
f"'"\ OSBORNE / McGRAW-HILL

•••••••• •••••••••• •••••••••••• •••••••••••• •••• • ••• •••• • ••• •••• •••• •••• •••••••••• ••••••••••• •••••••••••• •••••••••••• •••• • ••• •••• • ••• •••• • ••• •••• • ••• •••• • ••• •••••••••••• •••••••••••• •••••••••• ••••••••

•••••••••••• •••••••••••• •••••••••••• •••••••••••• •••• •••• •••• •••• •••• •••••••••• ••••••••••• •••••••••••• •••••••••••• •••• •••• •••• • ••• •••• • ••• •••• • ••• •••••••••••• •••••••••••• •••••••••• ••••••••

•••••••• •••••••••• •••••••••••• •••••••••••• •••• • ••• •••• • ••• •••• • ••• •••• • ••• •••• • ••• •••• • ••• •••• • ••• •••• • ••• •••• • ••• •••• • ••• •••• • ••• •••• • ••• •••• • ••• •••• • ••• •••••••••••• •••••••••••• •••••••••• ••••••••

• ••••••• •••••••••• •••••••••••• •••••••••••• •••• • ••• •••• • ••• ••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• ••••• •••• •••• • ••• •••• • ••• •••••••••••• •••••••••••• •••••••••••• ••••••••••••

6502 ASSEMBLY LANGUAGE PROGRAMMING
BY LANCE A. LEVENTHAL

•• • •••• • •• • ••• •• • • ••••• • •••• •• •••••• ••• • •••••••••• • •••••• •• • • ••••••• • • ••••••••• ••••••• • ••• • • ••••••••• • ••••• • •••• ••• • •••• •• •••• • ••••• • •••••• •••• • • ••••••••• •• • • •• • •• • •• • •• ••• • •• ••• • •• ••• • •• • • • • •• • •• •• • • •• • •• • •• • • •• •• • • • • •• • •• • •• • • •• • •• • •• • •• • • • • •• • •• • •• • •• • •• •• • •• • • • • •• • • •• • •• •• • •• ••••• • • • •• • • • • •• •• • •• • •• •• •• • • • •• • • • •• • •• • •• •• • •• •• •• • • • • • • • • • • • •• • • •• • • • •• • • • •• • • •• • • • •• • •• • • • • • • •• • • •• • • • • •• • • • • • •• • • • • • • • • • • • • • •• •• • • • • • • • • • •• • •• • • • • • • ••
•

6502
ASSEmBLY LAnGUAGE

PROGRAmmmG

6502
ASSEmBlY lAnGUAGE

PROGRAmmmG

lance A. Leventhal

OSBORNE/McGraw-Hill
Berkeley, California

Published by
OSBORNE/McGraw-Hill
630 Bancroft Way
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of
the U.S.A., please write OSBORNE/McGraw-Hill at the above
address.

6502 ASSEMBLY LANGUAGE PROGRAMMING

Copyright <> 1979 by McGraw-Hill, Inc. All rights reserved . Printed in the
United States of America. No part of this publication may be reproduced.
stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise without the
prior written permission of the publishers, with the exception that the pro­
gram listings may be entered, stored, and executed in a computer system, but
they may not be reproduced for publication.

6 7 8 9 0 DODO 8 7 6 5 4 3

ISBN 0-931988-27-6

Cover design by K.L.T. van Genderen.

ACKNOWLEDGMENTS

The author would like to acknowledge the following people : Mr. Curt In­
graham and Ms. Janice Enger of OSBORNE/McGraw-Hill, who made many
corrections, improvements, and suggestions; Mr. Gary Hankins, Mr. Michael
Lehman, Mr. Winthrop Saville, and Mr. Stanley St. John of Sorrento Valley
Associates, who provided assistance and examples; Mr. Leo Scanlon of
Rockwell International, who provided constant encouragement and reference
materials ; Mr. Charles Peddle of Commodore International, who provided
some reference material ; Ms. Marielle Carter of Sorrento Valley Associates,
who typed some of the material ; Mr. Stanley Rogers of the Society for Com­
puter Simulation. who has continually encouraged clear and concise techni­
cal writing ; and his wife Donna, for her patience and understanding
throughout the writing of this book.

Others who provided assistance and suggestions were Mr. Colin Walsh, Mr.
Romeo Favreau, Mr. Richard Deisher, Mr. Karl Amatneek, Mr. Robert Stow,
and Mr. Irv Stafford. Other students and colleagues also helped to keep the
author on the right track .

The author, of course, bears responsibility for any remaining errors, miscon­
ceptions, and misinterpretations.

A special note of acknowledgment should go to the magazine MICRO, which
is entirely dedicated to 6502-based personal computers . Besides numerous
articles, MICRO also contains resource and reference lists related to the
6502. MICRO is published monthly by Dr. Robert Tripp, The Computerist
Inc., P.Q. Box 3, South Chelmsford, MA 01824.

This book is dedicated on behalf of Amanda Catherine (Elizabeth Bramble) to
some very special people - Catherine Greenlee, Max and Peggy Leventhal,
Al and Rose Rosen, and Julius and Jeanette Ross .

The author would like to thank Karl Amatneek, Mel Evans, and particularly
Philip Hooper for their lists of corrections to earlier printings of this book.

Chapter

1

2

Contents

Introduction to Assembly Language Programming
How This Book Has Been Pri nted

The Meaning of Instructions
A Computer Program
The Programming Problem
Using Octal or Hexadecimal
Instruction Code Mnemonics
The Assembler Program
Additional Features of Assemblers
Disadvantages of Assembly Language
High-Level Languages
Advantages of High-Level Languages
Disadvantages of High-Level Languages
High-Level Languages for M icroprocessors
Which Level Should You Use?
How About the Future?
Why This Book'

Re ferences

Assemblers
Features of Assemblers

Assembler Instructions
labels
Assembler Operati on Codes (Mnemonics)
Pseudo-Operations
The Data Pseudo-Operation
The Equate (or Define) Pseudo·Operation
The Origin Pseudo·Operation
The Reserve Pseudo·Operation
Linking Pseudo·Operations
Housekeeping Pseudo·Operations
Labels w ith Pseud o·Operations

Addresses and the Operation Field
Conditional Assembly
Macros
Comments
Types of Assemblers
Errors
Loaders
References

vii

Page

1-1
1-1
1-1
1-2
1-2
1-3
1-4
1-5
1-6
1-6
1-7
1-7
1-8
1-9
1-10
1-11
1-12
1-13

2-1
2-1
2-1
2-2
2-4
2-4
2-5
2-6
2-7
2-7
2-8
2-9
2-9
2-10
2-12
2-13
2-15
2-16
2-17
2-17
2-18

Chapter

3

Contents (Continued)

The 6502 Assembly Language Instruction Set
CPU Registers and Status Flags
6502 Memory Addressing Modes

Memory - Immediate
Memory - Direct
Implied or Inherent Addressing
Accumulator Addressing
Pre-Indexed Indirect Addressing
Post-Indexed Indirect Addressing
Indexed Addressing
Indirect Addressing
Relative Addressing

6502 Instruction Set
Abbreviations
Instruction Mnemonics
Instruction Object Codes
Instruction Execution Times
Status
ADC - Add Memory. with Carry. to Accumulator
AND - AND Memory with Accumulator
ASL -Shift Accumula tor or Memory Byte Left
BCC - Branch if Carry Clear IC= 0)
BCS-Branch if Carry Set IC =1)
BEO - Branch if Equal to Zero IZ = 1 I
BIT -Bit Test
BMI -Branch if Minus IS= 1)
BNE - Branch if Not Equal to Zero IZ = 0)
BPL - Branch if Plus IS= 01
BRK - Force Break (Trap or Software Interrupt)
BVC - Branch if Overf low Clear {V = 0)
BVS - Branch if Overflow Set (V = 1)
CLC -Clear Carry
CLO - Clear Decimal Mode
CU -Clear Interrupt Mask (Enable Interrupts)
CLV-Clear Overflow
CMP - Compare Memory with Accumulator
CPX -Compare Index Register with Memory
CPY - Compare Index Register Y with Memory
DEC - Decrement Memory (by 1 I
DEX - Decrement Index Register X (by 1)
DEY-Decrement Index Register Y (by 1)
EOR - Exclusive-OR Accumulator with Memory
INC - Increment Memory (by 1)
INX - Increment Index Register X (by 1)
INY-lncrement Index Register Y (by 1)
JMP -Jump via Absolute or Indirect Addressing
JSR -Jump to Subroutine
LOA -Load Accumulator from Memory
LOX -Load Index Register X from Memory
LOY - Load Index Register Y from Memory
LSR - Logical Shift Right of Accumula tor or Memory

viii

Page

3-1
3-3
3-5
3-6
3-7
3-8
3-8
3-9
3-10
3-11
3-13
3-14
3-15
3-15
3-17
3- 17
3-1 7
3-17
3-3B
3-40
3-41
3-43
3-44
3-44
3-45
3-47
3-47
3-48
3-49
3-51
3-51
3-52
3-53
3-54
3-55
3-56
3-58
3-59
3-60
3-61
3-62
3-63
3-65
3-67
3-6B
3-69
3-70
3-71
3-72
3-74
3-76

Chapter

3 (Cont.I

Contents (Continued)

NOP - No Operation
ORA - Logically OR Memory with Accumulator
PHA -Push Accumulator onto Stack
PHP - Push Status Register (Pl onto Stack
PLA - Pull Contents of Accumulator from Stack
PLP -Pull Contents of Status Register (P) from Stack
AOL -Rotate Accumulator or Memory Left through Carry
ROA - Rotate Accumulator or Memory Right. through Carry
RTI - Return from Interrupt
ATS - Return from Subroutine
SBC - Subtract Memory from Accumulator with Borrow
SEC - Set Carry
SED - Set Decimal Mode
SEI -Set Interrupt Mask (Disable Interrupts)
STA -Store Accumulator in Memory
STX -Store Index Register X in Memory
STY -Store Index Register Y in Memory
TAX -Move from Accumulator to Index Register X
TAY-Move from Accumulator to Index Register Y
TSX - Move from Stack Pointer to Index Reg ister X
TXA - Move from Index Register X to Accumulator
TXS - Move from Index Register X to Stack Pointer
TYA -Move from Index Register Y to Accumulator

6800/6502 Compatibility
MOS Technology 6502 Assembler Convent ions

Assembler Field Structure
Labels
Pseudo-Operations

Examples
Examples

Labels with Pseudo·Operations
Addresses
Other Assembler Features

ix

Page

3-78
3.79
3-81
3-82
3-83
3·84
3.95
3-87
3.99
3·90
3·91
3.93
3-94
3.95
3-96
3-97
3-98
3-99
3-100
3-101
3-102
3-103
3·t04
3-105
3-109
3-109
3-109
3-109
3-110
3-110
3·111
3-111
3·112

Contents (Continued)

Chapter Page
4 Simple Programs 4-1

General Format of Examples 4-1
Guidelines for Solving Problems 4-2
Program Examples 4-4

8-Bit Data Transfer 4-4
8-Bit Addition 4-5
Shift Left One Bit 4-6
Mask Off Most Significant Four Bits 4-7
Clear a Memory Location 4-8
Word Disassembly 4-9
Find Larger of Two Numbers 4-10
16-Bit Addition 4- 12
Table of Squares 4-13
Ones Complement 4-16

Problems 4-17
16-Bit Data Transfer 4-17
8-Bit Subtraction 4-17
Shift Left Two Bits 4-17
Mask Off Least Significant Four Bits 4-17
Set a Memory Location to All Ones 4-17
Word Assembly 4-17
Find Smaller of Two Numbers 4-18
24-Bit Addition 4-18
Sum of Squares 4-18
Twos Complement 4-19

6 Simple Program Loops 5-1
Examples 5-4

Sum of Data 5-4
16-Bit Sum of Data 5-9
Number of Negative Elements 5-12
Maximum Value 5-14

Justify a Binary Fract ion 5-17
Post-Indexed Ond irectl Addressing 5-20
Pre-Indexed (Indirect) Addressing 5-22

Problems 5-23
Checksum of Data 5-23
Sum of 16-Bit Data 5-23
Number of Zero. Posit ive. and Negative Numbers 5-24
Find Minimum 5-24
Count 1 Bits 5-24

Chapter

8

7

8

Contents (Continued)

Character-Coded Data
Examples

Length of a String of Characters
Find First Non-Blank Character
Replace Leading Zeros with Blanks
Add Even Parity to ASCII Characters
Pattern Match

Problems
Length of a Teletypewriter Message
Find Last Non-Blank Character
Truncate Decimal String to Integer Form
Check Even Par ity in ASCII Characters
String Comparison

Code Conversion
Examples

Hex to ASCII
Decimal to Seven-Segment
ASC II to Decimal
BCD to Binary
Convert Binary Number to ASCII String

Problems
ASCII to Hex
Seven-Segment to Decimal
Decimal to ASCII
Binary to BCD
ASCII String to Binary Number

References

Arithmetic Problems
Examples

Multiple-Precrsion Binary Addition
Decimal Add ition
8-Bit Binary Multiplication
8-Bit Binary Division
Self-Checking Numbers Double Add Double Mod 10

Problems
Multiple-Precision Binary Subtraction
Decimal Subtraction
B-Bit by 16-Bit Binary Multiplication
Signed Binary Division
Self-Checking Numbers Aligned 1. 3. 7 Mod 10

References

xi

Page

6-1
6-3
6-3
6-7
6-10
6-13
6-17
6-20
6-20
6-20
6-21
6-21
6-22

7-1
7-2
7-2
7-4
7-7
7-9
7-11
7-13
7-13
7-13
7-13
7-13
7-14
7-15

8-1
B-2
8-2
B-4
8-7
8-12
8-17
8-23
B-23
8-23
8-24
8-24
B-25
8-26

Contents (Continued)

Chapt er Page

9 Tables and Lists 9-1
Examples 9-2

Add Entry to List 9-2
Check an Ordered List 9-5
Remove Element from Oueue 9-8
8-8it Sort 9- 12
Using an Ordered Jump Table 9-16

Problems 9-18
Remove an Entry From a List 9- 18
Add an En try to an Ordered List 9-19
Add an Element to a Oueue 9-19
16-8it Sort 9-20
Using a Jump Table with a Key 9-20

References 9-21

10 Subrouti nes 10-1
Subrou t ine Documentation 10-2
Examples 10-3

Hex to ASC II 10-4
Length of a String of Characters 10-7
Maximum Value 10- 11
Pattern Match 10-15
Multiple-Precision Addition 10-21

Problems 10-25
ASCII to Hex 10-25
Length of a Teletypewriter Message 10-25
Minimum Value 10-25
String Comparison 10-26
Decimal Subtraction 10-27

References 10-28

xii

Chapter

11

Contents (Continued)

Input/Output
Timing Intervals (Delays)
Delay Routines
Delay Program
6502 Input/Output Chips
The 65;20 Peripheral Interface Adapter
PIA Control Register
Configuring the PIA
Examples of PIA Configuration
Using the PIA to Transfer Data
The 6522 Versatile Interface Adapter (VIA)
Configuring the VIA

