

1ceo EDETA * SIAE4 NEG EDET DISABLE PA7-IRQ
1C00 EDETB * $1AES POS EDET DISABLE PA7-IRQ
1cee WDETC * S1AE6 NEG EDET ENABLE PA7-IRQ
1C00 EDETD * S1AE7 POS EDET ENABLE PA7-IRQ

READ FLAG REGISTER AND CLEAR TIMER & IRQ FLAG
1cee RDFLAG * $1AD5 BIT6=PA7-FLAG; BIT7=TIMER-FLAG
WRITE COUNT INTO TIMER, DISABLE TIMER-IRQ
1cee CNTA * $1AF4 CLKI1T
1cee CNTB * $1AF5 CLK8T
1cee CNTC * $1AF6 CLK64T
1cee CNTD * S1AF7 CLKIKT
WRITE COUNT INTO TIMER, ENABLE TIMER-IRQ
1Cce8 CNTE
1cee CNTF

1cee CNTG
1ced CNTH

$1AFC CLKI1T
$1AFD CLKST
$1AFE CLK64T
$1AFF CLKIKT

e

INTERRUPT VECTORS: IRQ & NMI VECTORS SHOULD BE
LOADED IN THE FOLLOWING MEMORY LOCATIONS FOR
PROPER SYSTEM OPERATION,




9959 ¢

296@: 1Cep NMIL * $1Aa7A NMI LOWER BYTE
8978: 1C@9 NMIH * $1A7B NMI HIGHER BYTE
8960: 1Cag IRQL * $1A7E IRQ LOWER BYTE
?gzg: 1Cca8 IRQH * $1ATF IRQ HIGHER BYTE
1819 BEGINNERS MAY LOAD INTO THESE LOCATIONS
1828: $1C@8 FOR STEP BY STEP MODUS AND BRK COMMAND
1030:
1848:
1658:
1p60: JUNIOR'S MAINROUTINES
1078
1689: 1C80 85 F3 SAVE STAZ ACC SAVE ACCU
1¢98: 1CB2 68 PLA GET CURRENT P-REGISTER
1129: 1CB3 B85S Fl STAZ PREG SAVE P-REGISTER
1118: 1C85 68 SAVEA PLA GET CURRENT PCL
1126: 1C86 85 EF STAZ PCL SAVE CURRENT PCL
1138: 1C08 85 FA STAZ POINTL PCL TO DISPLAY BUFFER
1149: 1CoA 68 PLA GET CURRENT PCH
STAZ SAVE CURRENT PCH

H
STAZ POINTH PCH TO DISPLAY BUFFER
s

SAVEB TYZ YREG SAVE CURRENT Y-REGISTER
STXZ XREG SAVE CURRENT X-REGISTER
TSX GET CURRENT SP
STX SPUSER SAVE CURRENT SP
LDXIM $81 SET AD-MODE
STXZ MODE

JMP START

RESET LDAIM S$I1E PB1---PB4
STA PBDD Is OUTPUT
LDAIM $04 RESET P-REGISTER
STAZ PREG
LDAIM $03
STAZ MODE SET AD-MODE
STAZ BYTES DISPLAY POINTH, POINTL, INH
LDXIM S$FF ADJUST THE STACKPOINTER
TXS
STXZ SPUSER
CLD
SEI

START JSR SCAND DISPLAY DATA SPECIFIED BY POINTH,POINTL
BNE START WAIT UNTIL KEY IS RELEASED
STARA JSR SCAND DISPLAY DATA SPECIFIED BY POINT
BEQ STARA ANY KEY DEPRESSED
JSR SCAND DEBOUNCE KEY
BEQ STARA ANY KEY STILL DEPRESSED
JSR GETKEY IF YES , DECODE KEY,RETURN WITH KEY IN ACCU

GOEXEC CMPIM $13 GO-KEY?
BNE  ADMODE
LDXZ SPUSER GET CURRENT SP
™S
LDAZ POINTH START EXECUTION AT POINTR,POINTL
PHA
LDAZ POINTL
PHA
LDAZ PREG ~ RESTORE CURRENT P REGISTER
PHA
LDXZ XREG
LDYZ YREG
LDAZ ACC
RTI EXECUTE PROGRAM
ADMODE CMPIM $18 AD-KEY?
BNE  DAMODE
LDAIM $03 SET AD-MODE
STAZ MODE
BNE  STEPA  Glwrg
DAMODE CHPIM $11 DA-KEY?
BNE STEP
LDAIM $00 SET DA-MODE
STAZ MODE

BEQ  STEPA Alu4c¢;

STEP CMPIM $12 PLUS~KEY?
BNE PCKEY
INCZ POINTL
BNE STEPA
INCZ POINTH
STEPA JMP START

PCKEY CMPIM $14 PC-KEY?
BNE ILLKEY
LDAZ PCL
STAZ POINTL LAST PC TO DISPLAY BUFFER
LDAZ PCH

STAZ POINTH
JMP STEPA

ILLKEY CMPIM $15 ILLEGAL KEY?
BPL STEPA IF YES,IGNORE IT
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1cse
1c92
1C94
1Cc96
1c98
1C99
1C9a
1C98
1c9C
1C9E
1cag

1CA3
1CAS
1CA7
1CAS
1CAA
1CAC
1CAE
1CcB@
1CB2

1CcCD
1CCF
1CDl
1Cp4
1CDé
1cp8
icoe
lcop
1CDF
1CE2
1CE4
1CE6
1CES8
1CEA
1CEB
1CED
1CEF
ICF1
1CF4
1CF7
1CF9

1CFB
1CFD
1CFF
1D02
1Do4
1pe7

iDey
1neB
1D@D
1p1e
1p12
1D15
1p18
1D1A

85
A4
D@
BI
BA
BA
A
oA
85
91
4C

A2
26
26
ca
D@
AS
85
85
ac

1p

1E
1E

1E

1E

1E
1

DATA

ADDRES
ADLOCP

STAZ
LDYZ
BNE
LDAIY
ASLA
ASLA
ASLA
ASLA
CRAZ
STAIY
JMP

LDXIM
ASLZ
ROLZ
DEX
BNE
LDAZ
CRAZ
STAZ
JMP

KEY
MODE
ADDRES
POINTL

KEY
POINTL
STEPA

$p4
POINTL
POINTH

ADLOCP
POINTL
KEY
POINTL
STEPA

JUNIOR'S HEX EDITOR

SAVE KEY
Y=¢ IS DATA MODE,ELSE ADDRESS MODE

GET DATA SPECIFIED

BY POINT

SHIFT LOW ORDER

NIBBLE INTO HIGH ORDER NIBBLE

DATA WITH KEY
RESTORE DATA

4 SHIFTS

POINTH,POINTL 4 POSITIONS TO LEFT

RESTORE ADDRESS

FOLLOWING COMMANDS ARE VALID:

"INSERT":

"INPUT"

"SEARCH":

"SKIP":

"DELETE":

INSERT A NEW LINE JUST BEFORE DISPLAYED LINE

: INSERT A NEW LINE JUST BEHIND THE
DISPLAYED LINE

SEARCH IN WORKSPACE FOR A GIVEN 2BYTE PATTERN

SKIP TO NEXT INSTRUCTION

DELETE CURRENT DISPLAYED INSTRUCTION

AN ERROR IS INDICATED, IF THE INSTRUCTION POINTER
CURAD IS OUT OF RANGE

EDITOR

EDIT

CMND

SEARCH

SELOOP

SEARA

INSERT

INPUT

JSR
LDYZ
LDXZ
INX
BNE
INY
STXZ
STYZ
LDAIM
LDYIM
STAIY

JSR

CMPIM
BNE
JSR
BPL
STAZ
JSR
BPL
STAZ
JSR
LDYIM
LDAIY
CMPZ
BNE
INY
LDAIY
CMPZ
BEQ
JSR
JSR
BMI
BPL

CMPIM
BNE
JSR
BPL
JSR
BEQ

CMPIM
BNE
JSR
BPL
JSR
JSR
LDAZ
STAZ

BEGIN
BEGADH
BEGADL

EDIT

CENDL
CENDH
$77
$00
CURADL

SCAN

s14
INSERT
GETBYT
SEARCH
POINTH
GETBYT
SEARCH
POINTL
BEGIN

$00
CURADL

POINTH
SEARA

CURADL
POINTL
CMND
OPLEN
NEXT
SELOOP
ERRA

$18
INPUT
RDINST
SEARCH
FILLWS
CMND

$13
SKIP
RDINST
SEARCH
OPLEN
NEXT
TEMPX
BYTES

CURAD: =BEGAD

CEND: =BEGAD+]

DISPLAY "77"

DISPLAY CURRENT INSTRUCTION,WAIT FOR A KEY
SEARCH COMMAND?

