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Foreword

This book sets out to prove that anybody can build and use a computer.
The Junior Computer was designed to be simple, inexpensive and yet have
full programming potential. It is a complete microcomputer on a single
board and incorporates the modern 6502 microprocessor. Once the basics
of programming have been mastered, the Junior Computer can be
expanded into a more sophisticated system.

The Junior Computer Book 1 consists of four chapters:

Chapter 1 provides detailed building instructions together with a full
description of the Junior Computer’s internal and external structure.
Chapter 2 deals with the basics in programming: how to ‘compute’ in
binary.

Chapter 3 shows how to bring the completed Junior Computer to life and
start communicating with it.

Chapter 4 ends the book with a few practical programming examples.
Initially simple, they prepare the way for more complex operations to be
considered in book 2.

Now that your curiosity has been aroused, read on and satisfy it!

The authors.



The printed circuit boards mentioned in
this book are available from the Elektor
Printed Circuit Board Service. For further
information you are referred to the most
recent Elektor issue. This will also con-
tain details about the Elektor Software
Service.
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Getting acquainted with the
'Junior Computer’

The term “Junior’ may imply that this computer is only suitable
for children or amateurs. This is certainly NOT the case. We set
out to design a compact computer that would be inexpensive
and simple to build, yet have the capabilities of much larger
systems. Although small in size, the JC has plenty of pro-
gramming power, which makes it ideal for use by amateurs and
professionals alike. Also, of course, the system is fully ex-
pandable thereby allowing the user to add more ‘bits and
pieces’ as required.

Many people regard computers as being highly complex devices and believe
that their construction and operation should be left to the ‘experts’. We,
however, have a different opinion and set out to justify it by designing
the Junior Computer.

In principle, a microcomputer is really quite simple. For its construction,
little more than basic electrical know-how is required. It is simply a matter
of putting little black boxes into the correct holes — anybody can do a
jigsaw! The important aspect of any electronics system is what it can do,
rather than how it does it. In the case of the microcomputer it is the
‘instruction set’ that tells us this. The instruction set is the list of various
commands and directions (given by the programmer) that the micro-
processor ‘understands’. So the challenge here lies not so much in the
electronics involved, as in learning how to use the instruction set to tell
the microcomputer what you want it to do. It's like driving a car, you
don‘t have to know what’s going on under the bonnet to be able to oper-
ate it. The question here is how to tell the computer what you want (in
language it understands} and then to interpret the ‘answer’.



How it works

Although having just stated that we don‘t need to know what is going on
inside the computer to be able to use it, a brief description of its operation
will help to understand what follows.

As can be seen from the block diagram in figure 1, a (micro)computer
consists of three basic sections. These are the central processing unit
(CPU), the input/output (I/O) section and the memory section. Informa-
tion is transferred between the three ‘blocks’ by way of three groups
of lines called buses, the address bus, data bus and contro/ bus. A bus is
quite simply a common line or collection of lines that are connected to
more than one device.

A computer works with information, or data, which is in a form it can
understand (specifically digital pulses). As its name suggests, the data bus
carries this information to or from the various sections of the computer.
The data bus consists of eight conductors and is therefore capable of
transferring eight bits of data at a time. A bit is one piece of digital infor-
mation or Blnary digiT. A group of eight bits is commonly called a byte.
The largest computer in the universe is totally useless unless it is able to
communicate with the outside world. This is where the input/output
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Figure 1. The basic block diagram of a computer consists of three blocks and three
buses. The latter provide the connections between the blocks.

(1/0) section comes into the picture. For humans to be able to understand
what the computer has to say, and vice-versa, some form of translation
medium has to be incorporated. This is usually carried out by means
of a keyboardand video terminal, or some other form of display. However,
this is not to say that communication is limited to these.

On to the memory. The memory is simply a store where the computer
holds all the relevant information (instructions, data etc.) required for it
to perform a particular task. There is no such thing as an ‘intelligent’
computer (not yet anyway — as far as we know!). A computer has to be
told explicitly what to do and in what order. Date is stored in individual
compartments in the memory. These compartments are usually referred
to as /ocations and each has its own (unique) address. Via the address bus,
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the computer can pinpoint the exact memory location, and therefore
the data, that is required. The address bus is also used to select the various
input or output devices needed by a particular program.

Last, but by no means least, is the control bus. The control bus regulates
various internal functions as well as telling the data bus which way to
allow data to flow, whether to transfer data into or away from the CPU.

A little more technical

After looking at the block diagram of a ‘basic’ microcomputer, we move
on to that of the Junior Computer (figure 2). First, the three buses. The
address bus is formed by sixteen lines and is independent of the other two
buses (the data bus and the controf bus). With 16 lines, the CPU is capable
of addressing up to 216 or 65,5636 different memory locations. Thus, more
than sixty-five thousand (or '65k’) different pieces of data are at the
computer’s ‘fingertips’ (provided, of course, this amount of memory is
available).

The data bus consists of eight lines, but is bi-directional. This means that
information can be moved in two directions, to or from the micropro-
cessor. Of course, data can only be transferred in one direction at a time.
The direction of data transfer is determined by the control bus. If the
computer is told to read information then the control bus allows data to
be transferred from the memory (or any other source) to the CPU.
Conversely, if it is told to write information, the control bus allows data
transfer from the CPU to the memory or any other device. The control bus
does this via bi-directional data bus buffers which, according to control
bus signals, allow data to pass in the proper direction only.

Memory

Memory comes in two main types, which is why there are two memory
blocks in figure 2. One is RAM and the other is ROM. There are also two
types of data: permanent (like a system monitor program) and temporary
(most of the programs entered by the user). Permanent data therefore will
only ever be ‘read’, whereas temporary data has to be both ‘read’ and
‘written’. When talking about memory, the terms ‘reading’ and ‘writing’
refer to the act of seeing what is in memory and entering data into
memory respectively. Memory that can only be read is called ROM or
Read Only Memory. Where a system monitor program is used it is invariably
stored in ROM. Memory that can be written into as well as read from is
called RAM, for Random Access Memory. RAM is used to store such
things as intermediate results and programs which are under development.
Random access memory is therefore often called work memory. The signal
that controls the bi-directional data bus buffer mentioned earlier, also tells
the memory whether it is going to be read from or written into, hence the
term, READ/WRITE.

It seems reasonable to point out at this time that when information is read
from memory, that information is not lost, Similarly, the act of reading
this page does not remove the text. The information is read and transferred
to the brain (CPU) and further processed. RAMs do however forget when
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their power supply is cut off. When the information contained in RAM is
to be saved for extended periods of time it is usually transferred to a more
permanent form of data storage, cassette tape or floppy disc for example.
This is more convenient and safer than leaving it in RAM. If the mains
should drop out, all information in mains powered RAM would be lost.
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Figure 2. A detailed version of the block diagram in figure 1, this time with a specific
computer in mind: the Junior Computer.

I/O (the translator)

The block marked 1/O maintains contact between the computer and the
outside world. In figure 2 it is called PIA or Peripheral Interface Adapter.
Just as with RAMs, bi-directional data transfer is necessary. The 8 bit data
bus is passed out as two bundles of eight conductors each, through port A
and port B. The active port is determined by the address bus. Each
individua! line can operate independently of the other 15 at any given
moment, as an input or as an output.

Data can also be held at the PIA for short periods of time (notice that the
RAM is in the same block as the PIA in figure 2). This facility can be used
when the CPU has to do something else at the same time as data is being
transferred through one of the ports. Information from either direction
may be stored in this memory, but only from one direction at a time. The
address bus informs the PIA which port, which direction, and whether or
not to hold out-going or in-coming information.

There are also three buses that go to the outside (the three arrows pointing
right in figure 2) but these are for future expansion of the system rather
than communication with the outside world. As far as the JC is concerned,
the outside world is everything beyond the keyboard and display.
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The CPU: the centre of activity

The Central Processing Unit is the ‘heart’ of the microcomputer system,
Briefly, the function of the CPU is to controi the operation of all the other
units and to process data. The CPU contains a number of registers which
are used to temporarily store address, data and instruction information for
decoding and manipulation purposes, etc.

The CPU also contains the program counter which simply counts the steps
in the program. Its output can be fed onto the address bus in order to have
access to the memory for the retrieval of program instructions. To deter-
mine the next successive address in a particular program, the program
counter and the instructions already executed are analysed. Exactly how
all this is carried out, however, is outside the scope of this chapter.

The microprocessor has a sort of built-in ‘pacemaker’ or clock, which is
used to generate the timing pulses around which all operation is based. The
two signals produced by this clock generator, @1 and @2, are 180° out of
phase with each other. Without them the complete system would be
useless, for they provide the ‘heart-beat’.

There are three other signals shown in figure 2, namely RES, IRQ and NMI.
RES is the reset signal and is virtually self-explanatory. This signal tells the
Junior Computer to go to the ‘start’ condition. The other two, IRQ
(Interrupt  ReQuest) and NMI (Non-Maskabie Interrupt), are used to
modify or step through the program while it is being run. Information
then comes from the outside to tell the computer what to do next. This
feature can be useful when the computer is used with a relatively slow
device (a human for instance). The computer can manage over half a
million operations per second whereas the human may only be able to
manage 3 or 4 during the same period. Once the interrupt is finished the
computer will continue with the main program from where it left off. In
the event that both of the interrupt functions are used at the same time,
they are given a priority which is determined by the program. It should be
noted that the interrupt request can be controlled by the program whereas,
as its name implies, the non-maskable interrupt cannot.

A programmable timer can also be seen in the PIA block in figure 2. More
attention will be given to this in chapter 5 (Book 2).

Peripherals

The keyboard and display complete the package. They are shown in
figure 3. The keyboard consists of 23 key-switches and 2 toggle switches.
Sixteen of these switches are used for entering information (in hexa-
decimal form) into the computer. The remaining keys are assigned various
control functions. The display consists of six seven-segment LEDs and
shows address and data information, again in hexadecimal form.

The keyboard and display are connected to the computer via ports A and
B. Port A is designed for bi-directional data transfer whereas port B is
uni-directional. There are two signals from the keyboard which are placed
on the control bus, namely, RES and NMI. These belong to the key-
switches RST and ST respectively. More will be said about these when
discussing operation. The sixteen lines from ports A and B are also connec-
ted to a 31 pin connector for future expansion.
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Figure 3. A further development of the diagram in figure 2: communication with the
outside world is now possible with the aid of a keyboard to input (I = Input in 1/0)
data and a display showing six hexadecimal figures to output (O = Output in 1/0)
data.

The address, data and control buses are accessible via a 64 pin expansion
connector. The reason for these sockets is quite simple. Looking at it
realistically, the hexadecimal keyboard as the standard input source, and
the hexadecimal display as the output indication, are the simplest and least
expensive methods of interacting with the computer. There are also many
other 1/0 possibilities, all fine and dandy, but they all require more money.
Most beginners do not want to part with (or have) the kind of outlay
required for more sophisticated input/output devices. Beginners, however,
have a habit of becoming experts so the JC is designed to grow into an
expert’'s computer.

The 64 pin expansion connector may be used to expand the memory
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capacity of the system so that longer and more complex programs can be
run. This is practically a necessity for more ‘grown-up’ computers (you
never seem to have enough memory). Bearing this in mind, the expansion
bus was designed to be compatible with the Elektor SC/MP system bus.
Now for a more detailed look at the Junior Computer’s electronics, the
so-called hardware. It can be said that the hardware is the ‘flesh and blood’
of the computer and that the programs form its ‘personality’.

Circuit diagram
The circuit diagram of the Junior Computer is shown in figure 4. The CPU
(IC1) is a 6502 microprocessor. Readers unfamiliar with the various types
can be assured that the 6502 is a fast, high quality device. It has a ‘power-
ful’ instruction set with a great variety of (useful) programming possibili-
ties.
The microprocessor needs something to ‘keep the blood flowing’: a clock
generator. This is constructed using N1, R1, C1, D1 and a one megahertz
(1 MHz) crystal. Two clock signals are generated, @1 and @2, for the address
bus and data bus respectively. The address bus consists of lines A@ . . . A15
while the data bus consists of lines D@ . . . D7.
The electrical signals on the address and data buses are coded digital
information. What is this code? Imagine a numbering system with only
two numbers @ and 1 as opposed to the normal ten: @ . .. 9. The numbers
nought and one are represented by ‘@’ and ‘1’ respectively (no change), but
the number two is shown as ‘10’. Three is represented by ‘11, four by
190’ etc. This is shown below for the numbers @ ... 15. Note: @ is used
for ‘zero’ to avoid confusion with the letter O.

decimal number  binary equivalent

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
10 1010
1 1011
12 1100
13 1101
14 1110
15 1111

CONOOAWN=

As can be seen, the limit for 4 lines of binary data is reached with only
sixteen combinations, whereas with a normal base ten count ten thousand
combinations are possible (@ . . . 9999). As was said earlier, the address bus
has sixteen lines or 26 (65,636) different combinations. Therefore the
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limitation imposed by working with a number system with two as its base
does not really pose a problem.

Memory organisation

You will soon become familiar with the memory organisation of the
Junior Computer once you gain further insight into the way in which
memory operates in a computer system. In figure 4 the memory consists
of two blocks of RAM and one block of EPROM (Erasable Programmable
Read Only Memory). The EPROM (IC2) is for storage of permanent data
(the system monitor program) and the RAMs (IC4 and IC5) are for oper-
ational use. Data transfer is accomplished in 8-bit blocks, or one full byte
at a time. The EPROM has the capacity to store 1024 of these 8-bit groups.
In computer terminology this is a 1 k byte EPROM (k meaning kilo or
thousand). The various bytes have to be available on request, thus there
are ten address lines connected to it giving 2'° or 1024 different
combinations. Strange coincidence that this should be the same number as
the capacity of the memory!

The RAMs have. a capacity of 1024 half-bytes, but, as there are two of
these, their total capacity is 1024 full bytes (the same as the EPROM). The
data bus lines are arranged so that the first half (four bits) of the data is in
IC4 and the second half is in IC5.

The memory also receives directions from the control bus, selection signals
for instance. The EPROM and the RAMs are connected to the same address
lines, so how does the right one operate at the correct time? Both types of
devices have a Chip Select (CS) input. When this input is taken high
(+5 volts or logic ‘1') the memory is disabled. Conversely, if the input is
taken low (zero volts, ground or logic ‘Q’) the memory is able to operate.
These CS signals are derived from the address decoder, 1C6, and passed to
the EPROM as K7 and to the RAMs as K@.

Ten address lines are utilised by the memory, leaving six. As 2° = 64,
this means that if these are used as chip select lines, up to 64 blocks of 1 k
each are addressable. This amounts to 64 k — not the 65 k mentioned
earlier, due to the fact that all the numbers have been rounded off. The
total still comes to 2'¢ = 65,536.

With 64 ‘block address lines’ available, all memory addressing is done with
the first ten address lines. In the basic JC only the first eight memory
blocks are decoded, namely K@ . ..K7 from the address decoder. Three
address lines (A10 ... A12) are fed to IC6 which promptly decodes them
into the eight lines required. The table below shows this to advantage.

t
Dott T caee
A15...A13| A12| A11 [ A10 |A9... AD | active | memory block
X 0 (0] 0 X K@ 1 k RAM (IC4, IC5)
X 0 0 1 X K1 1 k external RAM, ROM
X (1] 1 1 X K3 1 k external RAM, ROM
X 1 1) (1] X K4 1 k external RAM, ROM
X 1 (0] 1 X K5 1 k external RAM, ROM
X 1 1 (1] X K6 RAM in PIA (IC3)
X 1 1 1 X K7 1 k EPROM (iC2)
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X' means ‘don’t care’. In other words, its state may be either a “1’ or a ‘0¥
to get the listed result.

Of the 64 k then, 8 k are directly accessible. To address more memory, the
address decoder must be expanded.

In addition to the chip select signal, the RAMs require another signal that
tells the memory whether information is going to be read from or written
into RAM. This is where the R/W iine comes into the picture. If this line is
taken high the memory is going to be read from, and if it is taken low
information can be written into it. This signal comes from the NAND gate
N6 and is a mixture of the @2 clock pulse and the R/W signal of the
microprocessor. This guarantees that no data can be transferred while the
data bus is not stabilised.

Control bus

A number of control signals have already been covered, the rest now
follow. For correct operation both the microprocessor (IC1) and the
peripheral interface adapter (IC3) have to be initialised. This is achieved
via the reset signal RES. The reset line is normally held high by a pull-up
resistor, R2. A reset is generated when the keyboard switch RST is pressed.
Operation of the RST key triggers the timer in one half of 1C8 which is
used to suppress any contact bounce this key might produce. The output
of the timer is connected directly to the reset line.

There are two ways in which a program being run can be interrupted by
means of the non-maskable interrupt (NMI). The first one is provided by
the STOP key S2. You will notice that this key uses the other half of IC8
for contact bounce suppression. The second is provided by the STEP
switch S24. When this is in the ‘on’ position and the output of N5 goes
from high to low, the NMI line (normally held high via pull-up resistor R3)
is also taken low. This feature is important when wanting to step through
the program ‘byte by byte’. It should be noted that as K7 is connected to
one of the inputs of N5, the output of N5 will always be high when the
EPROM is selected. As N5 is a NAND gate, if one of its inputs is low the
output will be high. All this means, effectively, that you cannot step
through the monitor program held in 1C2.

The program can also be interrupted if the IRQ (interrupt request)
connection between IC1 and IC3 is taken low. This line is again held high
normally, this time by pull-up resistor R4, Not only can the IRQ facility
be used manually, but it can also be used via the timer in the PIA. When
utilised by the program in this way it is called a ‘software interrupt’. The
NMI and IRQ lines are also accessible on the 64 pin expansion connector.
Also present on the control bus are the two clock signals @1 and 02 which
control the PIA and RAM R/W signals. As mentioned previously, these
determine the direction of data transfer. Finally, the signals RDY and SO,
neither of which is used in the basic JC, are for future expansion with
dynamic RAMs, and the line EX (see IC6) is important when expansion of
the address decoding becomes necessary.
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PIA

The PIA is capable of transferring data in two directions via ports A and B,
Each port has its own 1/O register and eight-bit data direction register. The
information contained in the data direction register determines which of
the individual port lines are to be used as an input or output. If a particular
bit in this register is a ‘1’ the PIA is instructed to activate the associated
output, whereas if the bit is a ‘@' an input is activated. The contents of the
data direction registers is determined by the program or software. Actual
data transfer is carried out via the R/W signal. As with the RAMs, when
this line is high a read operation is specified and data will be transferred
from the PIA to the CPU. When the R/W line is low, a write operation is
specified and data will be transferred from the CPU to the PIA.

There is also a limited amount of RAM in the PIA, 128 bytes to be exact.
Together with the 1024 bytes of IC4 and IC5 this gives a total of
1152 bytes (more than enough for the budding amateur!). Address lines
A® ... AB are used to gain access to the 128 bytes of RAM in the PIA.
Address line A7 is connected to the RAM select input (RS) of the PIA. In
other words, when A7 is high the RAM is enabled and the CPU has direct
access to it. When A7 is low the PIA RAM is disabled. Reading and writing
to this RAM is, of course, controlled by the R/W signal. The other address
line (A9) connected to the PIA controls the selection of the 1/O ports and
the timer. When this line is high, address lines A@ . . . A6 determine which
of the various functions of the PIA are to be used. For instance, port A or
B enabled, direction of data transfer, access to the timer etc. Note that
when A9 is high the PIA RAM cannot be accessed. The remaining signal
connected to the PIA is K6 from the address decoder. The PIA is disabled
(regardless of the condition of the other inputs) when K86 is high. The PIA
is such a versatile and multi-functional device that we could quite easily
write a whole book about it, but as far as this chapter is concerned,
enough is enough.

Links with the outside world

The keyboard and display comprise the Junior Computer’s communication
links (or peripherals) with the outside world. These are connected to
port A by seven lines, to port B by four lines and to the control bus by
two lines. The last two are the previously mentioned signals, reset and stop
(RST and ST). Switch S24 has been mentioned before with relation to the
NMI signal. It is also used to select either normal operation or step-by-step
program development.

The other keys shown in figure 4 (S3 ... S23) are arranged in a matrix of
three rows and seven columns. Sixteen of these keys are used for entering
data into the computer in hexadecimal code (to be dealt with in chapter 2).
The word data has a broad meaning here as it also includes address
information. The remaining five keys have been assigned various control
functions. These will be discussed in depth in chapter 3.

Information going to the display, and data from the keyboard is trans-
ferred via seven lines of port A. In this instance it can be seen why bi-
directional data transfer is very useful. The information on the displays is
controlled by the software in the monitor program, which also ensures
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that key function signals are recognised. A BCD-to-decimal decoder, IC7,
decodes the information presented on the four lines PB1 ... PB4 from
port B. This decoded information is used to multiplex the displays and
check the state of the rows of keys to see which one, if any, is being
depressed. The first three outputs of IC7 are used to scan the keyboard.
If a key is depressed while one of these outputs is high the code for that
particular key is passed to the CPU via port A. The third output of IC7 is
not used — it isnt needed. When one of the remaining six outputs of IC7
is high, the appropriate display is turned on, and the coded segment
information from the CPU is transferred via port A to the segment drivers
contained in IC11 and from there to the particular display concerned. This
process of successive selection of one device at a time is an elegant method
of reducing the number of parts required for a particular application.
Saving a few parts however costs a little software. The cost of the extra
memory required, on the other hand, is far less than the cost of all the
parts it would take to duplicate the functions it performs. The displays
can be used in two different modes. Usually, the four left hand displays
(Dp1 ... Dp4) will indicate an address and the other two {(Dp5 and Dp6)
will show the data in the address location concerned. As a second possi-
bility, Dp1 and Dp2 can show the hexadecimal code of an instruction
(op-code) while the remainder show the address of the data corresponding
to this instruction, The latter mode makes program entry much simpler.
The only other switch to be mentioned is the display turn-off switch S25,
This comes in very handy for saving power if the JC is to be used with a
terminal or other external device.

Power supply

Even the most sophisticated of computers obviously needs a power supply.
Three supply voltages are required by the Junior Computer and a suitable
circuit is shown in figure 5. The three voltage levels are +5 volts (for all the
ICs and displays), —5 volts and +12 volts (for the EPROM) and these are
supplied by the voltage regulators IC1 . . . IC3. Each regulator IC has its
own set of capacitors, C2 . . . C13, to ensure the necessary decoupling.
Now that we have discussed the basic theory and operation of the Junior
Computer we can start putting it all together.

Construction

Where do we start? To make assembly as simple and as trouble-free as
possible, this section should be read with extra care and attention.
Construction is accomplished in three basic steps. First, the components
are mounted on the printed circuit boards. As the main printed circuit
board is double sided, we do not advise readers to make it themselves. All
boards are directly available from Elektor (EPS Nos. 80089-1, 80089-2,
80089-3). Once the boards are complete and correctly interconnected, it is
time to test them. This is the second and (hopefully, with good quality
parts) fastest step. The third and final step is the mechanical assembly:
putting the Junior Computer in its case.
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Figure 5. The power supply of the Junior Computer provides three stable voltages.

Main board

The Junior Computer is very simple to construct as it is a single board
computer. That is to say, all the electronic parts are mounted on the same
board. Now sceptics may say: ‘there are three boards, how can you
possibly call it a single board computer?’. The answer to that is quite
simple. One of the boards is a power supply and so we don't count it! Two
remain, the main board and the display board. The latter is a small board
carrying the displays and is attached to the main board. It could easily
have been designed as part of the main board but that would have
made it bigger and this way the displays can be tilted at an angle of 45°,
making for better readability.

The main board is double sided, that is to say, there are copper tracks on
both sides of the board and, in this case anyway, components on both
sides too. Certain copper tracks on one side of the board are connected to
copper tracks on the other side. This is possible because the board has
‘plated through’ holes. Before any assembly is started it is a good idea to
check all the plated through holes (there are over six hundred of them!).
This can be done with the aid of an ohmmeter, or (if you don't posses an
ohmmeter) by means of the inexpensive method shown in figure 14a. The
low voltage secondary of a bell transformer is used in series with a doorbell
to indicate continuity. Using two pieces of wire, one on the top side of the
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hole and the other on the opposite side, if the bell sounds the plating is
good. This method has one advantage over the ochmmeter — you don’t
have to look at the scale every time to confirm a good connection. If a
hole should happen to be found to have defective plating, it can be
remedied by soldering a wire link in its place or by simply using the lead
of the component to be soidered in that hole. All this may take a little
time but it could save a lot of frustration later.

The two sides of the main board are, of course, very different. The com-
ponent overlay for the top side is shown in figure 6 and that for the
bottom side in figure 7. Figures 8 and 9 show the track layout for the top
and bottom sides respectively. The keyboard and display board are
mounted on the top side of the board and all the rest of the components,
excluding the power supply, are mounted on the bottom side.

Mounting the components

Now assembly can begin in earnest. The soldering iron used should have a

‘pencil’ tip and be in the 20-30 Watt range. The components should be

mounted in the following order (see figure 7 and the full parts list for the

main board):

1. The resistors R1 ... R20 are the first components to be installed. After
soldering, the excess lead length should be cut off as close to the
surface of the printed circuit board as possible. This is a logical safety
measure, to prevent shorts between adjacent connections. For those
readers who are unfamiliar with the resistor colour code the corre-
sponding colours for the values used are listed below.

100 k: brown-black-yellow (gold)

3k3: orange-orange-red (gold)

4k7: yellow-violet-red (gold)

330 Q:orange-orange-brown (gold)

68 Q: blue-grey-black {(gold)

2k2: red-red-red (gold)

68 k: bluegrey-orange (gold)

The first ring is the ring closest to one of the ends. The fourth ring
indicates the tolerance (how much above or below the actual value it
may be) of the resistor. Most resistors will have a gold ring which
indicates a tolerance of * 5%. It is possible (though unlikely) to get a
1% (brown) or a 2% (red) resistor. If one of your resistors has a fourth
ring of silver (10%) it should not be used. Another resistor will have to
be found with a tolerance of £ 5% or less to take its place.

2. The next component to be installed is the diode D1. Care must be
taken to connect the diode the right way round. Its polarity is usually
given by a ring around one end of the diode case. This ring denotes the
cathode (the cathode is the thick line at one end of the triangle in the
circuit diagram). In the unlikely event that the diode does not have a
ring at all, or it has a ring exactly in the centre, the only positive way
to determine its polarity is with an ohmmeter. When testing with an
ohmmeter, it will be found that the diode exhibits a rather high resist-
ance in one direction and a much lower resistance in the other. This
only tells you that the diode is a good one, it does not tell you its
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Figure 6. The component overlay of the keyboard section of the Junior Computer
(EPS 80089-1).
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Figure 7. The overlay of the component side of the main printed circuit board.
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Parts list for the main circuit
board of the Junior Computer.

The complete circuit diagram is
shown in figure 4, the two
component overlays are given

in figures 6 and 7 and the two
track patterns in figures 8 and 9.

Resistors:

R1 =100k
R2,R3,R4,R14,R15,R16 = 3k3
R5 = 4k7

R6 =330 ©
R7...R13=68Q

R17,R19 = 2k2

R18,R20=68 k

Capacitors:

C1 =10 p ceramic

C2 =47 u/6 V tantalum
C3,C4 = 100 n MKH

IC6,IC7 = 74145

IC8 = 556

1C9 = 74L.S00, 7400, 74LS132
1C10 = 74LS01, 7401

IC11 = ULN2003 (Sprague)

D1 = 1N4148

Miscellaneous:

S1...821,523 = digitast
{Shadow)

S22 = digitast + LED

S24 = double pole switch

S25 = single pole switch

connector 64-pole male
perpendicular solder to
DIN 41612

connector 31-pole female
perpendicular solder to
DIN 41617

C5...C14=1u/35V tantalum 1 MHz-crystal

1 24-pin IC sockets
Semiconductors: 2 40-pin IC sockets
IC1 = 6502 {Rockwell) 1 printed circuit board EPS
IC2 = 2708 80089-1
IC3 = 6532 (Rockwell)
1C4,1C5 = 2114

polarity. The next step is to measure a diode with a known polarity
and note which probe is connected to the cathode when the diode
conducts. If no known diode is available then usually the red probe of
the ohmmeter is the cathode when the diode conducts.