CA2 Input
CA2 Output

Examples of VIA Configuration
Using the VIA to Transfer Data
VIA Interrupt Flag Register
VIA Timers
Operation of 6522 VIA Timer 2
Operation of 6522 VIA Timer 1
The 6530 and 6532 Multifunction Support Devices
Examples

A Pushbutton Switch
A Toggle Switch
A Single LED
Seven-Segment LED Display

Problems
An On-Off Pushbutton
Debouncing a Switch in Software
Control for a Rotary Switch
Record Switch Positions on Lights
Count on a Seven-Segment Display

More Complex 1/0 Devices
Examples

An Unencoded Keyboard
An Encoded Keyboard
A Digital-to-Analog Converter
Analog-to-Digi tal Converter
A Teletypewriter (TTY)

The 6850 Asynchronous Communications Interface
Adapter (AC IA)

The 6551 Asynchronous Communications Interface
Adapter IACIA)

Logica l and Physical Devices
Standard Interfaces
Problems

Separating Closures from an Unencoded Keyboard
Read a Sentence from an Encoded Keyboard
A Variab le Amplitude Square Wave Generator
Averaging Analog Readings
A 30 Character-per-Second Terminal

References

xiii

Page

11-1
11 -8
11-9
11-10
11-12
11 -13
11-15
11-18
11 -19
11 -21
11-23
11-27
11-31
11-31
11-32
11-34
11-35
11-36
11 -37
11 -38
11 -39
11-43
11-43
11-50
11-61
11 -65
11-76
11 -76
11 -76
11-76
11-77
11-77
11-78
11 -81
11-81
11-90
11-93
11-98
11 -103

11-111

11-118
11-123
11-124
11-125
11 -1 25
11 -125
11-126
11-126
11-126
11 -127

Chapter

12

Contents (Continued)

Interrupts
6502 Interrupt System

6520 PIA Interrupts
6522 VIA Interrupts
6530 and 6532 Multifunction Device Interrupts
ACIA Interrupts
6502 Polling Interrupt Systems
6502 Vectored Interrupt Systems

Examples
A Startup Interrupt
A Keyboard Interrupt
A Printer Interrupt
A Real-Time Clock Interrupt
A Teletypewriter Interrupt

More General Service Routines
Problems

A Test Interrupt
A Keyboard Interrupt
A Printer Interrupt
A Real-Time Clock Interrupt
A Teletypewriter Interrupt

References

xiv

Page

12-1
12-3
12-5
12-6
12-9
12-9
12-1 1
12-12
12-13
12-13
12-16
12-20
12-23
12-32
12-37
12-38
12-38
12-38
12-38
12-38
12-38
12-39

Chapter

13

Contents (Continued)

Problem Definition and Program Design
The Tasks of Software Development
Definition of the Stages
Problem Definition
Defining the Inputs
Defining the Outputs
Processing Section
Error Handling
Human Factors
Examples

Response to a Switch
A Switch-Based Memory Loader
A Verification Terminal

Review of Problem Definition
Program Design

Flowcharting
Examples

Response to a Switch
The Switch-Based Memory Loader
The Credit-Verification Termina l

Modular Programming
Examples

Response to a Switch
The Switch-Based Memory Loader
The Verification Terminal

Review of Modular Programming
Structured Programming
Examples

Response to a Switch
The Switch-Based Memory Loader
The Credit-Verification Terminal

Review of Structured Programming
Top-Down Design
Examples

Response to a Switch
The Switch-Based Memory Loader
The Transaction Terminal

Review of Top-Down Design
Review of Problem Definition and Program Design

References

xv

Page

13-1
13-1
13-3
13-3
13-4
13-4
13-5
13-5
13-6
13-7
13-7
13-9
13-12
13-16
13-17
13-18
13-20
13-20
13-22
13-24
13-29
13-31
13-31
13-31
13-32
13-34
13-35
13-41
13-41
13-42
13-44
13-49
13-50
13-51
13-51
13-52
13-53
13-55
13-56
13-57

Contents (Continued)

Chapter Page

14 Debugging and Test ing 14-1
Simple Debugging Tools 14-1
More Advanced Debugging Tools 14-8
Debugging With Checklists 14-10
Looking for Errors 14-11

Debugging Example 1: Decimal to Seven-Segment
Conversion 14-15

Debugging Example 2: Sort into Decreasing Order 14-19
Introduction to Test ing 14-25
Selecting Test Data 14-27

Testing Example 1: Sort Program 14-28
Testing Example 2: Self-Checking Numbers 14-28

Testing Precautions 14-29
Conclusions 14-29

References 14-30

16 Documentation and Redesign 15-1
Self-Documenting Programs 15-1
Comments 15-3

Commenting Example 1 Multiple-Precision Addition 15-5
Commenting Example 2: Teletypewriter Output 15-7

Flowcharts as Documentation 15-9
Structured Programs as Documentation 15-9
Memory Maps 15-10
Parameter and Definition Lists 15- 11
Library Routines 15-13
Library Examples 15-14

Library Example 1 : Sum of Data 15-14
Library Example 2: Decimal to Seven-Segment Conversion 15-15
Library Example 3 : Decimal Sum 15-16

Total Documentation 15-17
Redesign 15-18
Reorganizing to Use Less Memory 15-19
Major Reorgan izat ions 15-21

References 15-22

16 Sample Projects 16-1
Proiect #1 : A Digital Stopwatch 16-1
Pro1ect #2 : A Digital Thermometer 16-15

References 16-29

xvi

Figures

Figure Page

5-1 Flowchar t of a Program Loop 5-2
5-2 A Program Loop that Allows Zero Iterations 5-3

11-1 An Output Demult iplexer Controlled by a Counter 11-3
11 -2 An Output Demultiplexer Controlled by a Port 11-3
11-3 An Input Multiplexer Controlled by a Counter 11 -4
11 -4 An Input Multiplexer Controlled by a Port 11 -4
11 -5 An Input Handshake 11-6
11-6 An Output Handshake 11-7
11-7 Block Diagram of the 6520 Peripheral Interface Adapter 11-14
11-8 Block Diagram of the 6522 Versat i le Interface Adapter 11-24
11-9 6522 VIA Peripheral Control Register Bit Assignments 11-26
11 -10 6522 VIA Auxi liary Control Register Bit Assignments 11 -26
11 -11 The 6522 VIA Interrupt Flag Register 11-30
11-12 Block Diagram of the 6530 Multifunction Device 11-40
11-13 Block Diagram of the 6532 Multifunction Device 11-42
11-14 A Pushbutton Circuit 11-43
11-15 An Interface for a Toggle Switch 11 -50
11 -16 A Oebounce Circuit Based on Cross-coupled NANO Gates 11-50
11-17 An Interface for a Mu lti -Position Switch 11-55
11 -18 A Mult iple-Position Switch with an Encoder 11-56
11 -19 Interfacing an LED 11-62
11 -20 Interfacing a Seven-Segment Display 11-66
11-21 Seven-Segment Display Organization 11-67
11 -22 Seven-Segment Representat ions of Decimal Digits 11-68
11 -23 Interfacing Multiplexed Seven-Segment Displays 11-75
11-24 A Small Keyboard 11-B2
11-25 A Keyboard Matrix 11-82
11-26 1/0 Arrangement for a Keyboard Scan 11-83
11-27 1/0 Interface for an Encoded Keyboard 11-90
11-28 Signetics NE5018 D/A Converter 11-94
11 -29 Interface for an 8-bit Digital-to-Anal og Converter 11-95
11-30 General Descript ion and Timing Diagram for the Na tional

5357 AID Converter 11-99
11 -31 Connection Diagram and Typical Application for the

National 5357 A/ D Converter 11-100
11-32 Interface for an 8-bit Analog-to-Digital Converter 11-100
11 -33 Teletypewriter Data Format 11-103
11 -34 Flowchart for Receive Procedure 11 -104
11-35 Flowchart for Transm it Procedure 11-108
11-36 Block Diagram ol the 6850 AC IA 11-114
11-37 Block Diag ram of the 6551 ACIA 11 -119
11 -38 Definition of 6551 ACIA Control Register Contents 11-120
11 -39 Defini tion of 6551 ACIA Command Reg ister Contents 11-121
11 -40 Defini t ion of 6551 ACIA Status Register Contents 11-122

12-1 Saving the Status of the Microprocessor in the Stack 12-4
12-2 Description of the 6522 VIA Interrupt Enable Register 12-7
12-3 Description of the 6522 VIA Interrupt Flag Register 12-7

xvii

Figures (Continued)

Figure Pago
13-1 Flowchart of Software Development 13-2
13-2 The Switch and Light System 13-8
13-3 The Switch-Based Memory Loader 13-10
13-4 Block Diagram of a Verification Terminal 13-13
13-5 Verification Terminal Keyboard 13-13
13-6 Verificat ion Terminal Display 13-14
13-7 Standard Flowchart Symbols 13-19
13-8 Flowchart of One-Second Response to a Switch 13-2 1
13-9 Flowchart of Switch-Based Memory Loader 13-23
13-10 Flowchart of Keyboard En try 13-24
13-11 Flowchart of Keyboard Entry Process with Send Key 13-25
13-12 Flowcha rt of Keyboard Entry Process with Function Keys 13-26
13-13 Flowchart of Receive Routine 13-27
13-14 Flowchart of an Unstructured Program 13-36
13-15 Flowchart of the 1f-Then-Else Structure 13-36
13-16 Flowchart of the Do-While Structure 13-37
13-1 7 Flowchart of the Do-Until Structure 13-37
13-18 Flowchart of the Case Structure 13-38
13-19 Initia l Flowchart for Transaction Term inal 13-53
13-20 Flowchart for Expanded KEYBOARD Routine 13-54

14-1 A Simple Breakpoint Routine 14-2
14-2 Flowchart of Register Dump Program 14-5
14-3 Results of a Typical 6502 Register Dump 14-5
14-4 Results of a Typical Memory Dump 14-6
14-5 Flowchart of Decimal to Seven-Segment Conversion 14-15
14-6 Flowchart of Sort Program 14-20

16-1 1/0 Configuration for a Digital Stopwatch 16-2
16-2 1/0 Configuration for a Digi tal Thermometer 16-16
16-3 Digital Thermometer Analog Hardware 16-17
16-4 Thermistor Characteristics (Fenwa l GA51 J1 Bead) 16-18
16-5 Typical E-1 Curve for Therm istor (25°C) 16-18

xviii

Tables

Table Page

1-1 Hexadecimal Conversion Table 1-4

2-1 The Fields of an Assembly Language Instruction 2-1
2-2 Standard 6502 Assembler Delimiters 2-2
2-3 Assigning and Using a Label 2-3

3- 1 Frequently Used Instruct ions f the 6502 3-2
3-2 Occasionally Used Instruc tions of the 6502 3-2
3-3 Seldom Used Instructions of the 6502 3-3
3-4 A Summary of the 6502 Instruction Set 3-19
3-5 6502 Instruction Object Codes in Numerical Order 3-31
3-6 Summary of 6502 Object Codes with 6800 Mnemonics 3-34
3-7 Memory Addressing Modes Available on the 6800 and

6502 Microprocessors 3-106
3-8 Comparison of 6800 and 6502 Assembly Language

Instruction Sets 3-107

6-1 Hex-ASCII Table 6-2

11-1 Addressing 6520 PIA Internal Registers 11-13
11-2 Organization of the PIA Control Registers 11-15
11-3 Control of 6520 PIA Interrupt Inputs CA 1 and CB1 11-16
11-4 Control of 6520 PIA Interrupt Inputs CA2 and CB2 11-16
11-5 Control of 6520 PIA CB2 Output Line 11-17
11-6 Control of 6520 PIA CA2 Output Line 11-17
11-7 Add ressing 6522 VIA Internal Registers 11-25
11-8 Configurations for 6522 VIA Control Line CA2 11-28
11-9 Configurations for 6522 VIA Control Line C82 11-29
11-10 Internal Addressing for the 6530 Multifunction Device 11-4 1
11-11 Internal Addressing for the 6532 Multifunction Device 11-42
11-12 Data Input vs Switch Position 11-56
11-13 Seven-Segment Representations of Decimal Numbers 11-66
11-14 Seven-Segment Representations of Letters and Symbols 11-69
11-15 Comparison Between Independent Connections and

Matrix Connections for Keyboards 11-81
11-16 Definition of 6850 ACIA Register Contents 11- 11 2
11-17 Meaning of the 6850 ACIA Control Register Bits 11-113
11-18 Addressing 6551 ACIA Internal Registers 11-119

12-1 Memory Map for 6502 Addresses Used in Response to
Interrupts and Reset 12-4

12-2 Addressing the 6532 Multifunction Device 12-10

14-1 6502 Interrupt Vectors 14-2

16-1 Input Connections for Stopwatch Keyboard 16-2
16-2 Output Connections for Stopwatch Keyboard 16-2

xix

Chapter 1
INTRODUCTION TO ASSEMBLY

LANGUAGE PROGRAMMING

This book describes assembly language programming . It assumes that you are
familiar with An Introduction To Microcomputers: Volume 1 - Basic Concepts 1
(particularly Chapters 6 and 7). This book does not discuss the general features of
computers, microcomputers, addressing methods, or instruction sets ; you should
refer to An Introduction To Microcomputers: Volume 1 for that information.

HOW THIS BOOK HAS BEEN PRINTED
Notice that text in this book has been printed in boldface type and lightface type
This has been done to help you skip those parts of the book that cover subject
matter with which you are familiar. You can be sure that lightface type only ex­
pands on information presented in the previous boldface type. Therefore. only read
boldface type unt il you reach a subject about which you want to know more. at which
point start reading the lightface type.

THE MEANING OF INSTRUCTIONS

The instruction set of a microprocessor is the set of binary inputs that produce
defined actions during an instruction cycle. An instruction set is to a microprocessor
wha t a function table is to a logic device. such as a gate. adder, or shift register. Of
course. the actions that the microprocessor performs in response to its instruction in­
puts are far more complex than the actions that logic devices perform in response to
their inputs.

An instruction is a binary bit pattern - it must be available at BINARY
the data inputs to the microprocessor at the proper time in INSTRUCTIONS
order to be interpreted as an instruction. For example. when the
6502 microprocessor receives the8-bit binary pattern 11101000 as the input during an
instruct ion fetch operation. the pattern means:

"Increment (add 1 to) the con tents of Register X"

Similar ly, the pattern 10101 001 means:

"Load the Accumulator with the contents of the next word of program memory"

The microprocessor (like any other computer) recognizes only binary patterns as in­
structions or da ta: it does not recognize words or octal. decimal. or hexadecimal num­
bers.

,_,

A COMPUTER PROGRAM
A program is a series of instructions that causes a computer to perform a particular
task.