READ 1ST BYTE
. KEY?
DISCARD DATA
READ 2ND BYTE
COM. KEY?
DISCARD DATA
CURAD: =BEGAD

a
o

COMPARE INSTRUCTION
AGAINST ODATA TO BE SEARCHED
SKIP TO NEXT INSTRUCTION, IF NOT EQUAL

RETURN, IF 2BYTE PATTERN IS FOUND

GET LENGTH OF THE CURRENT INSTRUCTION
SKIP TO NEXT INSTRUCTION

SEARCH AGAIN, IF CURAD IS LESS THAN CEND

INSERT COMMAND?

READ INSTRUCTION AND COMPUTE LENGTH

COM. KEY?

MOVE DATA IN WS DOWNWARD BY THE AM. IN BYTES
RETURN TO DISPLAY THE INSERTED INSTR.

INPUT COMMAND?

READ INSTRUCTION AND COMPUTE LENGTH

COM. KEY?

LENGTH OF THE CURRENT INSTR.

RETURN WITH N=1, IF CURAD IS LESS THAN CEND
LENGTH OF INSTR. TO BE INSERTED



1plc
ID1F

1D21
1p23
D25
1p28
iD2a

ipD2C
1D2E
1p3e
1033
1D36

1p39
1D3B
1D3D
1D3F
1p41
1p43
1D45s
1p48
1D4A

1p4p
1D4F
1D51
1D53
1D55
1D56
1D57
1D59%

1068
iD6E

1D6F
D72
D74
D76
177
D78
1D79
1D7A
ip7cC
1D7F
1p8l
1D83
1D85
187

28
Fo

c9

A9
85
85
85
A9
85
20
D@
ac

A2
AR
Bl
95
c8
Cca
1g
20

28
60

5C
11

1088 AD 99
1D8A Bl FA
1p8C 85 F9

1E

1E

1c

1E

1D

JSR FILLWS MOVE DATA IN WS DOWNWARD BY THE AM. IN BYTES
BEQ CMND RETURN TO DISPLAY THE INSERTED DATA

SKIP CMPIM S12 SKIP COMMAND?
BNE DELETE
JSR NEXT SKIP TO NEXT INSTRUCTION. CURAD LESS THAN CEND?

BMI CMND
BPL ERRA
DELETE CMPIM $11 DELETE COMMAND?
BNE ERRA
JSR up DELETE CURRENT INSTR. BY MOVING UP THE WS
JSR RECEND ADJUST CURRENT END ADDRESS
JMP CMND

ERRA LDAIM SEE
STAZ POINTH
STAZ POINTL
STAZ INH
LDAIM 383
STA? BYTES
ERRB JSR SCANDS DISPLAY EEEEEE UNTIL KEY IS RELEASED
BNE ERRB
JMP CMND

EDITOR'S SUBROUTINES

SCAN IS A SUBROUTINE, FILLING UP

THE DISPLAY BUFFER DETERMINED BY

CURAD. THEN THE DISPLAY IS SCANNED
DEPENDING OF THE LENGTH OF THE INSTRUCTION
POINTED BY CURAD

IF A DEPRESSED KEY IS DETECTED

SCAN RETURNS WITH VALUE IN ACCU

SCAN LDXIM $82 FILL UP THE DISPLAY BUFFER
LDYIM $@@
FILBUF LDAIY CURADL START FILLING AT OP CODE
STAX INH
INY
DEX
BPL FILBUF
JSR OPLEN STORE INSTRUCTION LENGTH IN BYTES
SCANA  JSR SCANDS DISPLAY CURRENT INSTRUCTION
BNE SCANA KEY RELEASED?
JSR SCANDS DISPLAY CURRENT INSTRUCTION
BEQ SCANB ANY KEY DEPRESSED?
JSR SCANDS DISPLAY CURRENT INSTRUCTION
BEQ SCANB ANY KEY STILL DEPRESSED?
JSR GETKEY IF YES, RETURN WITH KEY IN ACCU
RTS

SCANB

GETBYT READS 2 HEXKEYS AND COMPOSES
THEIR VALUES IN THE A REGISTER. IF ONLY
HEXKEYS WERE DEPRESSED, IT RETURNS WITH
N=1. IF A COMMAND KEY WAS DEPRESSED, IT
RETURNES WITH N=8.

GETBYT JSR SCANA READ HIGH ORDER NIBBLE
CMPIM $10
BPL BYTEND COMMAND KEY?
ASLA
ASLA IF NOT, SAVE HIGH ORDER NIBBLE
ASLA
ASLA
STA NIBBLE
JSR SCANA READ LOW ORDER NIBBLE
CMPIM $10
BPL BYTEND COMMAND KEY?
ORA NIBBLE IF NOT, COMPOSE BYTE
LDXIM SFF SET N=1

BYTEND RTS

SCAND IS A SUBROUTINE SHOWING DATA SPECIFIED BY
POINT,

SCANDS IS A SUBROUTINE SHOWING THE CONTENTS OF
DISPLAY BUFFER AS A FUNCTION OF BYTES.

THE FOLLOWING SUBROUTINE AK SCANS THE KEYBOARD.

IT RETURNS WITH A=9, IF NO KEY IS DEPRESSED AND
WITH A#@ IF A KEY IS DEPRESSED.

WHEN SCAND OR SCANDS ARE LEFT, PA®...PA7 IS INPUT.

SCAND LDYIM $00
LDAIY POINTL GET DATA SPECIFIED BY POINT
STAZ INH
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3869: 1DBE A9 7F SCANDS LLAIM $7F
3819: 1D9@ 8D 81 1A STA PADD PAB...PA6 IS OUTPUT

3820: 1093 A2 98 LDXIM $68 ENABLE DISPLAY

3830: 1095 A4 F6 LDYZ BYTES FETCH LENGTH FROM BYTES
3848: 1D97 AS FB SCDSA LDAZ POINTH OUTPUT 1ST BYTE

3850: 1D39 28 CC 1D JSR  SHOW

3860: 1D9C 88 DEY

3870: 1D9D F@ 9D BEQ SCDSB MORE BYTES?

3880: 1DYF A5 FA LDAZ POINTL

3899: 1DAl 28 CC 1D JSR  SHOW IF YES, OUTPUT 2ND BYTE
3986: 1pA4 88 DEY

3910: 1DA5 FO 85 BEQ SCDSB MORE BYTES?

3920: 1pa7 AS F9 LDAZ INH

3936: 1DAY 28 CC ID JSR  SHOW IF YES, OUTPUT 3RD BYTE
3949: 1DAC A9 @6 SCDSB  LDAIM $68

3958: 1DAE 8D 81 1A STA  PADD PA@...PA7 IS INPUT
3968

3978: 1DBl A8 @3 AK LDYIM $63 SCAN 3 ROWS

3980: 1DB3 A2 96 LDXIM $08 RESET ROW COUNTER

3998

4980: 1DBS AY FF ONEKEY LDAIM SFF

4910: 1DB7 BE 82 1A AKA STX  PBD OUTPUT ROW NUMBER
4920: 1pBA EB INX ENABLE FOLLOWING ROW
4938: 1DBB EB INX

4e48: 1DBC 2D 86 1A AND  PAD INPUT ROW PATTERN
4058: 1DBF 88 DEY ALL ROWS SCANNED?
4066: 1DC@ DB F5 BNE  AKA

4870: 1DC2 AQ 06 LDYIM 506 TURN DISPLAY OFF

4880: 1DC4 8C 82 1A STY  PBD

4698: 1DC7 89 8@ ORAIM $88 SET BIT7=1

4198: 1DCY 49 FF EORIM $FF INVERT KEY PATTERN
4119: 1DCB 68 RTS

4120

4130: THE SUBROUTINE SHOW TRANSPORTS THE

4140: CONTENTS OF ANY DISPLAY BUFFER TO THE
4159: DISPLAY. THE X REGISTER IS USED AS A

4160: SCAN COUNTER. IT DETERMINES, IF POINTH,
4170 POINTL OR INH IS TRANSPORTED TO THE

4180: DISPLAY.