3. The capacitors C1, C3 and C4 are now installed and their excess leads
cut off.

4. The electrolytic capacitors C2 and C5 . . . C14 are then mounted.
Normally with capacitors and resistors you can install them regardless
of their polarity. This is not the case with electrolytics. These have a
positive and a negative side. In the circuit diagram the negative side is
shown as a shaded ( ®) rectangle and the positive side as an empty ( O )
rectangle. On electrolytics that do not have a plus sign, the positive end
is identified in one of two fashions. Either one end has an indented ring
or the positive lead has a red mark.

5. The next items to be soldered in are the sockets for the ICs. We re-
commend that sockets be used for a// the ICs but, as these are an added
expense, it is possible to mount the smaller ones directly onto the
board. Sockets are essential for iIC1 ...{C3. There are of course two
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10.
1.

ways to mount an IC (if you guessed a right way and a wrong way you
are not far out!). On the parts layout (figure 7) there is a ‘notch’ at
one end of every IC. If you look at the drawing of an IC with the
notch at the top, then pin one is at the top left hand side. This is also
indicated on the layout. The numbering of the pins goes down the left
hand side and continues up the right hand side. So for a 14 pin IC the
lower left is pin 7, the lower right is pin 8, and the top right is pin 14,

As far as the {C itself is concerned, the ‘notch’ can take various forms.
It could be (and usually is) a notch just like that in the parts overlay,
but it could also be a ‘dot’ impressed in the body of the IC. This ‘dot’
denotes pin 1, and the IC should be installed with the dot on the same
side as in the parts overlay. Not quite so important but very very
useful is the fact that IC sockets also have pin 1 marked in some way
or other — the socket can be the wrong way round as long as the IC
inserted into it is the correct way round.

. The 1 MHz crystal can be mounted directly onto the board, or a

crystal holder can be used.

. This step is optional. As it is not likely to be needed just yet, the

64 pin expansion connector can be installed at a later date. When
mounting the connector be sure to ‘screw it down tight’ before
soldering any of the pins.

If, however, you delay installation of the connector, provision must be
made for the supply lines. These would otherwise use the expansion
connector to come onto the main board. The power supply connec-
tions are:

+5 volts: pins 1aor 1c

ground (0 volts) : pins 4a, 4c, 32a or 32¢c

—5 volts: pin 18a

+12 volts: pin 17¢

The obvious solution is to use terminal pins asa temporary connection
medium but care must be taken when de-soldering the pins, as the
copper track is very thin in places and may lift off if excessive heat is
applied.

That completes the mounting of components on the bottom side of
the board, and now it is the turn of the keyboard side.

. The only wire link on the board should be mounted next. It should be

soldered between the points marked (1) and (D).

. The two toggle switches (S24 and S25) can be installed next. These

should be mounted so that the switch housings are on the underside
of the board. The switches are connected to the main board by six
short flexible insulated wire links. The positions for these are clearly
marked on the underside of the board.

If required, the 31 pin connector can now be soldered into place.

The keyboard is next, along with D2, Care should be taken when
installing the key switches, they should lie flush with the printed
circuit board. D2 is mounted inside the ‘GO’ key. Remember, even
though it is an LED, it is still a diode, and its polarity will have to be
determined. The method described in part 2 can also be employed
here.

That completes construction of the main board, or does it? It certainly
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won't hurt to check all the {Cs, diodes, and electrolytic capacitors for
correct polarity, and every component for proper placement. Above all
check your soldering for bridges between tracks, dry joints, etc.
Soldering mistakes are still the biggest headaches on home-built
electronic equipment.

The display board

The component overlay and the track layout for the display printed circuit
board {(EPS 80089 - 2) are shown in figures 10 and 11 respectively. There
are really only two steps involved in the construction of this board:
mounting the six seven-segment displays and connecting the display board
to the main board. The displays should not present any problems as there
is only one way to mount them — they have an asymmetrical pin-out. The
connection to the main board consists of thirteen conductors: seven for

Figure 11. The track pattern of the display board.

Parts list for the display board of

the Junior Computer. Semiconductors:

The component overlay is shown Di1 ... Di6 = MAN 4640A

in figure 10 and the track pattern common cathode (Monsanto)
in figure 11.

Miscellaneous:

1 printed circuit board
EPS 80089-2
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Figure 12. The component overlay of the power supply board (EPS 80089-3).

Parts list for the supply board
of the Junior Computer.

The circuit diagram is shown
in figure 5 and the board is
given in figures 12 and 13.

Capacitors:
C1,C2,C10=470 u/25 V
C3,C11=47u/25V
C4,C5,C8,C9,C12,

C13 =100 n MKH
C6 = 2200 /25 V
C7=100u/25V

Semiconductors:

IC1 = 78L12ACP (5%)
1C2 = LM 309K

1C3 = 79L0O5ACP (5%)
D1... D6 = 1N4004

Miscellaneous:

Tr1 = transformer prim. 220 V
sec.2x9...10V/1.2...2A

S1 = double pole switch

F1 = fuse 500 mA, with fuse
holder

1 printed circuit board EPS
80089-3

1 finned heat-sink for 1C2
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Figure 13. The track pattern of the power supply board.

the segment drives and six for the display drives. These connections are
labelled on the main board above the keyboard assembly. The distance
between the two boards should be about 5 mm. The thirteen wires should
be gauge and 1% to 2 cm long. They should be soldered onto the display
board so that they protrude from the copper-clad side. It is advisable to
check the component overlay as well as the printing on the main board
when connecting the two boards to each other. Mount (but do not solder)
the display board onto the main board. The display board should be tilted
at an angle of approximately 45° relative to the main board. The wires can
now be soldered and any excess lead length cut off.

Note: If it is more convenient, the display can be mounted at some remote
location. So-called ‘ribbon cable’ is ideal for this. This is a flat set of
conductors which are colour-coded for easy connection. It goes without
saying that extreme care must be taken to ensure that the leads are not
mixed up.
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Figure 14. The electrical connections need not necessarily be tested with a
multimeter (ohmmeter); it can also be done acoustically with the aid of an
inexpensive bell and bell transformer. Note: this method may only be used if the
components have not yet been mounted on the board. Figure b shows how to
connect the two sides of a home made board (which has not got plated through
holes) with a vertical wire fink.

Power supply board

The component overlay and track pattern for the power supply board are
shown in figures 12 and 13 respectively. Like the display board, the
construction of this board should not present any problems. Care should,
of course, be taken to ensure that the diodes and electrolytic capacitors
are mounted with the correct polarity. A heat sink is required for IC2 (the
LM 309K).

Will it work?

The three boards are now complete. The next stage is to connect the
transformer Tr1 to the supply board, and via switch S1 and fuse F1 to the
mains. Since in the up-coming test phase operation is going to be tempor-
ary, it can be jury-rigged at this stage. This does not mean that it should
stay that way.

Before starting the test procedure it is advisable to check all the com-
ponents once again. It is better to be safe than sorry. Perhaps you are able
to find someone else who is able to give the circuit a look-over (another set
of eyes often finds things previously overlooked).

The first thing to check is, of course, the power supply board (do not
connect it up to the main computer board yet). Plug it in. No puff of
smoke? A good sign! Oh, you forgot to switch S1 on. Still no smoke? If
the answer to this question is no, the power supply has just passed its first
test. Measure (with a multimeter set for DC volts) the supply output
voltages. The readings should be within 5% of the rated output. If the
supply voltages are outside their allowable limits something is obviously
amiss. This is very unlikely, however, owing to the quality of com-
ponents and simple design of the circuit.

If the power supply checks out all right, the wires between it and the main
board can be soldered into place. Make absolutely sure that the wires are
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Figure 15. When the RST key is depressed the display should show a (apparently)
random combination of the above hexadecimal figures. This shows the Junior
Computer is working properly.

connected correctly. Double check, triple check, you'll only have yourself
to blame if it is wrong. Once you are sure everythingis connected correctly
set switches S24 (STEP) ‘off’ and §25 (DISPLAY) ‘on’. You now apply
power once again and . . . nothing happens. Don’t panic — this is what is
supposed to happen. Now press the reset switch (RST). If all is in order
the displays should give a clear hexadecimal number. To understand what
is going on you will, of course, have to learn about the hexadecimal code
given in chapter 2. For the time being you only have to compare the
readouts with figure 15. The displays should show a random combination
of these expressions. Readers who have already digested chapters 2 and 3
will recognise this as a sort of conditional jump instruction. If the display
has the above, the next section can be skipped and you can move on to the
mechanical assembly.

If the unthinkable happens . ..

We sincerely hope this section will not have to be read, but just in case
something is wrong the most common faults and how to deal with them
are listed below. The first thing to check is the power supply voltages.
Although these have already been checked, there may be something on the
main board which is causing problems.
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Solder shorts. Solder forming a bridge between adjacent tracks. They
don’t always have to be obvious either. Hair-line solder bridges can be
very troublesome.

Bad solder joints. ‘Dry joints’. They can happen to anyone and are
typified by a ‘shattered’ surface and poor contact with the copper track.
If one is found, touch the joint with the soldering iron and apply a little
additional solder.

Bad IC socket connection. It can happen. Poor contact between the IC
and the socket. A careful inspection may even reveal a pin bent under-
neath the IC, not going into the socket! It is rare, but possible to have
dirty contacts in the socket itself. If pushing down on the IC causes
correct operation, then this is almost certainly the case. A little alcohol,
on a cotton-bud, brushed over the top of the socket (allowing some to
run into the socket} will usually remedy this.

Bad tracks on home-made printed circuit boards. This could be caused
by insufficient or too much time in the etchant or by hairs-on the art-
work. Problems with the through-board connections should have been
eliminated if the board was tested as outlined earlier.

Incorrectly installed diodes, electrolytic capacitors or ICs. If I1Cs are in
the wrong position or mounted the wrong way round this will, obvi-
ously, cause the JC to malfunction. Are the connections between the
main board and the power supply board correct and good? Between the
main board and the display board? Up to now nothing but ‘normal’
items have been discussed. Here are a few special hints:

Measure the voltage between pins 13 and 7 of IC8 (pin 7 is negative and
pin 13 is positive). It should be +5 volts, Press the reset button (RST)
on the keyboard, the voltage between those two pins should now be
approximately 0.5 volts. If this is not the case the problem could
involve one of the following parts: IC8 (the double timer), the pull-up
resistor R2 or the reset switch itself.

If all checks out okay so far then measure the resistance between pin 12
of IC6 and ground (of course, whenever checking resistance the power
should be turned off). It should be zero ohms. If not, then the wire link
is in the wrong place.

The clock generator constitutes the heartbeat of the computer. With a
dual-trace oscilloscope the signals (@1 and ©2) on pins 30a and 27a of
the expansion connector can be monitored. The earth of the scope
should be connected to computer ground (pins 4a or 4c) and the A
(or Y1) input to pin 30a and the B (or Y2) input to pin 27a. There
should be two ‘out of phase’ signals on the screen. When one goes high,
the other should go low and vice-versa. The peak-to-peak voltage should
be somewhere between three to five volts. The scope should have no
trouble keeping the signals steady. They should be stable. If any of the
above is not true the culprits could be C1, 1C9 or D1.

Chances are that one of the above ‘trouble-shooting’ techniques will
solve your problems; however, if you are still unable to get the Junior
Computer up and running, you can call the Elektor technical staff on
Monday afternoons for additional help (see latest magazine for details).
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The case

The case has three basic purposes: to protect the circuitry from the
elements, to allow for convenient operation, and to make the computer
look really smart.

There are two popular methods of building cases for projects: the ‘cigar
box’ method and the buy-ready-made method. Ready-made small computer
cases usually have a display panel. The display board of the Junior
Computer can be mounted behind this once all the necessary holes have
been made. A clearance hole for the keyboard and toggle switches will also
have to be made in the upper surface of the case. The fuse holder and mains
socket can be mounted at the rear.

The ‘cigar box’ builder will have to design the case to meet the above
criteria. Keep in mind that in the future, various expansion boards will
come along and the case will also have to accommodate these.

The boards are mounted in the case using ‘stand-offs’. Be careful when
installing the main board that the keyboard switches operate freely to
avoid mis-entered information.

Now the fun can begin.
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The binary number system

Counting on two fingers

The fact that homo sapiens has ten fingers is probably the
reason why we tend to count things in tens. Our set of numbers
has ten figures and we have a form of coding system that allows
us to manipulate them. While the Junior Computer also works
with and manipulates numbers it only has the equivalent of two
fingers on which to count. This may seem to be a ‘bit’ of a
disadvantage at first sight but this chapter aims to prove
otherwise by delving deeper into the binary (base two)
numbering system.

Take a 1, a 9, an 8, and another 1. Now write them down one after the
other from left to right.
1981

We immediately associate this with a number. A year number for instance,
or the price of an expensive article. Using the mathematical code learned
at school, it can mean a lot more. The resuit couid be ‘next year’ or it
could represent a telephone number. The latter is at the same time a code
which, along with an area code, determines the position of various relays
and other switching equipment.
if the (telephone) number 1981 were fed into a computer it would look
quite different:

111190111101
As mentioned in chapter 1, the circles with diagonal lines through them
represent ‘zeros’. The ‘slash’ is used to differentiate between a zero and the
capital letter ‘0’. Since there are only two figures in the computer’s
numbering system, they will appear far more often than in normal
mathematics.
It should be pointed out at this stage that 11110111101 does not mean
11, 110, 111, 101. The number looks rather strange because there are only
ones and zeros in it. With the normal numbering system of ten figures
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there is only a 10% chance that any one number will come up in a particu-
lar position. The chance that the number 11, 110, 111, 101 would come
up in normal arithmetic is very small — we worked it out to be about two
millionths of one percent! Using scientific notation, the number of
different possibilities that can be represented with the same amount of
figures as those shown above is:

for a base ten (decimal) numbering system

10x10x10x10x 10x 10x 10x 10 x 10 x 10 = 10!

= 100,000,000,000

for a base two (binary) numbering system
2x2x2x2x2x2x2x2x2x2x2=2"=2048

Quite a difference.

The structure of a number

Every number can be viewed as a sum of lesser amounts. There are many
possibilities and the number of possibilities increase as the base goes up. A
decimal number can be divided into units of ones, tens, hundreds,
thousands and so on. It can then be further defined by making it unit
multiplied by a number. For example, 300 = 3 x 100. For the number
1981 it would look like this:

1000 = one thousands unit = 1x10% = 1000 x 1 —
900 = nine hundreds units = 9x10*> = 100x 9
80 = eight tens units =8x10' = 10x8 l
+ 1 =one ones unit =1x10° = 1x1 .
1981 1981

It can also be looked at in a different way:
1024 = one 1024 unit = 1 x 21* = 1024 x 1,

512 =one 512unit=1x2° = 512x 1—
256 =one 256 unit=1x2% = 256 x 1
128=o0ne 128 unit=1x27 = 128x 1
G=no 64unit=0x2° = 64x0
32=o0ne 32unit=1x2% = 32x1
16=o0ne 16unit=1x2* = 16x1
8=one 8unit=1x2% = 8x1
4 =one 4unit=1x2% = 4x1
®=no 2unit=0x2' = 2x0

+ 1=o0ne Tunit=1x2% = 1x1

1981 A one shows the presence

of a power of two and a
zero shows its absence

0 ()

As you can see, here the numbers are no longer divided by powers of ten,
but rather by powers of two. It should be remembered that we are still
talking about the same number, 1981. Even in the binary table, numbers
to the base ten have been used (all the numbers not made up of ‘ones’ and
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‘noughts’}). By now it should be clear that, when working in binary, only
two symbols are possible; 1 and @.

Why?
Readers may well be wondering why we should leave our tried and trusted
base ten system for a crazy one with only two numbers. The answer is
quite simple. If we take another look at the binary equivalent of 1981 we
can see that there is always a ‘yes’ or ‘no’ answer to the question: ‘ls there,
or is there not a power of two present at any given position in the number
11110111101?°. A ‘yes’ answer would be indicated by a ‘1’ and a ‘no’
answer by a ‘0’, thus there are only two possibilities.
Numbers have to be interpreted, moved and manipulated in one way or
another by electronic circuitry inside the computer. This means that some
form of electronic device will have to operate for each number. If the
computer is working with a base two numbering system then only an
‘on’/’off’ relationship is required. The two possibilities are usually ‘logic
states’ and are defined as follows:
1 = logic one = a voltage is present or ‘high’
@ = logic zero = no voltage (O volts) or ‘low’.
(Note: This is termed ‘positive logic’. The vast majority of logic circuitry
works in this manner, but a certain amount of ‘negative logic’ is used
which is exactly the opposite of that given above).
The obvious advantage here is that it is much simpler to design an electronic
circuit for binary operation (only two possible output states) than one for
decimal operation (ten possible output states).
There is also another advantage to using a binary system and that is in
decision making. We shall be covering ‘flow charts’ later in this chapter and
when developing these there are often times when a decision has to be
made. Something along the lines of: does ABC equal XYZ? If the answer
had to given in a base ten system there could be ten different choices,
whereas in a base two system there are only two, ‘yes’ or ‘no’. If ten
choices are desirable then four yes/no decisions can follow one another.
Looking at it in this light it is also possible to say that the number
111190111101 is simpler than the number 1981, The former gives only one
choice per position, a power of two or no power of two. The latter however
gives then possible (@, 1, 2, 3, 4, 5, 6, 7, 8, 9) factors of the power of ten
per position. By opting for greater length rather than greater breadth, the
computer is allowed to operate much more efficiently.

Bits and bytes

The word ‘bit’ hasbeen coined so that it is possible to refer to an individual
digit in a given binary number. Bit stands for Blnary digiT. A bit can
therefore take the form of either a ‘Q’ or a ‘1’. Bits are almost always in
groups or ‘words’. Just as the information on this page consists of letters
to make up words, the same can be done with bits. If the word consists of
eight bits then it is generally called a ‘byte’ (there are other more
drawn-out systems where there are sixteen bits to a word). Words with
only four bits are sometimes called ‘nibbles’.
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You should remember from chapter 1 that the Junior Computer’s data bus
is eight bits wide. This means that the data bus transfers information one
byte at a time. For the sixteen bit address bus however, two bytes are
required.

Bits and bytes are not only used to describe data transfer length, but also

for:

— computer instructions that are entered by the user.

— the four bit code used for defining the normal base ten numbers in

binary. This is called binary-coded-decimal (BCD) and is dealt with later

on. :

— the sixteen bit (double-byte) address code which defines a memory
location or peripheral address.

— ASCII (American Standards Code for Information Interchange). This is
a code that represents all the letters of the alphabet, numerals, punctu-
ation marks and many other symbols.

All of these (and many other) digital codes consist of a number of bits

each of which can be eithera ‘1’ or a ‘@".

Hexadecimal

We accept the fact that a numbering system with only two digits is ideal
for the computer, but what about human/computer intercommunication?
If information has to be entered into the computer in the form of ones
and noughts the only possible result is total chaos. Think about double-
byte addressing for example; sixteen numbers for one address location! In
practice this just will not work as mistakes are inevitable.

To overcome this problem a simpler numbering system is required, one
which can easily be interpreted by both computer and (more importantly)
operator. The most obvious choice for this is the hexadecimal system,
Hexadecimal simply means sixteen numbers. Earlier, when we discussed
conversions from decimal to binary numbers, we saw that the amount of
figures required to express a number in binary increased dramatically. It is
therefore only logical to assume that if a base higher than ten be chosen
(in this case sixteen) the amount of figures required to represent a number
should decrease. With a base sixteen system, binary numbers are reduced
in length by a factor of four. In other words, an 8-bit data byte will only
require two symbols. For a decimal system ten symbols are required,
namely 1,2,3,4,5,6,7,8,9 and @. For a binary system only two are
necessary, one and zero. It follows then that for a numbering system with
a base of sixteen, sixteen symbols are required.

Since there are only ten symbols in common usage, six new ones will have
to be created. The numbers 10 to 15 can not be used here because once
the number 9 is exceeded the situation gets extremely confused. The
hexadecimal system therefore uses the ‘normal’ numbers @ . ..9 and the
letters A, B, C, D, E, and F. What really happens is that one of the sixteen
symbols is assigned to a four bit word as follows:

0=0=0000 4=4=0100 8= 8=1000 C =12=1100
1=1=0001 5=5=0101 9= 9=1001 D =13=1101
2=2=0010 6=6=0110 A=10=1010 E =14=1110
3=3=0011 7=7=0111 B=11=1011 F=15=111
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That seems easy enough, but how is it put into practice?
Quite simply. A binary number is divided into nibbles (groups of four bits
each) from right to left. The division must come out evenly. There are
times when one, two or three numbers are missing and it is impossible to
divide the number without a remainder. In this case, as many noughts as
required are added to the left hand side to make the division work out
correctly.
For example:

(0)110101010111100 = 6ABC 4

e N N

6 A B C

The index ‘16’, behind the 6ABC, indicates that we are talking about the
hexadecimal code. It is rarely used in practice, but is shown here to
familiarise readers with it in case they should ever come across it.

To avoid confusion, nearly all computer information and specifications are
given in hexadecimal code, even if it is not intended as a binary number. It
should also be pointed out that the hexadecimal system is not just ‘binary
shorthand’. It is a fully-fledged base sixteen numbering system. The
number 6ABC s (if expanded) would look like this:
6x16°+Ax16>+Bx 16! +Cx 16° =

6 x 4096 + 10 x 256 + 11 x 16 + 12 x 1 = 27,3244 (decimal)

This can be checked against the binary number from which 6ABC was
derived.

The reason why everything works out so nicely is because 16 is a power of
2. Two is the base of the binary system and 2* = 16. Notice the power of
four here. Remember that the binary number was divided up into groups
of four? This is the explanation.

An older system does exist, called octal, which divides the binary number
into groups of three. The base here is not sixteen but, as its name suggests,
eight and the code consists of the numbers @ .. . 7. If we take a look at the
powers of two once more, we see that 2% = 8. In the future a system with
a base of 32 (the next step on the base two ladder) may come into use, but
that would involve a considerable amount of (human) memory work. The
operator would have to learn an extra 22 numbers (those besides the
normal @ . . .9).

BCD

As previously mentioned, BCD is an abbreviation of Binary Coded Decimal.
Every number in the decimal number set is assigned a four bit binary code,

thus:
0 = 0000
1= 0001
2=0010
3=0011
4=0100
5=0101
6=0110
7=0111
8 = 1000
9 = 1001
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As can be seen, the codes are exactly the same as those for the numbers
0 ... 9 in the hexadecimal system. The BCD expression for a larger decimal
number simply consists of the relevant amount of these four bit codes.

For example, the number 1981 expressed in BCD form is:

0001100110000001
1 9 8 1

It looks nothing like the binary equivalent of the same number. As we
already know, that is:

11110111101

By splitting the BCD number into groups of four bits each, it is very easy
to deduce the decimal number it represents. One disadvantage of the
BCD system is the fact that any mathematical function is difficult to
perform. A table of all the number systems of use to the Junior Computer
operator are shown in figure 1.

. . hexa-
binary |decimal | gecimal | nibble | BCD
1] 1} o 0000 0000
1 1 1 0oe1 | 0001
10 2 2 0010 | 0010
11 3 3 0011 | 0011
100 4 4 0100 01008
"M 5 5 0101 @101
110 6 6 0110 | @110
111 7 7 o111 | ;111
1000 8 8 1000 | 1000
1001 9 9 1001 1001
1910 10 A 1010
1011 1 8 1011
1100 12 c 1100
1101 13 D 1101
1110 14 E 1110
1111 15 F 1111
10000 15 10
10001 17 11

Figure 1. This table shows the various number sets that will be used by Junior
Computer operators. The leading zeros are dropped from the binary numbers as they
are not strictly necessary. This is also true of normal decimal numbers: we would
write ‘7’ rather than ‘07,
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Binary conversion

It is often necessary to convert a decimal number into its binary equivalent
and vice versa. To convert from binary to decimal is extremely simple.
Where a ‘1’ occurs in a binary number then the number contains the
relevant power of two. The powers of two are simply written down in
their decimal form and added together to produce the decimal equivalent
as shown in the following example:
11010111= 29 +2' +22 +2% + 26 + 27
=1+2+4+16+64+128 =215

Conversion from decimal to binary is a little more complicated as illustrated
in figure 2. Basically, it involves dividing two into the number and writing
down the remainder after each division. The sequence of remainders
obtained by dividing the number right down to zero represents the binary
equivalent of the number. It is, of course, possible to convert decimal
numbers directly into their hexadecimal equivalents and vice versa, but it
is much easier to convert the number into binary first.

25310 = .72

253 : 2= 126 remainder
126 : 2= 63 remainder

63: 2= 31 remainder

31: 2= 15remainder

15:2= 7 remainder
7:2=  3remainder
3:2= 1 remainder
1:2= 0 remainder——* |

25310=11111101

Figure 2. The conversion of a decimal number into its binary equivalent is carried out
by repeatedly dividing the decimal number by two. The remainder from the division,
whaether it be one or zero, is written down to form the binary number as shown.

Binary arithmetic
Binary numbers can be added, subtracted, multiplied and divided, just like
any other kind of number. The basic principle is the same as that for the
decimal system. However, since the base of the binary system is only two,
this does lead to certain simplifications and short cuts.

Addition

When adding two decimal numbers together, it is quite usual to have to
carry a one if the amount in one column exceeds 9. For example:

1 carry the one from the units column
129
+ 243
372 sum
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There are also carry-overs in binary addition, but the carry occurs when
the amount in any column exceeds one (this is a base two system, not base
ten). Another example will clarify this:
1M11 1 carry one from preceding column
101101
+ 19101
1000010 sum
All the normal rules of mathematics still apply;
0+0=0
0+1=1
1+0=1
1+ 1 =0 and carry the 1 thus = 1@
These basic rules can be seen quite clearly in the binary (as well as the
decimal) columns in figure 1. Each number is equal to the preceding
number plus one.

Subtraction
When subtracting in decimal a system of borrowing numbers is used to
ensure that the difference in any one column is not negative, as the
following example shows:

87 borrowing a one from the 8 results in 14 units
1984 borrowing a one from the 9 results in 17 tens
- 199
1785 difference
For binary numbers the method is the same:
11111 borrowed
11000001
- 1111110

01000011 difference
The rules of subtraction learned at school apply yet again:

1=
|
1=

Il
e
—_—_e -

1

1
0- after borrowing, thus 10 — 01 = @1

Again, this can be clearly seen in the binary column of figure 1. Starting
from the bottom, if you follow the column up you will see that as you
move up a line, one has been subtracted from the line beneath.

This method of subtraction is all very well, but as far as the computer is
concerned it is rather long-winded. A much more elegant method exists
whereby subtraction can be performed by addition! Sounds Irish? Read
on.

The method the computer uses is called ‘complement and add’. The
complement of a binary number is obtained by inverting each bit in that
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number. Thus the complement of 1001 is @110. The computer performs
the subtraction of two numbers by complementing the subtrahend (the
number to be subtracted) and adding it to the minuend (the number to be
subtracted from). The result of the carry from the sum of the most signifi-
cant (left hand) bits is used to determine the next operation. If the carry
bit is a 1, it indicates that the result is a positive number and that a proce-
dure called ‘end around carry’ must be performed to obtain the final result
of the subtraction. This simply means that the carry bit is added to the
least significant (right hand) bit of the intermediate result. If, on the other
hand, the carry bit is @, the result is negative and the final answer is the
complement of the sum (intermediate result). A couple of examples
should serve to clarify the situation:

1001 (9) — 8011 (3)
1001 (9)
11@ (complement of 3)

10101 (sum)
1 (end around carry)

+ 0110 (result)
Answer = +6
1000 (8) — 1100 (12)
1000 (8)
0011 (complement of 12)

1] 1011 (sum)

— 0100 (result = complement of sum)
Answer = —4

This may seem rather drawn out for the human but as far as the computer
is concerned it is @ much easier and therefore faster and more efficient
method of subtraction.