Actually. a compu ter program includes more than instructions; 1t COMPUTER
also contai ns the data and memory addresses that the PROGRAM
microprocessor needs to accomplish the tasks def med by the in·
struc t ions. Clear ly. if the microprocessor is to perform an addition. it must have two
numbers to add and a place to put the result. The computer program must determine
the sources of the data and the destination of the result as well as the operation to be
performed.

All microprocessors execute instruc tions sequentially unless one of the instructions
changes the execution sequence or halts the computer. i.e .. the processor gets the next
instruct ion from the next consecut ive memory address unless the current instruction
specifically directs it to do otherwise

Ultimately every program is translated into a set of binary numbers. For example,
this is a 6602 program that adds the contents of memory locations 006016 and
006116 and places the result in memory location 006216:

10100101
01100000
01100101
01100001
10000101
01100010

This is a machine language, or object, program. lf this program
were entered into the memory of a 6502-based microcomputer.
the microcomputer would be able to execute 11 directly

THE PROGRAMMING PROBLEM
There are many difficulties associated with creating programs
as object. or binary machine language, programs. These are
some of the problems :

OBJECT
PROGRAM

MACHINE
LANGUAGE
PROGRAM

1l The programs are difficult to unders tand or debug (binary numbers all look the
same. particularly after you have looked at them for a few hours)

2) The programs are slow to enter since you must determine each bit individually.

3) The programs do not describe the task which you want the computer to perform in
anything resembling a human readable format.

4) The programs are long and tiresome to write

5) The programmer of ten makes careless errors that are very difficult to loca te and
correct

For example. the following version of the addition object program contains a single
bit error. Try to find it:

10100101
01100000
01110101
01100001
10000101
01 100010

Although the computer handles binary numbers with ease. people do not People find
binary programs long. tiresome. confusing. and meaningless. Eventually. a programmer
may start remembering some of the binary codes. but such effort should be spent m ore
produ ctively.

1-2

USING OCTAL OR HEXADECIMAL
We can improve the situation somewhat by w riting instruc- OCTAL OR
tions using octal or hexadecimal, rather than binary numbers. HEXADECIMAL
We will use hexadecimal numbers in this book because they are
shorter, and because they are the standard for the microprocessor industry. Table 1-1
defines the hexadecimal digits and their binary equivalents. The 6502 program to add
two numbers now becomes:

A5
60
65
61
85
62

At the very least. the hexadecimal version is shorter to write and not quite so tiring to
examine.

Errors are somewhat easier to find in a sequence of hexadecimal digits. The er­
roneous version of the addition program, in hexadecimal form, becomes:

The mistake is far more obvious.

A5
60
75
61
85
62

What do we do with this hexadecimal program? The microprocessor understands
only binary instruction codes. The answer is that we must convert the hexadecimal
numbers to bi nary numbers. This conversion is a repeti t ive. tiresome task. People who
attempt it make all sorts of petty mistakes. such as looking at the wrong line. dropping a
bit. or transposing a bi t or a digit

This repetitive. grueling task is. however. a perfect job for a com- HEXADECIMAL
puter. The computer never gets tired or bored and never makes LOADER
silly mis takes. The idea then is to write a program that accepts
hexadecimal numbers and converts them into binary numbers. This is a standard
program provided with many microcomputers: it is called a hexadecimal loader.

Is a hexadecimal loader worth having? If you are willing to write a program using binary
numbers. and you are prepared to enter the program in its binary form into the com­
puter. then you will not need the hexadecimal loader

If you choose the hexadecimal loader. you will have to pay a price for it. The hex­
adecimal loader is itself a program that you must load into memory. Furthermore. the
hexadecimal loader will occupy memory - memory that you may want to use in some
other way.

The basic tradeoff. therefore. is the cost and memory requirements of the hexadecimal
loader versus the savings in prog ram mer time.

A hexadecimal loade r is well worth its sma l l cost.

A hexadecimal loader certain ly does not solve every programming problem The hex­
adecimal version of the p rogram is still d ifficult to read or understand; for example. it
does not distinguish instructions from data or add resses. nor does the program listing
provide any suggestion as to what the program does. What does 85 or DO mean?
Memorizing a card full of codes is hard ly an appetizing proposition. Fu rt hermore. the
codes will be entirely different for a different microprocessor. and the program wi ll re­
quire a large amount of documentat ion.

1-3

Table 1-1. Hexadecimal Conversion Table

Hexadecimal Binary Decimal
Digit Equivalent Equivalent

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 100 1 9
A 1010 10
8 1011 11
c 1100 12
D 1101 13
E 1110 14
F 1111 15

INSTRUCTION CODE MNEMONICS
An obvious programming improvement is to assign a name to each instruction
code. The instruction code name is called a "mnemonic" or memory jogger. The
instruction mnemonic should describe in some way what the instruction does.

In fact. every microprocessor manufacturer (they can't remember
hexadecimal codes either) provides a set of mnemonics for the
microprocessor instruction set. You do not have to abide by the
manufacturer's mnemonics; there is nothing sacred about them

PROBLEM
WITH
MNEMONICS

However. they are standard for a given microprocessor and therefore understood by all
users. These are the instruction codes that you will find in manuals. cards. books. ar­
ticles. and programs. The problem with selecting instru ction mnemonics 1s that not all
instructions have "obvious" names. Some instructions do (e.g .. ADD. AND. ORl. others
have obvious cont ractions (e.g .. SUB for subtraction. XOR for exclusive-OR), while still
others have neither. The result is such mnemonics as WMP. PCHL. and even SOB
(guess what that means !). Most manufacturers come up with some reasonable names
and some hopeless ones. However. users who devise their own mnemonics rarely do
much better than the manufacturer

Along with the instruction mnemonics. the manufacturer will usually assign names to
the CPU registers. As with the instruction names. some register names are obvious (e.g ..
A for Accumulator) while others may have only historical significance. Again. we will
use the manufacturer's suggestions simp!y to promote standardization ·----~

If we use standard 6502 instruction and register mnemonics.
as defined by MOS Technology, Inc .• our 6502 addition pro­
gram becomes:

LDA $60
ADC $61
STA $62

ASSEMBLY
LANGUAGE
PROGRAM

The program is still far from obvious. but at least some parts are comprehensible. ADC
is a considerable improvement over 65; LDA and STA suggest loading and storing the
contents of the Accumulator. We now know which lines are instructions and which are
data or addresses. Such a program Is an assembly language program.

1-4

THE ASSEMBLER PROGRAM
How do we get the assembly language program into the com- HAND
puter? We have to translate it either into hexadecimal or into bi- ASSEMBLY
nary numbers. You can translate an assembly language pro-
gram by hand, instruction by instruct ion. This is called hand assembly

Hand assembly of the addition program may be illus trated as follows :

Instruction Mnemonic

LOA

Addressing Method

Zero Page (direct)
Zero Page (direct)
Zero Page (direct)

Hexadecimal Equivalent

A5
ADC 65
STA 85

As with hexadecimal to binary conversion. hand assembly is a rote task which is unin­
teresting. repetitive, and subject to numerous minor errors. Picking the wrong !ine.
transposing digits. omitting instructions. and misreading the codes are only a few of the
mistakes that you may make. Most microprocessors complica te the task even further by
having instructions with different word lengths. Some instru ctions are one word long
while others are two or three words long. Some instructions require data in the second
and third words. others require memory addresses. register numbers. or who knows
what?

Assembly is another rote task that we can assign to the
microcomputer. The microcomputer never makes any
mistakes when translating codes; it always knows how many
words and what format each instruction requires. The program
that does this job is an "assembler." The assembler program
translates a user program, or "source" program written with
mnemonics, into a machine language program. or "object"
program. which the microcomputer can execute. The assem·

ASSEMBLER

SOURCE
PROGRAM

OBJECT
PROGRAM

bier's input is a source program and its output is an object program.

The tradeoffs that we discussed in connection w ith the hexadecimal loader are
magnified in the case of the assembler. Assemblers are more expensive. occupy
more memory. and require more peripherals and execu tion time than do hexadecimal
loaders. While users may (and often do) write their own loaders. few care to write their
own assemblers.

Assemblers have their own rules that you must learn. These include the use of cer­
tain markers (such as spaces. com mas. semicolons. or colons) in appropriate places.
correct spelling. the proper control information, and perhaps even the correct place­
ment of names and numbers. These ru les are usually simple and can be learned quickly

1-5

ADDITIONAL FEATURES OF ASSEMBLERS
Early assemblers did li ttle more than transla te the mnemonic names of instructions and
regis ters into their binary eq uiva len ts. However. most assemblers now provide such ad­
ditional features as:

1) Allowing the user to assign names to memory loca tions. input and output devices,
and even sequences of inst ru ctions

2) Converting data or add resses from various number systems !e. g., decimal or hex­
adecima l) to binary and conver t ing characters into thei r ASC II or EBCDIC binary
codes

3) Performing some arithmetic as part of the assembly process.

4) Telling the loader program where in memory parts of the prog ram or data should be
placed.

5) Allowing the user to assign areas of memory as temporary data storage and to
place fixed data in areas of program memory

6) Provid ing the information required to include standard prog rams from program li­
braries. or prog rams written at some other time. in the cu rren t program.

7) Allowing the user to control the format of the program l isting and the input and
output devices employed

A ll of these features, of cou rse. involve additional cost and memo­
ry. Microcomputers generally have much simpler assemblers than
do larger computers. but the tendency always is for the size of as­
semblers to increase. You w il l often have a choice of assemblers

CHOOSING
AN
ASSEMBLER

The important criterion is not how many offbeat featu res the assem bler has. bu t rather
how convenient it is to work with in normal prac tice.

DISADVANTAGES OF ASSEMBLY LANGUAGE
The assembler. like the hexadecimal loader, does not solve all the problems of
programming. One problem is the tremendous gap between the microcomputer in­
struction set and the tasks which the microcomputer is to perform. Computer in­
structions tend to do things like add the contents of two reg isters. shif t the contents of
the Accumu lator one bit. or place a new value in the Prog ram Counter. On the other
hand. a user general ly wants a microcompu ter to do something like check if an analog
reading has exceeded a threshold. look for and react to a particular command from a
teletypewriter. or activate a relay at the proper time. An assembly language prog ram­
mer must translate such tasks into a seq uence of simple compu ter instructions. The
translation can be a difficult. time-consuming job.

Furthermore. if you are programming in assembly language, you must have detailed
knowledge of the particular microcomputer that you are using. You must know
what registe rs and instructions the microcompu ter has. precisely how the instructions
affect the va rious registers. wha t add ressing methods the compu ter uses. and a myriad
of other information. None of this information is relevant to the task which the
microcompute r must ultimately perform.

In addition, assembly language programs are not portable.
Each microcomputer has i ts own assembly language. which

I PORTABILITY I
reflects its own archi tecture. An assembly lang uage program w ritten for the 6502 will
not run on a 6800. Z80. 8080. or 3870 microprocessor. For example. the addi ti on pro­
gram wri tten for the 8080 wou ld be:

LOA 60H
MOV B.A
LOA 6 1 H
ADD B
STA 62H

1-6

The lack of portability not only means that you won't be able to use your assembly
language program on another microcompu ter. but it also mea ns that you won't be able
to use any programs tha t weren't specifically written for the microcomputer you are
usi ng. This is a particular drawback for microcomputers. since these devices are new
and few assembly language programs exist for them. The result. too frequently. is that
you are on your own. If you need a program to perform a particular task, you are not
likely to find it in the small program libraries that most manufactu rers provide. Nor are
you likely to find it in an archive, journal article. or someone·s old program file. You will
probably have to w rite it yourself.

HIGH-LEVEL LANGUAGES
The solution to many of the difficulties associated with as­ lcoMPILERI
sembly language programs is to use, instead, " high-level" or
" procedure-oriented" languages. Such languages allow you to describe tasks in
forms that are problem oriented rather than computer oriented. Each statement in
a high-level language performs a recognizable function: it will generally corres­
pond to many assembly language instructions. A program called a compiler trans­
lates the high-level language source program into object code or machine
language instructions.

Many different high-level languages exist for different types of
tasks. If, for example, you can express what you want the com­

(FORTRAN I
puter to do in algebraic notation, you can write your program in FORTRAN (Formula
Translation Language). the oldest and most widely used of the high-level languages.
Now. if you want to add two numbers. you just tell the computer

SUM~ NUMBl + NUMB2

That is a lot simpler (and a lot shorter) than either the equivalent machine language pro·
gram or the equivalent assembly language program. Other high- level languages in­
clude COBOL (for business appl ications), PASCAL (another algebraic language), PL/1 (a
combination of FORTRAN. ALGOL. and COBOL!. and APL and BASIC (languages that
are popular for time-sharing systems)

ADVANTAGES OF HIGH-LEVEL LANGUAGES
Clearly, high-level languages make programs easier and faster to write. A common
estimate is that a programmer can write a program about ten times as fast in a
high-level language as compared to assembly language.1 -3 That is just writing the
program: it does not include problem defini tion. program design. debugging. testing. or
documentation. all of which become simpler and faster. The high- level language pro·
gram is. for instance. partly self-documenting. Even if you do not know FORTRAN. you
probably could tell what the statement illustrated above does

High-level languages solve many other problems associ­
ated with assembly language programming. The high-level
language has its own syntax (usually defined by a national or
international standard) The language does not mention the in­
struction set. registers. or other features of a particular com·

MACHINE
INDEPENDENCE
OF HIGH-LEVEL
LANGUAGES

puter. The compiler takes care of all such details. Programmers c..an concentrate on then
own tasks : they do not need a detailed understanding of the underlying CPU architec·
tu re - for that matter. they do not need to know anything about the computer they are
programming

Programs written in a high-level language are portable -
at least, in theory. They will run on any computer that has a
standard compiler for that language.

1-7

PORTABILITY
OF HIGH-LEVEL
LANGUAGES

At the same time. all previous programs w ri tten in a hig h- level language for pr ior com·
puters are avai lable to you when programming a new computer. This can mean thou·
sands of programs in the case of a common language like FORTRAN or BASIC.

DISADVANTAGES OF HIGH-LEVEL LANGUAGES
Well, if all the good things we have said about high-level languages are true, if you
can write programs faster and make them portable besides, why bother with as­
sembly languages? Who wants to worry about registers, instruction codes,
mnemonics. and all that garbage! As usual, there are disadvantages that balance
the advantages.

One obvious problem is that you have to learn the " rules" or
" syntax" of any high-level language you want to use. A high­
level language has a fairly complicated set of rules. You will find
that it takes a lot of time just to get a program that is syntac t ically

SYNTAX OF
HIGH-LEVEL
LANGUAGES

correct (and even then it probably will not do what you want). A high-level computer
language is like a foreign language. If you have a little ta lent you will get used to the
rules and be able to turn out programs that the compiler will accept. Still. learning the
rules and trying to get the program accepted by the compiler does not contribute
directly to doing your job

Here for example, are some FORTRAN rules·

• Labels must be numbers placed in the first five ca rd columns

· Statements must start in column seven

• Integer variables must start with the letters I. J. K. L. M. or N
..-------.