4196: 1DCC 48 SHOW  PHA SAVE DISPLAY

4200: 1DCD 84 FC STYZ TEMP  SAVE Y REGISTER

4216: 1DCF 4A LSRA

4226: 1DDP 4a LSRA GET HIGH ORDER NIBBLE
4230: 1DD1 4A LSRA

4240: 1DD2 4a LSRA

425¢: 1DD3 20 DF 1D JSR  CONVD OUTPUT HIGH ORDER NIBBLE
4260: 1DD6 68 PLA GET DISPLAY AGAIN
4270: 1DD7 29 oF ANDIM $OF MASK OFF HIGH ORDER NIBBLE
4280: 1DD9 20 DF 1D JSR  CONVD OUTPUT LOW ORDER NIBBLE
4298 : 1DDC A4 FC LDYZ TEMP  RESTORE Y REGISTER
4308 : 1DDE 60 RTS

4310:

4320:
4330:

4340
4350 THE SUBROUTINE CONVD CONTROLS THE DISPLAY SCAN.
4368 ; IT CONVERTS THE CONTENTS OF THE DISPLAY BUFFER
:g;g: TO BE DISPLAYED INTO A SEGMENT PATTERN.
4398: 1DDF A8 CONVD  TAY USE NIBBLE AS INDEX
4480: 1DE® B9 OF 1F LDAY LOOK FETCH SEGMENT PATTERN
4418: 1DE3 8D 80 1A STA  PAD OUTPUT SEGMENT PATTERN
4420: 1DE6 BE 82 1A STX  PBD OUTPUT DIGIT ENABLE
4438: 1DE9 A8 7F LDYIM $7F

4440: 1DEB 88 DELAY DEY DELAY 588 US APPROX.
4458: 1DEC 10 FD BPL  DELAY

4460 : 1DEE 8C 80 1A STY  PAD TURN SEGMENTS OFF
4478: 1DF1 AB 86 LDYIM $66

4480: 1DF3 8C 82 1A STY  PBD TURN DISPLAY OFF

4496: 1DF6 E8 INX ENABLE NEXT DIGIT
:2?2: 1DF7 E8 INX

518: 1DF8 60

4520 : RIS

4530 GETKEY CONVERTS A DEPRESSED KEY INTO A
4540: HEX NUMBER. IT RETURNS WITH THE KEY VALUE
:ggg: IN ACCU. IF AN INVALID KEY WAS DEPRESSED,
4576: 1DF9 A2 21 GETKEY LDXIM $21 START AT ROW @

4580: IDFB AB 01 GETKEA LDYIM $81 GET ONE ROW

4590: 1DFD 28 BS 1P JSR  ONEKEY A=8, NO KEY DEPRESSED
4609: 1E00 DO 07 BNE  KEYIN

4619: 1E@2 EB 27 CPXIM $27

4620: 1EB4 DB F5 BNE GETKEA EACH ROW SCANNED?
4630: 1E66 A9 15 LDAIM $15 RETURN IF INVALID KEY
4648: 1E08 60 RTS

4658: 1E@9 AQ FF KEYIN LDYIM SFF

4660: 1EPB 8A KEYINA ASLA SHIFT LEFT UNTIL Y=KEY NUMBER
4679: 1EBC BR 83 BCS  KEYINB

4688: 1EQE C8 INY

4690: 1E@F 10 FA BPL  KEYINA

4768: 1E11 8A KEYINB TXA

4719: 1E12 29 @F ANDIM $OF MASK MSD

4728 lE14 4A LSRA DEVIDE BY 2

473@9: 1E15 Aa TAX

474¢: 1E16 98 TYA
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4758:
4760:
4779:
47890:
479@:
4808 :
4810:
4828
4830:
4840:
4850:
4860:
4870:
4889
4898
4908
4919:
4928:
4939:
4940:
4958:
4960:
4978@:
4980:
4999:
5806:
5018:
5028:
5830:
5849:

1E17
1E19
1EIA
1E1C
1E1D
1E1F

1E20
1E23
1E25
127
1E2A
1E2C
1E2E
1E39
1E32
1E35
1E37
1E39
1E3B
1E3D
1E49
1E42
1E44
1E46

1E47
1E4A
1E4D
1E4F
1E51
1ES3
1E5S
1E56
1ES57
1E59
1£58

1ESC
1ESE
1E68
1E62
1E64
1£66
1E68
1E6A
1E6C
1E6E
1E70
1E72
1E74
1E76
1E78
1E7A
1E7C
1E7D
1E80
1E82

1E83
1E85
1£87
1E89
1E8B
1E8D
1E8F
1E91
1E93
1E95
1E97
1E99
1E9B
1E9D
1ESF
1EAL
1EA3
1EAS

18
18
69
CA
DB
60

29
l¢
85

84
84
ceé
F@
10
85
cé
Fo
20
10
85
A2
60

29
20
A2
aAQ
BS

ca
cs8
Cc4
D@
60

AS
85
AS
85
A4
Bl
AR
91
E6
pl]
E6
a5
s
Do
A5
cs
D9
60

1o

1€
1E

BPL KEYIND
KEYINC CLC

ADCIM $87 ADD ROW OFFSET
KEYIND DEX

BNE KEYINC

RTS

RDINST TRANSFERS AN INSTRUCTION FROM KEYBOARD
TO THE DISPLAY BUFFER. IT RETURNS WITH N=8 IF
A COMMAND KEY WAS DEPRESSED. ONCE THE ENTIRE

INSTRUCTION IS READ, RDINST RETURNS WITH N=1.

RDINST JSR GETBYT READ OP CODE
BPL RDB RETURN, IF COMMAND KEY
STAZ POINTH STORE OP CODE IN DISPLAY BUFFER
JSR LENACC COMPUTE INSTRUCTION LENGTH
STYZ COUNT
STYZ TEMPX
DECZ COUNT
BEQ RDA 1 BYTE INSTRUCTION?
JSR GETBYT IF NOT, READ FIRST OPERAND
BPL RDB RETURN, IF COMMAND KEY
STAZ POINTL STORE 1ST OPERAND IN DISPLAY BUFFER
DECZ COUNT
BEQ RDA 2 BYTE INSTRUCTION?
JSR GETBYT IF NOT, READ 2ND OPERAND
BPL RDB RETURN IF COMMAND KEY
STAZ INH STORE 2ND OPERAND IN DISPLAY BUFFER
RDA LDXIM S$FF N=1
RDB RTS

FILLWS TRANSFERS THRE DATA FROM DISPLAY TO
WORKSPACE. IT'S ALWAYS LEFT WITH 2=l

FILLWS JSR DOWN MOVE DATA DOWN BY THE AMOUNT IN BYTES
JSR ADCEND ADJUST CURRENT END ADDRESS

LDXIM $02
LDYIM $88
WS LDAZX INH FETCH DATA FROM DISPLAY BUFFER
STAIY CURADL INSERT DATA INTO DATA FIELD
INY
CPYZ BYTES ALL INSERTED?
BNE WS IF NOT, CONTINUE
RTS

OPLEN COMPUTES THE LENGTH OF ANY GSBZ INSTR.
THE INSTR. LENGTH IS SAVED IN BYTES

OPLEN LDYIM $68

LDAIY CURADL FETCH OP CODE FROM WS
LENACC LDYIM $81 LENGTH OF OP CODE IS 1 BYTE

CMPIM $80

BEQ LENEND BRK INSTRUCTION?

CMPIM $40

BEQ LENEND RTI INSTRUCTION?

CMPIM $68

BEQ LENEND RTS INSTRUCTION?

LDYIM $83

CMPIM $20

BEQ LENEND JSR INSTRUCTION?

ANDIM S$1F STRIP TO S BITS

CMPIM $19

BEQ LENEND ANY ABS,Y INSTRUCTION?