Multiplication

Here again, the same rules apply as for decimal multiplication. To start
with, multiply the decimal numbers 147 and 231 together:

147
x 231

147
441
+ 294

= 33957

First the result from the muitiplication of 147 by 1 is written down.
Following that comes the product of 147 x 3 and as the multiplication is
actually between 147 and 3@ the answer is shifted one place to the left.
Finally, the result of 147 x 2 is written down. As before, this is shifted
because it is actually an operation between 147 and 2@0. This time, of
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course, it is shifted two places to the left. These three totals are then
added together to produce the required answer (33957). If a digit in the
multiplier is 1, then all that is required for that line of the calculation is to
shift the multiplicand one place to the left. If a digit of the multiplier is @,
then that answer is @, but the next answer is shifted two places to the left.

in binary multiplication, the only existing digits are 1 and @, so that the
mutltiplication procedure consists simply of shift and add steps. Here is an
example where the numbers 1811 and 1013 are multiplied:

1011
x 1019

0000
1011
0000
1011
+ 1 carry one, due to the addition

1101110  product
The computer would perform the operation step by step as follows:

1011 (11) x 1010 (10)
multiplier (1010) bits

multiplicand: 1011
LSB=0 write zero 2000
shift left 10110
bit2=1 add 10110
shift left 101100
bit3=0 add zero 10110
shift left 1011000
MSB =1 add 1101110
answer 1101110
Division
First a trusted decimal example. The division of 2091 by 17:
123
17) 2091
_1_7_
39
34
51
5_1
00

Binary division is just the same, but even simpler. If the remainder is larger
than the divisor then a 1 is written in the corresponding position of the
quotient. If the remainder is smaller than the divisor then a @ is written in
the quotient. As an example, the number 100810610101 (2197) is divided
by 1101 (13) to give a result of 10101061 (169):

44



10101001

1101) 100010010101
1101

001000
0000

10000
1101

906111
000g

81110
1101

00001 1
0000

00110
0000

31101
1181

0000
All operations have been included in the above example for the sake of
clarity. In practice however, the steps resulting in a zero product would be
omitted and the digits of the number to be divided brought down until the
sum is greater than the divisor. This would result in a much shorter
calculation as shown below:

10101001

1101) 100610010101
101

10000
1101

1110
1101

101
1101

0000

If calculations have to be carried out with hexadecimal numbers, it would
be advisable to first convert them into binary form, perform the operation,
and then convert the result back into hexadecimal.

Negative numbers
Up to now, all calculations have been carried out with positive numbers.
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Negative numbers can (and do) exist in the binary system as well as in the
decimal system, albeit in a different form.

There is absolutely no point in placing a minus {(—) sign in front of a
binary number, for the computer will not recognise it. As would be
expected, there are different methods of representing negative binary
numbers, but we shall concentrate on the most common method. In any
case, this is the method used in the Junior Computer.

The 6502 microprocessor used in the JC has a data word length of eight
bits (1 byte). This means that it is possible to produce 256 different
combinations: everything between (and including) 00000000 and
11111111 (8@ . . . FF in hexadecimal, and @ . . . 255 in decimal). For
more combinations, more bits would have to be added. The numbers
00000000 . . . 11111111 are shown on a vertical line rather like a tape
measure in figure 3. The distance between any two is the same, while the
furthest possible distance between any two is 255 units. The total cannot
exceed 11111111 because there is no ninth bit. (In chapter three, we shall
see that a ninth bit is made available by using a so-called ‘carry flag’).

IRRRRRRE 255
11111110 254
11111101 253
11111100 252
11111011 251
11111010 250
111110M 249
11111000 248

91101011 107
01101010 106
01101001 105
01101000 104
01100111 103

00001000
00000111
00000110
00000101
00000100
00000011
00000010
00000001
00000000

O=NWHOIOON®

Figure 3. Number line for all possible positive eight bit numbers.

How does all this affect negative numbers? Take seven of the available
eight bits in a given byte. This would mean that the possible combinations
would range from 00000000 up to and including 1111111, A total
number of 128 combinations, half the number that are possible with an
8 bit word. These would represent the positive numbers in binary system,
The negative numbers are represented as follows.
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Starting from zero subtract one, thus:

00000000
— 00000001

11111111 = zero minus one = —1
— 00000001 {now subtract one again)

111111190 =-2
— 00000001 (and again)

11111191 =-3

Continuing like this will produce a number line with its centre at zero and
its two extremes being +127 and —128 (see figure 4). The negative
numbers are given in ‘two’s complement’ notation. It is not the intention
to confuse the reader with all sorts of weird and wonderful formulae, but
rather to show how all the various mathematical functions are performed.
A two’s complement number is obtained by first complementing the
binary number and then adding one to the result. As mentioned before,
complementing a binary number consists simply of inverting each bit of
the number. As an example, positive 3 (decimal) is represented by
0000OB11. Substituting all the ones for zeros and vice versa, results in
11111100. Adding one (00000OA1) to this gives us 11111101, which is
the equivalent of —3 in binary (see above and figure 4).

21111111 127 $7F
21111110 126 $7E
21111101 125 $7D

00000111 7 $07
00000110 6 $06
00000101 5 $05
00000100 4 $04
00000011 3 $03
00000010 2 $02
00000001 1 $01

00000000 0 $00
11111111 —1 $FF
11111110 -2 $FE
111111 -3 $FD
11111100 —4 $FC
11111011 -5 $FB
11111010 —6 $FA
11111001 -7 $F9
11111000 -8 $F8
10000010 —126 $82
10000001 —-127 $81

10000000 —-128 $80

Figure 4. Number line for all positive and negative eight bit numbers using the two's
complement method. A dollar sign precedes the hexadecimal equivalents.
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1t is therefore possible to produce negative binary numbers at the cost of
one bit (the eighth). This is due to the fact that the total number of
variations is always limited by the number of bits available. Negative
binary numbers always start with a one (the left-most bit), while positive
binary numbers of the same word length always start with a zero. This
zero can be dropped if desired. In this instance, the MSB (Most Significant
Bit) can be likened to a positive/negative sign. Various negative binary
numbers, along with their hexadecimal code, are shown in figure 5.

Analysing problems by means of flow charts

Regardless of the actual job function the Junior Computer is required to
perform, whether it be to play games, handle accounts, control domestic
appliances etc., it first has to be programmed by the user. Before the
computer can be programmed, however, a detailed analysis of the particu-
lar problem is required. For very small and simple programs it may be
possible to convert the problem directly just by using the instruction set
(see chapter 3) of the microprocessor. This is certainly not true of longer
and more complicated programs.

A flow chart gives an overall view of the problem solving process from
start to finish. It will indicate all the various points in the program, at
which tests and decisions have to be made, and what operation to perform
upon obtaining a particular result etc. At some points there may be a
number of possible paths that can be taken, depending on the result of a
particular operation. All these paths can be clearly mapped out in the flow
chart. The most common flow chart symbols, together with their meaning,
are shown in figure 6.

The first step in any flow chart is ‘start’; this is contained in a so-called
‘terminal’ symbol. The same symbol, with the word ‘end’, is used to
indicate the completion of the program.

Program ‘operations’ are contained in a rectangle and the text inside the
rectangle defines the actual operation to be performed. This text should be
kept as short as possible and only the steps required for complete under-
standing of the operation are necessary. In the example given in figure 6,
A is assigned the value of the sum of B plus C. This is quite sufficient and
steps like fetch A, fetch B, etc. are omitted.

Once an operation has been performed it may be necessary to make a
‘decision’ about the result. Decisions are indicated in the flow chart by a
diamond shaped symbol. In the example, the value of A is compared to
the value of D and a decision on what to do next is made, depending on
whether the two values are equal or not. The decision may well lead to the
next symbol shown in figure 6. that of the ‘input/output’ statement. This
is indicated in the flow chart by a parallelogram. At this stage in the flow
chart information can be entered into or output from the computer. For
example the operator may require the computer to provide an intermediate
result, or the computer may require a new value for a particular variable,
etc.

There are occasions when a certain operation, or series of operations, has
to be performed a number of times. When this occurs it is usual {and good
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. . hexa-

binary decimal decimal
1111111 -1 FF
11111110 - 2 FE
11111101 -3 FD
11111100 — 4 FC
11111011 — 5 FB
11111010 — 6 FA
11111001 -7 F9
11111000 — 8 F8
11111 -9 F7
11110110 -10 F6
1111010 -1 F5
11110100 —-12 F4
11110011 —13 F3
11110010 —-14 F2
11110001 —-15 F1
11110000 —16 FQ
11101111 —-17 EF
11101110 —18 EE
11101101 —-19 ED
11101100 —20 EC
11101011 =21 EB
11101010 —-22 EA
11101001 —23 EQ
11101000 —24 E8
11100111 —25 E7
11100110 —26 EG
11100101 —27 E5
11100100 -28 E4
11100011 —29 E3
11100010 —30 E2
11100001 =31 E1
11100000 -32 EQ
11011111 -33 DF
11011110 -34 DE
11011101 —35 DD
11011100 —36 DC
11011011 —-37 DB
11011010 —38 DA
119011001 -39 D9
11011000 —40 D8

Figure 5. This table shows some of the negative binary numbers along with their
corresponding decimal and hexadecimal values.



practice) to enclose the sequence as a small program or ‘subroutine’ inside
the main program. The symbol for a subroutine is shown as a rectangle
with two straight lines on each side. Each subroutine would, of course,
have its own flow chart. As expected, long and complicated programs lead
to long and complicated flow charts which may well spread over quite a
few pages. The various parts of the flow chart can be joined together by
means of the ‘connector’ symbol also shown in figure 6.

terminal

g

A=B+C operation

no
decision
yes
-
gosub X subroutine
é connector
80915-2 6

Figure 6. The most commonly used flow chart symbols. There are many more, but
the majority of programs can be charted using just these six.

Just by using these symbols, it is possible to ‘rough out’ virtually any
program. Once a rough flow chart is drawn the various subroutines are
filled in. As the process continues the diagram becomes more and more
defined. A time will come when the flow chart cannot be expanded any
further and the various symbols can be converted into instructions for the
Junior Computer.
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think it
over once

more

commence
building

have
you read
instructions

insert
components

Y

assemble
Jc

Y

test
Jc

Figure 7. The rough flow chart for the building of the Junior Computer.

By way of illustration, an actual example of a flow chart is shown in
figure 7. The problem concerns the construction of the Junior Computer
as outlined in chapter 1 and will of course never result in a computer
program.

As can be seen, the first decision to be made is whether or not to build the
JC. Once this decision has been made and the response is positive, the
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(commence building

inspect
the main
board

v

mount components
on the main
board

J

check
the main carrect
board faults
no
yes
mount components

[on the display board|

chaeck
the correct

display board faults

A

mount
display
baard

Y

mount components
on the power
supply board

v

connect the
transformer

J

A

check the power
supply and its correct
connections taults

yes

and s0 on 809152 8

Figure 8. The flow chart of figure 7 has been further expanded to show all the basic
constructional steps mentioned in chapter 1.
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constructional instructions are to be read followed by the installation of
the various components, the assembly, and the test procedure. If the
answer was no then the flow chart prompts the reader to have a re-think.
If the answer is still no the reader is directed to the end of the flow chart.
On the other hand, if the reader has changed his/her mind then he/she is
directed back into the main stream of the program.

his/her mind then he/she is directed back into the main streamof the
program.

The flow chart in figure 7 is only a very rough diagram. It is further
expanded in figure 8. It can be seen that all the basic sections mentioned
in chapter 1 are laid out here.

soldering
iron warm

?

position C12
on the printed
circuit board

polarity
correct
?

rotate C12
180°

cut off
excess
lead length

and so on

80915-2 9

Figure 9. Part of the block marked "mount components on the main board” in
figure 8 consists of the installation of C12. There are three blocks shown as
subroutines which means that this flow chart can be expanded still further.
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Taking it a step further, we can produce a flow chart for the installation of
individual parts on the main board. This is illustrated in figure 9. Three
boxes are shown as subroutines in figure 9, which means that the
operation which takes place has yet to be fully defined. More will be said
about this in the next chapter.

Exercise time

From the following exercises we can deduce how much we have learnt
about hexadecimal and binary number systems.
1) Convert the following decimal numbers to binary:
a) 16
b) 24
c) 125
d) 513
e) 756
2) Convert the following binary numbers to decimal:
a) o111
b) 10@1
c) 1100101
d) 1011011
e) 1110010101
3) Convert the following decimal numbers to BCD:
a) 12
b) 37
c) 128
d) 412
e) 3762
4) Convert the following BCD numbers to decimal:
a) 1001
b) @101
c) 10000110
d) 0111000
e) 100101110010
5) Convert the following binary numbers to hexadecimal:
a) 00101111
b) 11111
c) 101000111
d) 110101010
e) 001011
6} Convert the following hexadecimal number to binary:
a) 132
b) A014
¢ 0356
d) C5E1
e) ABBA (not to be confused with the Swedish import)
7) Perform the following binary calculations:
a) @1001111+ 11000111
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b) 1110011 + 11111111
c) 11111111 +1

d) 111100008+ 1111

e) 10101010+ 1010101
f) @1110100— 1101

g) 11110000 1111

h) 10111000 10000001
i) 10101111 —10101111
j) 100 — 11111011

k) 11110001 x 01111

1) 101 x 11111111
m)1010 x 1010

n) 11x 11111111

o) 10000000101~ 111
p) 110100000003 ~ 1101

q) 10011011119110010 + 1001110

al A+8B

b) D3 — 3E
c) ABBA x4
d) B9AG -+ 0B

: a) 10000

b) 11000

c) 1111101

d) 1000000001
e) 1011110100

- al 7

b} 9

c) 101

d) 91

e) 917

: a) 00010010

b) 09110111

c) 000100101000
d) 310000010010
e) 0011911101100010
a9

b) 5

c) 86

d) 38

e) 972

s a) 2F

b) 1F

c) 147

d) 1AA

e) 0B

8) Perform the following hexadecimal calculations:

Answers
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6:

56

a) 000100110010

b) 1010000000010100
c) 0000001101010110
d) 1100010111100001
el 1010101110111010

ra) 100010110

b} 181110010

c) 100000000
d) 11111111

el 11111111

f) 1100111

g) 11100001

h) 110111

i) a

j) 100001001 (—247 in 9 bit two’s complement notation)
k) 111000011111
/) 10011111011
m) 1100100

n) 1011111101
o) 10010011

p) 100000000

q) 1111111111

:al 15

b) 95
c) 2AEE8
d) 100



Programming

Operating the JC

Now that the Junior Computer is complete and operational, and
the background information from chapter 2 has been digested,
we come to the ‘user’s manual’. What can we do with the JC
and how do we go about it? These questions will be answered in
this chapter.

Before we are able to use the JC we must have some knowledge of the
more serious aspect of programming. Do not worry however, as pro-
gramming can be quite fun. By the end of this chapter it should be
possible to develope your own (short) programs and to make the JC
perform more or less as you want it to. Chapter 4, on the other hand, deals
with more complex programming and gives some programming ‘tricks’ to
further simplify matters. But first . . .

Familiarisation with the terrain

As we know, the hardware ‘dashboard’ consists of two toggle switches,
23 keyboard switches and 6 seven-segment displays — as shown in
figure 1a. Once the system has been switched on, the RST key is depressed
to initialise the microprocessor. The monitor program will then scan the
keyboard to check whether or not any of the switches are being depressed.
If one of the hexadecimal switches is pressed (@ . . . F), this will be indi-
cated on the display.

The four displays on the left-hand side will show the address location in
hexadecimal code and the two right-hand ones will give the ‘contents’ of
that location. In principle, all the address locations from 0000 . . . FFFF
are possible. -

Take for example that we want to enter certain data into a given area of
memory. From address location 820@ on we want to enter 18, A9, 03
etc. The sequence of operations is as follows:
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adres data

RST XXXX XX
AD XXXX XX
()] 2 0 (1] 0200 XX
DA 0200 XX
1 8 0200 18 0200 ([t 8 CLC
+ A 9 0201 A9 9201 |A 9 LDA
+ (] 3 0202 03 0202 |0 3
+ 6 9 0203 69 92903 |6 9 ADC
+ 0 7 0204 @7 0204 (0 7
+ 8 D 0205 8D 9205 |8 D STA
+ ("} (0] 0206 00 0206 0 O
+ (] 3 0207 03 0207 |0 3
+ 4 C 0208 4C 0208 |4 C JMP
+ 1] (1] 0209 00 0209 0 0
+ 0 3 020A @3 020A |0 3
AD 020B | X X
1 A 7 A 1A7A XX 020C | X X
DA 1A7A XX 1A791X X
] 1] 1A7A 0 1A7A|0 O
+ 1 C 1A7B ic 1A7B|1 C
1A7C|X X

That was certainly a bit long-winded. What have we done exactly? First,
the RST key initiated the monitor program. By depressing AD we informed
the computer that we wish to place data at a certain address location. The
‘crosses’ (x) at various points in the chart indicate that the corresponding
data is irrelevant. In other words, the state of the data lines is unimport-
ant, they could be high (1) or low (@).

The address location we want to start at is @200. By pressing the keys 0, 2,
@ and @ (again) the correct address will be ready to receive data. After
pressing DA followed by 18, memory location @200 is loaded with
18 (hexadecimal). Strictly speaking ‘loaded’ is not the correct term as
location 0200 was not empty. The instruction 18 (for that is what it is)
‘replaced’ the previous contents of the memory location.

The address is incremented (advanced) by pressing the '+ key. The fol-
lowing data will then be placed in the next memory location. It is not
necessary to depress DA again unless the data is to be placed elsewhere in
memory. If, for instance, the following data is to be placed in address
location 1A7A, the AD key will have to be pressed first.

On the right-hand side of the chart is a ‘memory map’ which shows the
contents of eaeh of the locations that are of importance to this particular
program. The two columns of boxes are: on the left, the address location
and on the right, the contents of that address location.
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ADDRESSES DATA
oy o o o o o
L0\ L0 Ly Ly Ly

OP-CODE OPERAND

STEP DISPLAY

“ ] |search @ @
C D E F PC on on

T— insert :
8 9 A B AD input

step
delete || NMI

4 5 6 7 DA|||IST

i skip_|[ RST
0 1 2 3 +

Figure 1a. The ‘hardware dashboard’ of the Junior Computer. Besides the sixteen
hexadecimal keys and the seven control keys, there are two function switches. The
text in small letters indicates the editing functions that the JC can perform. Under
normal conditions the four left-hand displays show a particular address location and
the two right-hand displays the data contained at that address.

We should now be familiar with the following keyboard switches:

— @...F,forentering data and address information;

RST, which initialises the microprocessor and activates the monitor

program and the display;

— AD, which instructs the computer to go into the address mode for
loading one or more address locations;

— DA, which instructs the computer to go into the data mode;

— +, which advances the address location by one. The mode (address or
data) is not affected.

Note: As with most pocket calculators, the address and data information

is keyed in from left to right, but the display will appear to move from

right to left.

As mentioned earlier, all the information we have just entered is not a

random set of hexadecimal figures, but a real program to add two numbers

together and store the result. This is what happens:

The first operation code, 18 (at address location 3200), is the code for the

instruction CLC-CLear Carry. The computer then moves on to address
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0201 where it finds the code {A9) for LoaD Accumulator immediate —
LDA. The data to be loaded (@3) is contained in the next address $202.
Address @203 contains the ‘op-code’ (operation-code) 69 which instructs
the microprocessor to AdD the contents of the following memory location
to the accumulator with Carry. The contents of the following address
(#204) is @7, the accumulator contains @3, the resuit after the addition
will, therefore, be DA in the accumulator.

The op-code 8D at address 8205 instructs the microprocessor to STore
Accumulator in memory — STA. As absolute addressing (more about this
later) is used for this instruction, the actual location where the result is to
be stored is found from the contents of the following two addresses, 6206
and $207. The last two bytes of the destination are found in address 0206,
and the first two bytes in @2@7. Thus the destination address for the
contents of the accumulator is @300 — not @@#3@. The next address in the
program (0208) contains the op-code 4C, the code for JMP, or JuMP
instruction. This tells the computer to jump to the location contained in
the next two addresses. 9209 and @20A, which in this case is @300. This is
also where the result of the operation (addition) is to be found, The com-
puter will then perform the operation corresponding to the op-code 0A
which is ASL-A, Arithmetic Shift Left Accumulator, or move the contents
of the accumulator one place to the left. As there is no instruction at
address 0301, the computer will not know what to do next and will ‘crash’
the program.

It is important to realise therefore, that the operation of a program is
hardly ever self-explanatory and care must be taken when developing
programs to ensure that the processor always has ‘something to do’. Pro-
gramming is all about selecting various instructions and arranging them in
the correct order so that the computer performs a certain task to produce
the desired result. As always, the old adage applies — ask a silly question
and you get a silly answer!

The ‘software-dashboard’

Before we go further into the software possibilities of the Junior
Computer, such as the instruction set and the different addressing modes,
it is advisable to have a clear idea of the internal register structure of the
6502 microprocessor. The processor contains six programmable registers as
shown in the ‘software-dashboard’ of figure 1b.

The rectangle marked ‘A’ in the figure is the eight-bit accumulator. This
register is used to manipulate data and to transfer information to and from
memory. It is often used as a ‘waiting station’ for data travelling between
memory locations.

The X and Y index registers (also 8-bit registers) contain data whereby any
memory location can be addressed indirectly. This will be expanded on
later.

The program counter, PC, is a sixteen-bit register which contains the
address of the memory location where the next instruction is to be found.
The program counter is divided into two registers, PCL (L stands for Low)
and PCH (H = High), which contain the lower order address bytes and the
higher order address bytes respectively.
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b BREAK COMMAND
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Figure 1b. The ‘software dashboard’ of the Junior Computer — or to be more
precise, the 6502 microprocessor.This figure shows all the internal registers that are
accessible to the user. The status register could also be called the “flag’ register.

The stack pointer, S, is used for temporary storage of address locations.
The stack pointer is 8-bits wide which means that the maximum stack
length is 256 bytes. The processor always appends @1 as the high order
byte of any stack address, which means that memory locations
0100 ... 01FF are permanently assigned to the stack.

Lastly, the (processor) status register, P. This register contains information
which reflects the results of varous operations in the form of ‘flags’. Each
flag is effectively connected to a flip-flop which can be set or reset. One
such flag is the ‘carry’. This is set (logic ‘1’) as soon as the result of an
operation (addition) produces a carry from the highest (most significant)
bit. This flag can be used as a ‘ninth’ bit. Flags N and Z indicate whether
the result was negative or zero respectively. The remaining flags will be
dealt with in greater detail later on.

Address repertoire

There are a full thirteen different addressing modes available to the user of
the JC. This is one of the strong points of the 6502 microprocessor. The
instruction set consists of 56 ‘powerful’ instructions which, when
combined with so many addressing possibilities provide the operator with
an optimum amount of freedom.

Although the 6502 has fewer instructions than most other microprocessors,
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this does mean that there are fewer instructions to remember! All instruc-
tions are decoded by the computer with the aid of its internal ‘micro-
program’. To help the operator (programmer) all instructions also have an
abbreviated form where mnemonics are used — ADC is a lot shorter than
writing ‘add memory to accumulator with carry’.

Immediate addressing

Instructions for immediate addressing refer to data in the work memory
which are dealt with as soon as the instruction is known. The instructions
consist of two bytes; the first for the actual instruction (op-code) and the
second for the operand data. The symbol # is used to indicate that the
following number is data, as some examples will show:

LDA # 7 A means: load the accumulator with 7A,

LDX # 3B means: load the X Register with 3B. In this instance the
Y register could have been used in which case the instruction would be
LDY #3B.

ADC # (byte) means: add the contents of the following memory location
to the existing contents of the accumulator with carry. This can also be
expressed as: A+ M+ C— A, Whether or not the carry is added to the
result depends on the state of the carry flag. This flag must always be reset
prior to addition, with the CLC instruction (clear carry) for instance. The
program so far looks like this:

cLC clear carry (C=01)

LDA 13  load accumulator with I3

ADC 08 add@8toit

BRK stop as soon as the addition is complete.

The last step is needed to make the program complete and to inform the
computer that the desired task has in fact been carried out.

To execute this program on the JC we first need to determine the instruc-
tion codes (see table at the back of this book). We find that CLC = 18;
LDA = A9: ADC = 69; BRK = (#@. A suitable start address would be 3100
and off we go (power on, display on, STEP switch off):

adres: display:
RST AD XXXX XX
(1] 1 0 (1] 2100 XX
DA 1 8 0100 18 CLC
+ A 9 210 A9 LDA #
+ 1 3 0102 13
+ 6 9 0103 69 ADC #
+ 0 8 0104 08
+ 1] (1] 0105 00 BRK
AD 0105 00
1 A 7 E 1A7E XX
DA 0 (o] 1A7E 00
+ 1 C 1A7F 1C
AD
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0 1 o '] 0100 18

GO 0197 XX programstart
AD 0107 XX
0 (1] F 3 Q0OF3 1B result

There are a few things that need to be clarified. Why, for instance, the
sudden jump from 9105 to 1A7E? And why is the result held in address
OPF3? When the microprocessor encounters a break instruction it will
jump back to the monitor program at the point indicated by the contents
of 1A7E and 1A7F, in this case 1C0@. This section of the monitor
program contains a ‘save’ routine which ensures that the current contents
of each register are loaded into specific (RAM) memory locations. The
result is as follows:

Address @PEF contains the contents of PCL,,

address OOF® contains the contents of PCH,

address @OF 1 contains the contents of P,

address POF 2 contains the contents of S,

address @OF 3 contains the contents of A,

address OOF4 contains the contents of Y, and

address P@F5 contains the contents of X.

The accumulator contents are held in @@F3. As the accumulator held the
result of the addition. in this case 1B, @OF 3 is the place to find the answer.
Subtraction of numbers is also possible (not so with some smaller micro-
processors). In this instance the useful instruction is: SBC # (byte) which
means: subtract memory from accumulator with borrow (= A -M -T— A).
It should be remembered that the JC uses the two’s-complement method
of subtraction (see chapter 2). In order to obtain the correct result, the
carry flag has to be set, thus C = 1, C = @. This can be accomplished by the
instruction SEC (set carry flag). The program to subtract two numbers
looks like this:

SEC (op-code 38)

LDA # 13 (op-code A9)

SBC #08 (op-code E9)

BRK (op-code 00)

As before we can use @100 as the start address. The program can be
entered via the keyboard as follows:

key address data

RST AD XXXX XX
1] 1 (1] (1] 0100 XX

DA 3 8 0100 38 SEC
+ A 9 0101 A9 LDA #
+ 1 3 0102 13
+ E 9 0103 E9 SBC #
+ 0 8 0104 98
+ (1] (1] 0105 00 BRK
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AD 0105 00

1 A 7 E 1A7E XX
DA 0 0 TATE 00 see note
+ 1 C 1A7F 1C
AD
(1] 1 (1] 1} 0100 38 program start
GO 0107 XX
AD 0107 XX
0 '] F 3 OOF3 (1]:] result

Note: Addresses 1A7E and 1A7F do not need to be loaded if they still
contain the data from the previous program example, that is, provided the
power switch has not been turned off in the meantime.

As before, address @OF3 contains the result of the subtraction: 13 (deci-
mal 19) — 08 = @B (decimal 11).

Logic Instructions

The processor is not only capable of performing arithmetic operations, but
it is also capable of implementing logic functions. The OR-function is one
well known logic operation and can be implemented by using the instruc-
tion: ORA # (byte) which means: OR memory with accumulator —
AVM - A. The op-code for this instruction is 9. A short example will
clarify what it does:

LDA # AA load the accumulator with AA

ORA # 0OF perform the OR-function bit by bit with OF

BRK stop

AA in hexadecimal = 10101010

OF in hexadecimal = 00001111

result after OR =10101111 (AF)

Whenever a particular bit in the accumulator OR the memory location
(second half of the instruction) is a ‘1" the result will be ‘1" When both
bits are ‘@’ the result will be ‘@. Again, the result will be held in the accu-
mulator. Figure 2a illustrates the principle via hardware (OR gates).
Another common logic operation is the AND function. This is im-
plemented with the instruction AND (A A M — A). A short program:

LDA #AA load the accumulator with AA

AND #0F  AND each bit with OF

BRK stop

AA in hexadecimal= 10191010

OF in hexadecimal = 00801111

result after AND = 00001010 (0A)

Where the bits in both the accumulator and memory are ‘1’ the result will
be ‘1, when either of the bits are ‘@’ the result will be ‘0". Figure 2b
illustrates what happens with an AND gate.

The third logic function to be considered is the EXclusive OR (EXOR)
function. The instruction EOR can be represented by: A¥ M~ A. The
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---------- | OR

D>

80915-3-2a

"""""" AND

===

’

80916-3-2b

--------- | EOR

D----D
EOR#|0 0 0 0 111 1]

80915-3-2¢

Figure 2. The operation of the instructions ORA #, AND #, and EOR # is shown
here symbolically by the use of logic gates.

op-codeis49. ...