Another obvious problem is that you need a compiler to translate COST OF
programs written in a high-level language. Compilers are expen- COMPILERS
sive and use a large amount of memory. While most assemblers
occupy 2K to 16K bytes of memory (1 K = 1024). compile rs occupy 4K to 64K bytes. So
the amount of overhead involved in using the compi ler is rather large

Furthermore. only some compilers will make the implements- rA-LG_E_B_R_A-IC'"'
tion of your task simpler. FORTRAN. for example. is well-suited NOTATION
to problems that can be expressed as algebraic formulas. If.
however. your problem is con trolling a printer. editi ng a string of characters. or monitor­
ing an alarm system. your problem cannot be easily expressed in algebraic notation. In
fact. formulating the solution in algebraic notation may be more awkward and more
difficult than formulating it 1n assembly: language. One answer is to use a more suitable
high-level language. Some such languages exist. but they are far less w idely used and
standardized than FORTRAN. You will not get many of the advantages of high-level
languages if you use these so-called system implemen ta tion languages

High-level languages do not produce very efficient
machine language programs. The basic reason for th is is that
compilation is an automat ic process which is riddled w i th com­
promises to allow for many ranges of possibilities. The com­
piler works much l ike a computerized language translator­
sometimes the words are right but the sounds and sentence

------.. INEFFICIENCY
OF HIGH-LEVEL
LANGUAGES

OPTIMIZING
COMPILER

structures are awkward. A si mple compiler cannot know when a variable is no longer
bei ng used and can be d iscarded. when a register should be used rather than a memory
location. or when variables have simple relationships. The experienced programmer can
take advantage of shortcuts to shorten execution time or reduce memory usage. A few
compilers (known as op t imizing compi lers) ca n also do this. but such compilers are
much larger and slower than regular compi lers

1-8

The general advantages and d isadvantages of high-level languages are:

Advantages:

• More convenient descriptions of tasks

• Less time spent wri t ing programs

• Easier documentation

• Standard syntax

• Independence of the structure of a particular computer

• Portability

• Availability of library and other programs

Disadvantages:

•Special rules

·Extensive hardware and software support requi red

• Orientation of common languages to algebraic or
business problems

• Inefficient programs

~----~
ADVANTAGES
OF
HIGH-LEVEL
LANGUAGES

DISADVANTAGES
OF
HIGH-LEVEL
LANGUAGES

• Difficulty of optimizing code to meet time and memory requi rements

• Inability to use special featu res of a computer conveniently

HIGH-LEVEL LANGUAGES FOR MICROPROCESSORS
Microprocessor users will encounter several special difficulties when using high­
level languages. Among these are :

• Few high-level languages exist for microprocessors

· Few standard languages are widely available
• Compilers usually require a large amount of memory or even a com­

pletely different computer
· Most microprocessor applications are not well-suited to high-level

languages
· Memory costs are often critical in microprocessor applications

The lack of high-level languages is partly a result of the fact that microprocessors are
quite new and are the products of semiconductor manufacturers rather than computer
manufacturers. Very few high-level languages exist for microprocessors. The most com­
mon are BASIC.5 PASCAL. 6 FORTRAN. and the PL/I-type languages such as PL/M.7
MPL. and PLµS

Many of the high- level languages that exist do not conform to recognized standards. so
that the microprocessor user cannot expect to gain mu ch program portability. access to
program libraries. or use of previous experience or programs. The main advantages re­
maining are the reduction in programming effort and the smaller amount of detailed
understanding of the computer architectu re that is necessary

The overhead involved in using a high- level language wi th
microprocessors is considerable. Microprocessors themselves are
better suited to control and slow interactive applications than they
are to the character manipulation and language analysis involved
in compilation. Therefore. some compi lers for microprocessors wi l l

OVERHEAD
FOR
HIGH-LEVEL
LANGUAGES

not run on a microprocessor- based system. Instead. they require a much la rger com­
puter: i.e .. they are cross-compi lers rather than self-compilers. A user must not on ly
bear the expense of the larger computer but must also physically transfer the program
from the larger computer to the micro

1-9

Some self-compi lers are available. These compi lers run on the microcomputer for which
they produce object code. U nfortunately, they require large amounts of memory (16K or
more), plus special supporting hardware and software.

High-level languages also are not generally well-suited to
microprocessor applications. Most of the common languages
were devised either to help solve scientific problems or to
handle large-scale business data processing. Few

UNSUITABILITY
OF HIGH-LEVEL
LANGUAGES

microprocessor applications fall in either of these areas. Most microprocessor
applications involve sending data and control information to output devices and
receiving data and status information from input devices. Often the control and status
information consists of a few binary digits with very precise hardware-related
meanings. If you try to write a typica l control program in a high-level language. you
of ten feel like someone who is trying to eat soup with chopsticks. For tasks in such
areas as test equipment. terminals. navigation systems. signal processing. and business
equipment. the high-level languages work much better than they do in
instrumentation. communications. peripherals. and automotive applica tions.

Applications better suited to high-level languages are those which
require large memories. If. as in a valve controller. electronic game.
appliance controller. or smal l instrument. the cos t of a single
memory chip is important. then the 1neffic1ency of high-level
languages is intolerable. If. on the other hand. as in a terminal or

-----~ APPLICATION
AREAS FOR
LANGUAGE
LEVELS

test equipment. the system has many thousands of bytes of memory anyway. the ineffi­
ciency of high-level languages is not as important. Clearly the size of the program and
the volume of the product are important factors as well A large program will grea tly in­
crease the advantages of high-level languages. On the other hand. a high-volume ap­
plication will mean that fixed software development cos ts are not as important as
memory costs that are part of each system.

WHICH LEVEL SHOULD YOU USE?
That depends on your particular application. Let us briefly note some of the factors
which may favor particular levels :

Machine Language:

· Virtually no one programs in machine language
because it is inefficient and difficult to document.
An assembler costs very little and greatly reduces
programming time.

Assembly Language:

· Short to moderate·sized programs

• Applications where memory cost is a factor

· Real-time control applications

· Limited data processing

· High·volume applications

APPLICATIONS
FOR MACHINE
LANGUAGE

APPLICATIONS
FOR ASS EMBLY
LANGUAGE

· Applications involving more input/output or control than computation

1-10

High Level Languages :

• Long programs

• Low-volume applications requiring long pro-
grams

APPLICATIONS
FOR HIGH-LEVEL
LANGUAGE

• Applications where the amount of memory required is already very large

• Applications involving more computation than input/output or control

• Compatibility with similar applications using larger computers

· Availability of specific programs in a high-level language which can be
used in the application

Many other factors are also important. such as the availability of a larger computer for
use in development experience with particu lar languages. and compatibility with other
applications.

If hardware will ultimately be the largest cost in your application. or if speed is critical.
you should favor assembly language. But be prepared to spend extra time in software
development in exchange for lower memory costs and higher execution speeds. If soft­
ware will be the largest cost in your application. you should favor a high- level language
But be prepared to spend the extra money requ ired for the support ing hardware and
software.

Of cou rse. no one except some theorists will object if you use both assembly and high­
level languages. You can write the program origina l ly in a high-level language and then
patch some sections in assembly language.? However. most users prefer not to do this
because of the havoc it creates in debugging, testing, and documentation

HOW ABOUT THE FUTURE?
We expect that the future will favor high-level languages for the following reasons :

• Prog rams always seem to add extra features and
grow larger

• Hardware and memory are becoming less expensive

• Software and programmers are becoming more ex­
pensive

FUTURE TRENDS
IN LANGUAGE
LEVELS

• Memory chips are becoming available in larger sizes. at lower "per bit" cost.
so actual savings in chips are less likely

• More suitable and more efficient high-level languages are being developed

• More standardization of high-level languages wil\ occu r

Assembly language programming of microprocessors will not be a dying art any more
than it is now for la rge computers. But longer programs. cheaper memory. and more ex­
pensive prog rammers will make software costs a larger part of most applications. The
edge in many applications wi ll therefore go to high-level languages.

1-11

WHY THIS BOOK 7
If the future would seem to favor high-level languages, why have a book on as­
sembly language programming? The reasons are :

1) Most current microcomputer users program in assembly language (almost two
thirds. according to one recent survey) .

2) Many microcomputer users will continue to program in assembly language since
they need the detailed control that it provides.

3) No suitable high-level language has yet become widely available or standardized

4) Many applications require the efficiency of assembly language

5) An understanding of assembly language can help in evaluating high-level
languages.

The rest of this book will deal exclusively with assemblers and assembly language pro­
gramming. However. we do want readers to know that assembly language is not the
only alternative. You should watch for new developments that may significantly reduce
programming costs if such costs are a major factor in your application.

1- 12

REFERENCES

1. A. Osborne. An Introduction to Microcomputers : Volume 1 - Basic Concepts.
Osborne/ McGraw-Hill. Berkeley, CA .. 1976.

2. M. H. Halstead, Elements of Software Science. American Elsevier, New York. 1977.

3. V. Schneider. " Prediction of Software Effort and Project Duration." SIGPLAN
Notices. June 1978. pp. 49-55. ---

4. M. Phister Jr .. Data Processing Technology and Economics. Santa Monica Publish­
ing Co .. Santa Monica. CA. 1976.

5. Albrecht. Finkel, and Brown. BASIC for Home Computers. Wiley. New York. 1978.

6. K. L. Bowles. Microcomputer Problem Solving Using PASCAL. Springer-Verlag. New
York. 1977.

7. D. D. McCracken. A Guide to PL 'M Programming for Microcomputer Applications.
Addison-Wesley. Reading. Mass .. 1978

8. P. Caudill. "Usi ng Assembly Coding to Optimize High -Level Language Programs ...
Electronics. February 1. 1979. pp. 121 · 124

1-13

Chapter 2
ASSEMBLERS

This chapter discusses the functions performed by assemblers, beginning with featu res
common to most assemblers and proceeding through more elaborate capabi lities such
as macros and conditional assembly. You may wish to skim this chapter for the present
and return to it when you feel more comfortable with the material.

FEATURES OF ASSEMBLERS

As we mentioned previously, today's assemblers do much more than translate as­

sembly language mnemonics into binary codes. But we will describe how an as­
sembler handles the translation of mnemonics before describing additional assem­
bler features. Finally, we will explain how assemblers are used.

ASSEMBLER INSTRUCTIONS
Assembly language instructions lor "statements"} are divided
into a number of fields, as shown in Table 2-1.

The operation code field is the only field that can never be
empty ; it always contains either an instruction mnemonic or a

ASSEMBLY
LANGUAGE
FIELDS

directive to the assembler, called a pseudo-instruction, pseudo-operation, or
pseudo-op.

The operand or address field may contain an address or data. or it may be blank.

The comment and label fields are optional. A programmer will assign a label to a
statement or add a comment as a personal convenience: namely, to make the pro­
gram easier to read and use.

Table 2-1. The Fields of an Assembly Language Instruction

Label Operation Code Operand or

Field or Mnemonic Address Comment Field
Field Field

START LOA VAL! LOAD FIRST NUMBER INTO A
ADC VAL2 ADD SECOND NUMBER TO A
STA SUM STORE SUM

NEXT NEXT INSTRUCTION

VAL! · = ·+1
VAL2 · = · +1
SUM 0 = · +1

2-1

Table 2-2. Standard 6502 Assembler Delimiters

'space' between label and operation code and between operation
code and address
between operands in the address field

; or I before a comment

Note that 6502 assemblers vary greatly and some may not use these delimiters.

Of course, the assembler must have some way of telling
where one field ends and another begins. Assemblers that use
punched card input often require that each field start in a specific card column. This is
a fixed format. However. fixed formats are inconvenient when the input medium is
paper tape: fixed formats are also a nuisance to programmers. The alternative is a free
format where the fields may appear anywhere on the line

lf the assembler cannot use the position on the line to tell the
fields apart. it must use something else. Most assemblers use a

I DELIMITERS(

special symbol or delimiter at the beginning or end of each field. The most common
delimiter is the space character. Commas. periods. semicolons. colons. slashes. ques­
tion marks. and other characters that would not otherwise be used in assembly
language programs may also serve as delimiters. Table 2-2 lists standard 6502 assem­
bler delimiters.

You will have to exercise a little care with delimiters. Some assemblers are fussy
about extra spaces or the appearance of delimiters in comments or labels. A well­
written assembler will handle these minor problems, but many assemblers are not
well-written. Our recommendat ion is simple : avoid potential problems if you can.
The following rules will help :

1) Do not use extra spaces, part icu larly after commas that separate operands.

2) Do not use delimiter characters in names or labels.

3) Include standard delimiters even if your assembler does not requi re them. Your pro­
grams will then run on any assembler.

LABELS
The label field is the first field in an assembly language in- LABEL
structlon: it may be blank. If a label is present. the assembler FIELD
defines the label as equivalent to the address into which the first
byte of the object program resulting from that instruction is loaded You may subse­
quently use the label as an address or as data in another instruction's address field . The
assembler will replace the label with the assigned value when creating an object pro­
gram.

labels are most frequently used in Jump, Call , or Branch in­
structions. These instructions place a new value in the Program
Counter and so alter the normal sequent ial execution of instruc­
tions. JUMP 15015 means "place the value 15015 in the Program

LABELS
IN JUMP
INSTRUCTIONS

Counter"' The next instruction to be executed will be the one in memory location
15015. The instruc tion JUMP START means "place the value assigned to the label
START in the Program Counter" The next instruction to be executed will be the one at
the address corresponding to the label START. Table 2-3 contains an example.

2-2

Table 2-3. Assigning and Using a Label

ASSEMBLY LANGUAGE PROGRAM

START LOAD ACCUMULATOR 100

• !MAIN PROGRAM)

JUMP START

When the machine language version of this program is executed. the instruction
JUMP START ca uses the add ress of the instruction labeled START to be placed
in the Program Counter. That instruction will then be executed.

Why use a label? Here are some reasons:

1) A label makes a program location easier to find and remember

2) A label can easi ly be moved. if required. to change or correct a program The as­
sembler will automatically change all instructions that use that label when the pro­
gram is reassembled.

3) The assembler or loader can relocate the whole program by RELOCATION
adding a constant (a relocation constant) to each address for CONSTANT
which a label was used. Thus we can move the program to
allow for the insertion of other programs or simply to rearrange memory

4) The program is easier to use as a library program: i.e .. it is easier for someone else
to take your program and add it to some totally different program.

5) You do not have to figure out memory addresses Figuring out memory addresses is
particularly difficult with microprocessors which have instructions that vary in
length.

You should assign a label to any instruction that you might wan t to refer to later.