ANDIM SOF STRIP TO 4 BITS

TAX USE NIBBLE AS INDEX

LDYX LEN FETCH LENGTH FROM LEN
LENEND STYZ BYTES DISCARD LENGTH IN BYTES

RTS

UP MOVES A DATA FIELD BETWEEN CURAD AND CEND
UPWARD BY THE AMOUNT IN BYTES

uP LDAZ CURADL
STAZ MOVADL
LDA2 CURADH MOVAD:=CURAD
STAZ MOVADH
UPLOOP LDYZ BYTES
LDAIY MOVADL MOVE UPWARD BY THE AMOUNT IN BYTES
LDYIM $@9
STAIY MOVADL
INCZ MOVADL

BNE UPA
INCZ MOVADH MOVADH:=MOVADH+1
upPA LDAZ MOVADL

CMPZ CENDL

BNE UPLOOP ALL DATA MOVED?
LDAZ MOVADH IF NOT, CONTINUE
CMPZ CENDH

BNE UPLOOP

RTS

DOWN MOVES A DATA FIELD BETWEEN CURAD
AND ENDAD DOWNWARD BY THE AMOUNT IN BYTES
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1EA6 AS ES DOWN LDAZ CENDL

1EA8 85 EA STAZ MOVADL MOVAD:=CEND
1EAA A5 E9 LDAZ CENDH

1EAC 85 EB STAZ MOVADH

1EAE A9 09 DNLOOP LDYIM $@9

1EB® Bl EA LDAIY MOVADL MOVE DOWNWARD BY THE AMOUNT IN BYTES
1EB2 A4 F6 LDYZ BYTES

1EB4 91 EA STAIY MOVADL

1EB6 AS EA LDAZ MOVADL

1EB8 C5 E6 CMPZ CURADL

1EBA D@ 86 BNE DNA ALL DATA MOVED?
1EBC A5 EB LDAZ MOVADH IF NCT, CONTINUE
1EBE CS E7 CMPZ CURADH

1EC® FB 19 BEQ DNEND

1EC2 38 DNA SEC

1EC3 A5 EA LDAZ MOVADL

1ECS E9 8 SBCIM $91

1EC7 85 EA STAZ MOVAJL

1ECY AS EB LDAZ MOVADH MOVAD:=MOVAD-1
1ECB E9 @@ SBCIM $8g

1ECD 85 EB ETEZ  MOVAUR

1ECF 4C AE 1E JMP DNLOOP

1ED2 68 DNEND RTS

BEGIN SETS CURAD EQUAL TO BEGAD

1ED3 a5 E2 BEGIN LDAZ BEGADL

1ED5 85 E6 S5TAZ CURADL

1ED7 A5 E3 LDAZ BEGADH CURAD: =BEGAD
1EDY 85 E7 STAZ CURADH

1EDB 68 RTS

ADCEND ADVANCES CURRENT END ADDRESS
DOWNWARD BY THE AMOUNT IN BYTES

JEDC 18 ADCEND CLC

1EDD A5 E8 LDAZ CENDL

1EDF 65 F6 ADCZ BYTES CEND:=CEND+BYTES
1EE1 85 E8 STAZ CENDL

1EE3 AS E9 LDAZ CENDH

1EES 69 @@ ADCIM 508

1EE7 85 E9 STAZ CENDH

1EE9 6@ RTS

RECEND REDUCES THE CURRENT END ADDRESS
BY THE AMOUNT IN BYTES

1EEA 38 RECEND SEC

1EEB AS E8 LDAZ CENDL

1EED ES F6 SBCZ  BYTES CEND:=CEND-BYTES
l1EEF 85 E8 STAZ CENDL

1EF1 AS E9 LDAZ CENDH

1EF3 E9 00 SBCIM $80

1EFS5 85 E9 STAZ CENDH

1EF7 68 RTS

NEXT ADVANCES THE CURRENT DISPLAYED ADDRES
DOWNWARD BY THE AMOUNT IN BYTES

1EF8 18 NEXT cLC

1EF9 AS E6 LDAZ CURADL
1EFB 65 Fé6 ADCZ BYTES CURAD:=CURAD+BYTES
1EFD 85 E6 STAZ CURADL
1EFF AS E7 LDAZ CURADH
1F81 69 @9 ADCIM $89
1F@3 85 E7 3TAZ CURADH
1Fes 38 SEC

1F06 AS E6 LDAZ CURADL
1F98 E5 EB $BCZ CENDL
1F8A A5 E7 LDAZ CURADH
1FeC ES E9 SBCZ CENDR
1F@E 69 RTS

THE LOOKUP TABLE "LOOK" IS USED, TO CONVERT
A HEX NUMBER INTO A 7 SEGMENT PATTERN.

THE LOOKUP TABLE "LEN" 1S USED, TO CONVERT AN
IUSTRUCTION INTO AN INSTRUCTION LENGTH.

1FBF 40 LOOK = $40
1F10 79 = $79
1F1l 24 = $24
1F12 30 = $3@
1F13 19 = $19
1F14 12 = $12
1F15 82 = $02
1F16 78 = $78
1F17 0@ = $80
1F18 10 = sie
1F19 @8 = $08
1F1A 83 = $83
1F1B 46 = $46
1FiCc 21 = $21




1F1D
1F1E

1F1F
1F26
1F21
1F22
1F23
1F24
1F25
1F26
1F27
1F28
1F23
1F2a
1F2B
1F2C
1F2D
1F2¢

1F2F
1F32

1#35
1837
1F 39
1F 3B
1F3D
1F3F
1F41l
iF42
1F 44
1F45
1F46
1F48
1raa

1r4s
1F4cC
1F4D
1F4E
159

1F51
1F52
1F54
1F56
1FS8
1FSA
1F5C
1FSE
1r60
iF62

1F65
1F68
1F6A
1F6C
1F6E
1r70
1F71
1F73
1F75
1777
1F78
1F7A
1r7C
1F7D
1F7F

Dg
60

78 1A

7E

EC

ia

s06 wgn
1 “E"

[

LEN $82
582
$82
$81
$82
$82
S8z
$01l
sel
s@2
581
$a1
$83
83
503
$83

K]

Wononon o

JMI NMIL JUMP TO A USER SELECTABLE NMI VECTOR
JMI IRQL JUMP TO A USER SELECTABLE IRQ VECTOR

GETLBL I35 AN ASSEMBLER SUBROUTINE. IT SEARCHES FOR
LABELS ON THE SYMBOL PSEUDO STACK. IF THIS STACK
CONTAINS A VALID LABEL, IT RETURNS WITH THE

HIGH ORDER LABEL ADDRESS IN X AND THE LOW ORDER LABEL
ADDRESS IN A. IF NO VALID LABEL IS FOUND, IT RE-
TURNES WITH 2=1.

GETLBL LDAIY CURADL FETCH CURRENT LABEL NUMBER FROM WS
LDYIM SFF RESET PSEUDO STACK

SYMA CPYZ LABELS UPPER MOST SYMBOL TABLE ADDRESS?
BEQ SYMB IF YES, RETURN, NO LABEL ON PSEUDO STACK
CMPIY TABLEL LABEL NR. IN WS = LABEL NR. ON PSEUDO STACK?
BNE SYMNXT

DEY IF YES, GET HIGH ORDER ADD
LDAIY TABLEL
TAX DISCARD HIGH ORDER ADD IN X
DEY
LUALY TABLEL GET LOW ORDER ADD
LDYIM $@1 PREPARE Y REGISTER

SYMB  RTS

SYMNXT DEY REAKARR AR KRERER KRR
DEY * X=ADH *  * A=ADL *
DEY ARARER KKK KAKAKAN AN
BNE  SYMA
RTS

ASSEMBLER MAIN ROUTINE
FOLLOWING INSTRUCTIONS ARE ASSEMBLED:
JSR INSTRUCTION

JMP INSTRUCTION
BRANCH INSTRUCTIONS

ASSEMB SEC
LDL. ENDADL
SBCIM SFF

STAZ TABLEL -$FF
LDAZ ENDADH

SBCIM $60

STAZ TABLEB

LDAIM SFF

STAZ LABELS

JSR BEGIN CURAD:=BEGAD

PASSA JSR OPLEN START PASS ONE, GET CURR. INSTR.

LDYIM $90

LDAIY CURADL FETCH CURRENT INSTRUCTION
CMPIM SFF 1S THE CURRENT INSTR, A LABEL?
BNE NXTINS

INY

LDAIY CURADL IF YES, FETCH LABEL NR.