LDA #AA load accumulator with AA
EOR #0OF EXOR each bit with OF
BRK stop

AA in hexadecimal= 10101010

OF in hexadecimal = 00001111

result after EXOR = 10100101 (A5)
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When both bits are the same the result will be ‘Q’, otherwise the result is a
‘1”. It can be seen that this instruction can be used to invert certain bits in
the accumulator. Figure 2c illustrates the EXOR function.
The three given examples can be combined to form a single program. This

is keyed in as follows:

key
RST
0

o
+ + + + + + + + + + + + + + D

> o > > o > > @ >
®«S UO0O®SU0US®U00OSU0US®00S0

AD

1

€S hPPOONPPPOSESS DB DS

&S MO POSTOP©O©S NTOP OO

address

XXXX
0100
0100
0101

8102
2103
0104
8105
8106
0107
0108
0109
010A
0108
010C
010D
010E

0100
0106

00BF3

0105
0108

0OF3

010A
0119

OOF3

data

XX
XX
A9
AA
09
oF
o0
A9
AA
29
OF
00
A9
AA
49
OF
00

A9
AA

AF

A9
AA

BA

A9

XX

A5

LDA #

ORA #

BRK
LDA #

AND #

BRK
LDA #

EOR #

BRK

start address 1

stop 1

result 1

start address 2

stop 2

result 2

start address 3

stop 3

result 3

start 1

end 1
start 2

end 2
start 3

end 3

As there are three ‘breaks’ in the program all three can be run one after the

other. Be sure to enter the correct start address before pressing ‘GO’

The three logic instructions have very important functions. They can be
used to ‘mask out’ certain bits in a byte and leave the remainder unaltered.
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So far we have dealt with immediate instructions. We have covered eight of
them up to now: LDA #, LDX #, LDY #, ADC #, SBC #, ORA #, AND #,
and EOR #. We have also learned about the instructions CLC, SEC, and
BRK. These will be covered in greater detail in the section describing
implied addressing.

Absolute addressing

An instruction that uses absolute addressing directly specifies the address
of the memory location to be referred to. The two bytes following the op-
code will contain the actual address of the memory location concerned.
Let us simply look at another program example:

LDA-0100 load accumulator with the contents of 0100

STA-015A store accumulator contents in @15A

LDA-P101 load accumulator with the contents of 0101

STA-015B store accumulator contents in #15B

LDA-9101 load accumulator with the contents of 0102

STA-015C store accumulator contents in §15C

LDA-3103 load accumulator with the contents of @103

STA-@15D store accumulator contents in @15D

LDA-0104 load accumulator with contents of @104

STA-Q15E store accumulator contents in B15E

Note: The hyphen between the instruction and the address location shows
that absolute addressing is being used.

The end result of this program is that the contents of address locations

0100 . . . 104 have been copied into locations @15A . . . @15E. The
MEMORY
»-1”"/’/ ]
9100 A9
(3] ]] AB
9102 8D
9103 6B
@104 [}
/'L/
A
315A A9 —
@158 AB
915C 8D -
915D 6B -
#15E (1
- — 80915-3-3

Figure 3. A ‘memory map’ of the resuit of copying data from one memory area to
another.
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accumulator was used as a ‘go-between’. The first four memory locations
still contain their original information — the data was copied not trans-
ferred. A memory map of the result is shown in figure 3.

The instruction LDA should now be familiar, but it is shown here without
the # symbol. On the other hand, the instruction STA — is new. It is used
to store the contents of the accumulator in a specific memory location
(A — M). All absolute address instructions require three bytes; the first for
the instruction code, the second for the low order address byte (ADL;
L = Low) and the third for the high order address byte (ADH; H = High).
Let us take a look at a program where two sixteen bit numbers are added
together using absolute addressing. Both numbers consist of two bytes
(HOB = High Order Byte, LOB = Low Order Byte). The result will again be
a sixteen bit number, but there may have to be a carry added to the
extreme left hand side (MSB).

Before ‘jumping’ into the actual program it may be advisable to examine
the flow chart shown in figure 4. As can be seen, six memory locations

(0100 . . . @105) are reserved for the two sixteen bit numbers and the
8100 LOB1
2101 HOB1
9102 LOB2
8193 HOB2
0104 LOBR
9105 HOBR
0106 18 cLC

9107 AD{ LDA-LOB1

@10A 6D{ ADC-LOB2
@10D 8D| STA-LOBR
011@ AD| LDA -HOB1
9113 6D| ADC -HOB2
0116 8D| STA-HOBR
9119 00 BRK

im 80915-3-4

Figure 4. Flow chart of the program to add two 16-bit numbers together and store
the result.

68



result. The actual program does not start until address @106 and continues

up to and including 0119.

The two numbers we are going to add together are @4EF and 23AB:

(STEP: OFF; DISPLAY: ON}
RST AD

1 A 7 A
DA (1] [}
+ 1 Cc
++
+ o (1]
+ 1 Cc
AD
o 1 "] (1]
DA E F
+ 0 4
+ A B
+ 2 3
+
+
+ 1 8 CLC
+ A D LDA-
+ o ("]
+ o 1
+ 6 D ADC-
+ 0 2
+ o 1
+ 8 D STA-
+ o 4
+ (/] 1
+ A D LDA-
+ 0 1
+ 0 1
+ 6 D ADC-
+ (/] 3
+ (] 1
+ 8 D STA-
+ ] 5
+ 0 1
+ ] ® BRK

>
+ O
-
(=)
o

address
XXXX
1A7A
1A7A
1A78B
1A7D
1A7E
1A7F
1A7F
0100
@100
2101
0102
2103
0104
2105
0106
0107
2108
9109
G19A
2108
910C
210D
?10E
O10F
0110
0111
0112
0113
0114
9115
0116
0117
0118
0119

0106

data

XX

XX

00
10 } enable STEP routine

XX

Og } enable BRK routine

1C
XX
EF
04
AB

LOB1

HOB1

LOB2

HOB2

reserved for LOBR
reserved for HOBR
clear carry-flag

LOB1in A

A+LOB2+>A
(including carry-flag)

result (= LOBR) to
address 0104

HOB1 in A

A+HOB2—>A
{including carry-flag)

result (= HOBR) to
address 0105

end of program

start address
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GO ?211B XX program running

2 1 (] 4 104 9A  result: LOBR
+ 0105 28  result: HOBR

Now let us examine the program in greater detail. The two numbers to be
added were:

(B4EF: hexadecimal 00063100 11101111
23AB: hexadecimal 00100011 10101911
«<~HOB—> <« LOB~—
Firstly, the carry flag is reset at address @106. After loading the accumu-
lator with LOB1 and adding LOB2 to it the carry flag is set, thus:
11101111 LOB1
10101611  LOB2
+111 1111 carry

[1} 10811016 LOBR
carry «O> «A~>
The carry flag will remain set even after storing LOBR (in address 0104)
and loading HOB1 into the accumulator. When HOB2 is added, however,
the carry flag will be reset once more: ‘

00000100 HOB1
00100011 HOB2
1 carry from LOBR

+ 11 carry
[loo101000 HOBR
carry «2-> «8~>
The result of the addition can be seen in locations #0104 and @105,
Note: The comments at addresses TA7A . .. 1A7F refer to interrupt

routines contained in the monitor program. These will be dealt with in
greater detail later on.

Most of the instructions in the last program used absolute addressing. The
three bytes of these instructions are easily recognisable. There are, of
course, many other instructions that use absolute addressing. The fol-
lowing is a list of the more commonly used ones:

Memory reference instructions:

LDA- op-code AD (M — A) load accumulator with memory
LDX- op-code AE (M — X) load index X with memory
LDY- op-code AC (M —Y) load index Y with memory
STA- op-code 8D (A —> M) store accumulator in memory
STX- op-code 8E (X — M) store index X in memory

STY- op-code 8C (Y — M) store index Y in memory

Arithmetic instructions:
ADC- op-code 6D (A+M+C ~> A) add memory to accumulator
_ with carry
SBC- op-code ED (A—M—C —> A) subtract memory from accumulator
with borrow
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INC- op-code EE (M+1—>M) increment memory by one

DEC- op-code CE (M—1 > M) decrement memory by one

The last two instructions simply cause the memory contents to be
increased (INC-) or decreased (DEC-) by one (60020001).

Logic instructions:

ORA- op-code ®D (AV M — A) OR memory with accumulator

AND- op-code 2D (A AM - A) AND memory with accumulator

EOR- op-code 4D (A ¥ M — A) Exclusive OR memory with accumulator

Step by step programming

There are two ways of running a program on the Junior Computer. The
first, and most obvious, is to enter the start address of the program and
press the ‘GO’ key {with the STEP switch in the off position). The program
will then run until the processor encounters a BRK instruction. The other
method is to place the STEP switch in the on position. This will light the
LED in the STEP/GO key and enable the program to be run ‘instruction
by instruction’, provided that address locations 1A7A and 1A7B contain
00 and 1C respectively. Each time the STEP/GO key is operated the next
instruction in the program will be executed. This is illustrated in the
memory map of figure 5.

Once the start address (#106) has been set up the STEP/GO key is
depressed and the first instruction is carried out. In this case the
instruction is to clear the carry bit. To make sure that the carry flag has in
fact been reset we can examine the P register. As mentioned previously,
the contents of the status register are also held in address ®@F1. By
pressing the AD key followed by this address the display will reflect the
contents of the status register.

It may not be quite clear as to what the information on the display
actually means, therefore a look at the construction of the status register

would not be amiss.
|
I L carry flag
zero flag
interrupt flag

decimal flag
break flag
not used
overflow flag
negative flag

The flags that are of no importance to us at the moment are indicated by
an ‘X’. The carry flag, however, is the least significant bit in the register
(extreme right). It is therefore very simple to tell whether the carry flag is
set or reset as the number on the right- hand display will be even if the flag
is zero and odd if the flag is set.

Going back to stepping through the program, if the PC key is operated the
display will show @107 AD. As we know, AD is the op-code for LDA-, the
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BEGIN 0100 | LoB1
9191 | HOB1
9192 | LOB2
9103 | HoB2
@104 | LOBR
9105 | HOBR

START  g106 | 18 o oLe
9107 AD TEP —;[O\/_ LDA -
0198 00
@109 | o
910A | 6D | STEP]—:é:— ADC -

|
008 | @2
giec | 0
@10D 8D 3 —:(:)’- STA -
910E | 04
010F (1] 1
9110 AD STEPI-,I:— LDA -
2111 01
o112 | o1
9113 | 6D STEP—l—:QIi— ADC -
0114 | g3
9115 o
o116 | 8D sTep 0" sTA-
0117 95
9118 | o — STOP
9119 | 00 BRK
END [N —

8091535

Figure 5. The program of figure 4 shown as a memory map and operated by using the
STEP function.

next instruction in the sequence. Pressing the STEP/GO key will now
produce @10A 6D on the display. This shows that the LDA-instruction has
been executed and the value of LOB1 (EF) should be held in the accumu-
lator. Again, a quick check will verify that this is indeed the case. The
complete program can be stepped through in this manner and it can be
seen that this mode of operation is a useful aid to ‘debugging’ and at the
same time a practical ‘tool’ for educational purposes.
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START

A+LOB2+C~A

A+HOB2+C~A

80915-3-6

Figure 6. The ‘rough’ (but complete) flow chart of the program shown in figure 4.

Zero page addressing

Here we discuss a special form of absolute addressing. In this case, the
instruction has only two bytes of object code. The high order address byte
(ADH) of zero page instructions is always zero. The addressable range,
therefore, runs from 0000 to GBFF. These 256 different locations belong
to ‘page zero’. The following 256 bytes belong to page one etc. This leads
us to figure 7 which shows the page address structure of the Junior
Computer.

Pages @ . . . 3 contain the RAM, or work memory. Page 1A belongs to the
PIA and is divided into RAM, 1/0 addressing and the timer. Pages 1C ... 1F
are reserved for the monitor program. In the standard JC model only pages
@0 . .. 1F can be addressed because of the incomplete address decoding.
This means that the highest addressable memory location is 1FFF.

As the computer knows that the high order byte of every zero page
instruction is @0, we can effectively save one memory location out of
three when using absolute addressing.

The mnemonics used for zero page instructions are the same as those used
for absolute addressing, but to indicate the difference they are appended
with a Z. By now, they should look quite familiar:

Memory reference instructions:

LDAZ op-code A5 (M —> A) load accumulator with memory
LDXZ op-code A6 (M — X) load index X with memory
LDYZ op-code A4 (M = Y) load index Y with memory
STAZ op-code 85 (A - M) store accumulator in memory
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0000
oore| ™%
9100
p. 01
MFF
_F 1K-RAM
9200 (
.92
ozee| *°
0300
p. 03
_93FF J
-— L
S
“1A00 A } 1400 ... 1A7F 1/8K-P1A-RAM
aref  ” } 1A88 .. 1AFF
- (1/0 addressing
|_and timer)

1\

\/_/-_’;-jf

“1co0
_ICFF

1009
1DFF

b 1K EPROM

1E00

. 1E
1EFF )

(monitor)

1790
1FFF

p.1F ~

/

2000

.—
—

b . —
—

= ]:"‘not = '-'j*‘
FFFF decoded 80915-3-7

Figure 7. The page address structure of the Junior Computer. The left-hand (high
order) bytes of addresses in a page are always the same.

STXZ op-code 86 (X = M) store index X in memory
STYZ op-code 84 (Y — M) store index Y in memory

Arithmetic instructions:
ADCZ op-code 65 (A+M+C —> A)

SBCZ op-code E5 (A—M—C —> A)

INCZ op-code E6 (M+1 > M)
DECZ op-code C6 (M—1 > M)

Logic instructions:

add memory to accumulator with
carry

subtract memory from accumulator
with borrow

increment memory by one

decrement memory by one

ORAZ op-code 05 (A V M = M) OR memory with accumulator
ANDZ op-code 25 (A A M - M) AND memory with accumulator
EORZ op-code 45 (A ¥ M - M) Exclusive OR memory with accumulator

74



Relative addressing

This address mode is only used for ‘branch’ instructions, of which there
are two different types: conditional and unconditional. Unconditional
branch instructions always cause a jump whereas with conditional branch
instructions there are always certain things to take into account first.
These decisions arise from the flow chart that is made when developing a
program. The majority of flow chart symbols are converted into actual
instructions along the lines of: if flag X is set jump to subroutine A, if
flag Y is reset increment counter etc.

Conditional branch instructions have two bytes of object code. The second
byte is treated as an 8-bit, signed binary number, which is added to the
program counter after the PC contents have been incremented to address
the next program instruction. The following is a list of the conditional
branch instructions:

1. BCC op-code 90 Branch if Carry Clear (C = )
BCS op-code B@ Branch if Carry Set (C = 1)

2. BNE op-code D@ Branch if Not Equal to zero (Z = @)
BEQ op-code F@ Branch if EQual to zero (Z = 1)

3. BPL op-code 10 Branch if PLus (N = @)
BMI op-code 30 Branch if Minus (N = 1)

4. BVC op-code 50 Branch if oVerflow Clear (V = ()
BVS op-code 70 Branch if oVerflow Set (V = 1)

These instructions can now be used to develop programs. The uncon-
ditional branch instructions will be discussed later in this chapter.

Let us take a look at the flow chart in figure 8. At the start of the program
(0200) the Y register is loaded with the value @A. The next instruction is
DEY, which reduces the value in the Y register by one — thus @A becomes
09. Moving down the flow chart we come to a conditional branch instruc-
tion, BNE. From the above we discover that the microprocessor will only
effect a branch if the contents of the Y register are not equal to zero. At
present time the Y register contains 09 therefore the processor wil/ branch
back to the address containing the DEY instruction. As soon as the value
in the Y register becomes zero the processor will stop branching and the
program will stop as the last instruction is BRK. This program does
nothing more than continually decrement the contents of the Y register
until the value contained there becomes zero. Routines such as this are
often used as ‘delay loops’.

On the left-hand side of the diamond symbol containing the branch
instruction there are two hexadecimal numbers, D@ and FD. The first is of
course the instruction while the second (FD) is the displacement value
which is used to calculate the effective address. If the program is to branch
backwards (as in this case) the displacement value will be negative. A
forward branch requires a positive displacement value.

The hexadecimal equivalent of FD is 11111101 which is, in two’s comple-
ment notation, —3. As the displacement is negative the branch will be
three memory locations backwards {calculated from the address immedi-
ately following the one containing the displacement value (@205 — 3 =
0202). This may become a bit clearer from the following:
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START

0200 A9

START 1
o
D@
FD

0205 00

09202
0203

80915-3-8

Figure 8. Example of a ‘delay loop’ using a conditional branch instruction.

0200 AQ LDY

0201 QA

02¢2 88 DEY

0203 D@ BNE

0204 FD displacement value

9205 00 BRK
(You may not have realised it, but we have just discovered a new instruc-
tion — DEY — reduce the contents of the Y register by one).
The effective address is calculated from the location following the
displacement value as this is where the program counter will be pointing
once the program has reached address 3204, Remember that the program
counter is incremented before the next instruction is carried out,
The effective address can be anything up to a maximum of 127 steps
forward (+127: hexadecimal @@ . . . 7F) or 128 steps backwards (—128:
hexadecimal FF . . . 80). This provides all 256 possibilities of a single byte.

Calculating displacements with the monitor program

There are two important aspects to take into account when calculating
displacements for branch instructions: where the branch originates and
where it must end. This is quite easily seen on a flow chart such as the one
in figure 8, but when there are numerous branch instructions in a program
it is less work to let the JC perform all the calculations.

Using figure 8 as an example, this can be carried out as follows:

AD XXXX XX

1 F D 5 1FD5 D8
GO 0000

(1] 3 0 2 0302 displacement
RST

First, the address 1FD5 is keyed in. This is the start address of the monitor-
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displacement-routine BRANCH. Once the start address has been entered,
the GO key is pressed. The low order byte of the address where the branch
instruction is stored can then be keyed in (#3), immediately followed by
the low order byte of the destination address (@2). The two address bytes
will appear on the left-hand side of the display and the data displays will
show the calculated displacement {(FD). The reset key can now be pressed
and the program from figure 8 can be entered:

AD
1} 2 0 (4] 0200 xx
DA A 0 0200 AQ LDY #
+ L] A 0201 QA
+ 8 8 9202 88 DEY
+ D 0 9203 DO BNE
+ F D 0204 FD displacement
+ 0 ] 0205 00 BRK

The program can be run as normal, but it may be interesting to see what

happens in the STEP mode!

A9 LDA # 08
85| STAZ-COUNTL
85| STAZ-COUNTH

l

=
INCZ-COUNTH

AS5| LDAZ-COUNTH
c9 CMP # 20

Do
F4

o0 (o)

COUNTL = 0000
COUNTH = 0001 80915-3.9

BNE

Figure 9. Flow chart of the ‘software counter’ program.
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A software counter

With all this new knowledge of branch instructions, we are now able to
construct a counter without picking up a soldering iron! In the process we
will also become familiar with a new instruction, CMP.

This particular counter will start from zero and stop as soon as it reaches
its preset limit of 2000 (hexadecimal). The flow chart for the program is
shown in figure 9. Two bytes are required for the contents of the software
counter and these are stored {using zero page addressing) in locations
0000 (COUNTL) and 8001 (COUNTH).

Initially, the accumulator is loaded with @@ and the counter is ‘reset’
(@@ stored in both COUNTL and COUNTH). Following this the contents
of COUNTL are increased by one and we reach the first branch instruction
(BNE). This instruction tests the state of the zero flag (Z) and, as the
Z-flag is high, the program will branch to BEG2.

The accumulator is then loaded with the contents of COUNTH which is
then compared, via the CMP instruction, with the value 20 (the preset
final value for the high order byte). This new instruction (op-code C9) sets
the zero flag if the contents of the accumulator (COUNTH) and the
contents of the following byte (20) are the same. Initially, of course, the
value in COUNTH is still zero. Therefore the program will continue to the
second branch instruction and from there jump back to BEG1. When the
contents of COUNTH reach 20 the zero flag will be set, no branch will
take place, and the program will stop.

In other words, COUNTL becomes zero after every 256 cycles. This
increases the value of COUNTH by one until its value reaches 20. The
following is the actual program:

AD XXXX XX
1 F D 5 1FD5 D8  start address of
GO 0000 ®0  displacement routine
1 8 1 Cc 181C 092 displacement for first BNE
2 0 1 6 2016 F4 displacement for second
BNE
RST AD
0o 2 1 1] 0210 XX start address of program
DA A 9 0210 A9 LDA #
+ 0 g 0211 00
+ 8 5 9212 85 STAZ-
+ (/] (/] 9213 00
+ 8 5 0214 85 STAZ-
+ 0 1 0215 01
+ E 6 0216 E6 INCZ-
+ e o 0217 08
+ p o ! @218 D@ BNE
+ 0 2 10 %219 02 displacement
+ E 6 ® @21A E6  INCZ-

~!
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+ ) 1 8 2218 1 o
+ A 5 7 921C 2 A5 LDAZ-
+ o 1 6 021D 01
+ c 9 5 021E  C9 CMP#
+ 2 0 4 @21F 20 operand CMP #
+ D @ 3 9220 D@ BNE
+ F 4 2 0221 F4  displacement
+ 0 o ! @222 060 BRK
AD 0222 XX
2 2 1 0 0210 A9  start address
GO 9212 XX run

Initially, the displacement values for both branch instructions were calcu-
lated by using the monitor program. This produced the two values F4 and
@2. It is not strictly necessary to carry out this procedure each time (as we
supply the answer anyway), but it does mean that you become more
familiar with the keyboard and the monitor program.

Unconditional branch instructions

As their name implies, no conditions have to be met for these instructions
to be carried out. The first unconditional branch instruction to be
described is the JMP-instruction. This uses absolute (look out for that
hyphen) or (still to be covered) indirect addressing. When absolute address-
ing is specified the op-code is 4C. It is, therefore, a three byte instruction
the last two bytes of which contain the address location to which the
program must jump.

Figure 10 shows a memory map and a flow chart of a simple program
containing nothing but unconditional jump instructions. The program will
jump from START to locations 1, 2 and 3 in turn before jumping back to
START. It may seem a little pointless, but it is all serious work.

JSR and RTS — jumping to and from subroutines

Two more unconditional branch instructions are: JSR, Jump to
SubRoutine {op-code 20) and RTS, ReTurn from Subroutine (op-code 60).
Subroutines form a very important part of any {complex) program. If an
operation, or series of operations, has to be performed a number of times
during a program it only has to be entered once — as a subroutine.

The JSR-instructing uses absolute addressing to jump to the start of the
subroutine and once the operation has been performed the computer will
jump back to the main program exactly where it left off {provided, of
course, the subroutine ends with the RTS instruction}. This is illustrated
in figure 11. The subroutine is contained in address locations 1A21 . ..
1A3B, and it is being used twice in the main program. When the program
reaches address 0223 it discovers the first JSR instruction. The following
two locations, 3224 and 9225, contain the low order byte (ADL) and the

79



— 9000 4C
09
01
xx

XX 0000

XX

L» 9100 | ac 0100

xx 0200

—> 0200 4C
L4 9300

—> 0300 4c
00
00

XX

XX

JMP-LOC1

JMP-START

START = $000
LOC1 = 0100
LOC2 = 0200
LOC3 = 0300

80915-3-10

Figure 10. A simple program to demonstrate the use of unconditional jump

instructions.

high order byte (ADH) of the start address of the subroutine. Before
actually jumping to the subroutine the contents of the program counter
(0225) are stored in a ‘stack’. At the end of the subroutine the contents
of the stack are replaced in the program counter, the program counter is
incremented and the program will continue from this point (#226). When
instruction at address @23A it

the main program reaches the second JSR

will again jump to the subroutine and return to address 023D,

Stack and stack pointer

It is possible to jump from one subroutine
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9223
9226

SUBROUTINE 3
N

1A3B

MAIN ROUTINE

@23A
923D

80915-3-11

Figure 11. This figure illustrates the use of jump to and return from subroutine
instructions. A subroutine can be ‘jumped to’ from any part of the main program.

another and so on. This process can be likened to ‘Russian Dolls’ where
one doll fits inside a slightly larger one and they fit inside a slightly larger
one again etc. When referring to computers and subroutines this process is
called ‘nesting’.

As with the Russian Dolls, there is a limit to how many times this can be
done. This limit is called the ‘nest depth’. Another important thing to
remember when nesting subroutines is that for every JSR instruction there
must be an equivalent number of RTS instructions. If the number of
instructions is not equal, the computer will stop at the end of a subroutine
and the program will ‘crash’.

For every jump instruction there has to be a return instruction, and for
every jump address there has to be a return address. The computer itself
keeps a record of all the return addresses by means of the stack. This is an
area of memory where the return addresses (two bytes per address) are
arranged in a certain order. The return addresses are placed on the stack in
the order they are encountered and they are removed in the reverse order
(last in, first out).

Figure 12 illustrates the nesting of subroutines. The program jumps to
each of the four subroutines in turn, and the last one (subroutine 4) is
completed first. The remaining three subroutines are completed in the
reverse order before the computer returns to the main program. This can
be likened to the ‘letter spike’ shown in figure 12b. The sheets of paper
have to be removed in the reverse order that they were placed on the
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letter ‘spike’

@1F8
91F9
91FA
01FB

81FC
91FD
PIFE

P1FF

XX
XX
XX
XX
XX
XX
ADHI
ADLI

step@and é

subrou-
tine 1

80915-3-12b

subrou-
tine 2

91F8
91F9
01FA
@1FB
01FC
@1FD
O1FE
Q1FF

XX
XX
XX
XX
ADHI
ADLII
ADHI
ADLI

step@and @

subrou-

tin

e3

subrou-
tine 4

80915-3-12a

01F8
91F9
01FA
01FB
91FC
01FD
O1FE
01FF

XX

XX
ADHIII
ADLII
ADHII
ADLI}
ADHI
ADLI

step@and @

01F7
91F8
91F9
91FA
91FB
P1FC
@1FD
91FE
#1FF

XX
ADHIV
ADLIV
ADHIII
ADLIII
ADHII
ADLN
ADHI
ADLI

stepand @

80915-3-12¢

Figure 12. The nesting of subroutines (12a) can be likened to the use of a letter
‘spike’ (12b). The memory map (12c) shows the contents of the stack and stack
pointer for each jump and return instruction.
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‘spike’. It can also be seen from figure 12a that the nest depth is almost
unlimited.

The Junior Computer uses the 256 memory locations of page one as the
stack. This means that up to 128 return addresses can be stored between
®1FF and 0100 (01FF is the ‘bottom’ of the stack).

Also in figure 12, a memory map shows that the return addresses are
loaded onto the stack from bottom to top (compare this with figure 12b!).
This means that the first return address is loaded into memory locations
P1FF and @1FE. The low order address byte is loaded into location @1FF
and the high order address byte into @1FE. We can also see that the stack
pointer points to the first empty location in the stack. The only thing that
is not shown is that the return address is determined by the contents of
the program counter before the jump to the subroutine. This can be seen,
however, in the program shown in figure 13.

The program runs straight through (that is without subroutines) up to and
including address $215. When it reaches address 0216 the op-code (20) for
the JSR instruction is found. The start address of the subroutine is then

\T

91FC
1FD
91FE
OIFF

0215 o~
0216 20 JSR
0217 % |ADL | ADH ADL
0218 93 |ADH 93 00 { OP.CODE
9219 OP-CODE ﬁ XX
021A XX
0218 . SUB-
ROUTINE
MAIN
ROUTINE
/,‘//':; 9306 60 RTS

80915-3-13

Figure 13. Section of program illustrating the use subroutines and the function of
the stack and stack pointer.
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found in locations 8217 (ADL = 0@) and @218 (ADH = @3). The present
contents of the program counter are then ‘pushed’ onto the stack in page 1
of memory. Therefore, the low order byte, @2, will be loaded into address
@1FF and the high order byte, 18, will be loaded into address @1FE. The
computer will then jump to the start address of the subroutine (#300) and
continue from there until the instruction RTS (op-code 6@) is discovered
in address location 0306. This instruction utilises ‘implied’ addressing
(still to be covered) which means that the return address will be found on
the top of the stack. This return address is then retrieved from the stack
and replaced in the program counter. Before jumping back to the main
program, however, the contents of the PC are incremented by one. The
actual return address, therefore, becomes the stack address plus one!

Some more fingerwork

We feel that it is high time to start entering things into the computer and
actually see these things happening. In the process we will also learn about
a few interesting ‘tricks’ contained in the monitor program.