The next question is how to choose a label. The assembler CHOOSING
often places some restrictions on the number of characters LABELS
(usually 5 or 6). the leading character (often must be a letter). and
the trailing characters (often must be letters, numbers. or one of a few special charac­
ters). Beyond these restrict ions, the choice is up to you

Our own preference is to use labels that suggest their purpose. i.e .. mnemonic labels
Typical examples are ADDW in a routine that adds one word into a sum. SRETX in a
routine that searches for the ASCII character ETX. or NKEYS for a location in data
memory tha t contains the number of key entries. Mean ingful labels are easier to
remember and con tribute to program documen tat ion. Some programmers use a stan­
dard format for labels, such as starting with LOOOO. These labels are self-sequencing
(you can skip a few numbers to permit insertions), but they do not help document the
program.

2-3

Some label selection rules will keep you out of trouble. We
recommend the following :

1) Do not use labels that are the same as operation codes or

RULES OF
LABELING

other mnemonics. Most assemblers will not al low this usage: others wi l l. but it is
very confusing.

2) Do not use labels that are longer than the assembler permits. Assemblers have
various truncation rules.

3) Avoid special characters (non-alphabetic and non-numeric) and lower·case letters.
Some assemblers will not permit them: others allow only certain ones. The simplest
practice is to stick to capital letters and numbers

4) Start each label with a letter. Such labels are always acceptable.

5) Do not use labels that could be confused with each other. Avoid the letters I. 0 and
Z. and the numbers 0. 1. and 2. Also avoid things like XXXX and XXXXX. There's
no sense tempting fate and Murphy's laws.

6) When you are not sure if a label is legal. do not use it. You will not get any real
benefit from discovering exactly what the assembler wilt accept.

These are recommendations. not rules. You do not have to follow them. but don't blame
us if you waste time on silly problems

ASSEMBLER OPERATION CODES (MNEMONICS)
The main task of the assembler is the translation of mnemonic operation codes
into their binary equivalents. The assembler performs th is task using a f ixed tab le
much as you w ould if you were doing the assembly by hand.

The assembler must. however. do more than iust translate the operation codes. It must
also somehow determine how many operands the instruction requires and what
type they are. This may be rather complex - some instructions Hike a Halt) have no
operands. others (like an Addition or a Jump instruction) have one. while still others
(like a transfer between registers or a multiple-bit shift) require two. Some instructions
may even allow alternatives; e.g .. some computers have instruc tions (like Shift or Clear)
that can apply either to the Accumulator or to a memory location. We will not discuss
how the assembler makes these distinctions; we will just note that it must do so

PSEUDO-OPERATIONS
Some assembly language instructions are not directly trans- PSEUDO-
lated into machine language instructions. These instructions OPERATIONS
are directives to the assembler; they assign the program to cer-
tain areas in memory. define symbols. designa te areas of RAM for temporary data
storage. place tables or other fixed data in memory. allow references to other programs.
and perform minor housekeeping functtons

To use these assembler directives or pseudo-operations a programmer places the
pseudo-operation's mnemonic in the operat ion code field. and. if the specified pseudo·
operation requ ires 1t. an address or data in the address field

The most common pseudo-operations are:

DATA
EOUATE l=I or DEFINE
ORIGIN
RESERVE

Linking pseudo-operations (used to connect separate programs) are :
ENTRY
EXTERNAL

2-4

Different assemblers use diffe rent names for these operat ions. but their fu nct ions are
the same Housekeeping pseudo-operations include:

END
LIST
NAME
PAGE
SPACE
TITLE
PUNC H

We will discuss these pseudo-operations briefly. although their functions are usually
obvious.

THE DATA PSEUDO-OPERATION
The DATA pseudo-operation allows the programmer to enter fixed data into pro·
gram memory. This data may include

• Lookup tables
• Code conversion tables
• Messages
• Synchronization patterns
• Thresholds
• Names
• Coefficients for equations
· Commands
• Conversion factors
• Weighting factors
•Characteristic times or frequencies
•Subroutine addresses
• Key identifications
• Test patterns
• Character generation patterns
• Identification patterns
• Tax tables
• Standard forms
• Masking patterns
• State transition tables

The DATA pseudo-operation treats the data as a permanent part of the program.

The format of a DATA pseudo·operation is usually quite simple. An instruction
like:

DZCON DATA 12

will place the number 12 in the next available memory location and assign that
location the name DZCON. Usual ly every DATA pseudo-operation has a label. unless it
is one of a series of DATA pseudo-operations. The data and label may take any form
tha t the assembler permi ts

Most assemb lers allow more elaborate DATA instructions that hand le a large amount of
data at one ti me. e.g.:

EMESS DATA
SORS DATA

2-5

'ERROR'
1.4.9.16.25

A single instruction may fill many words of program memory. limi ted only by the leng th
of a line. Note that if you cannot get all the data on one tine. you can always follow one
DATA instruction with another. e.g ..

MESSG DATA
DATA
DATA
DATA
DATA
DATA

'NOW IS THE.
'TIME FOR ALL .
'GOOD MEN.
·rn COME TO THE .
'AID OF THEIR.
'COUNTRY.

Microprocessor assemblers typically have some variations of standard DATA
pseudo-operations. DEFINE BYTE or FORM CONSTANT BYTE handles B-bit numbers:
DEFINE WORD or FORM CONSTANT WORD handles 16-bit numbers or addresses
Other special pseudo-operations may handle character-coded data.

THE EQUATE (or DEFINE) PSEUDO-OPERATION
The EQUATE pseudo·operation allows the programmer to DEFINING
equate names with addresses or data. This pseudo·operation NAMES
is almost always given the mnemonic EQU or =. The names
may refer to device addresses. numeric data. starting addresses. fixed addresses. etc

The EQUATE pseudo·operation assigns the numeric value in its operand field to
the label in its label field . Here are two examples :

TTY
LAST

EOU
EOU

5
5000

Most assemblers will allow you to define one label in terms of another. e.g ..

LAST
ST1

EOU
EOU

FINAL
START+1

The label in the operand field must. of course. have been previously defined Often. the
operand field may contain more complex expressions. as we shall see later. Double
name assignments ltwo names for the same data or address) may be useful in patching
together programs that use different names for the same variable {or different spellings
of what was supposed to be the same namel.

Note that an EQU pseudo·operation does not cause the as· SYMBOL
sembler to place anything in memory. The assembler simply TABLE
enters an additional name into a table (called a symbol table)
which the assembler maintains. This table. unlike the mnemonic table. must be in
RAM since it varies with each program. The assembler always needs some RAM to hold
the symbol table: the more RAM it has. the more symbols it can accept. This RAM is in
addition to any which the assembler needs as temporary storage.

When do you use a name? The answer is: whenever you have a
parameter that has some meaning besides its ordinary numeric
value or the numeric value of the parameter might be changed
We typically assign names to time constants. device addresses. masking patterns. con­
version factors. and the like. A name like DELAY. TTY. KBD. KROW. or OPEN not only
makes the parameter easier to change. but 11 also adds to program documentation. We
also assign names to memory locations that have special purposes; they may hold data.
mark the start of the program. or be available for intermediate storage.

What name do you use 7 The best rules are much the same as
in the case of labels, except that here meaningful names really
count. Why not call the teletypewriter TTY instead of X15. a bit
time delay BTIME or BTDL Y rather than WW, the number of the
"GO" key on a keyboard GOKEY rather than HORSE/ This advice seems straightfor­
ward. but a surprising number of programmers do not follow it

2-6

Where do you place the EQUATE pseudo-operations 1 The
best place is at the start of the program. under appropriate
comment headings such as 1/0 ADDR ESSES. TEMPORARY
STORAGE. TIME CONSTANTS. or PROGRAM LOCATIONS. This

PLACEMENT
OF
DEFINITIONS

makes the definitions easy to find if you want to change them. Furthermore. another
user wi l l be able to look up all the definitions in one centralized place. Clearly this prac­
tice improves documentation and makes the program easier to use.

Definitions used only in a specific subroutine should appear at the start of the
subroutine.

THE ORIGIN PSEUDO-OPERATION
The ORIGIN pseudo-operation (almost always abbreviated ORG) allows the pro­
grammer to locate programs. subroutines, or data anywhere in memory. Programs
and data may be located in different areas of memory depending on the memory con­
figurat ion. Startup rout ines. interrupt service routines, and other required programs
may be scattered around memory at fixed or convenient addresses.

The assembler maintains a Location Counter {comparable to LOCATION
the computer's Program Counter) which contains the location COUNTER
in memory of the next instruction or data item being pro-
cessed. An ORG pseudo-operation causes the assembler to place a new value in the
Location Counter. much as a Jump instruction causes the CPU to place a new value in
the Program Counter. The output from the assembler must not only contain instructions
and data. but must also indicate to the loader program where in memory it should place
the instructions and data.

M icroprocessor programs often contain several ORIGIN statements for the following
purposes·

Reset (startup) address
Interrupt service addresses
Trap addresses
RAM storage
Memory stack
Subroutines
Memory addresses for input/output devices or

special functions

Still other ORIGIN statements may allow room for later insert ions. place tables or data in
memory. or assign vacant RAM space for data buffers. Program and data memory in
microcomputers may occupy widely scattered addresses to simplify the hardware

Typical ORIGIN statements are:

ORG RESET
ORG 1000
ORG INT3

Some assemblers assume an origin of zero if the programmer does not put an ORG
statement at the start of the program. The convenience is slight: we recommend the in­
clusion of an ORG statement to avoid confusion.

THE RESERVE PSEUDO-OPERATION
The RESERVE pseudo-operation allows the programmer to
allocate RAM for various purposes such as data tables. tem­
porary storage, indirect addresses. a Stack. etc.

2-7

ALLOCATING
RAM

Using the RESERVE pseudo-operation, you assign a name to the memory area and
declare the number of locations to be assigned. Here are some examples:

NOKEY
TEMP
VOLTG
BUFR

RESERVE
RESERVE
RESERVE
RESERVE

1
50
80
100

You can use the RESERVE pseudo-operation to reserve memory locations m program
memory or in data memory; however. the RESERVE pseudo-operation is more
meaningful when applied to data memory.

In reali ty. all the RESERVE pseudo-operation does is increase the assembler's Location
Counter by the amount declared in the operand field . The assembler does not ac tually
produce any object code.

Note the following features of RESERVE:

1) The label of the RESERVE pseudo-operation is assigned the va lue of the first ad­
dress reserved. For example. the pseudo-operation:

TEMP RESERVE 20

reserves 20 bytes of RAM and assigns the name TEMP to the address of the fi rst
byte

2) You must specify the number of locations to be reserved. There is no default case

3) No data is placed in the reserved locations. Any data that by chance. may be in
these locat ions will be left there

Some assemblers allow the programmer to place initial INITIALIZING
values in RAM. We strongly recommend that you do not LR;.;;A;.;.;.;M;_ __ _,
use this feature - it assumes that the program (a long with
the initial values) will be loaded from an external device (e.g .. paper tape or floppy disk)
each time it is run. Most microprocessor programs. on the other hand. reside in non­
volatile ROM and start when power comes on. The RAM in such situations does not re­
tain its contents, nor is It reloaded. Always include instructions to initialize the RAM in
your program

LINKING PSEUDO-OPERATIONS

We often want statements in one program or subroutine to
use names that are defined elsewhere. Such names are called
external references; a special linking program is necessary to ac-

EXTERNAL
REFERENCES

tually fi ll in the values and determine if any names are undefined or doubly defi ned

The pseudo-operation EXTERNAL, usually abbreviated EXT. signifies that the
name is defined elsewhere.

The pseudo-operation ENTRY. usually abbreviated ENT, signifies that the name is
available for use elsewhere: i.e .. it is defined in this program.

The precise way in which linking pseudo-operations are implemented varies greatly
from assembler to assembler. We will not refer to such pseudo-operations again. but
they are very useful in actual applications.

2-8

HOUSEKEEPING PSEUDO-OPERATIONS
There are various housekeeping pseudo-operations that affect the operation of
the assembler and its program listing rather than the output program itself. Com­
mon housekeeping pseudo-operations include:

• END. which marks the end of the assembly language source program

• LIST, which tells the assembler to print the source program. Some assemblers allow
such variations as NO LIST or LIST SYMBOL TABLE to avoid long. repetit ive l istings.

• NAME or TITLE, which prints a name at the top of each page of the listing

· PAGE or SPACE. which skips to the next page or next line. respective ly. and im­
proves the appearance of the listing. making it easier to read.

• PUNCH. which transfers subsequent object code to the paper tape punch. This
pseudo-operation may in some cases be the default option and therefore unneces­
sary.

LABELS WITH PSEUDO-OPERATIONS
Users often wonder if or when they can assign a label to a pseudo-operation.
These are our recommendations:

• All EQUATE pseudo-operations must have labels; they are useless otherwise. since
the purpose of an EQUATE is to define its label

• DATA and RESERVE pseudo-operations usually have labels. The label identifies the
first memory location used or assigned .

• Other pseudo-operat1ons should not have labels. Some assemblers allow such
labels. but we recommend against their use because there is no standard way to in­
terpret them.

2-9

ADDRESSES AND THE OPERAND FIELD

Most aasemblere allow the programmer a lot of freedom In describing t he con­
tent• of the Operand or Address field. But remember that the assembler haa built·
In namea for registers and Instructions and may have other built-In names.

Some common option• for the operand field are:

1) Decimal numbers

Most assemblers assume all numbers to be decimal unless they
are marked otherwise. So:

ADD 100

DECIMAL
DATA OR
ADDRESSES

means "add the contents of memory location 10010 to the contents of the Ac­
cu mulator."

2) Other number systems

Most assemblers wi ll also accept binary. octal. or hexadecimal
entries. Bu t you must identify these number systems in some
way. e.g .. by preced ing or following the number with an iden-
tifying character or letter. Here are some common identifiers:

B or % for binary

NON-DECIMAL
NUMBER
SYSTEMS

0 . @. 0. or C for octa l (the letter 0 shou ld be avoided because of the confu­
sion with zero) .

H or $ for hexadecimal (or standard BCD).
D for decimal. 0 may be omitted; it is the default case.

Assemblers general ly requ ire hexadecimal numbers to start with a dig it {e.g .. OA36
instead of A36) in order to distinguish between numbers and names or labels. It is
good practice to enter numbers in the base in which their meaning is the
clearest : i.e .. dec imal constants in decimal; addresses and BCD numbers in hex­
adecimal; masking patterns or bit outputs in binary if they are short and in hex­
adecimal if they are long.

3) Names

Names can appear in the operand field: they will be treated as the data that they
represent. But remember, there is a difference between data and addresses. The
sequence:

FIVE EOU
ADD

5
FIVE

wil l add the contents of memory locat ion 0005 {not necessarily the number 5) to the
conten ts of the Accumulator.

2-10

4) The current value of the location counter (usually referred to as • or $).

This is useful main ly in Jump instructions; for example:

JUMP ·+6

causes a Jump to the memory location six words beyond the word that contains the
first byte of the JUMP instruction:

Memory

Most microprocessors have many two- and three-word instructions. Thus. you will
have difficulty determin ing exactly how far apart two assembly language statements
are. Therefore. using offsets from the Location Counter frequently results in errors
that you can avoid if you use labels

5) Character codes

Most assemblers allow text to be entered as ASCII strings. Such
strings may be surrounded either with single or double quota­
tion marks; strings may also use a beginning or endi ng symbol
such as A or C. A few assemblers also permit EBCDIC strings

ASCII
CHARACTERS

We recommend that you use character strings for all text. It improves the clarity and
readability of the program.