LDYZ LABELS

STAIY TABLEL DEPOSIT LABEL NR. ON SYMBOL STACK
DEY

LDAZ CURADH GET HIGH ORDER ADD

STAIY TABLEL DEPOSIT ON SYMBOL STACK

DEY

LDAZ CURADL GET LOW ORDER ADD

STAIY TABLEL DEPOSIT ON SYMBOL STECK
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1F8l
1F82
1F84
1F87
1F8a

1F8D
1F96
1F92
1F95
1F98
1F9a
1F9C
1F9E
1FA@
1FA2
1Fa4
1FAE
1FAB
1FAA
1FAD
1FAF
1FB1
1FB3

1FB6
1FB7
1¢¥BA
1FBC
1FBE
1FBF
1FCO
1FC2

1FC4
1FCS
1FC8
1rCA
1rCB
1FCD
1FCE
1FD@
1FD2

1FD5
1FD6
1FD8
1FDA
1FDC
1FDE
1FEL
1FE3
1FES
1FE8
1FEA
1FEC
1FED
1FEF
1FF1
1FF3
1FF5

D8
a9
85

85
28

85
20

85
18

ES
85

ac

35

E6

£6
E6

35
EB
E6
82

AA

1E

iF

1E
1E

1c

1F

ir

NXTIN

PASSB

PB

JUMPS

BRINS

DEY
STYZ
J3R
JSR
JMP

S JSR

T INY

LABELS
(53
RECEND
PASSA

NEXT
PASSA
BEGIN
OPLEN
M 308
Y CURADL

BYTES
START

GETLBL
PB
Y CURADL

Y CURADL
PB

GETLBL

PB

CURADL
M $82

Y CURADL
PB

ADJUST PSEUDO STACK POINTER
DELETE CURRENT LABEL IN WS
ADJUST CURRENT END ADD

LOOK FOR MORE LABELS

IF NO LABEL, SKIP TO NEXT INSTR.
ALL LABELS IN WS COLLECTED?
START PASS 2

GET LENGTH OF THE CURRENT INSTR.

FETCH CURRENT INSTR.
JMP INSTR.?

JSR INSTR.?

STRIP TO 5 BITS
ANY BRANCH INSTRUCTION?

IF NOT, RETURN
ALL LABELS BETWEEN CURAD AND ENDAD ASSEMBLED?
ENABLE 3 DISPLAY BUFFERS

EXIT HERE  Xx*x*ax*x
SET POINTER TO LABEL NR.
GET LABEL ADD

RETURN, IF NOT FOUND
STORE LOW ORDER ADD

STORE HIGH ORDER ADD

SET POINTER TO LABEL NR.
GET LABEL ADD.
RETURN, IF LABEL NOT FOUND

COMPUTE BRANCH OFFSET

DESTINATION-SOURCE-2=0FFSET
INSERT BRANCH OFFSET IN WS

THE SUBROUTINE BRANCH COMPUTES THE OFFSET OF BRANCH
INSTRUCTIONS. THE 2 RIGHT HAND DISPLAYS SHOW THE
COMPUTED OFFSET DEFINED BY THE 4 LEFT HAND DISPLAYS.
THE PROGRAM MUST BE STOPPED WITH THE RESET KEY.

BRANC

BR

H CLD
LDAI
STAZ
STAZ
STAZ
JSR
8PL
STAZ
JSR
BPL
STAZ
cLc
LDAZ
SBC2Z
STAZ
DECZ
JMP

M 500
POINTH
POINTL
INH
GETBYT
BRANCH
POINTH
GETBYT
BRANCH
POINTL

POINTL
POINTH
INH
INH

BR

RESET DISPLAY BUFFER

READ SOURCE

COMMAND KEY?

SAVE SOURCE IN BUFFER

READ DESTINATION

COMMAND KEY

SAVE DESTINATION IN BUFFER

FETCH DESTINATION
SUBTRACT SOURCE

EQUALIZE AND SAVE OFFSET IN BUFFER

VECTORS AT THE END OF THE MEMORY:

1FFA
1FFB
1FFC
1FFD
1FFE
1FFF

S2F
S1F
$1p
$1C
$32
$1F

NMI VECTOR

RESET VECTOR

IRQ OR BRK VECTOR

END OF JUNIOR'S MONITOR



ACC
ADMODE
BEGADH
BRANCH
CENDH
CNTB
CNTF
COUNT
DATA
DNEND
EDETB
ENDADH
FILBUF
GETKEY
INH
IRQH
KEYINA
KEY
LEN
MOVADH
NMIH
OPLEN
PASSB
PCH
POINTL
RDFLAG
SAVE
SCANA
SCDsa
SELOOP
STARA
SYMA
TABLEL
UPA
XREG

62F3
1C5C
BOE3
1FD5
80E9
1AFS
1AFD
80F7
1coe
1ED2
1AES
8RES
1D51
1DF9
80F3
1A7F
1E8B
8QE1
1F1F
2OEB
1A78B
1ESC
1F95
80FQ
8@FA
1AD5
1cee
1D5¢
1097
1CE2
1c38
1F39
@QEC
1E99
00F5

ADCEND
AK
BEGADL
BRINST
CENDL

1EDC
1DB1
BBE2
1FC4
@BES
1AF6
1AFE
@8E7
1DEB
1EAE
1AE7
@O8E4
1E47
1F35
8eF8
1A7E
111
GeEE
1FOF
@0EA
1A7A
a8l
1FAA
1C7D
08r1
1E28
1C95
1061
1DAC
lpocC
1C33
1F4A
0BFC
1E8B
00F 4

ADDRES
AKA
BEGIN
BYTEND
CMND
CNTD
CNTH
CURADL
DELETE
DOWN
EDIT
ERRA
GETBYT
GOEXEC
INPUT
JUMPS
KEYINC
LENACC
LoYs
NEXT
NXTINS
PAD
PBDD
PCL
RDA
RECEND
SAVEB
SCAND
SEARA
SKIP
STEP
SYMNXT
TEMPX
WDETC

1CA3
1DpB7
1ED3
1087
1cca
1AF7
1AFF
2BES
1p2C
1EA6
1cce
1D39
1D6F
1C45
1p@9
1FB6
1E19
1E68
1cee
1EF8
1F8D
1A89
1A83
@BEF
1E44
1EEA
1CoF
1D88
1CF1
1021
1c7e
1F4B
@8FD
1AE®6

ADLOOP
ASSEMB
BR
BYTES
CNTA
CNTE
CONVD
DAMODE
DNA
EDETA
EDITOR
ERRB
GETKEA
ILLKEY
INSERT
KEYIN
KEYIND
LENEND
MODE
NIBBLE
ONEKEY
PASSA
PBD
POINTH
RDB
RESET
SCAN
SCANDS
SEARCH
SPUSER
STEPA
TABLEH
uP

LE}

1CAS
1F51
1FDE
@8F6
1AF4
1AFC
1DDF
1C66
1EC2
1AE4
1CBS
1D45
10FB
1c8c
1CFB
1E89
1E1C
1E88
@9FF
09FE
1DB5
1F65
1A82
2eFB
1E46
1clp
1D4D
1D8E
1¢co
@8F2
1c7a
@8ED
1E83
1ES1
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Appendix 2

Listings of the programs used
in chapters 5 and 6

BINARY DECIMAL CONVERSION

: 9200 ORG ~ $8200
MEMORY CELLS
0208 INH * $80F9 DISPLAY BUFFERS
9200 POINTL, * S@OFA
8200 POINTH * SeorFB
: 0200 HEXL * $6@D7 DATA BUFFERS
0290 HEXH  * $eepns

MONITOR SUBROUTINE GETBYT
0200 GETBYT * $ID6F KEYBOARD & DISPLAY SCAN

START OF DiSPL

8200 A9 00 DISPL LDAIM $88 DISPLAY @080600
: 8202 85 F9 S5TAZ  INH
0284 85 FA STAZ POINT
9206 85 FB STAZ POINTH
0208 26 6F 1D DA JSR  GETBYT READ KEYBOARD, SCAN DISPLAY
6208 16 F3 BPL  DISPL RETURN IF COMMAND KEY
228D 85 F9 STAZ INH BYTE TC DISPLAY BUFFER
B20F 85 D7 STAZ HEXL ~ BYTE TO DATA BUFFER
= 0211 28 17 82 JSR  HEXDEC BINARY DECIMAL CONVERSION
© 9214 1C 08 92 JMP DA WAIT FOR A NEW BYTE