Firstly, we want to develop a program that displays the value of each of
the keyboard switches in hexadecimal form. The various keys will be
assigned the following values:

o :00 5 :056 A:0A F :0F PC :14

1 :01 6 :06 B :0B AD:10

2 :02 7 :07 C:9C DA:11

3:03 8 :08 D:0D + :12

4 :04 9 :09 E :QE GO :13

The values assigned to keys @ . . . F are quite straightforward, the rest are
more or less arbitrary. The object of the exercise is to produce the corre-
sponding hexadecimal value of a particular key on the two centre displays.
Before we actually enter the program to do this, it is worthwhile taking
a closer look at the monitor program. This contains a short routine called
SCANDS which displays the contents of address locations OBF9, PBFA

Di1 Di2 Di3 Di4 Di5 Di6

g

HIN 1 HI2 102 HI3 3
Lo ¢ J [+ 13 ][9 ; J
00FB POFA #0F9
POINTH POINTL INH

80915-3-14

Figure 14. The contents of three display “buffers’ can be displayed as shown here by
utilising a routine called SCANDS contained in the monitor program.
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and QOFB as shown in figure 14. Each display will show half of the
particular byte. The routine SCANDS first obtains the four most
significant bits of address P@FB, converts them into seven-segment code
and passes this information to the left-hand display. The four least
significant bits of the same byte are similarly decoded and this information
is passed on to the second display. The contents of locations @@FA and
OOF9 are indicated on the remaining four displays in the same manner,
The next thing is to determine whether or not a key is being depressed.
This can be accomplished with the routine TK (Test Key), which is called
up by the SCANDS routine. As soon as a key is depressed, its value has to
be displayed. Again, the monitor program contains a routine called
GETKEY which does exactly this.

A rough flow chart for the program is shown in figure 15. As the two
centre displays are to show which key is being depressed, the remaining

START

f

BGOF9 —~ 00
00FA ~ 00
GOFB - 00

SCAN1

i

SCANDS
+TK

i

SCANDS
+TK

:

SCANDS
+TK

{

GETKEY

80915315
KEY - DISPLAY

i

Figure 15. Rough flow chart of the program to detect, identify and display the value
of a particular key. The program uses subroutines that are contained in the monitor
program.
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displays must always show @@. Therefore, the first operation is to store 00
in address locations @OFB and @@F9. The next section of the program
(SCAN1) contains the SCANDS + TK subroutine with which the contents
of locations @OF9, POFA and @BFB are shown on the display. This sub-
routine also checks to see whether a key is being depressed. Via the
conditional branch instruction, BNE, the program will always jump back
to the start of SCAN1 if no key is pressed. As soon as a key is depressed,
however, the program will carry on to SCAN2. This section of the program
also contains the subroutine SCANDS + TK, but this time the program will
check to see whether the key has been released. This check is actually
carried out twice as a form of ‘software debouncing'.

The last section of the program contains the GETKEY subroutine. This
routine ensures that the key is given the correct hexadecimal value which
is then stored in address location @@FA. The program then jumps back to
SCAN1 and waits until another key is depressed.

A more detailed flow chart is shown in figure 16. As can be seen, there is

START

A9 LDA # 09
85 STAZ-INH
85| STAZ-POINTL

85| STAZ-POINTH

) INH - 09F9

29[| ssmeeTkev ][] WM -2

85| STAZPOINTL POINTH - BOFB

SCANDS ~ 1D8E

4C{ JMP-SCAN1 GETKEY - 1DF9
—_[ 80915-3-16

Figure 16. Detailed flow chart of the program given in figure 15.
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not that much difference between this and the rough flow chart. The
correct instructions, together with their op-codes, have been included next
to the relevant symbols. The ‘return from subroutine’ instructions are not
included in the main program, they are handled by the monitor program.

As always, before entering the program, the displacement values have to be
calculated (and noted!):

AD
1
GO
0
1
1
RST
AD
/]

[}
>

+ o+ F + F A+ F FF o FFFE o+ o+

=4

=2 )

0 = M NN T T=00NTTT = 0NTQO=0NTOOTOOT NS >

[wiw}

O QD WSe OSe UMmses e gMse W & UM MmO > ot O o1& ©S

XXXX
1FD5b
0000
9B08
100D
150D

0200
0200
0201

0202
0203
0204
0205
0206
0207
0208
0209
020A
0208
020C
020D
020E
020F
0210
0211

0212
0213
0214

0215
0216
0217
0218
0219
021A

XX
D8
00

—> note displacement
-> note displacement
—> note displacement

XX
A9
00
85
F9
85
FA
85
FB
20
8E
1D
Do
FB
20
8E
1D
Fo
FB
20
8E
10
Fo
F6
20
F9
1D
85

LDA #

STAZ—
INH
STAZ—-
POINTL
STAZ—-
POINTH
JSR—

SCANDS + TK

BNE

JSR—
SCANDS + TK

BEQ

JSR—
SCANDS + TK

BEQ

JSR—
GETKEY

STAZ-
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+ + 4+ +

AD
)
GO

GO
6
AD
DA
B

e & T

A 0218 FA POINTL.

C 921C 4c JMP—

8 021D 08 SCAN 1

2 921E 02
@21E 02

'] 0200 A9 start address
0000 00 program runs as long as

no key is depressed

0013 00 key value GO (11!)
0006 00 key value 6
0010 00 key value AD
2011 00 key value DA
0008 00 key value B

and so on — ad nauseum:

RST

Once the start address (0200) has been entered, the GO key is depressed
twice. The first time to set the program running, and the second time as an
example — the value 13 will appear on the centre displays.

(some of which we have already discovered):

BRK op-code 00

CLC
CLD
CLi

CLV
DEX
DEY
INX

INY

NOP
PHA

op-code 18
op-code D8
op-code 58
op-code B8
op-code CA
op-code 88
op-code E8
op-code C8
op-code EA
op-code 48
op-code @8
op-code 68
op-code 28
op-code 40
op-code 60
op-code 38
op-code F8
op-code 78

Implied addressing

The term ‘implied addressing’ is used to describe instructions that identify
one of the programmable registers. These are single byte instructions and
are used, for instance, to transfer data from one register to another, or to
set/reset various flags etc. There are twenty-five instructions of this type

BReaK
Clear Carry

CLear Decimal mode
CLear Interrupt flag
ClLear oVerflow flag

DEcrement X register by one
DEcrement Y register by one
INcrement X register by one
INcrement Y register by one

No OPeration

PusH Accumulator onto stack

PusH Processor status register onto stack
PulL Accumulator from stack

PulL Processor status register from stack
ReTurn from Interrupt

ReTurn from Subroutine

SEt Carry fiag

SEt Decimal flag

SEt interrupt flag



TAX op-code AA Transfer Accumulator to X register
TAY op-code A8 Transfer Accumulator to Y register
TSX op-code BA Transfer Stack pointer to X register
TXA op-code 8A Transfer X register to Accumulator
TXS op-code 9A Transfer X register to Stack pointer
TYA op-code 98 Transfer Y register to Accumulator

We can now go on to describe them in more detail.

SED and CLD

The 6502 instruction set makes it possible to calculate in decimal as well
as in binary. After the instruction SED (SEt Decimal flag) the computer
will operate in the decimal mode. This means that the carry flag is set
whenever the result of a calculation exceeds 99 (hexadecimal 10011001)
and not FF (hexadecimal 11111111). When the decimal flag is reset (with
the instruction CLD) the computer will continue to operate in the binary
mode.

A useful tip: If the computer is required to operate in the binary mode,
it is advisable to start the (section of) program with the instruction CLD.
This will ensure correct operation — it is quite easily forgotten that the
flag was set elsewhere in the program!

Note: The computer will always be in the binary mode after a reset (RST
key) operation.

NOP (do nothing)

No matter how proficient a computer programmer becomes there is
always the possibility of leaving out an important instruction in the middle
{or more usually at the beginning) of a program. This means, of course,
that the program will not run and a certain amount of ‘de-bugging’
becomes necessary. The wise programmer, however, will always include a
proliferation of NOP instructions scattered randomly around the program
before the final (working) version is drawn up. By doing this the extra
instructions can be inserted where required without having to re-enter the
whole program. If, on the other hand, some instructions are found to be
superfluous they can be replaced with NOP instructions without affecting
the rest of the program. It is not, therefore, such a ‘do nothing’ instruction
as may appear at first sight.

Push-Pull-Transfer

All implied instructions whose mnemonics begin with a P or a T infer
that data transfer must take place between the internal registers. There are
many reasons why such instructions are necessary. For instance, imagine
that we are using the X register in the main program and we then want
to jump to a subroutine which aiso uses the X register. Before jumping to
the subroutine the contents of the X register have to be stored in a safe
place so that they can be returned to the X register once the subroutine
has been completed. The most obvious place to store the contents of the
X register is, of course, the stack. The actual procedure could be as
follows:
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TXA transfer contents of X register to accumulator

PHA push contents of accumulator onto stack

JSR-xxxx  jump to subroutine {and do what you like with the
X register)

RTS return from subroutine

PLA replace the contents of the stack in the accumulator

TAX replace contents of accumulator in X register

The following could also have been done:
STX-SAVX store the contents of the X register in memory location

SAVX
JSR-xxxx  jump to subroutine (X register free for use)
RTS return from subroutine

LDX-SAVX replace the contents of SAVX in the X register

Although the former method looks longer on paper, it actually uses less
(instruction) bytes and is therefore preferable. It can be seen that if the
contents of the A, X, Y and P registers had to be saved, the second method
would be much longer still.

SAVE

48 PHA A - Stack
8A TXA X - Stack
48 PHA
98 TYA Y - Stack
48 PHA
98 PHP P - Stack
28 PLP Stack > P
68 PLA
A8 TAY IStack > Y
68 PLA
AA‘ TAX Stack - X
68 PLA Stack —+ A
{
| soe15317

Figure 17. These two subroutines contained in the monitor program save and restore
the contents of various registers.
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To cut corners even further, the monitor program contains subroutines to
perform the above operation. The subroutine SAVE places the contents of
the various registers onto the stack and the subroutine RESTO replaces the
contents of the stack into the relevant registers.

Figure 17 shows the two subroutines. The SAVE routine first pushes the
contents of the accumulator onto the stack followed by the contents of
registers X, Y and P (via the accumulator). The RESTO routine does
exactly the opposite in that it first replaces the contents of the P register
followed by the Y and X registers with the accumulator bringing up the
rear.

The stack pointer (internal register S) always points to the next following
stack address. After calling up the monitor program (by depressing RST)
the last address of page 1 (P1FF) is automatically pointed to. It is also
possible to change the start address of the stack pointer as follows:

LDX L 81 load the X register with 81
TXS transfer the contents of the X register to the stack

The stack pointer will now point to address location 3181. Care must be
taken when altering the start address of the stack as this could well mean
that the program may run out of stack addresses. The availability of stack
addresses can be tested by using yet another monitor subroutine, this time
STKCHK. This routine ensures that whenever the highest stack address
(0100) is exceeded, an error signal is shown on the display (EEEEEE).
After an error, the JC enters a loop and will only return to the monitor
program if the RST key is depressed. This subroutine is shown in figure 18
and is especially useful for larger programs. We will come back to it a little
later on, but first, a bit more about implied addressing that has not yet
been covered.

Shift and rotate instructions

These four single-byte instructions are variations of the implied instruc-
tions and are used to manipulate the contents of the accumulator. The
instructions ASL, LSR, ROL and ROR (the shift and rotate instructions)
are used in all sorts of mathematical operations. The first of the four
instructions, ASL — Arithmetic Shift Left (op-code @A) — moves each bit
of the byte in the accumulator one position to the left:

b7 b6 b5 b4 b3 b2 bl b0
C=x p q r s t u v w

ASL

|

C=p q r s t u v w 0

The bit positions are indicated along the top. Each bit value has been
assigned one of the letters p . . . w for clarity. As can be seen, all of the
bits have moved one place to the left. The extreme right-hand bit has
become zero and the value of the extreme left-hand bit determines the
state of the carry flag c is set if p was high and reset if p was low. The
N-flag becomes set if bit seven (q) was high and the Z-flag is set if the

91



STKCHK

86 STX-TEMPX
BA TSX
EQ CPX # @F
‘
OE
A2 LDX # EE

86 STX-INH
86 STX-POINTL

86 STX-POINTH

20 || Jsmscanps
ac|  JMPERR

LDX-TEMPX

A6

60

SCANDS -~ 1D8E 80915.3-18
TEMPX - 0@FD

Figure 18. The monitor routine STKCHK which tests for the availability of further
stack addresses. An error indication is given if there is no more room on the stack.

accumulator contents become 0PPPPABP — eight consecutive ASL instruc-
tions!

LSR-Logical Shift Right (op-code 4A). This instruction causes all the bits
in the accumulator to be shifted one position to the right:

b7 b6 b5 b4 b3 b2 bl b
p g r s t u v w C=x

LSR

® p g r s t u v C=w

This time all the bits have been shifted one place to the right. The extreme
left-hand bit becomes zero and the value of the extreme right-hand bit (w)
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determines the state of the carry flag. The N-flag is not set by this instruc-
tion. Again, the Z-flag will only be set if the value in the accumulator
becomes POODOODO.

ROL-ROtate Left (op-code 2A). This instruction is similar to ASL in that
all the bits are again moved one position to the left:

b7 b6 b5 b4 b3 b2 bl b
p g r s t u v w C=x

g r s t u v w x C=p

The difference between ROL and ASL is that this time the initial value of
the carry bit is shifted into b@. For all the other bits the result is the same
as that for the ASL instruction.

ROR-ROtate Right (op-code 6A). Once more each bit is moved to the left:

b7 b6 b5 b4 b3 b2 b1 bo
p g r s t u v w C=x

ROR

|

Xx p g r s t u v C=w

The difference between this instruction and LSR is that here the initial
value of the carry bit replaces b7. For all the other bits the result is the
same as for the LSR instruction.

The difference between shifting and rotating is that the value of one of the
end bits is lost when using shift instructions, but is kept when rotate
instructions are used.

An example of shifting and rotating

We already know that when entering data into the Junior Computer the
information on the displays is shifted along from right to left. We also
know from figure 14 that the information to be displayed is stored in and
processed by three buffers — memory locations @@F9 . . . BBFB. The infor-
mation to be displayed is shifted and rotated as shown in figure 19.

As soon as a key is depressed the SHIFT routine in the monitor program is
performed. This moves the display information four bits to the left, which
is equivalent to one display digit. Therefore, after the SHIFT routine, the
five digits to the right will move one position to the left, the extreme left-
hand digit will be lost and the new digit will appear on the right-hand side.
This new digit is, of course, the same one that caused the SHIFT routine
to be performed in the first place.

The actual operation of the routine is as follows. After the ASL instruc-
tion b® of the INH byte becomes zero and the content of the carry bit is
replaced with b7. The next instruction causes bit is replaced with b7. The
next instruction causes the contents of byte POINTL to be rotated to the
left. The carry bit is shifted into b@® of POINTL and b7 of POINTL is
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b7 bp b7 bg¢ b7 bd
\. - 7 \, " 7 \ v 7
POINTH POINTL INH
-
Pra—
SHIFT LEFT

SHIFT

A9

SHIFT 1

96 ASL-INH

26 ROL-POINTL

26 ROL-POINTH
88 DEY
@5 ORA-INH

85 STA-INH

l 80915-3-19

Figure 19. Operation of the monitor routine SHIFT which moves the display
information one digit to the left.

shifted into the carry bit. The same thing happens to POINTH during the
next ROL instruction. So far, b@ of the INH byte has been replaced with
zero and b7 of POINTH has been placed in the carry bit. This whole
procedure is repeated four times which means that the carry bit is lost
after the next ASL instruction. The result is that all the bits in the three
bytes are shifted four places to the left and the four high order bits of
POINTH are lost. The last two rectangles in the flow chart of figure 19 are
for the newly entered digit.

The following program uses the above instructions and certain monitor
routines.
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Decimal addition

There are many ways to add two decimal numbers: we can buy a
calculator for a few pounds, a pencil and paper for a few pence; or we can
take the difficult way out and design a ‘software calculator’. As you have
probably guessed, we are going to take the latter course of action so that
we can learn how to use some of these new instructions.

We want to add two numbers as follows:

XXXXXX+YYYYYY=222Z2ZZZ
first number second number result

There are, however, a few rules:

When entering the numbers they must be displayed from right to left. The
extreme left-hand digit must represent the most significant number
(htindreds of thousands) and the extreme right-hand digit the least signifi-
cant number {ones). The display must be cleared before a number can be
entered.

The keys @ . .. 9 are required to enter the digits. The DA key (11) will
perform the ‘=’ operation and the ‘clear’ function will be performed by the
AD key (10). The actual addition will take place upon pressing the ‘+' key.
If the result of the addition is larger than 999999 an error signal will have
to be displayed. Finally, if a number is entered incorrectly the ‘clear’ key
must be able to ‘erase’ it and then the user will be able to enter the correct
number.

Figure 20 shows the flow chart for the addition of two decimal numbers.
It may appear rather complicated at first sight, but it can be broken down
into the nine subroutines given in figure 21.

Twelve memory locations are required to store the miscellaneous data and
their ‘names and addresses’ are listed below:

POINTH| POINTL | INH | display-buffers
00FB QFFA POF9

B12 B11 B10 | buffers for the first number
0002 0001 G000
B22 B21 B20 | buffers for the second number

0005 0004 0003
R2 R1 RO buffers for the result
0008 0007 0006

The program (figure 20) starts with CLEAR1. This part of the program
simply enters @0000POD into the display and number buffers (see also
figures 21d, 21e and 21f). In the next section (FIRST) the program jumps
to the subroutine KEYDIS (figure 21c), which uses the SCANDS and
GETKEY routines contained in the monitor program. We are already
familiar with these routines: the keyboard scan and the software
debouncer. If a key is being pressed the routine GETKEY will determine
which one it is and its value will be held in the accumulator upon returning
from KEYDIS. A test is then carried out via the CMP # 10 instruction to
see whether the CLEAR (AD) key was pressed and if so, the program will
jump back to CLEAR1. If the CLEAR key was not depressed a further
test is carried out (CMP # 12) to see whether it was the '+’ key. If not, we
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CLEAR1

29 JSR-CLDISP
20 JSR-CLB1
29 JSR-CLB2

i

FIRST

)

20[] ssrkevoIs
co]l cMP#10

i

CMP # 12

j

20| JsrsHIFT |
ac|  JMP-FIRST

PLUS

29 JSR-STO1
20 JSR-CLDISP

A

i

SECOND

i

20| ssrkevors |
co| cmp#10

j

CMP # 11

BEQ

20f  JsrsHIFT |
4C|  JMP-SECOND'

CLEAR2

i

29 l JSR-CLDISP
4Cf JMP-SECOND

EQUAL

20 JSR-ST@2
20 JSR-ADD
29 JSR-RESDIS
29 JSR-CLB1
29 JSR-CLB2
4Cc JMP-FIRST

b

80915-3-20

Figure 20. The main program for the addition of two 6-digit decimal numbers.
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can presume it was one of the keys @ . . . 9 in which case the program will
jump to the SHIFT routine (figure 21a) to display the particular digit.
When the ‘+' key is depressed the program will move on to the third
section (PLUS). This section stores the value of the first number into its
buffer via the STO1 subroutine (figure 21h) and clears the display ready
for the second number via the CLDISP subroutine (figure 21f).

The following section of the program (SECOND) obtains the value of the
second number in exactly the same way as FIRST. Again, the key is tested
to see whether it was the CLEAR key, in which case the program jumps to
the subroutine CLDISP. The only difference is that this time the ‘=’ is also
tested (CMP # 11) and if it is depressed the program will enter the final
section (EQUAL). The contents of the display buffers are stored via STO2
(figure 21g). Then, via the ADD subroutine (figure 21b), the two decimal
numbers are added together and the result is stored in the buffers
RO . . . R2. The result is then displayed via the RESDIS subroutine
(figure 21i). At the same time the two number buffers are cleared via the
subroutines CLB1 and CLB2, in case a new addition is to follow immedi-
ately.

From this program it can be seen that the use of subroutines makes pro-
gramming work much easier and they also enable a program to be
‘followed’ without too much difficulty.

a b c
ez R 20 Csmsommos |
18 cLc Do ¢
As|  LDAZ810
65| ADCZ-B20
96|  ASLZINH 85| STAZR®
26| ROLZ-POINTL A5|  LDAZ-B11
26| ROLZ-POINTH 65| ADCzB21
88 DEY 85| STAZR1

Do ¢ as|  LDAZB12 20| ssrscanps ]
65| ADCzB22 Fo ¢
95] ORAZINH

85|  STAZR2
85| STAZINH 20|| ssRGETKEY |]

D8 CLD

60 RTS 60
60 RTS

80915-3-21a 80916-3-21c
80915-3-21b

Figure 21. The nine subroutines required for the program (figure 20) to add two
decimal numbers.
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CLB1

Ia

A9 LDA # 09
85 STAZ-B190
85 STAZ-B11
85 STAZ-B12

60 RTS

80915-3-21d

STO2

Im

A5 LDAZ-INH
85 STAZ-B20
A5| LDAZ-POINTL
85 STAZ-B21
A5} LDAZ-POINTH
85 STAZ-B22

60 RTS

80915-3-21g

B16 - 0000
B11 - 6001
B12 -~ 0002

B20 - 0003
B21 - 0004
B22 - 0005

CLB2

I.

A9 LDA # 00
85 STAZ-B20
85 STAZ-B21
85 STAZ-B22

60 RTS

809153-21e

STO1

I,

A5 LDAZ-INH
85 STAZ-B1¢
AS5| LDAZ-POINTL
85 STAZ-B11
A5] LDAZ-POINTH
85 STAZ-B12

60 RTS
809163-21h

RO - @006
R1- 0007
R2 - (008

INH > 00F9
POINTL - OOFA
POINTH - @@FB

Absolute indexed addressing

CLDISP

I,

A9 LDA # 00
85 STAZ-INH
85| STAZ-POINTL
85| STAZ-POINTH

60 RTS

80915-3-27f

%

A5 LDAZ-R0
85 STAZ-INH
A5 LDAZ-R1
85| STAZ-POINTL
A5 LDAZ-R2
85| STAZ-POINTH

60 RTS

80915-3-21i

SCANDS —~ 1D8E
GETKEY - 1DF9

In this address mode, the contents of either the X or the Y index register
are added to the 16-bit direct address provided by the second and third
bytes of the instruction. The above may seem rather long-winded, but this
address mode does simplify programming.
To recap, absolute address instructions consist of three bytes, The first for
the actual instruction op-code and the following two bytes (ADL and
ADH) for the direct address. Absolute indexed addressing is a variation of
absolute addressing. Again, there are three bytes, The first for the actual
instruction op-code, but this time the contents of the X or Y index
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register are added to the direct address contained in the following two
bytes before the instruction is executed. If, for instance, the contents of
the X or Y register were xx and the contents of ADH and ADL were pp
and qq respectively, the effective address would become ppaq + xx.

To illustrate this address mode further we can examine the three tables
shown below. A table is a set of consecutive address locations intended for
the storing of data or results. Absolute indexed instructions are ideal when
a table has to be filled with the results of an operation performed on two
{or more) others:

TAB1: 0120 TAB2: 0011 TAB3: 0300
0120 01 0011 10 0300 1
0121 02 0012 20 @301 22
0122 03 0013 30 0302 33
0123 04 0014 40 0303 44
0124 05 0015 50 0304 55
0125 06 0016 60 0305 66
0126 07 o017 70 0306 77
0127 08 0018 80 @307 88
0128 09 0019 90 0308 99
9129 PA 001A AD 0309 AA

Tables 1 and 2 contain the numbers which have to be added together,
Table 3 contains the results of the additions. Each table is denoted by its
start address. The line being worked on is determined by the contents of
the X register.

The flow chart for the program to perform this operation is shown in
figure 22. The actual addition takes place in the section labelled IND1.

INDEX

LDX # 09

BD| LDA-FIELD1,X

18 CLC
7D| ADC-FIELD2,X
9D| STA-FIELD3,X
CA DEX

B>
F3

80915-3-22
(o )

Figure 22. Program using absolute indexed addressing for the addition of numbers
contained in two tables with the result stored in a third.
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The accumulator is first loaded with the contents of a given memory
location in TAB 1. After the CLC instruction (clear carry for binary
addition) the contents of the same line in TAB 2 are added (ADC) and the
result is stored in the corresponding line of TAB 3 {(STA).
The program starts by loading @9 into the X index register, the addition is
then performed and the contents of the X register are reduced by one. The
first number is therefore extracted from address location 3120 + 09 = @129
of TAB 1, the second from location @311 + @39 = @31A of TAB 2, and the
result of the addition is stored in location 8300 + @9 = 0039 of TAB 3. In
other words, the program begins at the bottom line of the tables and
works its way up to the top line.
The addition can also be performed using the ‘old’ method of absolute
addressing:

1st byte: LDA-op-code

2nd byte: ADL data to be loaded

3rd byte: ADH data to be loaded

4th byte: CLC for binary addition

X-REGISTER
10 “9di1 ] TAB2
20
3¢
40 | | 0911+p4
50 | (9015 ]
60

»E:;3:'-:
o | (i) Tae
92
@3

04 | 0120494

95 (9124 |

| —
—

xx 0300+94
55 sTAX

I T el
/r 80915-3-23

Figure 23. Memory map of the program in figure 22 when the value of the X register
is @4.
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5th byte: ADC-op-code

6th byte: ADL data to be added

7th byte: ADH data to be added

8th byte: STA-op-code

9th byte: ADL data to be stored
10th byte: ADH data to be stored

And this is only for one line of the tables!!

Using the above as an example, this means that 10 x 10 = 100 memory
locations are required for the full program. When compared with the
program given in figure 22, which only requires 16 memory locations from
start to finish, it can be seen that there is a valid reason for using absolute
indexed addressing. Figure 23 shows the memory map of the program
when the contents of the X register are (4.

Another example where absolute indexed addressing is indispensable is
shown in the program (MOVE) in figure 24. The object of this exercise is
to copy the contents of one address field (FROMAD, location §172) to
another (TOAD, location @3A®). The program, in fact, transfers a block of
data from one address area to another. Initially, the X register is loaded
with 04. After a data transfer has taken place the contents of the
X register are reduced by one. The data at address @172 + 04 = 0176 is
loaded into the accumulator and then stored in address O3A0 + (4 = B3A4.
This continues until the X register becomes negative whereupon the
program jumps back to the monitor. The program can be entered as
follows:

AD XXXX XX
o 2 0 0 0200 xx
DA A 2 0200 A2 LDX#
+ o 4 0201 o4
+ B D 0202 BD LDA-X
+ 7 2 0203 72 ADL of FROMAD
+ o 1 0204 01 ADH of FROMAD
+ 9 D 0205 9D STA-.X
+ A 0 0206 A0 ADL of TOAD
+ ® 3 0207 03 ADH of TOAD
+ C A 0208 CA DEX
+ 1 o 0209 10 BPL
+ F 7 020A F7 displacement
+ 4 C 0208 4C JMP
+ 3 3 ©020C 33 ADL of monitor routine
+ 1 C 020D 1C  ADH of monitor routine
AD 020D 1C
e 2 © 0 020 A2
GO 9200 A2 program start

Upon completion, the program jumps to the monitor and the start address
is shown on the displays.
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LDX # 04

BD|LDA - FROMAD,X
9D| STA-TOAD.X
CA DEX

MONITOR: IC33

4c (RESET)

9172
|FROMAD> AA
L4

P ~N
- wpnfuwjpupn
b

83A0
an

S
tAAAA

80915-3-24

Figure 24. A program which copies a block of data from one area of memory to
another.

Note: The X and Y registers are eight-bit registers. This means that a
maximum of 256 data bytes can be re-located in this manner.

Zero page indexed addressing

This is a further variation of absolute and absolute indexed addressing.
In this instance, only the low order address byte (ADL) and the op-code
have to be entered. The high order address byte is always the same (0@).
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The effective address is calculated from the data byte immediately fol-
lowing the instruction op-code plus the contents of the X or Y index
register.

It should be noted that zero page indexed addressing is ‘wraparound’. This
means that if the sum of the index register and the low order address byte
exceeds 265 (FF) the carry bit will be discarded. In other words, if the
contents of the X or Y index register were 8B and the low order address
byte was B1, the effective address would become @@3C not #13C.

Indirect addressing

The end of the tunnel is in sight! The last of the address possibilities is
about to be described.