6) Combinations of 1) through 6) with arithmetic, logical, or special operators.

Almost all assemb lers allow simple arithmetic combinations
such as START+ 1. Some assemblers also permit multiplicat ion,
division, logical functions. shifts. etc. These are referred to as
expressions. Note that the assembler evaluates expressions at

ARITHMETIC
AND LOGICAL
EXPRESSIONS

assembly time. Even though an expression in the operand field may involve
multiplication. you may not be able to use multiplication in the logic of your own pro­
gram - unless you write a subroutine for that specif ic purpose.

Assemblers vary in what expressions they accept and how they interpret them. Com­
plex expressions make a program difficult to read and understand.

We have made some recommendations during this section but will repeat them and
add others here. In general. the user should strive for clarity and simplicity. There is
no payoff for being an expert in the intricacies of an assembler or in having the most
complex expression on the block. We suggest the following approach:

1) Use the clearest number system or character code for data.

Masks and BCD numbers in decimal. ASCII characters in octal. or ordinary numeri­
ca l constants in hexadecimal serve no purpose and therefore should not be used.

2) Remember to distingu ish data from addresses

3) Don't use offsets from the Location Counter

4) Keep expressions simple and obvious. Don't rely on obscure features of the assem­
bler

2-11

CONDITIONAL ASSEMBLY

Some assemblers allow you to include or exclude parts of the source program, de­
pending on conditions existing at assembly time. This is called conditional assem­
bly; it gives the assembler some of the flexibility of a compiler. Most microcomputer
assemblers have limited capabilities for conditional assembly. A typical form is :

IF COND

.(CONDITIONAL PROGRAM)

ENDIF

If the expression COND is true at assembly time. the instructions between IF and ENOIF
(two pseudo-operat ions) are included in the program.

Typical uses of conditional assembly are:

1) To include or exclude extra variables.

2) To place diagnostics or special conditions in test runs.

3) To allow data of various bit lengths

4) To create specialized versions of a common program

Unfortunately. conditional assembly tends to clutter programs and make them difficult
to read. Use conditiona l assembly only if it is necessary.

2- 12

MACROS

You will often find that particu lar sequences of instructions oc­
cur many times in a source program. Repeated instruction se­
quences may reflect the needs of your program logic. or they
may be compensating for deficiencies in your microprocessor's

DEFINING A
SEQUENCE OF
INSTRUCTIONS

instruction set. You can avoid repeatedly wri t ing out the same instruction sequence b·1
using a macro.

Macros allow you to assign a name t o an instruction sequence. You then use the
macro name in your source program instead of the repeated Instruction sequence.
The assembler will replace the macro name with the appropriate sequence of in­
structions. This may be illustrated as follows :

Source Program Object Program

MACt MACRO (macro definttionl

instruct ion Ml}
in1tructionM2 -----------,
in1truction MJ

ENOM (end of macro definition)

lmoio "'°""ml }-------1----.j• instruction Pl

instruction P2

instruction P3

MAC\

instruction P4

instruction PS

instruction P6

instruction P7

MAC1

instruction PB

instruction P9

-

}

{
{

{
{
j

MACl --------------_,__--t• {
- { instruction PIO }---------------­

instruction P 11

instruction P l
instruction P2

instructioo P3

instruction Ml
instruction M2
ins1ruction M3

instruction P4

instruction PS

instructioo P6

instruction P7

instruction Ml

instruction M2
ins tructioo M3

instruction P8

instruction P9

instruction Ml
instructioo M2

in1tructioo M3

lflS truction P10

instructioo P11

Macros are not the same as subroutines. A subroutine occurs once in a program. and
program execution branches to the subroutine. A macro is expanded to an actual in­
struction sequence each time the macro occurs: thus a macro does not cause any
branching.

2-13

Macros have the following 1dv1nt1gea:

1) Shorter source programs.
2) Better program documentation.

ADVANTAGES
OF MACROS

3) Use of debugged instruction sequences - once the macro has been debugged.
you are sure of an error-free instruction sequence every time you use the macro.

4) Easier changes. Change the macro definition and the assembler makes the change
for you every time the macro is used.

5) Inclusion of commands. keywords. or other computer instructions in the basic in­
struction set. You can use macros to extend or clarify the instru ction set.

The disadvantages of macros are:

1) Repetition of the same instruction sequences since the
macro is expanded every time it is used

2) A single macro may create a lot of instructions

DISADVANTAGES
OF MACROS

3) Lack of standard ization makes programs difficult to read and understand.

4) Possible effects on registers and flags that may not be clearly descrr-ib-•d ___ _,

One problem is that variables used in a macro are only known LOCAL OR
within it (i.e .. they are local rather than global). This can often GLOBAL
create a great deal of confusion without any gain in return. You VARIABLES
shou Id be aware of this problem when using macros.1

2-14

COMMENTS

All assemblers allow you to place comments in a source program. Comments have
no effect on the object code. but they help you to read. underatand. and document
the program. Good commenting ia an essential part of writing assembly language
programs; programs without comments are very difficult to understand.

We will discuss commenting along with documentation in a later chapter, but here
are some guidelines.:

1) Use comments to tell what appl ication task the program is COMMENTING
performing. not how the microcomputer executes the in· TECHNIQUES
structions.

Comments should say things like "IS TEMPERATURE ABOVE LIMIT'" "LINE FEED
TO TTY' '. or "EXAMINE LOAD SWITCH"

Comments should not say things like "ADD 1 TO ACCUMULATOR" . "JUMP TO
START'. or ''LOOK AT CARRY' '. You should describe how the program is affecting
the system; internal effects on the CPU are seldom of any interest.

2) Keep comments brief and to the point. Details should be available elsewhere in
the documentation.

3) Comment all key points

4) Do not comment standard instructions or sequences that change counters or
pointers: pay special attention to instructions that may not have an obvious mean·
ing.

5) Do not use obscure abbreviations

6) Make the comments neat and readable.

7) Comment all definitions, aescribing their purposes. Also mark all tables and data
storage areas

8) Comment sections of the program as well as individual instructions.

9) Be consistent in your terminology. You can and should be repetitive: you need not
consult a thesaurus.

1 O) Leave yourself notes at points which you find confusing : e.g .. "REMEMBER CAA·
RY WAS SET BY LAST INSTRUCTION" You may drop these in the f inal documen­
tation.

A well·commented program is easy to use. You will recover the time spent 1n comment·
ing many times over. We will try to show good commenting style in the programming
examples. although we often over·comment for instructional purposes

2-15

TYPES OF ASSEMBLERS

Although all assemblers perform the same tasks, their implementations vary
greatly. We will not try to describe all the existing types of assemblers; we will
merely define the terms and indicate some of the choices.

A cross-assembler is an assembler that runs on a computer
other than the one for which it assembles object programs.

The computer on which the cross-assembler runs is typically a

CROSS­
ASSEMBLER

large computer with extensive software support and fast peripherals - such as an IBM
360 or 370. a Univac 1108. or a Burrou ghs 6700. The computer for which the cross-as­
sembler assembles programs 1s typically a micro like the 6502 or 8080. Most cross-as­
semblers are written in FORTRAN so that they are portable.

A self-assembler or resident assembler is an assembler that
runs on the computer for which it assembles programs. The
self -assembler wil l require some memory and peripherals. and it
may run quite slowly.

A macro assembler is an assembler that allows you to define
sequences of instructions as macros.

A microassembler is an assembler used to write the
microprograms that define the instruction set of a computer.
Microprogramming has nothing specifically to do with
microcomputers.2,3

A meta-assembler is an assembler that can handle many
different instruction sets. The user must define the particular in­
stru ction set being used.

A one-pass assembler is an assembler that goes through the
assembly language program only once. Such an assembler must
have some way of resolvi ng forward references. e.g .. Jump in·
struct ions which use labels that have not yet been defined

RESIDENT
ASSEMBLER

MACRO
ASSEMBLER

MICRO­
ASSEMBLER

META­
ASSEMBLER

ONE-PASS
ASSEMBLER

A two-pass assembler is an assembler that goes through the TWO-PASS
assembly language source program twice. The first time the ASSEMBLER
assembler simply collects and defines all the symbols ; the
second time it replaces the references with the actual definitions. A two-pass as­
sembler has no problems with forward references but may be quite slow if no
backup storage (like a floppy disk) is available; than the assembler must
physically read the program twice from a slow input medium (like a teletypewriter
paper tape reader). Most microprocessor-based assemblers require two passes.

2-16

ERRORS

Assemblers normally provide error massages, often consisting of a single coded
letter. Some typical errors are :

• Undefined name (often a m1sspellmg or an omitted def init ion)

• Illegal character (e.g .. a 2 1n a binary number)

· Illegal format (wrong del!mtter or incorrect operands)

· Invalid expression (e.g .. two operators in a row)

• Illega l value {usual ly too large)

• M issing operand

• Double definition (i .e .. two d ifferent values assigned to one name)

·Illegal label (e.g .. a label on a pseudo-operation that cannot have one)

• Missing labet

·Undefined operat ion code

In interpreting assembler errors. you must remember that the assembler may get on the
wrong track if it finds a stray letter. an extra space. or incorrect punctuation. Many as­
semblers will then proceed to misinterpret the succeeding instructions and produce
meaningless error messages. Always look at the fi rst error very carefully: subsequent
ones may depend on it. Caution and consistent adherence to standard formats w1ll
eliminate many ann oying mistakes

LOADERS

The loader is the program which actually takes the output (ob1ect code) from the as­
sembler and places it 1n memory Loaders range from the very simple to the very com­
plex. W e will describe a few different types.

A bootstrap loader is a program that uses its own first few in- BOOTSTRAP
structlons to load the rest of itself or another loader program LOADER
into memory. The bootstrap loader may be in ROM, or you may
have to enter it into the computer memory using front panel switches. The assembler
may place a bootstrap loader at the start of the ob1ect program that it produces

A relocating loader can load programs anywhere in memory. It RELOCATING
typically loads each program into the memory space immediately LOADER
following that used by the previous prog ram. The programs.
however. must themselves be capable of bei ng moved around in this way: i.e., they
must be relocatable. An absolute loader, in contrast, will always place the pro­
grams in the same area of memory.

A linking loader loads programs and subroutines that have LINKING
been assembled separately; it resolves cross references - LOADERS
that is. ins tru ctions in one program that refer to a label in another
program. Object programs loaded by a linking loader must be created by an assembler
that allows external references

An alternative approach is to sepa rate the linking and loading
functions and have the linking performed by a prog ram called a
link editor.

2-17

REFERENCES

1. A complete monograph on macros is M. Campbell-Kelly. "An Introduction to
Macros." American Elsevier. New York. 1973.

2. A. Osborne. An Introduction to Microcomputers: Volume 1 - Basic Concepts.
OSBORNE/McGraw-Hill. Berkeley. CA. 1977.

3. A. K. Agrawala and T. G. Rauscher. Foundations of Microprogramming. Academic
Press. New York. 1976.

4. D. W. Barron. "Assemblers and Loaders." American Elsevier. New York, 1972

5. C.W. Gear. Computer Organization and Programming. McGraw-Hill. New York.
1974.

2-18

Chapter 3
THE 6502 ASSEMBLY LANGUAGE

INSTRUCTION SET

We are now ready to start writing assembly language programs. We begin in this
chapter by defining the individual Instructions of the 6502 assembly language in-
1tructlon set. plu1 the ayntax rules of the MOS Technology assembler.

We do not discuss any aspects of microcomputer hardware, signals. interfaces, or
CPU architecture in this book. This information is described in deta il in An Introduction
to Microcomputers: Volume 2 - Some Real Microprocessors and Volume 3 -Some
Real Support Devices

In this book, we look at programming techniques from the assembly language pro­
grammer's viewpoint, where pine and signals are irrelevant and there are no im­
portant differencea between a minicomputer and a microcomputer.

Interrupts. direct memory access. and the Stack archi tecture for the 6502 will be de·
scribed in later chapters of this book, in conjunc t ion with assembly language program­
ming discussions of the same subjects

This chap ter contains a detailed definition of each assembly language instruction

The detai led description of individual instructions is preceded by a general discussion
of the 6502 instruction set that divides instruc tions into those which are frequently
used (Table 3-11. occasional ly used (Table 3-21. and seldom used (Table 3-31. If you are
an experienced assembly language programmer. this categorization is not particularly
important - and. depending on your own programming prejudices. it may not even be
accurate. If you are a novice assembly language prog rammer. we recommend that you
begin by w riting programs using only instructions in the "frequently used" ca tegory
Once you have mastered the concepts of assembly language programming, you may
examine other instructions and use them where appropriate

3-1

Table 3-1 . Frequently Used Instructions of the 6502

Instruction
Meaning

Code

ADC Add with Carry
AND Logical AND
ASL Arithmetic Shift Left
BCC Branch if Carry Clear
BCS Branch if Carry Set
BEO Branch if Equal to Zero (Z = 1)
BMI Branch if Minus (S = 1)
BNE Branch ;f Not Equal to Zero IZ = 01
BPL Branch if Plus IS =OJ
CMP Compare Accumulator to Memory
DEC Decrement (by 1)
DEX (DEY) Decrement Index Register X (Y) by 1
INC Increment (by 1)
INX (INY) Increment Index Register X (Y) by 1
JMP Jump to New Location
JSR Jump to Subroutine
LOA Load Accumulator
LOX (LOY) Load Index Register X IYI
LSR Logical Shift Right
PHA Push Accumulator onto Stack
PLA Pull Accumulator from Stack
ROL Rotate Left through Carry
ROR Rotate Right through Carry
RTS Return from Subroutine
SBC Subtract with Borrow
STA Store Accumulator
STX (STY) Store Index Register X (Y)

Table 3-2. Occasionally Used Instructions of the 6502

Instruction
Meaning

Code

BIT Brt Test
BRK Break
CLC Clear Carry
CLO Clear Decimal Mode
cu Clear Interrupt Mask (Enable Interrupts)
CPX ICPY) Compare with Index Register X (Y)
EOR Logical Exclusive-OR
NOP No Operation
ORA Logical (Inclusive) OR
RTI Return from Interrupt
SEC Set Carry
SEO Set Decimal Mode
SEI Set Interrupt Mask (Disable Interrupts)
TAX (TAY) Transfer Accumulator to Index Register X (Y)
TXA ITYA) Transfer Index Reg ister X (Y) to Accumulator

3-2

Table 3-3. Seldom Used Instructions of the 6502

Instruction Meaning
Code

BVC Branch if Overflow Clear
BVS Branch if Overflow Set
CLV Clear Overflow
PHP Push Status Register onto Stack
PLP Pull Status Register from Stack
TSX Transfer Stack Pointer to Index Register X
TXS Transfer Index Register X to Stack Poin ter

CPU REGISTERS AND STATUS FLAGS
The 6602 microprocessor has an Accumulator. a Status (or P) register, two index
registers, a Stack Pointer. and a Program Counter. These registers may be illustrated
as fol lows: 15

I
Amm"l"o' A

1------tlnde• .Register X

.------L-------1 lnde• Register Y

'------.---------t Program .Counter PC
1------t- Stack Pointer SP
~----~ Status Register P

The 6602's Status register contains six status flags and an interrupt control bit.
These are the six status flags :

Carry IC)
Zero IZI
Overflow IV)
Sign ISi
Decimal Mode IDI
Break 181

Flags are assigned bit posit ions within the Status register as follows :

7 6 S 4 3 2 I 0 .,_Bit Numbe1
~6S02Status (P)reg1ste1

The Accumulator (A) is a primary accumulator as described in An Introduction to
Microcomputers: Volume 1.