SUBROUTINES OF THE CONVERSION PROGRAM
8217 20 2E 92 HEXDEC JSR  COMNUM COMPUTE ONES

: B21A 85 FA STAZ  POINTL DISCARD ONES
: 921C 84 D7 STYZ HEXL, GET CONTENTS OF THE SUBTRACTION COUNTER
: O21E 20 2F @2 JSR  COMNUM COMPUTE TENS
: 8221 A2 B4 LDXIM $84 SET SHIFT COUNTER
: 0223 oA HD ASLA SHIFT LEFT
: 0224 CA DEX ALL SHIFTS DONE
: 8225 DB FC BNE  HD IF NOT, CONTINUE
: 8227 BS FA ORAZ  POINTL TENS & ONES INTO 1 BYTE
: 8229 85 FA STAZ  POINTL
: 8228 84 FB STYZ POINTH HUNDREDPS TO DISPLAY BUFFER
+ 922D 60 RTS
: @22E AQ 80 COMNUM LDYIM $89 RESET HIGH ORDER HEX BUFFER
: 0230 84 DB STY2 XH
: 8232 20 3B 02 JSR  SUBTRA SUBTRACT Y*$@A
: 0235 18 CLC
: 0236 AS D7 LDAZ HEXL  CORRECT SUBTRACTION ERROR
: 0238 69 OA ADCIM $OA
: 237 68 RTS
: 8238 38 SUBTRA SEC
: 823 AS D7 LDAZ HEXL 16 BIT SUBTRACTION
: @23E E9 6A SBCIM $8A
< 0240 85 D7 STAZ HEXL
: 8242 AS D8 LDAZ HEXH
: 0244 E9 @@ SBCIM $88
: 8246 38 04 BMI SuUB COMPLETE SUBTRACTION, IF RESULT NEGATIVE
: 9248 C8 INY SUBTRACTION COUNTER = Y+1
9249 4C 3B 82 JMP  SUBTRA CONTINUE SUBTRACTION
624C 68 suB RIS

END OF DISPL

SYMBOL TABLE
COMNUM 822E DA 8208 DISPL 9289 GETBYT 1D6F
HD 98223 HEXDEC 8217 HEXH 2eD8 HEXL  86D7
INH 20F9 POINTH §OFB POINTL 80FA SUBTRA 923B
suB 624C

SYMBOL TABLE
HEXL 28D7 HEXH #ep8 INH a9r9 POTNTL BOFA
FOINTH @0FB DISPL 8200 DA 8208 HEXDEC 8217
HD 8223 COMNIM B22E SUBTRA 023B SuB 924Cc
GETBYT 1D6F
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0000

1 0017
2ala
081D

0020
: 9821
1 0822
0024

‘9330:

SYMBOL
DELAY
PADD

SYMBOL
DEMO
PAD

AZ
8E
E8
8E

AD
49
Ap

28
8
8C
20
4C

81

TABLE
0920
1A81

TABLE
0900
1A88

1a

1A
08

1A
00
]

DEMO ROUTINE

ORG

$0008

1/0 DEFINITION

PAD * $1A8¢
PADD  * S1A81
PBD * $1A82
PBDD ¥ $1a83
DEMO  LDXIM $9
STX  PADD
INX
STX  PBDD
FREQ LDA  PAD
BORIM S$FF
LDYIM $86
STY  PBD
JSR  DELAY
INY
STY  PBD
JSR  DELAY
JMP  FREQ
SUBROUTINE DELAY
DELAY TAX
DEL  DEX
BNE  DEL
RTS
DEL 9821  DEMO
PAD  1A80  PBOD
FREQ @089  DELAY
PADD  1A81 PBD

DATA REGISTER
DATA DIRECTION REGISTER
DATA REGISTER
DATA DIRECTION REGISTER

PAG...PA7 IS INPUT
PB IS OUTRIT

READ SWITCH PATTERN

INVERT PATTERN

B8 1S ZERO

TOGGLE SPEAKER ON

DELAY = SWITCHES * LOOP TIME

‘TOGGLE SPEAKER OFF
DELAY = SWITCHES * LOOP TIME
RETURN

X-REGISTER IS THE DELAY COUNTER
DELAY LOOP

0088 FREQ 0089
183 PBD 1a82

0020 DEL 9021
1A82 PBDD  1A83
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20818: PLAY ROUTINE

0028:

8030: 000G ORG  $6800

2048:

ggSB: TEMPORARY DATA BUFFERS IN PAGE ZERO
68,

8079: oee9 ROW * $88D9 ROW BUFFER

£9086: 2800 KEY * $68DA KEY VALUE BUFFER

2092: poes TEMPX  * $8DB ROW NUMBER BUFFER
1/0 DEFINITION

PAD * $1A88

PADD  * $1a81

PBD * 31a82

PBDD * $1a83
A9 FO PLAY  LDAIM SF8 PA7...PAR4 IS OUTPUT
8 81 1a STA  PADD  PA3...PA@ IS INPUT
A9 91 LDATM $81
8D 83 1A STA PBDD PBO IS OUTRUT
8D 82 1A STA  PBD TOGGLE SPEAKER OFF
A9 80 LDAIM $00

88 1A STA PAD ALL MATRIX ROWS ARE ZERO

26 9C 80 PA JSR  KEYIN ANY KEY DEPRESSED?
F@ FB BEQ PA BRANCH, IF NO

20 A4 208 JSR  DELAY DEBOUNCE THE KEY

26 9C 00 JSR  KEYIN KEY STILL DEPRESSED
F8 F3 BEQ PA IF YES, CONTINUE

20 44 00 JSR  KEYVAL COMPUTE THE KEY VALUE
A4 DA LDYZ KEY GET KEY VALUE

A9 09 TONE ~ LDAIM $66 B2 =0

STA  PBD TOGGLE SPEAKER ON

DEL FETCH THE FREQUENCY

TA JSR  EQUAL EQUALIZE 22 MICRO SEC.
CA DEX HALF PERIODE PASSED?

D@ FA BNE TA WAIT, IF NOT

A9 01 LDAIM $01 B8 =1

STA  PBD TOGGLE SPEAKER OFF

DEL FETCH THE FREQUENCY AGAIN
b JSR KEYIN ANY KEY STILL DEPRESSED?
F@ D3 BEQ PA IF YES, GENERATE A TONE
CA DEX HALF PERIODE PASSED?

D F8 BNE TB WAIT, IF NOT

Fo EB BEQ TONE CONTINUE, IF YES

5]
SEE
2

g
855
g
E

SYMBOL TABLE

DELA  80A6 DELAY ©6@8A4 DEL 1A09 EQUAL 99AA
KEYA  004A KEYB 0063 KEYC 0094 KEYIN @99C
KEYVAL 0844 KEY PBDA PA 2812 PADD  1A8l
PAD 1A80 PBDD  1A83 PBD 1a82 PLAY 90909
ROWA  Q06E ROWB 0078 ROWC 9882 ROWD  988C
ROW 90D9 TA 202C T8 993a TEMPX  98DB
TONE 2024

SYMBOL TABLE

PLAY 0009 PA 0012 TONE 9024 TA 992C
hich 0932 KEYVAL 6844 KEYA  B@4A KEYB 0063
ROWA  Q06E ROWB @078 ROWC 8882 ROWD  888C
KEYC 2894 KEYIN 849C DELAY 00A4 DELA  80a6
BQUAL  BBAA ROW 20D9% KEY @0DA TEMPX 00DB
DEL JEY- 1) PAD 1n88 PADD  1A81 PBD 1a82
PBDD  1A83



: 1208

: 1AB1
: 1AB2
: 1a@3
: 1ae4
+ 1A0S
: 1206
: 1A07
: 1A08
1 1aR9
1 1A0A
1 1A0B
: 1AOC
: 1AOD
: 1AGE
: 1A0F

86
7E
77
70

SE
59
54
4E

47
43

SUBROUTINES OF THE PLAY PROGRAM

KEYIN

DELAY

$02

$04
KEYC

$61

$08
KEYC

$00
KEYVAL
$8C
KEY

$09
PAD

PAD
$OF
$0F

SFF

DELA

$1A00

ALL ROWS ARE ONE

SET UP ROW COUNTER
RETURN IF INVALID ROW
IS FOUND

SPECIFIED ROW IS ZERO

OUTPUT ROW HUMBER

IF NO KEY IS DEPRESSED IN THE
SPECIFIED ROW, OUTPUT

NEXT ROW NUMBER

SAVE ROW NUMBER
SAVE COLUMN NUMBER

SHIFT UNTIL CARRY CLEAR
BRANCH TO COMPUTE KEY VALUE

ALL ROWS SCANNED?
IF NOT CONTINUE
RETURN IF INVALID ROW NUMBER

GET ROW NUMBER AGAIN
ROW 02

ROW 127

ROW 22

ROW 3?
RETURN, IF ROW IS INVALID

SAVE KEY VALUE
RESET FORT A

MASK OFF HIGH ORDER NIBBLE

IF NO KEY: ACCU = $88

SET DELAY COUNTER
TIME OUT ?