Instructions that use simple indirect addressing consist of three bytes. The
first for the actual op-code, and the second and third provide a 16-bit
address where the actual address can be found. This means that the
indirect address can be located anywhere in memory. Sounds complicated?
Not really.

As an example, let us assume that we wish to jump to another part of the
main program, but we do not know the actual address that we want to
jump to. We do know, however, that the actual jump address is stored in
location 2B84. The op-code for the jump (JMP) instruction when using
indirect addressing is 6C. Therefore, the full instruction would be 6C842B.
If, for instance, locations 2B84 and 2B85 contained #6 and 1A respect-
ively, the program would jump to address 1ADG.

Indirect indexed addressing

There are two forms of indirect indexed addressing: pre-indexed indirect
addressing and post-indexed indirect addressing. In both cases page zero is
used to compute the effective address and the instruction code, therefore,
is two bytes long.

Post-indexed indirect addressing

To recap, figure 25a shows how the accumulator is loaded with the
contents of address location 821A using absolute indexed addressing (with
the Y register). The portion of program looks like this:

B9 LDA-ABS)Y
1A ADL of address from which data is to be loaded
02 ADH of address from which data is to be loaded

As the Y register contains @@, the data contained in address location
021A + 00 = 021A (B3) is loaded into the accumulator. The essential
feature of the above is that the address where the data is to be found must
be known.

Post-indexed indirect addressing uses the Y index register to compute the
effecf;ive address. The second byte of the instruction specifies a location in
the first page of memory where an indirect address can be found. The
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XX | LDA-ABS)Y v

ADH ADL | XX

aesy[ @z | 1A )| 83 —LDA-021A,Y—>A

XX
XX B9  LDA-ABSY
1. 1A aADL
T 92 ADH

80915-3-25a

b T— T

POINTH poNTL XX | tDAPOINTLLY [ 08 v
=G0FB__=00FA, | XX

uno)Ly[02 T A )| a3 ——LDA-(FA),Y)—PA

XX
XX

B1 LDA-(IND),Y
——-—" FA (POINTL)

80915-3-25b

Figure 25. Comparison of the load instruction using absolute indexed addressing and
post-indexed indirect addressing. The latter is one byte shorter!

contents of the Y register are then added to this indirect address to
provide the effective address. Figure 25b shows that the same results can
be obtained by using post-indexed indirect addressing, but with one less
memory location being used. The actual instruction is in fact:

B1 LDA- (IND),Y
FA (POINTL)

The effective address is calculated as follows. The memory locations @OF A
and PPFB (POINTL and POINTH) contain the ADL and ADH of the
indirect address respectively. By instructing the computer to look at
address @@FA the complete indirect address (#21A) is found automati-
cally. The contents of the Y index register (in this case ®@) are then added
to this indirect address to provide the effective address. Once again, the
contents of @21A (B3) will be loaded into the accumulator. This can also
be represented by the following:

contents of address @OX X + 00O 1
l . ————contents of address @OX X
UUUUUUVUVVVVVVVV

second byte of the instruction
YYYYYYYY—+—contents of the Y register (8-bits)

PPPPPPPPPPPPPPPP effective address = actual
operand of the instruction

104



where any carry produced by adding bytes V and Y is added to byte U.
The actual addition is carried out in the Y index register.

Block transfer

We have already seen that it is possible to move up to 256 bytes from one
memory location to another. We are now able to extend this facility and
write a program which is able to transfer up to 255 blocks of 256 bytes!
This gives a total of 65,280 bytes. The program also illustrates the use of
post-indexed indirect addressing instructions.

Before we explain the actual program in detail let us take a look at the
memory map shown in figure 26. Here we can see that two data blocks
consisting of 256 bytes each are to be moved to a different area of
memory.

The first address of the first block is 0200 and the end address is @2FF.
This address is also found in two memory locations on page zero;
BEG = 00 and BEG + 1 = @2. This first data block has to be moved to the
area A800 . . . A8FF. The first address of this area is also found in two
locations of page zero: MOV = @@ and MOV + 1 = A8, The various address
locations on page zero have been assigned labels as follows:

BEG : location PPPO. Contents are called FRADL and are equal to 00

BEG+ 1 : location @001. Contents are called FRADH and are equal to
02

MoV : location @P@2. Contents are called TOADL and are equal to
00

MOV + 1 : location @P@3. Contents are called TOADH and are equal to
A8

BLOCKS : location 0@@4. Contents are called N and are equal to 02
{(number of blocks to be moved)

The labels are logical enough; FR stands for FRom and TO is seif explana-
tory; ADL (low order byte) and ADH (high order byte) should be familiar
by now,

The actual program for moving data blocks is not as complicated as you
might expect. 1t consists of two (sub)routines whose flow charts are shown
in figure 27. The start of the program (DEFMOV) simply stores the
correct (indirect) address information into the locations 000@ . . . 004 on
page zero. Once all this information has been stored the program jumps to
the subroutine BLMOVE to effect the transfer.

The first thing this subroutine does is to load the X register with the
contents if BLOCKS (82). The X register is in fact used as a block counter.
The Y register is used to inform the computer how far the transfer in a
given block has progressed. Initially, the Y register is loaded with 0@.

In the section called LOOP the processor loads the accumulator with the
contents of 0200+ 00 (Y =00) and stores that data in location
A800 + 0@. The Y register is then decremented (= FF) and the data from
location 9200+ FF is stored in location A80Q + FF. The Y register is
again decremented (= FE) and the process continues until the Y register
contains O@. As soon as this happens the contents of BEG+ 1 and
MOV + 1 are incremented ready for the next block of data and the
contents of the X register are decremented. The program then jumps back
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18 = A'9SZIAON

Z8 = A'SSZIAON

BLOCK 2

BLOCK 1
X=1

X=2

€8 = A'¥SZIAOW

80915-3-26

04 = A'SIAON

ad = A'P3AON

34 = A'EIAON

44 = A'ZIA0W

80 = A'LIAOW

10 = A'9SZIA0NW

T8 = A'SSZTIAOW

€8 = A'VSTIAOW

¥9= A'ESZIAON

04 = A'SIAOW

a3 = A'P3A0OW

34 = A'EIAON

L

T

I ?«::4: 444%::44

==

e——
==

- —
—~=:
=~
any

BEG+1 , BEG
4200

—~
~=
=

MOV+1 MOV

Figure 26. Two data blocks of 256 bytes each are to be moved to a different section

of memory. The actual program is shown in figure 27.
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0200 BLMOVE

i

A6| LDX-BLOCKS |load number of blocks to be moved

DEFMOV 9202 A@ LDY # @0 rest index register

A8| LDA#00 FRADH,FRADL = 0206 Loop
85| STAZBEG

A9 LDA # 02 0204 B1} LDA-(BEG)Y |fetch data indirect
865 STAZ-BEG+1 9206] 9 STA-(MOV),Y |store data indirect
A9| LDA#@d TOADH,TOADL=A80¢ 9208] 388 DEY
85| STAZ-MOV D

Asl LDA#AS o208 F9
E ] .
. STAZMOV+ 6 INCZ-BEGH+1 if yes, have access to

920D| E6| INCZ-MOV+H next block

-

9209

é

entive block moved?

A9 LDA # @92 2 Blocks are to move
020F| ca DEX

85| sTaz.sLocks o8

20 || 4sr-BLMOVE [ move 2 blocks 0218—> ¢ all done? If not, return
“ w2 o0 (_ars rows2
BEGH1=0001 _ BEG=000¢ BEG+1-0001 _ BEG=0000 BEG+1=00¢1 _ BEG=0ddd
[FRaoH [ rrADL ] o2 [ o
MOV+1=08¢3 _MOV-092 MOV+1=0803 _MOV=g82 MOV+1=08¢3 MOV=00g2
[toaon _ [ToanoL ] [ A [ o [ a9 ] o0 ]

BLOCKS=0094 BLOCKS=494 BLOCKS=0004

Figure 27. Complete program for the transfer of up to 255 data blocks of 256 bytes.
Post-indexed indirect addressing is used.

to LOOP and the second block of data is moved. Once the complete
second block has been moved, the contents of BEG + 1 and MOV + 1 are
once again incremented and the contents of the X register decremented.
Now that the X register contains zero the processor will return to the main
program and stop.

Pre-indexed indirect addressing

Pre-indexed indirect addressing uses the X register. This time, as its name
suggests, the second byte of the instruction code is added to the contents
of the X index register before the effective address is found. When using
pre-indexed indirect addressing, ‘wraparound’ addition is performed once
more. This means that when the contents of the X register are added to the
second byte of the instruction code, any carry will be discarded. Again
page zero is used for this address mode.

If, for instance, the second byte of the instruction was 7C and the
contents of the X index register were 89, the indirect address would be
@G7C + 3089 = 3PA5 (not B105) and the effective address would be found
at locations @005 (ADL) and 0006 (ADH).

The main differences between the two forms of indirect indexed
addressing are summarised below.
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MAIN PROGRAM

B

XX
XX

932A Al LDA-(IND,X)

9328 9@ > §990
XX 8991
XX 0992
XX 0093
XX 0094
XX 0095

J I ——
e

XX _
XX

@32A Al LDA-(IND,X)

9328 90 — 0090
XX 9091
XX 2092
XX 0093
XX 9094
XX 0095

PAGE ZERO
e — T
XX MEMORY
XX _
ADL1 X-00 [~
[ADRTADLT) DATA1
ADH1 Ed p————
X=02__ =T
ADL2 ADHZ,ADL2) DATA2
ADH2 pp—
ADL3 rX_=¢4_§"' —
3.ADL3) DATA3
ADH4 } ADH3.ADL3, X
XX B
- —— ‘L-__ — -
=T
XX
XX _
24 X=09 T "]
a
oc e T
D X=02 = B
[__icFkD__ ) D@
Ic I p—
X=04 =F=1="
EF } [CIcFF )Y 20
IC —
XX  p—

80915-3-28

Figure 28. Example of pre-indexed indirect addressing. The effective address is
contained in the location (on page zero) pointed to by the second byte of the

instruction plus the contents of the X index register.

When using pre-indexed indirect addressing the contents of the

X register are added to the second byte of the instruction code to
access a memory location on page zero. The effective address is con-
tained in this (and the following) page zero location.

When using post-indexed indirect addressing the second byte of the

instruction code points directly to a memory location on page zero.
The contents of the Y register are then added to the indirect address

found there to provide the effective address.

An example of pre-indexed indirect addressing is given in figure 28. Three
sections of memory are each shown twice (one on top of the other). The
top three give a general view of the overall picture while specific address
and data information has been filled in at the bottom. The left-hand
section is part of the main program, the centre section is page zero, and
the right-hand section is an area of memory where the data are to be

found.

At address @32A of the main program we find the instruction A190,
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LDA-(IND,X), which tells the computer that the indirect address will be
found at location 9090 plus the contents of the X register. If the contents
of the X register are @@ the effective address will be found in location §@90
{(ADL1) and 9391 (ADH1). Care must be taken when using this form of
addressing for if the contents of the X register were @1, the indirect
address would be contained in locations @091 and @@92. These two
addresses contain ADH1 and ADL2 respectively, which would not do at
alll This can be overcome by ensuring that the X register contains 00, 82
or 94 (for the purposes of this example).

If the contents of the X register were @2, the effective address would be
found in locations §@92 and 8093 (ADL2 and ADH2) and the information
at the effective address {DATAZ2) would be loaded into the accumulator.
If the X register contained @4, DATA3 would be loaded into the accumu-
lator (effective address would be found in locations 3394 and (@95).
The main reason for using this form of addressing is that page zero can be
used as a ‘look up table’ for various pointers. Each of the pointers will
indicate a specific address where the data to be worked on can be found.

Interrupting a running program:
NMI, IRQ and RESET

An interrupt is a signal that causes the computer to stop whatever it was
doing and perform a special (predetermined) task. This task is similar to a
subroutine and once it has been completed the computer will return to the
main program exactly where it left off as if nothing had happened.
An everyday example: imagine that you are sitting in your favourite
armchair with a good book and the telephone rings. You are disturbed and
the following interrupt routine takes place: you mark the the page you
were reading and put the book down, you then answer the telephone
(service the interrupt). When the conversation is over you replace the
receiver, pick up the book and find the page you were reading previously
(return from interrupt).
When the computer receives an interrupt request it stores essential infor-
mation such as the contents of the program counter (return address} and
the status register etc. before actually jumping to the interrupt routine.
Upon completion of the routine this information is retrieved and the
computer will return to the main program. The interrupt routine is
initiated by an external signal and not by any instructions in the actual
program. There are two methods of interrupting the program via hardware;
1. Interrupt request, IRQ. When the interrupt flag (1) in the status register
is ‘@’ and the interrupt request input of the microprocessor {pin 4) is
taken low the computer will service the interrupt request. If, however,
the interrupt flag is ‘1° the command will be ignored. This flag can be
set or reset with the following instructions:
CLI| (op-code 58) where | = @; Interrupt enable
SE! (op-code 78) where | = 1; Interrupt disable
2. Non-Maskable interrupt, NMI. Regardless of the state of the interrupt
flag, an interrupt will be serviced when the NM! input (pin 6) of the
microprocessor is taken low.
The interrupt signals IRQ and NMI, along with RES (still to be covered),
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can be termed ‘hardware instructions’, or more precisely ‘hardware jump
instructions’. As we can see from the above, the IRQ ‘instruction’ is
conditional and the NM|I ‘instruction’ is unconditional.

NMI operation

When the NMI input is taken low the processor investigates the contents of
locations FFFA and FFFB. These locations contain the start address of
the interrupt routine. In the example shown in figure 29 this start address
is 0200. The low order byte is contained in FFFA and the high order byte
in FFFB. The NM/-vector is very similar to the address pointers mentioned
earlier. The NMI-vector simply ‘points’ to the start address of the interrupt
routine.

The interrupt routine is worked on in exactly the same way as a normal
subroutine. Nesting of routines is also possible. Once the interrupt routine
has been completed the instruction RTI| (ReTurn from Interrupt-op-code
40) will cause the processor to jump back to the main program.

IRQ operation

Following an Interrupt ReQuest the processor will examine the state of
the interrupt flag (l) in the status register. If this flag is set (= 1) the
request will be ignored and the computer will carry on with the main
program. If, on the other hand, the interrupt flag is reset (=), the
processor examines the contents of locations FFFE and FFFF. These are
the bytes reserved for the /RQ-vector and which contain the start address
of the IRQ interrupt routine. In the example of figure 29 this start address
is shown as 24C3. The high order byte is contained in location FFFF and
the low order byte in FFFE. Again, nesting of (sub)routines is possible and
the interrupt routine ends with the RTI instruction.

As soon as an interrupt request is acknowledged the interrupt flag is set so
that further interrupt requests are inhibited.

With both forms of interrupt request the contents of all the internal
registers are pushed onto the stack. Once the interrupt routine has been
completed (RTI) all the information is pulled off the stack and replaced in
the various registers.

Reset

The operation of the computer can be affected by a third ‘hardware
instruction’. When the reset input (pin 40) of the microprocessor is taken
low the contents of locations FFFC and FFFD are examined. These
locations (as expected) are the reset vector and in the case of the Junior
Computer contain the address 1C1D. This is the start address of the reset
routine contained in the monitor program. In other words, each time the
reset key is operated the processor will effectively jump to this routine.

All three vectors are situated on page FF which is the highest possible
page. Observant readers may have realised that, due to the incomplete
addressing of the JC, this page cannot be addressed directly. However,
the address lines required to decode this page are (from left to right)
A15 . . . A8. Upon examination of the circuit diagram of the Junior
Computer (chapter 1) we find that address lines A13, A14 and A15 are
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NMi-interrupt program

2000 OP-CODE
XX
t NMI A XX
IADDRESS)
U —{iro S NM-
MEMORY S ROUTINE
cru K DATA s XX
S/
$
A —res s RTI
00 FFFA}
29 FFFB
1D FFFCl  ReseT.vecTOR
1C FFFD
c3 FFFE /'90.,,
24 FFFF (I TO;R Q-interrupt program
h 4
24c3 OP-CODE
XX
XX
IRQ-
ROUTINE
XX
XX
RTI
80915-3-29

Figure 29. lllustration of the operation when an interrupt signal is received by the
microprocessor.

not used. This means that these address lines have no influence on the
actual memory locations to be addressed. By not using these three address
lines the highest addressable page becomes 1F and the highest memory
location becomes 1FFF. The processor is therefore ‘fooled’ into looking at
locations 1FFA . .. 1FFF for the various vectors. These locations are, of
course, part of the monitor program held in the EPROM and are therefore
permanently pointing at certain address locations.

A further example of what happens when the processor receives one of the
interrupt requests (NMI and IRQ)} is shown in the memory map of
figure 30. Here, page @1 is used as the stack and page @3 contains the main
program. The 1RQ vector is pointing to 24C3, the start of the IRQ routine,
and the NMI vector is pointing to 2000, where the NMI routine starts.
Imagine that the main program is half way through the instruction at
location §343 when the NMI input goes low. The computer will not
service the interrupt until the instruction being worked on has been
completed. The high order byte of the program counter (PCH) is then
pushed onto the stack and the stack pointer is incremented. The low
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STACK POINTER
o1F8 after Interrupt
91FC STATUS
@1FD PCL=46

25 W—FFe] STACK POINTER
O1FE | PCH-03 K _O1FE | gproRE INTERRUPT

STACK AREA
<
Dl
m
@

1 o ’
//-_ﬁf-;"a;
= 8342 XX
<
P-CODE
g| 0343} O PROGRAM COUNTER
g @344 | OPERAND1 0344 ] at time, when interrupt occurs
o 3345 | OPERAND2

9346 | OP-CODE 0346 | PROGRAM COUNTER
Al

9347 XX after RTI
y e
== VECTOR
(—saga] START of
2000 | OP-CODE K_2000] NwimouTine
2001 [ xx
2002 xx
XX
,.--».—-:—'-‘-’5;
204c|  RTI

g
== IRQ-VECTOR
2ac3| OP-CODE START of

IRQ-ROUTINE
XX
T
==
XX
24D2 RTI
—/_‘//'-5::?/
NMIL  FFFA]  ¢¢ NMI-VECTOR
NMIH  FFFB| 29
FFFC{ 1D
RESET-VECTOR
FFFD|  1C
IROL  FFFE| 3
IRQH  FFFF 24 IRQ-VECTOR 20915330

Figure 30. A memory map of the procedure for dealing with interrupt requests.
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order byte of the program counter (PCL) is then pushed onto the stack
and the stack pointer again incremented. The stack pointer will now be
pointing at address @1FC, which is where the contents of the status
register are stored. After this procedure the stack pointer will point at
location 01FB.
The next phase in the operation is the jump to the start of the NMI
routine, which in this case is address 200@. At the same time the interrupt
flag is set so that any subsequent interrupt request (IRQ) will be ignored.
If the interrupt was caused by an IRQ ‘instruction’ instead of an NMI, a
very similar sort of thing happens. Again, the contents of the program
counter and the status register are pushed onto the stack. The contents of
locations FFFE and FFFF are examined to obtain the start address of the
IRQ routine and the interrupt flag is set. If, however, the NMI input of the
processor goes low during the operation of the IRQ routine, the computer
will store the contents of the program counter and status register once
more and jump to the NMI routine. Once the NMi routine has been
completed the processor will jump back to the IRQ routine and finish that
off before returning to the main program. This is a very similar sort of
action to the nesting of subroutines.
As soon as the RTI instruction is encountered in either of the interrupt
routines, the contents of the stack are replaced into the relevant registers
in the reverse order to which they were pushed onto the stack. In other
words, (in figure 30) the contents of the stack pointer are incremented (to
@1FC) and the information held there is restored into the status register.
The stack pointer is incremented once more and the low order byte of the
return address is replaced in the program counter etc. Once all the old
values have been restored the processor will continue the main program
from where it left off.
If the contents of more registers are to be saved, this can be accomplished
with the various push instructions. To restore the data, of course, the pull
instructions are required. Interrupt (or sub) routines could well start in the
following manner:
SAVE: PHA push the contents of the accumulator onto the stack {then
increment the contents of the stack pointer)
TXA transfer the contents of the X register into the accumulator
PHA push the contents of the accumulator onto the stack
(increment stack pointer)
TYA transfer the contents of the Y register into the accumulator
PHA push the contents of the accumulator onto the stack
increment stack pointer)
« « « « « first instruction of the interrupt routine

RESTO PLA replace the top of the stack into the accumulator (then
decrement the contents of the stack pointer
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]
—

—
PIA-RAM
1A79 XX
1A7A [ ADL | NMI-routine
1A7B 1C ADH ( startaddress
1A7C XX
1A7D XX
1A7E 24 ADL { IRQ routine
1A7F 20 ADH | start address
-— -
I —
- —T
XX
NMl-routine{ ICO@ OP-CODE
XX
-

XX

{RQ-routine | 2024 OP-CODE
XX
J I
e __.— ]
NMI-vector [E 6C JMP-(IND)
1F30 7A AD‘-} indirect address
1F31 1A ADH
IRQ-vector 6C JMP-(IND)
1F33 7E ADL
indirect address
1F34 1A ADH }
_.--"'/’/- -
T
FFFA 2F ADL NMI-vector
FFFB 1F ADH
FFFC 1D ADL RES-vector
FFFD 1C ADH
FFFE 32 ADL IRQ
FFFF| 1F ADH vector
80915-3-31 —

.

Figure 31. The servicing of interrupts via the indirect jump instruction. The contents
of the indirect address point to the effective address and are programmable.

TAY place the contents of the accumulator in the X register
PLA replace the top of the stack in the accumulator (increment
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stack pointer)
TAX place the contents of the accumulator in the X register
PLA replace the top of the stack in the accumulator (de-
crement stack pointer)

END RT!  return from the interrupt routine
Under these circumstances it is essential that the relevant interrupt vector
is pointing to the start of the SAVE routine and not to the start of the
actual interrupt routine. It is aiso important to remove information from
the stack in the reverse order to which it was placed on the stack (and
replace it in the correct registers or memory locations).
Figure 31 shows how the indirect jump instruction can be used with
interrupt routines. In this instance the computer examines the contents of
locations FFFA and FFFB to determine the start address of the NMI
interrupt routine which appears to be address 1F2F. This is in fact the
address of an indirect jump instruction which directs the program to
addresses 1A7A and 1A7B. This is a section of memory which is contained
in the PIA (see chapter 1). Therefore, by loading these last locations with
the start address of the interrupt routine any number of different routines
can be ‘jumped’ to.
As shown in the example of figure 31, when the NMI input is taken low
the computer first examines the contents of locations FFFA and FFFB
where it finds the address 1F2F. The instruction (6C7A1A) at that address
informs the computer to continue operation from the address contained in
location 1A7A. This address is in fact 1C0@, the start of the monitor
routine. If the IRQ input was taken low the processor would perform a
similar operation and continue the program from the address contained in
locations 1A7E and 1A7F (2024).
All of the above is contained in the monitor program with the result that
when developing (or running) a program in RAM the contents of locations
1A7A/1A7B and 1A7E/1A7F can be altered so that when an interrupt
occurs virtually any routine can be run.

The BRK instruction

Up to now, all interrupt routines have been initiated by an external
influence. A software interrupt, the BRK instruction, is also possible. We
have seen this instruction at the end of many program examples and it is
time to discover exactly how the BRK instruction works.

Effectively, it is exactly the same as the {RQ ‘instruction’. The processor
examines the contents of locations FFFE and FFFF to determine the
address of the next instruction. In the example in figure 32, after the
processor encounters the BRK instruction in the main program, the address
1F32 is obtained from the interrupt vector. The indirect jump instruction
at address 1F32 causes the computer to continue operation from the
address contained in locations 1A7E and 1A7F which in the example is
1C00. Therefore, after encountering the BRK instruction the processor
jumps to the monitor program. The break flag (B) in the status register is
set when a software interrupt occurs. This flag remains @ during normal
(hardware) interrupts.
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PROGRAM

—4—— 00 BRK
A"
1A7A
1A7B
1A7C
1A7D
1A7E 00 —
1A7F 1 iC
BRK-routine
@ = |RQ-routine
1c monitor
® 1co1
102 ®
1C03
1Ce4
,.JL‘ZST“(’::;—W/
—
. 1F32 6C | ——
1F33 7E
1F34 1A ——
e
= T 1 @
L—»— FFFE 32 IRQL
FFFF 1F IRQH
FI_>_ 80915-3-32

Figure 32. The BRK instruction is a form of ‘software interrupt’. This example shows
the four jumps that are made before the BRK-routine (= IRQ-routine) is actually
performed.

This concludes the chapter on the various address possibilities. Chapter
four will expand on what we have learned and will provide some interesting
programming examples.
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A simple beginning

Programming without headaches

This is the last chapter of the first book on the Junior Computer.
The second book will provide some complex program examples
and techniques. Before book two can be fully appreciated
however, it is advisable to have a taste of what real programming
is about. This chapter describes a few interesting programs to
enable the JC owner to become more accustomed to program-
ming and operating his/her machine.

The monitor routines, 1/O programming, hexadecimal editing and assemb-
ling are all described in detail in book two. Before you can run, however,
you have to learn to walk — nobody starts their first piano lesson with a
piece by Chopin!! With chapter three firmly implanted in your mind we
can move on to higher things.

The program examples given in this chapter are accompanied by detailed
flow charts and the actual keystrokes required to enter them into the JC.
Some more practical tips are also given.

Fingerwork for the decimal addition program

Before a program can be of any use it has to be entered into the memory
of the Junior Computer. This program requires a total of 594 keystrokes
to fill 196 memory locations — and that is without making any mistakes!
Once this has been completed successfully the program can be started and
we can perform the decima! addition of two six digit numbers.

The actual program was mentioned in chapter 3. Figures 14 (the ‘name
and address’ of each of the display buffers), 20 (overall flow chart of the
program), and 21 {detailed flow charts of the nine subroutines) should be
referred to.

The construction of detailed flow charts is a very important phase when
developing a program. All decisions etc. can be directly translated into
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instructions and thus the op-codes and the number of bytes required per
instruction can be worked out. In some instances even displacement
values can be filled in, but more on that later.

To start with, let us have a look at the program given in figure 1 which
consists of the following sections:

locations 0200 ... 0248: main program (figure 20)
focations §249 ... 0258: SHIFT subroutine (figure 21a)
locations 8259 ... 026€E: ADD subroutine (figure 21b)
locations §26F ... 0281: KEYDIS subroutine (figure 21c)
locations §282 ... 028A: CLB1 subroutine (figure 21d)
locations §28B ... 0293: CLB2 subroutine (figure 21e)
locations 3294 ... @29C: CLDISP subroutine (figure 21f)
locations §29D ... 02A9: STO2 subroutine (figure 21g)
locations 02AA ... 02B6: STO1 subroutine (figure 21h)
locations @2B7 ... 02C3: RESDIS subroutine (figure 21i)

Program preparation

The first instruction (at address location 020@) is going to be a jump to
subroutine (JSR) instruction. The actual start address of the subroutine
is not always known to begin with. This is because the total length of the
main program and the other subroutines has yet to be determined. This
brings us to two general and very practical rules:

1. Time is well spent if a ‘listing’ of the program is made (on paper) before
it is entered into the computer. This should be done after the detailed
flow chart has be drawn and before the actual program entry.

2. Enough space should be left for data and displacement values that have
not yet been calculated. These ‘spaces’ can be filled in later.

The second is very important because:

3. Programs should be contained in a single area of memory. This also
applies to subroutines.

These rules are related to the fact that the contents of the program
counter are incremented after each instruction. If the processor comes
across an empty space, it will either not know what to do, or will certainly
misinterpret the intended instruction with (usually) disastrous results.
Memory locations can be skipped, by accident, by pressing the + key twice
inadvertently. Care must, therefore, be taken when a program is being
entered by hand.

Gaps in the program can be filled with the NOP instruction (No OPeration-
op-code EA). This same instruction can also be entered at various locations
on purpose in case extra instructions are required later on, There is
nothing more time consuming than having to completely re-enter a long
program.

Mistakes can occur at any stage during the development of a program. It is
important therefore to be able to check the final version before the
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program is actually run. This can be accomplished by the JC itself.