The Index Regl1ter1 {X and Y) are only eight bits long, unl ike the typical microcom­
puter index registers described in An Introduction to Microcomputers: Volume 1. They
are more like classical computer index registers that are used to hold indexes. short
offsets. or cou nters.

3-3

The 6502 has a Stack implemented in memory and indexed by the Stack Pointer as de­
scribed in Volume 1. The only difference from that description is that the 6602 Stack
Pointer is only eight bits wide. which means that maximum Stack length is 256
bytes. The CPU always inserts 0115 as the high-order byte of any Stack address. which
means that memory locations 010016 through 01FF16 are permanently assigned
to the Stack:

.__.....;x;,;;x.....; _ _.J SP 01

+
· ~·----J t

OlXX is the Stack address

There is nothing very significant about the shorter 6502 Stack Pointer if you are
using this CPU as a stand-alone product. A 256-byte Stack is usually sufficient for
any typical microcomputer application; and its location in early memory simply means
that low memory addresses must be implemented as read/wr ite memory. 6502
literature represents the Stack Pointer .by the letter S: we use the letters SP to prevent
confusion with the Sign status

The 6602 Program Counter is a typical program counter as described in Volume 1.

The Carry status flag holds carries out of the most significant bit in any arithmetic
operation. The Carry flag is also included 1n Shift and Rotate instructions. The only
unusual feature of the 6602 Carry flag is that it has an inverted meaning in subtrac­
tjon operations !.. After an SBC instruction. the Carry is cleared if a borrow was required
and set if no borrow was required. Note also that the SBC (Subtract with Carry) instruc­
tion results in (A) = (A) - (Ml - (1 - C) where M is the other operand. This usage is
different from most microprocessors or other computers of recent vintage and the user
should take heed of 11.

The Zero status flag is standard. It is set to 1 when any arithmetic or logical operation
produces a zero result. It is set to 0 when any arithmetic or logical operation produces a
non-zero result

The Sign status flag is standard. It will acquire the value of the high-order (Sign) btt of
any arithmetic or logical result. Thus. a Sign status value of 1 identifies a negative result
and a Sign value of 0 identifies a positive result. The Sign status wi ll be set or reset on
the assumption that you are using signed binary arithmetic. If you are not using signed
binary arithmetic. you can ignore the Sign status. or you can use it to identify the value
of the high-order bit of the result

The Decimal Mode status, when set, causes the Add-with-Carry and Subtract­
with-Carry instructions to perform BCD operations. Thus. when the Decimal Mode
status is set and an Add-with-Carry or Subtract-with-Carry instruction is executed. CPU
logic assumes that both source 8-bit values are valid BCD numbers - and the result
generated will also be a valid BCD number. Because the 6502 CPU performs decimal
add1t1on and subtract ion. there is no need for an intermediate or Half-Carry status. This
status 1s described in Volume 1. One problem with the 6502 approach is that the same
instruction sequence will produce different results. depending on whether the Decimal
Mode status has been set or cleared. Thus. confus ion and errors can occur 1f the
Decimal Mode status has accidentally been given the wrong value.

The Break status pertains to software interrupts. When a software interrupt (BRK in·
struction) is executed, 6602 CPU logic will set the Break status flag.

I is a standard master interrupt enable/disable or interrupt mask flag. When I
equals 1, interrupts are disabled; when I equals 0 , interrupts are enabled.

3-4

The Overflow status is a typical overflow, except that it can be used as a control
input on the 6602 microprocessor. Recall that. during signed binary ari thmetic, Over­
flow status flags a result of magnitude too great to be represented in the given word
size. The Overflow status has been discussed in detai l in Volume 1 of An Introduction to
Microcomputers: it equa ls the exclusive-OR of carries out of bits 6 and 7 during
arithmetic operations. The 6502 microprocessor allows externat logic to set the Over­
flow status. in which case it can be used subsequently as a general logic indicator; you
must be very careful when using the Overflow status in th is way, since the same status
flag will be modified by ar ithmetic instructions. It is up to you. as a programmer, to
make sure that an instruction which modif ies the Overflow status is not executed in
between the time external logic sets this status and subsequent program logic tests it

6502 literature refers to the Sign bit as a negative bit. given the DIFFERENCES
symbol N. Statuses (except for Carry) are nevertheless set and IN NOTATION
reset as described for our hypothetical microcomputer in An In-
troduction to M icrocomputers: Volume 1. Henceforth. we will use the standard sym­
bols S for Sign bit. as well as SP for the Stack Pointer; you should remember these
minor differences when using the 6502 literature and instruction set summary ca rds.

6502 MEMORY ADDRESSING MODES
The 6502 offers eleven basic addressing methods:

1) Memory - immediate

2) Memory - absolute or di rect non-zero-page

3) Memory - zero page (direct)

4) Implied or inherent

5) Accumulator

6) Pre-indexed indirect

7) Post-indexed indirect

8) Zero page. indexed (also called base page. indexed)

9) Absolute indexed

101 Relative
11) Indirect

There are tremendous variations in terms of which methods are allowed with which in­

structions. See Table 3-4 for the addressing op tions available with each 1nstruct1on.

3-5

Memory - Immediate
In this form of addressing. one of the operands is present in the byte immediately
fol lowing the first byte of object code. An immediate operand is specified by prefacing
the operand with the # symbol. For example.

AND # $08

requests the Assembler to generate the instruction that will logical ly AND the va lue
0815 with the contents of the Accumu lator.

SV B OIZC

•I x! I I I !xi I

ANO #SOB

Data

Program

Memory

~~
765 4 3210 765432 1 0

1st Bvte Io Io! 1 lo! 1 lo Io! 1 I 2nd Byte Io Io Io IO j 1 Io I a Io I
~~

These bits

select the ANO

operation

These bits select

immediate addressing

with one operand 1n A

3-6

Memory - Direct
This form of addressing uses the second - or second and third (if not on zero. or base.
page) - bytes of the instruction to identify the address of an operand in memory. The
zero page version is specified when the expression used as the operand in the instruc­
tion reduces to a value between 0015 and FF15. For example,

AND $30

requests the Assembler to generate an ANO instruction which will logically AND the
value in memory location 003015 with the contents of the Accumulator.

Data

S V B D ! Z C Memory

Pix! I I I I xi I

The non-zero-page (absolute) version is similar except that the address of the operand
occupies two bytes. For example.

AND $31 F6

requests the Assembler to generate an AND instruction that will logically AND the
value in memory location 31F615 with the contents of the Accumulator

SVBDIZC

PIXj I I I \XI I

x
y

~i----~~~.,..-----;r

Data

Memory

mmmm + 1

mmmm + 2
mmmm + 3

You should note that 16-bit addresses are stored with the eight STORING
least significant bits first (at the lower address) followed by the ADDRESSES
eight most significant bits (at the higher address). This is the same
technique that is used in the 8080. 8085. and ZSO microprocessors. but the opposi te of
that used in the 6800 microprocessor.

3-7

Implied or Inherent Addressing
This mode means that no addresses are requ ired to execute the instruction. Typical ex·
amples of inherent add ressing are CLC (Clear Carry) and TAX {Transfer Register A to
Register X) .

Accumulator Addressing
This mode means that the instruction operates on the data in the Accumulator. On the
6502 microprocessor. the only Accumulator instructions are the shifts ASL (Arithmetic
Shift Left!. LSR (Logical Shift Righ t!. ROL (Rotate Left through Carry). and ROR (Rotate
Right through Carry).

3-8

Pre-Indexed Indirect Addressing
This mode means that the second byte of the instruct ion is added to the contents of the
X Index register to access a memory location in the firs t 256 bytes of memory. where
the indirect address will be found. Wraparound addi tion is used. which means that any
carry formed in address addition will be discarded. For example,

AND 1$20.X)

requests the Assembler to generate the instruction which wi l l logically ANO the con­
tents of the Accumulator with the contents of the byte addressed by the zero-page
memory location given by the sum of 2015 and the contents of the X Index register.
Note the use of parentheses in the address field to indicate indirection or "contents of'

Da1a
SVBO I ZC

PJx! I I I !xi I 00rr+20
00tH21

mmmm + l
mmmm 1· 2

Remember that the carry from the address addi t ion is ignored. i.e .. the address of the
first address byte is a number in mod 256. Note tha t the indirect address is stored with
its least significant bits first (at the lower add ress): note also that an address occupies
two bytes of memory

Only the X Index register can be used for pre-indexed indirect addressing.

3-9

Post-Indexed Indirect Addressing
This mode means that the second byte of the instruction contains an address in the first
256 bytes of memory. That address and the next location contain an address which is
added to the contents of the Y Index register to obtain the effective address.

Note the differences between this method and pre-indexed indirect addressing ·

1) In pre-indexed indirect addressi ng the indexing is performed before the indirec­
tion.while in post-indexed indirect addressing the indirection is performed before
the indexing.

2) Pre-indexed indirect addressing uses the X Index register. whi le post-indexed in­
d irect addressing uses the Y Index register.

3) Pre-indexed ind irect addressing is useful for choosi ng one of a se t of indirect ad­
dresses to use. while post-indexed indi rect addressi ng is useful for accessing ele­
ments in an array or table for which the base address has been obtained indirectly.

An example of post- indexed ind irect addressing is

AND l$20l.Y

which requests the Assembler to generate the instruction which will log ica lly ANO the
contents of the Accumulator with the conten ts of the byte addressed by adding the Y
Index register to the address at memory location 00201 e. Note that here on ly the $20 is
inside the parentheses. since only that part of the address is used indirectly.

SVBDIZC

p !xi I I I Ix I I

Daia
Memorv

0020
0021

mm mm

mmmm + 1

mmmm + 2

Here again the indirect address 1s stored with its least significant byte first (a t the lower
address). Unlike that in pre-indexed indirec tion. this address add111on 1s a fu!l 16-bit ad­
dition: however. 11 is wraparound so any carry from bit 15 is ignored Only the Y Index
register can be used with post-indexed indirect addressing.

3-10

Indexed Addressing
This form of addressing uses the second - or second and third (if not on zero page) -
bytes of the instruction to specify the base address. That base address is then added to
the contents of Index Register X or Y to get the effective add ress. X and Y are not in­
terchangeable since no instructions have both forms of simple indexing with both X
and Y. In fact. the only instructions which allow zero-page indexing with Y are LOX
(Load Index Register X) and STX iStore Index Register X) . You should consult Table 3-4
to determine which addressing options are available with each instruction

A typical example of zero-page indexed addressing is

AND $20.X

which requests the Assembler to generate the instruction that will logically AND the
contents of the Accumulator with the contents of the byte at the address given by the
sum of 2015 and the contents of the X Index register. This is a two-byte instruction
because the address is within the first 256 bytes of memory. Note that there is no two­
byte form of AND $20.Y although there is a more general three-byte form of this in­
struction.

SVBDIZC

Pix! I I I I xi l

A typical example of absolute indexed addressing is

AND $31FE.Y

Data
Memory

mmmm + 2

which requests the Assembler to generate the instruction that will logically AND the
contents of the Accumulator with the contents of the byte at the address given by the
sum of 31FE15 and the contents of the Y Index register. Th is is a 3-byte instruction
since the base address is not within the first 256 bytes of memory

3-11

SVBOIZC

•Ix! I I I !xi I

Data
Memory

mmmm + 1

mmmm + 2

mmmm + 3

Either Index Regis1er X or Index Register Y could be used here. However. some mstruc-
11ons (such as ASL. DEC. INC. LSR. AOL, and ROA) only allow Index Register X m this
mode. This is also the case (more logically) with the instruc1ions LOY (Load Index
Register Yl and STY (Store Index Register Y) .

3-12

Indirect Addressing
Ind irect addressing only applies to the JMP (Jump to New Location) instruction. In this
mode, the second and third bytes of the instruction contain the address at which the
effective address is located. Note that the indirect address can have any value and can
be located anywhere in memory. Obviously. this mode can be regarded as a special
case of either post-indexed indirect addressing or pre- indexed indirect addressing in
which the Index register contains zero. A typical example is

JMP ($31 FE)

which requests the Assembler to generate a JMP instruction that will load the Program
Counter from the memory locations add ressed by the contents of memory locations
31FE16 and 31FF15. Remember that absolute add resses are 16 bits long and occupy
two memory bytes; however. the data located at an address is eight bits long. This con­
fusion applies to all 8-bit processors. but is a particular problem with the 6502 because
of its numerous indirect and indexed addressing modes. Indirect addressing is de­
scribed more fully in Volume 1 of An Introduction to Microcomputers. Chapter 6.
Remember that all addresses are stored with their least significant byte first (at the
lower address)

Data

S V 8 01ZC

PJ I I I I I I I

The final value of the Program Counter is ppqq.

Never let an indirect address cross a page boundary. as in JMP ($31 FF). Although the
high-order byte of the indirect address is in the first location of the next page {1n this
example. memory location 320015). the CPU wilt fetch the high -order byte from the
first location of the same page (location 310015 in our example).

3-13

Relative Addressing
Branch-on-Cond ition instructions use program relative addressing : a single byte dis­
placement is treated as a signed binary number which is added to the Program Counter.
after the Program Counter contents have been incremented to address the next se­
quential instruction. This allows displacements in the range +12910 to -12610 bytes.

A typical exa mple is

BCC 0 +5

which requests the Assembler to generate a BCC (Branch on Carry Clear: i.e .. branch if
Carry = 0) instruction that will load the Program Counter with its cu rrent value plus five
if the Carry is. in fact. zero. If the Carry is one. the instruction does nothing. Note that
the instruct ion itself occupies two bytes of memory and the offset is measured from the
end of the instruction. Thus the offse t should be 3 to generate a branch to the location
five beyond the one in which the fi rst byte of the instruction is located. Note that the
symbol· is used for the current va lue of the Program Counter (actually. the Assembler's
Location Counter as described in Chapter 2).

The execution of the BCC ·+5 instru ction may be described as shown below. Note that
the entire instruction is fetched from memory before the destination address is calcu+
lated. Note also that there are no other addressing modes available w ith Branch-on·
Condition instructions.