EQUALIZE 20 MICRO SEC

FREQUENCY LOOKUP TABLE

DEL

END OF

PLAY

$8E
$86
$7E
$77
$79
$6A
$64
$SE
$59
$54
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INPUT ROUTINE
: 9200 ORG  $B288
TEMFORARY DATA BUFFERS IN PAGE ZERO

: 6200 ROW

* $8ep9
: 9200 KEY * $89DA
0208 TEMPX * $8dDB
1 9200 NOTEL * $80DC NOTE POINTER
: 0288 NOTEH * $96DD
: 0208 LENGTH * SBEDE TIME OF A DEPRESSED KEY
+ @280 ENDL * $@6DF END OF THE NOTE BUFFER

INTERVAL TIMER

: 92080 CNTA * $1AF4 DISABLE TIMER IRQ

: 9208 ONTG * S1AFE ENABLE TIMER IRQ, CLK64T
GOTO MONITOR
: 0280 RESET * SICID NEW I/0 DEFINITION

I/0 DEFINITION
: 0208 PAD

*  s1ase

: 0208 PADD  *  S1ABl

: 8200 BD  *  slA82

: 0260 BOD  * 1A
IRQ VBECTOR

: g208 IRQL *  SIATE

: 0208 IRH  *  SIATF

START OF THE INPUT PROGRAM

: 8288 78 INPUT SEI DISABLE IRQ LINE
9201 D8 CLD
© 0202 A9 20 LDAIM IRQIN SET UP IRQ VECTOR
8204 8D 7E 1A STA  IRQL
6207 A9 1A LDAIM IRQIN /256
2269 8D 7F 1A STA  IRQH
B20C A9 FO LDAIM SFB PAT7...PA4 IS OUTPUT, PA3...PAB IS INPUT
B28E 8D 81 1A STA  PADD
0211 A% 81 LDAIM $81
9213 8D 83 1A STA  PBDD  PB@ IS OUTPUT FOR SPEAKER
8216 8D 82 1A STA  PBD TOGGLE. SPEAKER OFF
8219 85 DD STAZ NOTEH HIGH ORDER BYTE OF NOTE POINTER
9218 AQ 69 LDYIM $00
021D 8C 86 1A STY  PAD SET ALL ROWS 2ERO
8226 84 DC STYZ NOTEL LOW ORDER BYTE OF NOTE POINTER
0222 A@ DB LDYIM $D8 DEFINE ENDADDRESS OF INPUT BUFFER
: 9224 84 DF STYZ ENDL
: 0226 A 77 LDAIM $77 LOAD EOF CHARACTER
: 0228 91 DC INA STAIY NOTEL FILLUP WORKSPACE WITH EOFS
B22A 88 DEY
: 022B C8 FF CPYIM SFF WS FILLED UP?
: 022D DB F9 BNE  INA IF NOT CONTINUE
: D22F 20 EB 2 KEYSCN JSR  KEYIN ANY KEY DEPRESSED?
: 8232 FO FB BEQ  KEYSCN WAIT IF NO KEY IS DEPRESSED
© 9234 20 E8 02 JSR  DELAY DEBOUNCE KEYBOARD
: 9237 20 E@ 02 JSR  KEYIN STILL ANY KEY DEPRESSED
: 023A F8 F3 BEQ  KEYSCN IF YES, CONTINUE
: B23C 20 88 92 JSR  KEYVAL COMPUTE KEY NUMBER
: B23F A9 09 LDAIM $00
: #241 85 DE STAZ LENGTH RESET TIME COUNTER
: 9243 A9 FF LDAIM SFF START TIMER, ENABLE TIMER IRQ,
: 0245 8D FE 1A STA CNTG  RESET IRQ LINE
: 9248 58 CLI ENABLE IRQ LINE
: 0249 A4 OA LDYZ KEY LOOKUP CONVERSION BY KEY VALUE
: 9248 A9 09 TONE  LDAIM $80 TOGGLE SPEAKER ON
: 824D 8D 82 1A STA  PBD PBO IS LOG @
: 9250 BE 90 1A LDXY DEL FETCH DELAY
6253 20 EE 92 TA JSR  EQUAL EQUALIZE 20 MIKRO SEC
8256 CA DEX
: 0257 D@ FA BNE TA DELAY
0798: 0259 A9 Q1 LDAIM $@1 TOGGLE SPEAKER OFF
#800: 0258 BD 82 1A STA  PBD
0819: B25E BE ¢ 1A LDXY DEL FETCH DELAY AGAIN
0828: 8261 20 E@ 02 TB JSR  KEYIN ANY KEY STILL DEPRESSED?

8830: 0264 FO 05 BEQ STORE BRANCH IF KEY IS RELEASED

0840: 8266 Ca DEX

08508: 8267 DY F8 BNE T8

0868: 0269 F@ E@ BEQ TONE CONTINUE AS LONG AS A KEY IS DEPRESSED
0870: 0268 8D F4 IA STORE STA CNTA  RESET IRQ LINE,DISABLE TIMER IRQ
0880: B26E AS DC LDAZ  NOTEL

889@: 0278 C5 DF CMPZ ENDL IS WORKSPACE FULL?

8908: 9272 Fo 11 BEQ ST IF YES, EXIT HERE

8910: 8274 98 TYA

£928: 0275 AR 00 LDYIM $08

€938: 9277 91 DC STAIY NOTEL STORE KEY VALUE IN WS

£940: 8279 C8 INY

B958: 827A AS DE LDAZ LENGTH GET TIME OF THE DEPRESSED KEY
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2968: 627C 91 DC STALY NOTEL STORE KEY TIME IN WS
©979: 827E E6 DC INCZ  NOTEL

0980: 0288 E6 DC INCZ NOTEL ADJUST NOTE POINTER
0999: 9282 4C 2F 82 JMP  KEYSCN

1009: 9285 4C ID IC ST JMP  RESET BACK TO MONITOR

SUBROUTINES OF THE INPUT PROGRAM

A% F7 KEYVAL LDAIM SF7 ALL ROWS ARE ONE

85 D9 STAZ ROW

A2 84 LDXIM $84 SET UP ROW COUNTER

ca KEYA  DEX RETURN IF INVALID ROW
38 F7 BMI KEYVAL IS FOUND

26 D9 ASLZ ROW SPECIFIED ROW IS ZERO
A5 D9 LDAZ ROW

8D 88 1A STA  PAD OUTPUT ROW NUMBER

AD 82 1A oA PAD IF NO KEY IS DEPRESSED IN THE
29 oF ANDIM $OF SPECIFIED ROW, OUTPUT
C9 oF CMPIM SBF NEXT ROW NUMBER

F¢ ED BEQ  KEYA

86 DB STXZ TEMPX SAVE ROW NUMBER

85 DA STAZ KEY SAVE COLUMN NUMBER

A2 00 LDXIM $20

46 DA KEYB  LSRZ KEY SHIFT UNTIL CARRY CLEAR
9¢ 87 BCC ROWR  BRANCH TO COMPUTE KEY VALUE
E8 INX

ED B4 CPXIM $@4 ALL ROWS SCANNED?

Do F7 BNE  KEYB IF NOT CONTINUE

F@ D6 BEQ KEYVAL RETURN IF INVALID ROW NUMBER
AS DB ROWA  LDAZ TEMPX GET ROW NUMBER AGAIN
C9 93 CMPIM $83 ROW @82

D9 84 BNE  ROWB

8a TXA

4C D8 82 JMP  KEYC

C9 02 ROWB  CMPIM $02 ROA 12

D8 66 BNE  ROWC

8A TXA

18 CLC

69 04 ADCIM $64

Do 12 BNE  KEYC

€9 01 ROWC  CMPIM $01 ROW 2?