Program verification

The control keys AD, DA and + can be used to check and (if necessary)
alter the contents of specific memory locations. A particular location can
be examined as follows:

key AD xxxx

where xxxx is the actual address of the memory location to be examined.
This address will appear on the left-hand side of the display and the data
contained there will be shown on the two right-hand digits. To examine
the following memory location the + key is operated. The address displays
will then show xxxx + @001 and the data displays will give the contents of
this second location. The complete program can be examined in this way.
If a correction has to be made to the data contained in a particular address
location, it is important to ensure that the location is the right one. Once
this has been confirmed the DA key can be operated and the correct data
can be entered. By operating the + key the data in the following location
can be altered if desired, or else locations can be ‘skipped’ by repeatedly
pressing the + key. As can be seen, there are adequate provisions for
verifying and altering the contents of memory locations, should the need
arise (and more often than not it does!). j

Various program sections and subroutines are usually given a ‘label’. In
figure 1 the labels are shown inside a rectangle on the left-hand side
{comment section). When writing out the program the various program
sections can be referred to by their label rather than their actual address.
As mentioned earlier, at this stage the actual address may not be known.
These addresses together with displacement and data values can be filled in
once the total number of memory locations required for the program
(section) has been worked out.

Not only is it important that a program occupies a fixed number of
(consecutive) memory locations, but it is also important that program
sections do not overlap. It is imperative that the program does not run into
the memory area reserved for the monitor program.

There is no rule that subroutines must follow straight on from where the
main program finishes, which is the case in figure 1. It is always possible to
have a number of unused memory locations situated between the main
program and the subroutine. This is especially true of short programs. On
the other hand, when developing longer programs it is advisable to use
memory space as economically as possible.

How many memory locations can we actually use?

4. The standard Junior Computer can directly access 1 k of RAM, which
means that all locations from @000 . . . O3FF can be addressed. This
gives a total of four pages of 256 bytes each:
page @0: 0000 ... OOFF
page @1: 0104... d1FF
page @2: 0200. .. 02FF
page 03: 0300. .. 03FF
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address data

XXXX
XXXX

0200
0200

0201

0202
9203
0204
0205
0206
0207

0208
0209
020A
0208
@20C
020D
920€
@20F
0210
2211

0212
0213
0214
8215
8216
0217

0218
0219
021A
9218
921C
921D
021E
021F
0220
8221

0222
0223

0224

0225
0226

0227

0228

9229

022A
0228
922C
022D
@22€

022F
#230

XX
XX
XX
20
94
92
20
82
62
20
88
02
20
6F
@2
(03]
10
Fo
Fo
C9
12
Fo
06
20
49
02
4C
@9
02
20
AA
02
20
94
02
20
6F
02
Cc9
10
Fo
A
cs
11
Fo
[1[¢]
20
49
02
4C
20
@2

comments

JSR-

ADL of CLDISP
ADH of CLDISP
JSR-

ADL of CLB1
ADH of CL.B1
JSR-
ADL of CLB2
ADH of CLB2
JSR-

ADL of KEYDIS
ADH of KEYDIS
CMP #

with 10

BEQ

go to CLEAR1
CMP #

with 12

BEQ

go to PLUS
JSR-

ADL of SHIFT
ADH of SHIFT
JMP-

ADL of FIRST
ADH of FIRST
JSR-

ADL of STO1
ADH of STO1
JSR-

ADL of CLDISP
ADH of CLDISP
JSR-

ADL of KEYDIS
ADH of KEYDIS
CMP #

with 10

BEQ

go to CLEAR2
CMP #

with 11

BEQ

go to EQUAL
JSR-

ADL of SHIFT
ADH of SHIFT
JMP-

ADL of SECOND
ADH of SECOND

CLEAR1

(PLUS]
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+ o+ o+ o+ o+

+ o+ 4+ o+ 4+

0231 20 JSR- CLEAR2
0232 94 ADL of CLDISP

0233 @2 ADH of CLDISP
0234 4cC JMP-

0235 20 ADL of SECOND
0236 02 ADH of SECOND
0237 20 JSR-
6238 9D ADL of STO2
0239 02 ADH of STO2
023A 20 JSR-

0238 59 ADL of ADD
023C 02 ADH of ADD
0230 20 JSR-

023E B7 ADL of RESDIS
023F 02 ADH of RESDIS
0240 20 JSR-

0241 82 ADL of CLB1
0242 @2 ADH of CLB1
0243 20 JSR-

0244 8B ADL of CLB2
0245 02 ADH of CLB2
0246 4C IMP-

0247 @9 ADL of FIRST

S A S ONS ONS TBNSAONSONSNHS ON
NSO ONBSNNSNNSNOSNDSNSONMMS

("] 0248 02 ADH of FIRST
.B. End of main program.

A "] @249 AQ LDY #; subroutine

(1] 4 024A 04 @4 in Y-index register

o 6 0248 06 ASLZ

F 9 024C F9 INH (00F9)

2 6 924D 26 ROLZ

F A 024E FA POINTL (@OFA)

2 6 024F 26 ROLZ

F B 925¢ FB POINTH (0@FB)

8 8 9251 88 DEY

D [} @252 D@ BNE

F 7 0253 F7 go to SHIFT1

("] 5 0254 @5 ORAZ

F 9 9255 F9 OR INH

8 5 @256 85 STAZ

F 9 9257 F9 INH (00F9)

6 [1] 9258 60 RTS return to main program

F 8 9259 F8 SED decimal arithmetic
subroutine

1 8 825A 18 CLC

A 5 @25B A5 LDAZ

(] @ @25C 00 ADL of B10 (0000); B1@ in accumulator

6 5 925D 65 ADCZ

"] 3 G25E 03 ADL of 820 (0003);
accumulator = B10Q + B2@

8 5 025F 85 STAZ

(4] 6 0260 @6 ADL of R®; accumulator = RO

A 5 0261 A5 LDAZ

[/} 1 0262 ADL of B11 {@@01); B11 in accumulator

6 5 0263 .65 ADCZ
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0264

0265
0266

0267
0268

0269
@26A

9268
@26C

826D
026E
@26F

0270
@271

9272
0273

0274

0275
@276

0277
0278
0279

@27A
9278

@27C
027D
027€

@27F
0280

@281

0282
0283
0284
0285
8286
9287
0288
0289
028A
0288
928C
@280
028E
028F
9290
0291

9292
9293
0294

85
o7

A5
@2

65
05

85
[12:]

D8
60
20

8E
1D

00
FB

20

8E
1D

Fo
FB
20

8E
10

Fo
Fé
20

F9
1D

60
A9

85
00
85
(2]

85
02
60
A9

85
03
85

85
05
60
A9

ADL of B21 (0004);
accumulator = B11 + B21

STAZ

ADL of R1 {0007);
accumulator - R1

LDAZ

ADL of B12{0002);
B12 in accumulator

ADCZ

ADL of B22 (00@5);
accumulator = B12 + B22

STAZ

ADL of R2 (0008);
accumulator > R2

CLD back to binary
RTS return to main program
JSR-subroutine KEYDIS

ADL of SCANDS } monitor
ADH of SCANDS (1D8E)

BNE

go to
KEYDIS

JSR-
ADL of SCANDS } monitor
ADH of SCANDS (1D8E)

BEQ
go to KD
JSR-

ADL of SCANDS } monitor
ADH of SCANDS (1D8E)

BEQ
go to KD
JSR-

ADL of GETKEY monitor
ADH of GETKEY § (1DF9)

RTS return to main program
LDA #; subroutine

00 — accumulator

STAZ

accumulator — B10 {= @)
STAZ

00 ->B11

STAZ

@0 —>B12

RTS return to main program
LDA #; subroutine {CLB2
80 —accumulator

STAZ

00 ->B20

STAZ

00 —>B21

STAZ

00 > B22

RTS return to main program

LDA #; subroutine [CLDISP



+ (1] [} @295 00 @9 —>accumulator

+ 8 5 #296 85 STAZ

+ F 9 9297 F9 00 = INH (B0F9)

+ 8 5 0298 85 STAZ

+ F A 9299 FA 00 >POINTL (BQFA)

+ 8 5 029A 85 STAZ

+ F B @298 FB 00 —>POINTH (QOFB)

+ 6 ") 929C 60 RTS return to main program

+ A 5 ®29D0 A5 LDAZ; subroutine

+ F 9 @29E F9 INH {@@F9) > accumulator

+ 8 5 @29F 85 STAZ

+ [/} 3 @2A0 03 accumulator {INH} - 820 (0003)

+ A 5 092A1 A5 LDAZ

+ F A 02A2 FA POINTL (0OF A} —accumuiator

+ 8 5 02A3 85 STAZ

+ 1] 4 02A4 @4 accumulator (POINTL)} > B21
(0004)

+ A 5 02A5 A5 LDAZ

+ F B @2A6 FB POINTH (00FB) —accumulator

+ 8 5 02A7 85 STAZ

+ ('] 5 02A8 @5 accumulator (POINTH) - B22
(0005)

+ [4] 1] @2A9 60 RTS return to main program

+ A 5 02AA A5 LDAZ; subroutine

+ F 9 @2AB F9 INH (@@F9) >accumulator

+ 8 5 @2AC 85 STAZ

+ "] '] @2AD 00 accumulator (INH) > B10 (0000)

+ A S @2AE A5 LDAZ

+ F A B2AF FA POINTL {0@F A) = accumulator

+ 8 5 02B0 85 STAZ

+ "] 1 0281 M accumulator (POINTL) —»B11
(0001}

+ A 5 9282 A5 LDAZ

+ F B 02B3 FB POINTH (@OFB) —>accumulator

+ 8 5 @2B4 85 STAZ

+ 0 2 9285 @2 accumulator (POINTH) —>B12
(0002)

+ 6 [} 0286 60 RTS return to main program

+ A 5 02B7 AS LDAZ; subroutine

+ (1] 6 02B8 06 RO (0006) -» accumulator

+ 8 5 0283 85 STAZ

+ F 9 ®2BA F9 accumulator (RO) — INH (0QF9)

+ A 5 928B AS LDAZ

+ (1] 7 ¥2BC 07 R1 (@007} ->accumulator

+ 8 5 928D 85 STAZ

+ F A @2BE FA accumulator {(R1) -»POINTL (0OFA)

+ A 5 02BF A5 LDAZ

+ (0] 8 92Cco @8 R2 (@008) - accumulator

+ 8 5 @2Ct 85 STAZ

+ F B 92C2 FB accumulator (R2) »POINTH (0@FB)

+ 6 [} @2C3 60 RTS return to main program

Figure 1. The complete listing for the decimal addition program. |t requires
196 memory locations and 594 key operations.



A number of locations on page zero, however, are reserved for the tempor-
ary storage of data by certain monitor routines. These are the 31 locations
from PQE1 ... OOFF. We have already encountered some of them; OOF9
(INH), OBFA (POINTL) and @@FB (POINTH) are used as display buffers.
The locations Q@EF ... @@F5 are reserved for the contents of all the
internal registers of the microprocessor by the SAVE routine. The rest will
be dealt with in book 2.

The whole of page @1 is used as a stack by the processor. However, itis
very rare that a program requires the storage of 128 address locations. 1f
the stack is not needed this page can be used to hold the actual program
or subroutines. If a certain amount of the stack is required, it is imperative
that any program located on page @1 does not run into the stack area for
obvious reasons.

There are certain areas which cannot be used for programming purposes.

5. The 1k EPROM of the Junior Computer contains the monitor program.
This uses addresses 1C00 . .. 1FFF. Therefore, data cannot be entered
into pages 1C, 1D, 1E and 1F. The monitor routines contained in these
pages can however be used by the main program.

An example of the latter can be seen in figure 1. The subroutine KEYDIS
(@26F . . . @281) uses the monitor routines SCANDS and GETKEY.

6. The 128 bytes of RAM (1/8k) contained in the PIA can be used for
programming. This RAM is located at 1A00 ... 1A7F. Thus, a total of
half a page (the first half of page 1A) is available to the user.

As with page zero, however, there are exceptions. The four locations
1A7A ... 1A7F are reserved for the NMI and IRQ vectors (see chapter 3).
These locations can only be used if the program does not require any
interrupt routines.

Certain memory locations on the second half of page 1A (1A8@ ... 1AFB)
are required for the operation of the PIA itself. This will be discussed in
greater detail in book 2. Under certain conditions these locations can also
be used for normal program operation.

Displacement

We have already discovered that we can use the JC to calculate displace-
ment values. By using the monitor routine BRANCH (start address 1FD5)
we simply have to enter the low order byte of the address where the jump
or branch instruction is located followed by the low order address byte of
the location to be jumped (or branched) to. All the displacement values
for the program given in figure 1 can be found as follows:

RST AD XXXX XX
1 F 1FD5 D8
GO 0000 00

D b
e E @ O OEO0 FO FO inlocation @20F
1 2 1 A 121A 06 06 in location 9213
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2531 @A 0A in location 0226
2937 @C OC inlocation 922A
524B F7 F7 inlocation 0253
726F FB FB in location $273
7774 FB FB in location 9278
7C74 F6 F6 inlocation 027D

NNNONN
ONNN©O
NNOMWW
PN N N

RST

Note: If any of the control keys are operated in between displacement
calculations the display will show 000000,

As mentioned in chapter three, the monitor program does not have to be
used to calculate displacement values. It should be remembered however,
that when working out displacement values the hard way, the calculation
is made from the low order byte of the address location immediately fol-
lowing the complete jump or branch instruction,

Initialisation

This has also been mentioned briefly in chapter 3. The initialisation pro-
cedure for the program in figure 1 is as follows:

RST AD XXXX XX
1 A 7 A 1A7A xx
DA @ 0 1A7A 00
+ 1 C 1A7B 1C
+ 1A7C xx
+ 1A7D xx
+ ® @ 1A7E 00
+ 1 C 1A7F 1C

Locations 1A7E and 1A7F have been loaded with 3@ and 1C respectively.
These memory locations now contain the effective start address (1C00)
of the monitor program. This means that if an interrupt request (IRQ)
is received, or if a BRK instruction (op-code @@} is encountered, the
processor will jump straight back to the monitor program. The same effec-
tive address has been loaded into locations TA7A and 1A7B so that if a
non-maskable interrupt occurs (NMI), or if the ST key is depressed, the
processor will again jump to the monitor program.

If, of course, there are no BRK instructions in a particular program, and
no interrupts are expected, these memory locations need not be loaded.
Once the initialisation is complete and the program has been entered
correctly, we can do some calculations:

AD 0 2 0 o (enter start address)
GO (start program)
2 4 5 6 002456
000000
3 2 004132
=) 006588
CLEAR) 000000
8 5 3 1 198531
000000

+
4 1
DA (
AD
1 9
+
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8 3 2 7 o0 2 832702
DA 931233
AD 000000

In the last instance the result was greater than 999999 (overflow) so only
the six least significant digits will be displayed.

‘“Throwing a six” with the Junior Computer

Dice are very cheap and electronic dice cannot be called expensive. This,
however, should not deter you from using the Junior Computer for your
game of ludo!

The dice is rolled by depressing the + key. As soon as this key is released
the roll will end and the display will show the number of moves you can
make. The program counts from @ to 7, but will only display the numbers
1 to 6. The two centre displays will show the actual number while the
other four will show ‘FF’.

The simplified flow chart of the program is shown in figure 2. The monitor
routines SCANDS, TK and GETKEY are also utilised by this program. The
program starts by entering FFFFFF into the display. The next section of
the program (SCAN?1) determines whether or not a key is depressed,
debounces it and tests to see if it was the + key. If the + key was operated
the program moves on to COUNT where the actual number to be dis-
played is generated. This section of the program is repeated until the + key
is released.

The actual operation of the COUNT section can be seen more clearly in
the detailed flow chart of figure 3. POINTL is first loaded with @@ (counter
reset) and continually incremented until the value reaches 37 (COUNT1).
As soon as this is the case, the counter is reset once more and the pro-
cedure continues (for as long as the + key is held down). This operation is
performed so fast that there is absolutely no way of knowing what the
final value is actually going to be.

The complete listing of the program is given in figure 4. The start address
is 0200 as before. A number of comments have been added to help explain
the various steps. Once the start address has been entered (AD 0200 GO)
the dice can be thrown to your heart’s content.

Determination of instruction length via software

As we know (by now) instructions are one, two or three bytes long. The
first byte is required for the op-code and the second and third (if present)
are needed to determine the data or effective address information.

The op-code consists of two hexadecimal numbers. The first table at the
back of this book gives a complete listing of all 2566 possible combinations
of a two digit hexadecimal number. Where applicable, the table also gives
the appropriate mnemonic and address mode. This table is also shown in
condensed form in figure 5. The most significant ‘nibble’ (= four bits of a
byte) is shown on the left-hand side and the least significant nibble along
the top. The table consists of 29 single byte instructions, 74 double byte
instructions, 48 triple byte instructions and 105 empty spaces.
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DISPLAY
SCAN

KEYBOARD
SCAN

RTS

80915-4-2

Figure 2. The simplified flow chart for the ‘dice’ program. Various monitor routines

are used to simplify matters.

We wish to develop a program that determines whether a particular data

— the op-code for a single byte instruction
— the op-code for a double byte instruction
— the op-code for a triple byte instruction
— non-existent op-code

This program is more than just an educational example. Practically all
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Ag

85

85

85

START

LDA # FF

STAZ-INH

STAZ-POINTL

STAZPOINTH

JSR-GETKEY I

CMP # 12

COUNT

LDA # 90

STAZ-POINTL

z COUNT1 ’

INCZ-POINTL

LDAZPOINTL

CMP # @7

80915-4-3

Figure 3. Detailed flow chart of the ‘dice’ program.
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4+ + 4+ F + F 4+ F A+ FFFF FF A EE A A+ o+ o+ +

Ce@m N M MO OMP»PNMMMOOS D>MO=0=TNTNM=00NTITM=0NTOOTOOTMO®T»S >
o

O~ 8 DS NOPOUP»O PSSO MONOQUO S©O”SUOMS ®SUMS ®U PO OGO N OB

address data

XXXX
0200
0200
0201
0202
0203
0204
0205
0206
0207
0208

0209
020A

0208
@20C
020D

020E
020F

0210
0211
0212

0213
0214

0215
0216
0217
0218
0219
021A
0218
@921C
021D
021E
021F
0220
0221

9222
0223
0224
0225

0226
0227

XX
XX
A9
FF
85
F9
85
FA
85
FB
20

8E
1D

Fo
FB
20

8E
1D

Fo
F6
20

F9
1D

Cc9
12

D@
EF
A9
00

85

FA
E6
FA
A5
FA
c9
07

FQ
F4
20

B1
1D

comments

A9 LDA IMM START

FF —accumulator

STAZ

FF — INH (00F9)

STAZ

FF —>POINTL (0@FA)
STAZ

FF —POINTH (0OFB)

5

ADL  of SCANDS (monitor)
ADH  (address 1D8E)

BEQ
displacement for branch to SCAN1
JSR-

ADL of SCANDS (monitor)
ADH  (address 1D8E)

BEQ
displacement for branch to SCAN1
JSR-

ADL of GETKEY (monitor)
ADH (address 1DF9)

CMP IMM

with 12

BNE

displacement for branch to SCAN1
LDA IMM

@@ —>accumulator

STAZ

00 —>POINTL (0QFA)

INC Z
POINTL + 1 ->POINTL

LDA Z

POINTL —accumulator

CMP IMM

with 07

BEQ

displacement for branch to COUNT
JSR-

ADL } of TK (monitor)
ADH {address 1DB1)
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Most significant four bits

+ D 0 0228 DO BNE
+ F 3 0229 F3 displacement for branch to COUNT1
+ 4 C 022A 4C JMP-
+ e 8 0228 08 ADL }
+ 0 2 g22c 02 ADH §of SCAN1
AD
(1] 2 (] [1] 0200 A9 start address
GO run
+ FF@4 FF the dice is cast!
FF@1 FF
FFO6 FF
FFO2 FF
etc.

Figure 4. The complete listing of the ‘dice” program.

assemblers and editors have a subroutine which is very similar to this pro-
gram (more on this in book 2).

The program for the ‘instruction meter’ uses a new subroutine called
LENACC. The detailed flow chart of this subroutine is given in figure 6.
This is the actual ‘body’ of the program. Upon entry to the subroutine the
accumulator contains the (instruction) byte to be worked on. The sub-
routine ends by storing the length of the instruction in the location called
BYTES.

During the subroutine the X index register contains the information con-
cerning the length of the instruction: X = @@ means no op-code; X = 01
means a single byte instruction; X = @2 means a double byte instruction;
and X = @3 means a triple byte instruction. Towards the end of the sub-

Figure 5. This table is a condensed version of the instruction code table shown at the
back of the book. The column information (the four least significant bits) plays an
important role in the program that determines the length of the various instructions.

Least significant four bits

'] 1 2 3 4 5 6 7
0| BRK {1)[ ORA {IND,X} (2) ORAZ (2)|ASLZ (2
1|8BPL (2)] ORA (IND},Y (2} ORA ZX (2} ASL Z,X (2)
2| JSR (3)] AND {(IND,X} (2} BITZ {2} ANDZ (2)|ROLZ (2)
3| BMI {2)| AND (IND),Y (2} AND Z,X {2} | ROL Z,X (2)
4| RTI {1)] EOR (IND,X) (2) EORZ (2}|LSRZ (2}
5| BVC {2)| EOR (IND),Y (2} EOR ZX (2)| LSR Z,X (2)
6| RTS (1}| ADC (IND,X} (2} ADCZ (2)|RORZ (2)
7|8vs (2} ADC (IND),Y (2) ADC Z,X (2) | ROR Z,X (2)
8 STA (IND,X) (2) STYZ (2 STAZ (2)|STXZ (2
g| BCC (2)| STA(IND)LY (2} STY ZX (2}| STAZX (2)|STX 2,Y (2)
Al LDY # {2}| LDA (IND,X) (2)| LDX # 2 LDYZ (2}| LDAZ (2)|LDXZ (2)
B[ BCS (2}| LDA(IND),Y (2} LDY Z,X {2) LDAZX {2} | LDX 2,Y (2}
C|CPYy# (2)] CMP (IND,X} (2} CPYZ (2)|CMPZ (2)[DECZ (2}
D| BNE {2}} CMP (INDLY (2) CMP Z,X (2) | DECZX (2)
E{ CPX # (2}} SBC{IND,X} (2} CPXZ (2} SBCZ (2)|INCZ (2)
F| BEQ (2}] SBC (IND)Y (2) SBCZX (2)]| INCZX (2)
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Most significant four bits

routine the section LENEND simply stores the contents of the X index
register into memory location BYTES.

The Y index register is loaded with the value of the least significant four
bits of the entered byte. This corresponds to the columns shown in fig-
ure 5. The Y register functions as an index for the loading of data con-
tained in the look-up table, LENTBL, into the X register, This table
contains the length of the associated instructions for each column of
figure 5 (00, 01, 02 or 83).

Observant readers will be saying that there will be no problems for
columns 1, 3, 5, 6, 7, 8, B, D and F in which the lengths of the instruc-
tions are the same, but what about the other seven columns which contain
instructions of different lengths? For these columns the table, LENTBL,
will not function fully — some extra work has to be done.

Complex columns

If we ignore the empty spaces, we are left with only double byte instruc-
tions in columns 2 and 4, single byte instructions in column A and triple
byte instructions in columns C and E. These empty spaces can be elim-
inated fairly simply, see later on.

The only awkward columns remaining are @ and 9. Column @ consists
mostly of double byte instructions except for: BRK, RT| and RTS (single
byte); JSR (triple byte). Column 9, on the other hand, contains an assort-
ment of double and triple byte instructions.

At the start of the subroutine LENACC the X register is loaded with @1.
This is so that the three single byte instructions in column @ can be filtered
out. This is done with three compare and branch instructions in a row. If
the input byte is one of the instructions BRK, RTI or RTS the program
will jump to LENEND and store the value of the X register (@1) in the
address location BYTES. If the input byte was not one of the above
instructions the X index register is loaded with @3 and a test is carried out
to see if it is a JMP instruction. If so, the location BYTES is loaded with
03 (three byte instruction).

The next section of the subroutine filters out the triple byte instructions
from column 9. This is done by ANDing the contents of the accumulator

Least significant four bits

8 9 A 8 c [5) E F
@} PHP (1)} ORA# (2 ast A (1) ORA ABS (3)| ASLABS ({3} 0
1] cLc t1)| ORAABSY (3) ORA ABS,X (3)| ASL ABS,X (3} 1
2| PLP (1) AND# (2| ROLA (1} BIT ABS (3)| ANDABS (3){ ROLABS (3) 2
3| sec (11| AND ABS.Y (3) AND ABS,X (3}| ROL ABS,X (3) 3
4| PHA (1)} EOR# 2| LSRA (1) JMP ABS (3) [ EORABS (3} LSRABS  (3) 4
5| cLl (1)| EORABSY (3) EOR ABS,X (3)| LSR ABS,X (3} 5
6| pPLa (11| ADC# (2} ROR A (1) JMPIND (3)| ADC ABS (3)| ROR ABS (3} 6
7| SEI  (1){ ADC ABS.Y (3) ADC ABS,X (3)| ROR ABS,X (3} 7
8| DEY (1) TXA (1) STY ABS (3)[STAABS (3)| STXABS (3) 8
9| TYA (1)| STAABSY (3)| TXS (1) STA ABS,X (3) 9
Al TAY ()| LDA# (2| TAX (1 LDY ABS (3)| LDAABS (3}| LDX ABS (3) A
Bl cLv (1)| LDAABS)Y (3}| TSX (1) LDY ABS,X(3) | LDA ABS,X (3}| LDX ABS,Y (3) B
CiINY (1| cmp# (22| DEX (1) CPY ABS (3)|CMP ABS  (3}| DECABS (3 c
Dl CLD (1}| CMP ABS)Y (3} CMP ABS,X (3)| DEC ABS,X (3) D
E| INX (1)] SBC# (2| NOP (1) CPX ABS (3)| SBCABS (3} INCABS  (3) E
F/SED (1)] SBC ABS,Y (3) SBC ABS,X_(3}| INC ABS,X (3) F
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A2

c9

29

A8

BE

60

LENACC

LOX #91

CMP # @0

LDX # @3

CMP # 20

<o >

AND # IF

CMP # 19

<o >

AND # OF

TAY

LOX~LENTBL,Y

STX-BYTES

—
LENTBL @230 13_ Y =@ column @ {mainly 2-byte instructions)

G23E £_ Y =@1 column 1 {only 2-byte instructions)
U23F 102 | Y =92 colurn 2 (LDX IMM)
@249 _U_O_ Y =03 column 3 (only empty spaces)

single byte instruction [ FZY] 0_2‘ Y =04 column 4 (mainly 2-byte instructions)
U242 192 | Y =95 column 5 {only 2-byte instructions)
@243 E Y =06 column 6 {only 2-byte instructions)
9244 {04 | Y =97 column 7 {only empty spaces)

BRK? 9245 (01 |v = @8 column 8 (only 1-byte instructions}
@246 .OT Y =09 column 9 (mainly 2-byte instructions)
@247 —OT Y =@A column A {mainly 1-byte instructions)
d248 W Y =9@8 column B (only empty spaces)
@249 D—S Y =4@C column C {mainly 3-byte instructions)

RTI? 4244 [93 | ¥ = 0D column D (only 3-byte instructions)
@248 E- Y = 9E column E {mainly 3-byte instructions)
@24c E Y = gF column F {only empty spaces}

RYS?

triple byte instruction

mask 5 bits

3 byte instruction in column 9?

mask 4 bits

transfer into Y register

load X with the instruction
length from LENTBL

BYTES <X

80915-4-6

Figure 6. The subroutine LENACC ensures that the correct instruction length
information is loaded into the location BY TES.

with 1F (masking). The AND function produces the following results:

DANDXx=0

1AND x=x

When the contents of the accumulator are ANDed with 1F the result is:
contents of accumulator : xxxxxxxx
AND with 1F
result in accumulator
We can see that after the masking process the right-hand five bits remain
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unchanged. The four least significant bits are required later in the program
to determine which column the input byte belongs to.

It can be seen that the two and three byte instructions in column 9 are on
even and odd rows respectively. By masking the input byte as above the
fifth bit from the right will also be even (@) or odd (1) depending on the
row being examined. The four right-hand bits of column 9 will always be
equal to 9 (hexadecimal). Therefore, the total value of the complete byte
will be 09 or 19 for even and odd rows respectively. The next stage of the
program simply tests for the value of 19 (odd row, triple byte instruction)
and if true the contents of the X register (still @3 at this time) are again
placed in the location BYTES.

All the complex bytes have now been filtered out. The next step is to
AND the accumulator contents with @F. This removes the (now unwanted)
fifth bit leaving the remainder unaltered. The accumulator now contains
P0@0xxxx. This value is then transferred to the Y index register to deter-
mine which column the instruction belongs to. The X register is then
loaded with the corresponding instruction length from the table LENTBL.
Finally (at LENEND), this value is placed in the location BYTES.

Decoding the empty spaces

All the non-existent (zero byte) instructions in columns 3, 7, B and F are
decoded by the LENACC subroutine (figure 6). The remaining 41 are

< START ’
FF ~>display |

I GETBYT l

2 hexadecimal keys
in accumulator

yes
OPCODE
—> POINTH
LENACC
fig. 6
BYTES
—> POINTL

80915-4-7

Figure 7. The simplified flow chart of the ‘instruction meter’ program.
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START

A9 LDA #FF
85 STA — INH
85 STA —POINTL
85 STA — POINTH

I JSR — GETBYT

hexadecimal?

op-code —
left-hand displays

STA — POINTH

20 JSR — LENACC determine
instruction length

A5 LDA - BYTES

85 STA - POINTL

4c JMP — TWONI
—-“-—“—‘—‘—I 80915-4-8

Figure 8. Detailed flow chart of the ‘instruction meter’ program.

simply ignored. To be able to decode all of these the LENACC subroutine
can be expanded as follows:

The X index register needs to be loaded with @@. Twenty-six consecutive
compare immediate and branch instructions are then required to check
whether the entered byte corresponds to one of the empty locations in
columns @, 4, 8, A, C or E. If so, then the branch instruction must direct
the program to LENEND. If not then the X register must be loaded with
02 and a test performed to see if the entered byte corresponds to the
lonely instruction in column 2 (LDX IMM). If this is the case the program
should be directed to the TAY instruction of figure 6.

The simplified flow chart of the ‘instruction meter’ program is given in
figure 7. A more detailed version is shown in figure 8, while the complete
program listing is given in figure 9.

Once the program has been started, the display buffers are loaded with FF.
A test is then carried out to check whether a key is depressed and if so
whether it is a control key or a hexadecimal key. This operation is per-
formed by the monitor subroutine GETBYT which in turn calls up the
monitor routine SCANDS.
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As soon as two of the hexadecimal keys, @ ... F, have been depressed the
resulting byte is transferred to POINTH via the accumulator. The sub-
routine LENACC is then performed and, upon its return, the contents of
BYTES are stored in POINTL. The program then jumps back to the
GETBYT (and SCANDS) routine to display the first result and prepare for
a second entry.

The start address of the program is once again 020@. The main routine
{figure 8) runs from address location 0200 up to and including 8218, The
subroutine LENACC occupies the area 3219 ... 023C and the following
16 locations (023D ... @24C) are reserved for the table (LENTBL). The
memory location BYTES is situated on page zero (location OBF6). This is
simply because the monitor program also contains an instruction length
routine (OPLEN, start address 1TE5C) which uses this location to store the
result.

A spot of homework

We have already mentioned that not all of the empty spaces in figure 5 are
decoded. We have also mentioned how they can be decoded. As an exer-
cise and a test of your programming expertise we leave it to you to fill in
the necessary instructions and make the required modifications to the
program. There is no need to send us your results — the Junior Computer
will tell you whether you were correct or not!

key address data comments
RTS AD XXXX XX
0 2 /] (4] 0200 xx start address
DA A 9 0200 A9 LDA IMM
+ F F 0201 FF FF —accumulator
+ 8 5 0202 85 STAZ
+ F 9 9203 F9 accumulator — INH (@0F9)
+ 8 5 0204 85 STAZ
+ F A 0205 FA accumulator —>POINTL. (0@FA)
+ 8 5 9206 85 STAZ
+ F B 0207 FB accumulator - POINTH (00FB)
+ 2 (1] 0208 20 JSR-
+ 6 F 9209 6F ADL of GETBYT (monitor
+ 1 D 020A 1D ADH  address 1D6F)
+ 1 0 0208 10 BPL; 2 keys pressed?
+ F 3 020C F3 if not, go back to
START
+ 8 5 020D 85 STAZ (byte in accumulator)
+ F B 020E FB accumulator (= op-code) ~>
POINTH (QQFB)
2 0 020F 20 JSR-
: Lon o me A e
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+ A 5 0121 A5 LDAZ
+ E 0 9213 EOQ BYTES 0QE® —> accumulator
+ 8 5 9214 85 STAZ
+ F A 0215 FA accumulator - POINTL (0BFA)
+ 4 c ©216 4C  JMP ABS
; 6 5 Gns 05 apn]ofTWOM
+ A 2 9219 A2 LDX IMM;
subroutine
+ [} 1 021A 01 @1 - X; 1-byte instruction
+ C 9 9218 C9 CMP IMM
+ 0 0 021C 00 with 00
+ F 0 021D FO BEQ BRK?
+ 1 A 021E 1A if so, go to LENEND
+ c 9 921F  C9 CMP IMM
+ 4 0 0220 49 with 40
+ F 1] 9221 Fo BEQ RTI?
+ 1 6 9222 16 if so, go to LENEND
+ C 9 9223 C9 CMP IMM
+ 6 0 0224 60 with 60
+ F 0 9225 FO BEQ RTS?
+ 1 2 0226 12 if so, go to LENEND
+ A 2 0227 A2 LDX IMM
+ ()] 3 0228 03 @3 > X; 3-byte instruction
+ Cc 9 9229 C9 CMP IMM
+ 2 0 022A 20 with 20
+ F 1] 9228 FO BEQ JSR?
+ 1} c @22C oC if so, go to LENEND
+ 2 9 022D 29 AND MM
+ 1 F 022E 1F mask 5 bits
+ C 9 922F C9 CMP IMM
+ 1 9 9230 19 with 19
+ F 0 9231 FO BEQ; 3-byte instructions in column 9?7
+ 0 6 0232 @6 if so, go to LENEND
+ 2 9 0233 29 AND IMM
+ o F 0234 OF mask 4 bits
+ A 8 9235 A8 TAY:; right-hand nibble > Y
+ B E 0236 BE LDX ABS,Y; (Y + 1) length of
instruction > X
+ 3 D 9237 3D ADL } of LENTBL
+ (1] 2 9238 02 ADH } (look up table)
+ 8 E 0239 8E STX ABS
+ E 0 923A EO ADL BYTES
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+ 0 [} 0238 00 ADH BYTES
+ 6 1] 923C 60 RTS return to main program
+ ) 2 023D 02 column @; Y = 88 _LENTBL ]
+ 0 2 @23 02 column 1;Y =01
+ (1] 2 023F 02 column 2;Y =02
+ o (1] 0240 00 column 3;Y =03
+ (1] 2 0241 02 column 4;Y = 04
+ (1] 2 0242 02 column 5;Y =05
+ 0 2 0243 02 column 6;Y = @6
+ (1] 1] 0244 00 column 7;Y =07
+ (1] 1 0245 01 column 8;Y =08
+ (1] 2 0246 02 column 9;Y = @9
+ 0 1 6247 o1 column A;Y = 0A
+ (1] [} 0248 00 column B;Y = 0B
+ (1] 3 9249 03 column C; Y =0C
+ 0 3 024A 03 column D; Y = 0D
+ (1] 3 9248 03 column E; Y =0E
+ 0 1] 024C 00 column F; Y =QF
AD
(1] 2 0 (1] start address
GO run

A 9 A902 FF

] 3 9300 FF

D 2 D202 FF

9 E 9E@3 FF

D 5 D502 FF

Figure 9. The complete listing of the ‘instruction meter’ program — see figures 6, 7
and 8.
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1. Instruction codes in numerical order

Table of the complete set of instruction op-codes in numerical order, 8@ . . . FF.
The unused op-codes have also been listed.

08 |BRK 26 | JSR ABS 40 |RTI IMP 60 |RTS IMP
@1 |ORA(INDX) | 21 {AND (IND,X} | 41 |EOR(INDX} | 61 |ADC (INDX}
02| - 2| - 42 | - 62 | —
a3 - 23 - 43 - 63 -
0| - 24 BITZ a | — 6a | -
05 [ORAZ 25 |AND Z 25 |EORZ 65 (ADCZ
06 |ASLZ 26 |ROLZ 46 |LSRZ 86 |RORZ
07 | ~ 27 | — 47 | - 67 | —
@8 |PHP IMP 28 | PLP IMP 48 |[PHAIMP 68 |PLAIMP
09 |ORAIMM 29 | AND IMM 49 |EORIMM 69 |ADC IMM
0A |ASL A 2a [ROLA 4A |LSRA 6A |RORA
o8 | — B | - 48 | - 68 | -
oc | - 2¢ |BIT ABS ac |IMP ABS 6C |JMP IND
oD {ORA ABS 20 | AND ABS ap |EORABS 60 |ADC ABS
OE |ASL ABS 2E | ROL ABS 4E |LSRABS 6€ |ROR ABS
oF | - 2F | - aF | — 6F | -
10 |BPL REL 3p | BMIREL 50 |BVCREL 76 |BVS REL
11 |ORAGND), Y'[ 31 |AND{IND}, ¥/| 5t |EOR({IND} Y 71 |ADC (IND)Y
12 - 32 - 52 - 72 -
13 - 33| - 53 | - 73| -
14} - 34 — 54 | — 74 | -
15 {ORAZX 35 |AND Z,X 55 [EORZX 75 |ADC 2,X
16 |ASLZ,X 36 |ROLZX 56 |LSRZX 76 |ROR2ZX
17 | - 37 | - 57 | — 7| -
18 |CLCIMP 38 | SEC IMP 58 [CLIIMP 78 [SEI IMP
19 {ORA ABS,Y 39 | AND ABS,Y 59 |[EORABSY | 79 |ADC ABSY
1A = 3A - 5A b 7A -
B | - 38| - 5B | — 781 -

. 1C - 3C - 5C - 7c -

! 10 |ORA ABS,X 3D | AND ABS,X 50 |EOR ABS,X 70 [ADC ABS X
1E |ASL ABS,X 3E | ROL ABS,X 5E |LSA ABS X 7€ |ROR ABS X
1F |- 3F | - SF | — 7 | -
80 | - AQ |LDY IMM €O |CPY IMM £G |CPX IMM
81 |STA{IND.X) | A1 [LDA(IND,X) | C1 |CMP(INDX) | E1 |SBC (INDX))
82 | - A2 [LDX IMM c2 | - €2 | — ;
83 | - A3 | - c3 | ~ E3| - |
84 |STYZ A4 (LDY Z c4 |CPYZ E4 (CPX Z .
85 |STAZ A5 |LDAZ c5 [CMPZ E5 |SBCZ |
86 |STXZ A8 [LDXZ C6 |DECZ €6 |INCZ l
87 | — A7 | - c7 | - €7 | -
88 |DEY IMP A8 |TAY IMP c8 |INY IMP E8 |INX IMP i
89 | - A9 |LDA IMM c9 |CMP (MM E9 |SBC IMM
8A |TXAIMP AA |TAX IMP CA |DEX IMP €A |NOP IMP
88 | - AB | — cB | — €8 i
8C |STY ABS AcC [LDY ABS cc |cPy ABS £C | CPX ABS
8D |STA ABS AD |LDA ABS CD |CMP ABS €D |SBC ABS
8E |STX ABS AE |LDX ABS CE |DECABS EE |INC ABS
8F | — AF | -~ cF | - EF
9¢ |BCCREL B0 |BCSREL D@ |BNEREL FO BEQ REL !
91 [STAUNDLY | gy [LDAUNDLY | D1 |[CMP(IND)LY | Fi sac (D)LY |
92 § - B2 | — D2 | - F2
S 83 | - 03| - F3 | -
94 [STYZX 84 |LDYZ)X 04 - F4 -
95 |STAZX B5 [LDAZX D5 |CMPZ,X F5 [SBCZX |
9 |STXZY B6 |LDX ZY 06 |DECZ X F6 | INCZX i
97 | - 87 | — D7 | — F7 i
98 [TYAIMP B8 |CLV IMP D8 (CLDIMP 78 |SED IMP ;
99 {STA ABS,Y B9 |LDA ABS,Y D9 {CMP ABS,Y F9 | SBC ABS,Y
9A |TXSIMP BA |TSX IMP DA | — FA | ~
98 | - 88 | — o8 | — F8 | - i
o | - BC |LDY ABS,X oc | — FC| - .
9D [STA ABSX BD |LDA ABS.X DD |CMP ABS,X FD | SBC ABS X
9 | - BE [LDX ABS,Y DE |DEC ABS X FE | INC ABS,X ‘
oF | - BF | - OF | — FE| — |

Note: The first three letters after the op-code are the actual mnemonic for the
instruction. The possible address mode is indicated by the following letter(s).
IMM: immediate addressing

ABS: absolute addressing

Z: zero page addressing

A: accumulator addressing

{IND,X): pre-indexed indirect addressing

(INDO,Y: post-indexed indirect addressing

ZX: zero page indexed addressing (using the X index register)

ZY: zero page indexed addressing {using the Y index register)

ABS,X: absolute indexed addressing (using the X index register)

ABS,Y: absolute indexed addressing {using the Y index register)

IND: indirect addressing

REL: relative addressing

IMP: implied addressing
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total of 151 instruction possibilities.

2. Instruction listing

The 56 instructions of the 6502 microprocessor in alphabetical order. Each individuat
instruction can be used in a number of different address modes. This gives an actual

. address hexa- number of num- flags
mnemonic mode decimal | clock pulses |berof [ ~C
explanation (n) op-code | (N) bytes | 21ect®
ADC IMM 69 2 2 NV ----2C
Add memory to ABS 6D 4 3
accumulator Y4 65 3 2
with carry (IND,X) 61 6 2
A+M+C—>A (IND),Y 71 5 2
(1) Z.X 75 4 2

ABS,X 7D 4 3
ABS,Y 79 4 3
AND IMM 29 2 2 N [pp— z-
""AND’ memory ABS 2D 4 3
with accumu- Y4 25 3 2
lator (IND,X) 21 6 2
AAM—>A {IND),Y 31 5 2
(1) Z,X 35 4 2
ABS, X 3D 4 3
ABS)Y 39 4 3
ASL ABS 0E 6 3 | N--=-- zC
Shift left one z 06 5 2
bit (accu or A 0A 2 1
memory) ZX 16 6 2
c< [ 9] <0 ABS,X 1E 7 3
BCC REL 90 2 2 | eeeeeeo-
Branch on carry
clear (2)
Branchon C =0
BCS REL B0 2 v I
Branch on carry
set (2)
Branchon C =1
BEQ REL Fo 2 S [P
Branch on result
zero {2)
Branchon Z =1
BIT ABS 2¢ a4 3 MoMg - - - Z -
Test bits in z 24 3 2
memory: A AM
M7 - N; M6 >V
BMmI REL 30 2 v R,
Branch on result
minus {2}
Branchon N =1
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mnemonic + address hexa- number of num- fiags
. mode decimat clock pulses | ber of

explanation (n) op-code | (N) bytes affected
BNE REL DO 2 2
Branch on result
not zero (2)
BranchonZ2=0
BPL REL 10 2 v 2
Branch on result
plus (2)
Branchon N =@
BRK IMpP 00 7 ] S
Force break B |
forced interrupt
BVC REL 50 2 v J
Branch on overflow
clear (2)
Branchon V =0
BVS REL 70 2 2 | eeooooo-
Branch on overflow
set (2)
Branchon V =1
CLC IMP 18 2 1 | —e-emnn ]
Clear carry flag C
9—>C
CLD IMP D8 2 1 S S
Clear decimal D
mode; § > D
CLI IMP 58 2 1 |--e-- 0--
Clear interrupt I
flag; @ = |
CLv IMP B8 2 1 Booomme e
Clear overflow \
flag; @ >V
CMP IMM co 2 2 | N----- zc
Compare memory ABS CD 4 3
and accumulator z C5 3 2
A-M (IND, X} C1 6 2

(IND),Y D1 5 2

Z.X D5 4 2

ABS,X DD 4 3

ABS,Y D9 4 3
CPX 1MM EQ 2 2 | N----- zc
Compare memory ABS EC 4 3
and index X Z E4 3 2
X-M
CPY IMM co 2 2 N--o-= zc
Compare memory ABS CcC 4 3
and index Y z Cc4 3 2
M-Y
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mnemonic + address hex.a- number of num- | gang
explanation mode decimal | clock pulses | berof |  cco t0q
{n) op-code | (N) bytes
DEC ABS CE 6 3 N--=m- z-
Decrement memory | Z C6 5 2
by one ZX D6 6 2
M-1>M ABS X DE 7 3
DEX IMp CA 2 1 N----- z-
Decrement index
X by one
X-12>X
DEY IMP 88 2 1 N--=m- z-
Decrement index
Y by one
Y-12Y
EOR MM 49 2 2 N--=--- z-
""Exclusive or"’ ABS 4D 4 3
memory with 4 45 3 2
accumulator (IND,X) 41 6 2
AVM—>A (IND),Y 51 5 2
Z,X 55 4 2
(1) ABS, X 5D 4 3
ABS,Y 59 4 3
INC ABS EE 6 3 Noe - z-
increment memory | Z E6 5 2
by one ZX F6 6 2
M+1>M ABS, X FE 7 3
INX iMP E8 2 1 N--=-- z-
Increment index
X by one
X+12>X
INY IMP cs 2 1 [V z-
Increment index
Y by one
Y+12>Y
JMP ABS 4C 3 3
Jump to new IND 6C 5 3 |~
location
(PC+ 1) >PCL
(PC + 2) >PCH
JSR ABS 20 6 - T
Jump to new
location saving
return address
pc+21
(PC +1)—=>PCL
(PC + 2) >PCH

141




address

hexa-

number of

num-

mnemonic + N flags
X mode decimal | clock pulses |ber of
explanation (n) op-code | (N) bytes affected
LDA IMM A9 2 2 [V pp—— z-
Load accumulator ABS AD 4 3
with memory z Ab 3 2
M—>A (1) (IND,X} Al 6 2
(IND)LY B1 5 2
Z,X BS 4 2
ABS,X BD 4 3
ABS,Y B9 4 3
LDX IMM A2 2 2 N----- z-
Load index X ABS AE 4 3
with memory 4 A6 3 2
M—>X (1) zyY B6 4 2
ABS,Y BE 4 3
LDY IMM A 2 2 Nooom- z-
Load index Y ABS AC 4 3
with memory V4 A4 3 2
M—=>Y (1) zZX B4 4 2
ABS, X BC 4 3
LSR ABS 4E 6 3 0---m- 2C
Shift right one V4 46 5 2 N
bit (memory or A 4A 2 1
accumulator) Z,X 56 6 2
0-> -C | ABSX 5E 7 3
NOP IMP EA 2 T
No operation
ORA MM 09 2 2 (e Z-
""OR’ memory ABS oD 4 3
with accumulator z 05 3 2
AVM —>A (IND,X) (1] 6 2
(IND),Y 11 5 2
ZX 15 4 2
ABS,X 1D 4 3
ABSY 19 4 3
PHA IMP 48 3 1 | emmmmeaa
Push accumulator
on stack
Al
PHP IMP 08 3 1 femmemoe-
Push processor
status on
stack; P{
PLA IMP 68 4 9 N-=-=-- Z-
Pull accumulator
from stack
At
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mnemonic + address hexa- number of um- | gags
explanation mode decimal | clock pulses | ber of
(n) op-code | (N) bytes affected
PLP IMP 28 4 1 (reset)
Pull processor
status from
stack; P
ROL ABS 2E 6 3 N 2C
Rotate one bit z 26 5 2
left (memory or ZX 36 6 2
accumulator) ABS, X 3E 7 3
7__0)<C A 2A 2 1
ROR ABS 6E 6 3 [V zC
Rotate one bit 4 66 5 2
right (memory or A B6A 2 1
accumulator) Z,X 76 6 2
Cc- ABS,X 7E 7 3
RTI IMP 49 6 1 {reset)
Return from
interrupt
pct;pt
RTS IMP 60 6 T I
Return from
subroutine
pct;PC+1—>PC
SBC IMM E9 2 2 N----- zc
Subtract memory ABS ED 4 3
from accumulator z E5 3 2
with borrow (3) (IND,X) E1 6 2
A-M-C > A (IND),Y F1 5 2
Z,X F5 4 2
ABS,X FD 4 3
ABS,Y F9 4 3
SEC mMP 38 2 T I, 1
Set carry flag
1—>C
SED IMP F8 2 1 [ D
Set decimal mode D
SEI IMP 78 2 I 1--
Set interrupt |
disable; 1 > |
STA ABS 8D 4 3 | e-mmeoo-
Store accumu- z 85 3 2
lator in memory {IND,X) 81 6 2
A—>M {IND),Y 9 6 2
Z,X 95 4 2
ABS,X aD 5 3
ABSY 99 5 3
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. address hexa- number of num-
+
g(:‘:::‘::;:n mode decimal | clock pulses | ber of :'faf?;te d
(n} op-code | (N) bytes
STX ABS 8E 4 3 | oo
Store index X in Y4 86 3 2
memory; X > M zY 96 4 2
STY ABS 8C 4 3 | memeae--
Store index Y in Zz 84 3 2
memory; Y >M ZX 94 4 2
TAX ImP AA 2 1 N z-
Transfer accumu-
lator to index X
A—>X
TAY IMP A8 2 1 N--=--- Z-
Transfer accumu-
lator to index Y
A=Y
TSX IMP BA 2 1 N-=-=-- z-
Transfer stack
pointer to index X
S—=>X
TXA IMP 8A 2 1 N----- z-
Transfer index X
to accumulator
X ~>A
TXS IMP 9A 2 1 N-momm- z-
Transfer index X
to stack pointer
X—>S
TYA IMP 98 2 1 N----- z-
Transfer index Y
to accumulator
Y —>A
Notes:

(1) Add 1to N if page boundary is exceeded.
(2) Add 1to N if jump occurs to the same page;

add 2 to N if jump occurs to another page
(3) Borrow= NOT carry (C)

IMM:
ABS:

Z:

A:

IMP:
(IND,X}):
(IND),Y:
ZX:
Z,Y:
ABS,X:
ABS,Y:
REL:
IND:
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absolute addressing

zero page addressing

accumulator addressing

implied addressing

pre-indexed indirect addressing

post-indexed indirect addressing

zero page indexed addressing (X index register)
zero page indexed addressing (Y index register)
absolute indexed addressing (X index register)
absolute indexed addressing (Y index register)
relative addressing

indirect addressing




3. Hex dump of the monitor program
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0

1E60: A
1E76: C9
1E8G: 84
1E90: 020
1EAQ: EB
1EB@: Bl
1EC@: FO@
1ED@: AE
1EE@: F6
1EF@: E8
1F0@: E7
1F10: 79
1F20: 02
1r30: 7A
1Fr40: 0A
1F50: 60
1F60: 85
1F70: C8
1F80: EC
1F90: 30
1FAQ: C9
1FBO: @3
1FC@: 91
1FD@: 91
1FE@: 1D
1FF@: FB

This is the complete (condensed) listing of the monitor program contained in the

1

g1
20
F6
91
C5
EA
10
1E
85
A5
69
24
02
1A
88
38
EE
Bl
88
D3
20
85
E6
E6
10
85

2

Cc9
Fo
60
EA
E9
A4
38
60
E8
E9
20
30
g1
6C
Bl
A5
20
E6
84
20
Fo
F6
D@
4C

3

00
oc
A5
E6
DO
F6
A5
A5
A5
E9
85
19
02
7B
EC
E4
D3
A4
EE
D3
12
4C
E6
AA

4

Fo
29
E6
EA
E6
91
EA
E2
E9
00
E7
12
02
1A
AA
ES
1E
EE
20
1E
29
33
C8
1F

F2 85 FB
F9 C6.F9 4C DE

5

1A
1F
85
D@
60
EA
E9
85
69
85
38
02
02
Bl
88
FF
20
91
83
20
1F
1C
20
D8
20

6

C9
()
EA
02
A5
A5
01
E6
1%
E9
A5
78
g1
E6
Bl
85
5C
EC
1E
5C
C9
C8
35
A9
6F

7

40
19
A5
E6
E8
EA
85
A5
85
60
E6
00
21
AQ
EC
EC
1E
88
20
1E
19
20
1F
00
1D
1F

8

Fo
Fo
E7
EB
85
C5
EA
E3
E9
18
E5
10
02
FF
Ap
A5
AQ
A5
EA
AQ
FO
35
Fo
85
10
FF

9

16
06
85
a5
EA
E6
A5
85
60
A5
E8
08
p1
C4
g1
E5
00
E7
1E
00
1A
1F
EO
FB
EB
FF

A B C D E

Cc9
29
EB
EA
A5
D@
EB
E7
38
E6
A5
03
g1
EE
60
E9
Bl
91
4C
Bl
20
Fo
38
85
85
2F

60
gF
A4
C5
E9
06
E9
60
A5
65
E7
46
93
F0
88
00
E6
EC
65
E6
F8
EE
E5
FA
FA
1F

Fo
AA
F6
E8
85
A5
00
18
E8
F6
E5
21
03
0D
88
85
Cc9
88
1F
C9
1E
91
E6
85
18
1D

12
BC
Bl
DO
EB
EB
85
A5
ES
85
E9
06
g3
D1
88
ED
FF
A5
20
4C
30
E6
38
F9
A5
1C

Ad
1F
EA
EC
AD
C5
EB
E8
F6
E6
60
0E
g3
EC
D@
A9
D@
E6
F8
Fo
E6
8A
E9
20
FA
32

EPROM (IC2) in hexadecimal form. To be precise, only the machine coda is listed.
The first column of the table consists of addresses, whilst all the remaining figures

represent data. For example, the data byte 85 is contained in location 1Ca0.
The next figure, F3, is the contents of the following location (1C@1 ).
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F

@3
1F
ag
A5
00
E7
4C
65
85
A5
40
02
6C
D@
E9
FF
1D
91
1E
16
A9
c8
02
6F
E5
1F



4. Pin assignment of the connectors

The pin assignment of the expansion connector
For practical reasons the connector has been rotated 90°. The a-connections are the
ones closest to the board. Seen from the side therefore the numbers will run from
right to left. The blocks above 32c and below 1c indicate the polarizing notches
enabling the male plug to be connected correctly.

<by "h

R
32a ground 32a | o o| 32 32c ground
31a RAM-R/W 31a|o o | 31c 31c NC
30a o1 30a | o o| 30c ¥ 30c €%
29 K1 2% | o o | 29% 29¢ R/W
28a NC 28a | o o | 28c 28c K2
27a @2 27a | o o| 27 27¢ NC
26a A1 26a | o o | 26¢ 26c AQ
25a A3 25a | o o | 25¢c 25¢ A2
24a A5 24a | o o | 24c 24c A4
23a A7 23a | o o| 23c 23c A6
22a A9 22a | o o| 22 22¢ A8
21a A11 21a | o o| 21c 21c A10
20a A13 202 | o o | 20c 20c A12
1% A15 19a | o o| 19 19¢c A14
18a -5V 18a | o o 18¢ 18c K3 !
17a K4 17a | o o| 17 17¢ +12V
16a 16¢ 16a | O o | 16¢c 16¢
15a K5 15a { o o 15¢c 15¢ K6 - . Y
14a K7 14a ' o o] 14c 14c SO
13a NC 13a | 0 o 13c 13c NC
12a IRQ 12a | o o 12 12c¢ NMI
11a NC 11a | o ol 1lc 11c NC
10a D7 10a | © o| 10c 10c D6
9a D5 G [0 o| 9 9c D4
8a D3 8 | o o| 8 8 D2
7a D1 7a | 0 o| 7c 7c¢ DO
6a NC 6a |0 o| 6¢ “6¢c NC
5a RES 5a | o o| 5¢c 5¢c RDY
4a ground 4a | o o| 4c 4c ground
3a NC 3a |0 0| 3c 3c NC ROMAT4
2a NC 2a | o o 2c 2c NC
1la +b V 1a [0 o 1c ic +6V
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The pin assignment of the port connector
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NC
NC
PB3
PB1
PB7
PB5S
NC
NC
NC
NC
PA7
PAS
PA3
PA1
+5V

30
28
26
24
22
20
18
16
14
12

N O

C 0O 0 06 0 0O o 0o 00 © 0 o0 o

© 0O 0 O O O OO OO OO O O 0 ©

31
29
27
25
23
21
19
17
15
13
11

9

- W 0 N

NC
NC
NC
PB2
PBO
PB6
PB4
+5V
NC
NC
NC
PAG
PA4
PA2
PAD
ground