0@ 86 BNE  ROWD

8A TXA

18 CLe

69 08 ADCIM $P8

Do 88 BNE  KEYC

C9 00 POWD  CMPIM $00 ROW 37

D® B4 BNE  KEYVAL RETURN, IF ROW IS INVALID
aa TXA

18 Ce

69 0C ADCIM $8C

85 DA KEYC  STAZ KEY SAVE KEY VALUE

A9 @8 LDAIM $@e RESET PORT A

8D 80 1A STA  PAD

6¢ RTS

AD 88 1A KEYIN LDA  PAD

29 oF ANDIM $@F MASK OFF HIGH ORDER NIBBLE
49 oF BORIM $6F IF NO KEY: ACCU = $00
69 RTS

A FF DELAY LDYIM $FF SET DELAY COUNTER

88 DELA  DEY

D8 FD BNE DELA TIME OUT ?

60 RTS

EA EQUAL NOP EQUALIZE 29 MICRO SBC
EA NOP

EA NOP

EA NOP

EA NOP

60 RTS
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: 1AP0

: 1A98
: 1A81
: 1A02
: 1a83
: 1AB4
1 1ADS
1 1A96
: 1ae7
: 1A08
: 1ap9
: 1ABA
: 1a8B

: 1A8D
: 1ABE
: 1a6F

: 1A20

1 1A28
+ 1A21
: 123

: 1a28
: 1A29

DELAY
IRQIN
PADD

210

92E8
9228
1A7E
@2EQ
@@DE
1A80

880C
0200
2253
9288

02ED
1A00
1A80
1AF4

ORG  $1A00

FREQUENCY LOOKUP TABLE
8E DEL $8E
86 $86
7E STE
77 $77
7 370
6A $6A
64 $64
SE SSE
59 $59
54 $54
4E S4E
4 S4n
a7 $47
43 $43
3E S3E
x = $3¢

ORG  $1A20

TIMER INTERRUPT PROGRAM
48 IRQIN PHA SAVE ACCU
E6 DE INCZ LENGTH INCREMENT TIME
A9 FF LDAIM $FF  TIMER OFFSET IS $FF
8D FE 1A STA CNTG  START TIMER AGAIN
68 PLA RESTORE ACCU
L] RTI

END OF INPUT
TABLE
1AF4  CNTG 1AFE  DELA @2EA  DELAY
1AG9  ENDL  B@DF O26E  INA
2289  IRQH 1A7F  IRQIN 1A20  IRQL
B28E  KEYB @2A7  KEYC @208  KEYIN
B22F  KEYVAL 0288  KEY  @@DA  LENGTH
290D  NOTEL @eDC  PADD 1A81  PAD
1A83 PBD 1A82 RESET ICID ROWA
@2BC  ROWC  82C6  ROWD 0200  ROW
8285 STORE 0268 TA 0253 TB
90DB  TONE  024B
TABLE
@009  KEY  90DA  TEMPX @@DB  NOTEL
00DD  LENGTH O@DE  ENDL  @ODF  INPUT
8228 KEYSCN @22F TONE @248 TA
0261 STORE 8268 ST 0285 KEYVAL
0282  KEYB @2A7  ROWA 0282
02C6  ROWD 0208  KEYC 0208  KEYIN
B2E8  DELA @2EA  EQUAL @2EE  DEL
1A26  IRQL 1A7E  IRQH 1A7F  PAD
1A81  PBD  1A82  PBOD 1A83  CNTA
IAFE  RESET 1CID



@910:

29

A2
AS
8D

¢
19
A
Do
E6
E6
AQ
Bl
c9

i

55 8 K

5

855

]

1c

REPEAT ROUTINE

ORG  sodee

TEMFORARY DATABUFFERS IN PAGE ZERO

* $8sDA
NOTEL * SBODC

* $880D

* $QODE
INTERVAL TIMER

* S1AF4
CNTD  * S1AF7
e * SIAFE
RDFLAG * $1AD5
GOTO MONITOR
RESET * SICID
1/0 DEFINITION

PBD * $1A82
PBDD  * $1A83

IRQ VECTOR
IRQL * SIATE
IRQH  * $1A7F

START OF THE REPEAT

STAZ NOTEH
STAZ NOTEL
CL1L

FETCH LDAIM SFF
ST
LDYIM $80
LDAIY NOTEL
STAZ KEY
LDAIY NOTEL
LDYZ KeEY

TONE  LDAIM $08

TONED LDAIM $30

STA  CNTD
FOLL BIT RDFLAG
BPL  FOLL
DEX
BNE  TONED
INCZ NOTEL
INCZ NOTEL
LDYIM $80
LDATY NOTEL
CMPIM $77
BNE  FETCH
JMP  RESET

DISABLE TIMER IRQ
DISABLE TIMER IRQ, CLKIKT
ENABLE TIMER IRQ, CLK64T
B7 IS TIMER FLAG

NEW I/O DEFINITION

PROGRAM

DISABLE IRQ LINE
SET UP IRQ VECTOR
/256

PB8 IS OUTRUT

TOGGLE SPEAKER OFF
SET NOTE POINTER

SET NOTE POINTER
RESET IRQ LINE, DISABLE TIMER IRQ
ENABLE CPU IRQ

SET TIMER ENABLE TIMER IRQ
FETCH NOTE

PETCH LENGTH

LOOKUP CONVERSION
TOGGLE SPEAKER ON

GET FREQUENCY
DELAY 22 MICRO SEC

LOOP TIME IS 27 MIKRO SEC*X
TOGGLE SPEAKER OFF

GET FREQUENCY AGAIN
GET LENGTH

TIME OUT?

EQUALIZE 17 MICRO SEC

LOOP TIME IS 27 MICRO SEC*X AGAIN
RETURN AFTER ONE PERIODE

LOOP TIME = 4*CNTD*PRESET

PRESET = $38

DISABLE TIMER IRQ

READ FIAG REGISTER, TIME OUT?
IS TIMER FLAG STILL ZERO?

LOOP COUNTER ZERO?
ADJUST NOTE POINTER

END OF NOTE BUFFER?

EOF CHARACTER

IF NOT EOF, CONTINUE
ELSE BACK TO MONITOR
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[IH
2028
8838:
0948:
0ese:
6860:
0070:
8080:
6098:
0108:
0118:
0128
0136:
0148:
8150:
8168
8170
8189:
B199:
0200:
8210:
8229
9230
0240:
9250:
6268:
8270:
0280:
6299:
8300:
0316:
8320:
9338:
8348:
8350:
2368
8370
0380:
0399:
2400:
0410:
9429:
9438:
9440:

1A30
1A31
1A33
1A35
1A38
1A39

SYMBOL
REPEAT

EQUALA

IRQRE
PBOD

212

74 08

78 €8

S8BAE

48

Cé DE
A9 FF

8D FE 1A
68

48

TABLE
1AFP

1A82
1IClo
90852

TABLE
2000
0046
0078
200C
1a30
1a83
1AFE

SUBROUTINES OF THE REPEAT PROGRAM

17/22 MICRO SEC SUBROUTINE

EQUALA NOP
JMP  EQUALB
EQUALB NOP
JMP  EEND
EEND RTS
ORG  S1A®88
FREQUENCY LOOKUP TABLE
DEL = S8E
= $86
= $TE
= $77
= $7e
= S6A
= $64
= $5E
= $59
= $54
= $S4E
= $4a
= $47
= $43
= $3E
= $3C
ORG  $1A30
TIMER INTERRUPT PROGRAM
IRQRE PHA SAVE ACCU
DECZ LENGTH DECREMENT TIME
LDAIM SFF TIMER OFFSET IS SFF
STA  CNIG  START TIMER AGAIN
PLA RESTORE ACCU
RTI
END OF REPEAT
CNTD  1AF7 CNIG  1AFE DEL 1A00
EQUALA 2876 EQUALB 2874 FETCH @01E
IRQL  1ATE IRQRE 1A30 KEY @0DA
NOTEH 8@éDD NOTEL  88DC PBDD  1A83
POLL 90859 RDFLAG 1ADS REPEAT 8008
TONE 0830 TONEA 0838 TONEB 9046
TONED 9054
FETCH @@lE TONE 0838 TONEA 0038
TONEC 8052 TONED 9854 POLL 0059
EQUALB 4874 EEND 0878 KEY @0DA
NOTEH  9@DD LENGTH @6DE DEL 1A00
IRQL  1ATE IRH 1A7F PBD 1a82
RDFLAG 1ADS CNTA  1AF4 CNTD  1AF7
RESET IC1D