Data

SVBOI ZC

• I I I I I I I I

3-14

6502 INSTRUCTION SET

Instructions often frighten microcomputer users who are new to programming.
Taken in isolation. the operations involved In the execution of a single instruction
are usually easy to follow. The purpose of this chapter is to isolate and explain
those operations.

Why are the instruct ions of a microcomputer referred to as an instruction "set"?
Beca use the microcomputer designer selects (or at least should selecd the instructions
w ith great care: it must be easy to execute complex operations as a sequence of simple
events. each of which is represented by one instruction from a well-designed instruc­
tion "sef'.

Remaining consistent with An Introduction to Microcomputers: Volume 2, Table
3-4 summarizes the 6602 microcomputer instruction set, with similar instructions
grouped together. Individual Instructions are listed numerically by object code in
Table 3-6 and in alphabetical order by instruction mnemonic in Table 3-6. Table 3-6
also compares the 6800 instruction set with that of the 6502. We wil l discuss the 6800
and 6502 much later in this chapter. after detailing the 6502 instruction set.

In addition to simply stating what each instruction does. the individual instruction
descriptions discuss the purpose of the instruction within normal programming logic.

ABBREVIATIONS
These are the abbreviations used in this chapter:

The registers:

A
x
y

PC
SP
p

Statuses:

s
v
B
D
I

z
c

Accumulator
Index Register X
Index Register Y
Program Counter
Stack Pointer
Status register. with bits assigned as fol lows:

7 6 5 4 3 2 1 0 .,__Bit Number

isl vi Isl o! 1 l z l c ,.._Sta!us register (P)

t
~------Reserved for e ~pans1on

Sign or Negative status
Overflow status
Break status
Decimal' Mode status
Interrupt Disable status
Zero status
Carry status

3-15

(unusedatth1s11mel

Symbols in the column labeled STATUS:

(blank) Operation does not affect sta tus
X Operation affects status
0 Operation clears status
1 Operation sets status
6 Operation ref lects bit 6 of memory location
7 Operation reflec ts bit 7 of memory location
addr 8 bits of absolute or base add ress
[addr+1,addrl The address constructed from the contents of memory locations

addr and addr+ 1. This address is used in posHndexed indi rect ad­
dressing.

addr16 16 bits of absolu te or base address
data 8 bits of immediate data
disp An 8-bit. signed address displacement
label 16-bit absolute address. destination of Jump or Jump-to-

PC(HI)
PC(LOI
pp
qq
[]

[[]]

+

/\
v
:;;_

Subroutine
The high-order 8 bits of the Program Counter
The low-order 8 bits of the Program Counter
The second byte of a two- or three-byte instruction object code
The third byte of a three-byte object code
Contents of the memory location designated inside the bracke ts.
For example. [FFFE] represents the contents of memory location
FFFE15; [addr16+X] represents the contents of the location ad­
dressed by adding the contents of register X to addr16: [SP] repre­
sents the value at the top of the Stack (contents of the memory
location addressed by the Stack Pointer)
Indirec t addressing : the contents of the memory byte addressed
by the contents of the memory locat ion designated within the in­
ner brackets. For example. [[addr+X]] represents the contents of a
memory location addressed via pre-indexed indirect addressing
Addition - either unsigned binary addition or BCD addition. de­
pending on the condition of the Decima l Mode status
Binary or BCD subtraction. performed by adding the twos comple­
ment of the subtrahend to the minuend.
The ones complement of the quantity denoted beneath the bar:
for example. A represents the complement of the contents of the
Accumulator: C represents the complement of the value of the
Carry status.
Logical AND
Logical OR
Logicat Exclusive-OR
Data is transferred in the direction of the arrow.

3-16

INSTRUCTION MNEMONICS
Table 3-4 summarizes the 6602 instruction set. The INSTRUCTION column shows
the instruction mnemonic (LOA. STA. CLC) and the operands, if any. used with the
instruction mnemonic.

The fixed part of an assembly language instruction is shown in UPPER CASE. The
variable part !immediate data. address, or label) is shown in lower case.

If a mnemonic has more than one type of operand. each type is listed separately with­
out repeating the mnemonic. For instance. some examples of the format en try

STX
addr
addr.Y
addr16

are: STX $75
STX $60.Y
STX $4276

INSTRUCTION OBJECT CODES
For instruction bytes w ithout variations, object codes are represented as two
hexadecimal digits (e.g., SA). For instruction bytes with variations, the object
code is shown as eight binary digits (e.g .. 101aaa01).

The object code and instruction length in bytes is shown in Table 3-4 for each in­
struction variation. Table 3-6 lists the object codes in numerical order, and Table
3-6 shows the corresponding object codes for the mnemonics, listed in alphabeti­
cal order.

INSTRUCTION EXECUTION TIMES
Table 3-4 lists the instruction execution times in numbers of clock periods. Actual
execution time can be derived by dividing the given number of clock periods by the
clock speed. For example. for an instruction that requires 5 clock periods. a 2 MHz clock
will result in a 2.5 microsecond execu ti on time

STATUS
The status flags are stored in the Status register (P) as fol lows:

5 4 3 2
Status register

Carry status !carry out of bit 71

Zero status (1 for zero. 0 for nonzero)

(1 means interrupts are disabled)

~----Decimal M ode status (1 for decimal modef

~-----IBreak status !1 means a Break instruction

has been el(ecuted)

~------This bit 1S not used

~-------,Overflow status

~-------Sign status ~value of bit 7)

3- 17

In the Individual instruction descriptions, the effect of instruction execution on
status is illustrated as follows:

SVDIZC

•
M.odif ied to reflect results of execution
Unchanged

Unconditionally reset to 0

Uncondit1onelly sel to 1

8 11 6 of tested by!e

8 11 7 of tested byte

An X identifies a status that is set or reset. A 0 identifies a
status that is always cleared. A 1 identifies a status that is
always set. A blank means the status does not change. The
numbers 7 and 6 show that the flag contai ns the va lue of
bit 7 or bit 6 of the byte tested by the instruction.

3-18

STATUS CHANGES
WITH INSTRUCTION
EXECUTION

Cf I "'

l:j__:struction

LOA

addr
addr.X
laddr.X)
(addrl,Y
addt16
addr 16.X or Y

STA

~
addr
addr,X

J {addr.Xl

~ (addrl.Y

g addr16

E addr l 6.X or Y

i
LOX

l addr
addr.Y

~ addr16

addr16.Y
g

STX

addr
addr.Y
addr16

LOY

addr
addr,X
addr16
addr16.X

Object Code

A5 PP
85 pp

Al PP
Bl PP

AO ppqq
11 0 11x01 ppqq

85 pp

95 PP
81 PP
9 1 pp

80 ppqq
10011x01 ppqq

A6 PP
86 pp

AE ppqq
BE ppqq

86 pp
96 pp

SE ppqq

A4 pp

84 pp
AC ppqq
BC ppqq

Bytes

Table 3-4. A Summary of the 6502 Instruction Set

Clock I Status

Periods I
0 SIV

5·

4·

4•

Operation Perfonned

l oad Accumulator from memofY.

A-(addrl
A-laddr+X]
A-lladdr+Xll
A-lladdr+ 1.addr]+Yl

A-laddr16)
A-laddr16+X] or A-[addr16 + YI

Store Accumulator to memofY.

[addr]-A
[addr+X]-A
!laddr+X]]-A
!laddr+ l.addr]+Yl-A

[addr16)-A
[addt16+X]-A or [addr16+Yl-A

Zero page direct
Zero page inde1ted

Pre-indexed indirect
Post-indexed indirect

E!ttended direct
Absolute indexed

Zero page direct
Zero page indexed
Pre-indexed indirect

Post-indexed direct

E1tntnded direct
Absolute indexed

load lnde1t Register X from memory. Index through Register Y only .

X-(addr] Zero page direct

X-[addr+Y]
X-[addr161
X-[addr16+YI

Zero page inde1ted

E!ttended direct
Absolute indexed

Store Index Register X to memory. Index through Register Y only.

laddrl-X Zero page direct

[addr+Y]-X
(addr16]-X

Zero page indexed

Extended direct

load lnd81t Register Y from memory . lnde1t through Register X only .

Y- [addr] Zero page direct

Y-[addr+Xl
Y-[addr16)
Y-[addr16+X]

Zero page indexed

Extended direct
Absolute indexed

' Add one clock period if page boundary is crossed. In the object code, "x"" designates the Index register: 1t ,. 0 for

Register Y, x :z: 1 for Register X.

w I ;..,
0

Type

~ l . ,
~ .§

i~
·;;:ti

1 j
0 • ,, ~

l
0

e
i .
~
j
' e
~

~

~

Instruction

STY

addr

addr.X

addr 16

ADC
addr

addr.X
(addr,Xl

iaddrl.Y
addr l6

addr16.X or Y

AND

addr

addr.X

(addr.X)
(addrl ,Y

addr16

addr16,X or Y

BIT

addr

addr16

Object Code

84 PP
94 PP

BC ppqq

65 pp

75 pp

61 pp

71 pp

60 ppqq
0 11 11x01 ppqq

25 PP
35 pp

21 pp

31 pp

20 ppqq
00 11 1x01 ppqq

24 pp

2C ppqq

Table 3-4. A Summary of the 6502 Instruc tion Set (Continued)

Bytes

2

2
2
2

3
3

2

2
2
2

3
3

2
3

Clock

Pe riods

3
4

6
s·
4
4·

3
4

6
s·
4
4•

3
4

Status

0

x x x
x x x
x x x
x x x
x x x
x x x

x x
x x
x x
x x
x x
x x

7 6 x
7 6 x

x
x
x
x
x
x

Operation Pe rfo rmed

Store Index Register Y to memory . Index through Register X only

[addr]-Y Zero page di rect

[addr+XJ-Y

[addr16)-Y

Zero page indexed

Extended direct

Add contents of memory location, with carry. to those of Accumulator.

A- A+ [addrJ+C Zero page direct

A- A+faddr+X]+C Zero page indexed

A- A+l!addr+XJ]+C Pre-indexed indirect

A- A+l!addr+l, addr]+Yl+C Post- indexed indirect

A-A+ {addr l 6J+C Extended direct

A-A+[addr l 6+X]+C o r A- A+(addr 16+YJ+C Absolute indexed

{Zero flag is not valid in Decimal Model

AND contents o f Accumulator with those of memory location.
A- AJ\{addr] Zero page d irect

A- AJ\(addr+X] Zero page indexed

A-AJ\([addr+Xll Pre-indexed indirect

A-AA[[addr+l. addr]+Yl Post-indexed indirec t

A- AA\addr16] Extended direct

A-AJ\[addr16+X] or A- AA[addr16+Y] Abso lute indexed

ANO contents of Accumulator with those of memory location. Only the s tatus

bits are affected .
AA[addr] Zero page direct

AA[addr16) Extended direct

• Add one clock period if page boundary is crossed. In the object code. "x" designates the Index register: x = 0 for

Register Y. x = 1 for Register X

"' I ;.,,

Typo Instruc tion Object Code

CMP

odd' CS PP
addr.X 05 pp

faddr.X) C1 pp

l
(addrl.Y 01 PP

addr16 co ppqq

addr1 6.X or Y 1101 h:Ol ppqq

!!
: EOR

j odd' 45 pp

addr.X 55 pp

i
!addr.X) 41 pp

(addr).Y 51 pp

addr16 40 ppqq
! addr16.X or Y 0101 hOl ppqq

~
! ORA

~ odd' 05 pp

addr.X 15 pp

i (addr.XI 01 pp

~
(addrl.Y , 1 pp

addr16 OD ppqq
~ addr l 6,X or Y 00011x01 ppqq

]
~

Table 3-4. A Summary of the 6502 Instruction Set (Continued)

Bytes
Clock I Status

Periods S I I I I I I

5·

4•

5 ·

4•

5·

4•

Operation Perfa.-med

Compare contents of Accumulator with those of memory locat ion. Only the

status bits are affected

A-[addr]

A-[eddr+ X]

A-[[addr+Xll

A-[[addr+ 1. addr]+YI

A- [addr16]

A-[addr16+XI or A-/addr16+Y)

Zero page direct
Zero page indeKed

Pre-indeKed indirect

Post-indeKed indirect

EKtended direct

Absolute indeKed

EKclusive-OR contents of Accumulator with those of memory location.

A - A-Waddr] Zero page direct

A-A-Waddr+X)

A -A-W!addr+Xll
A-A-W[addr+1 , addr)+YJ

A-A-Waddrl 61
A-A-Waddr16+Xl or A-A..v.faddr16+YI

Zero page indeKed

Pre-indeKed indirect

Post-indeKed indirect

EKtended direct

Absolute indeKed

OR contents o f Accumulator with those of memory location .

A-AV[addrl Zero page direct

A-AV[addr+XJ

A- AV!laddr+Xll

A-AV[laddr+ l . addrl+Yl

A-AV[addr l 6/
A-AV[addr16+X] or A-AV[addr16+Y]

Zero page indeKed

Pre-indeKed indirect

Post-indeKed indirect

E11.tended direct
Absolute inde11.ed

• Add one clock period if page bouodary is crossed. In the obj&et code, "11." designates the lndu register : 11. = 0 for

Register Y. x = 1 for Register X.

"' I "' "'

Type

~
.~
g
!l

I
0

i
i .
!

!
i
~

{
.:

Instruction

SBC

addr

addr.X

(addr.X)

(addrl,Y

addr16

addrl 6.X or Y

INC
odd•

addr.X

addr16
addr16.X

DEC
addr

addr.X

addr16
addr16.X

CPX

addr

addr16

CPY

"""' addr16

Object Code

ES PP
FS pp

El PP

" pp I
ED ODQQ

1111h:01 ppqq

E6 pp

F6 pp
EE ppqq

FE ppqq

CB pp

06 pp

CE ppqq

DE ppqq

E4 pp
EC ppqq

C4 pp

cc ppqq

Table 3-4. A Summary of the 6502 Instruction Set (Continued)

Bytes
Clock I Status

Periods S I I 11 I I

2

I
5·

3 4

3 ..

Operation Performed

Subtract contents of memory location. with borrow, from contents of Ac-

cumultor.

A-A-[addrl-~
A - A-[addr+XJ-'C"

A - A-[[addr+Xll-C
A -A-[[addr+l.addr]+YJ-C
A - A-[addrt 6)-C

A-A-(addr16+XJ - C or

A -A-(addrl 6+Yl-C

Zero page direct

Zero page inde11.ed

Pre-indexed indirect

Post-indexed indirect

Extended direct

Absolute indel(ed

(Note that Carry value is the complement of the borrow.I

Increment contents of memory location. lndeK through Register X only

{addrl-[addr]+ 1 Zero page direct

{addr+XJ-[addr+Xl+ 1

{addrl 6]-(addr16]+ 1
{addrl 6+X]-{addr16+X]+ 1

Zero page indeKed

Eittended direct

Absolute indeKed

Decrement contents of memory location . lndel(through Register X only.

{addri-(addr]-1 Zero page direct

[addr+X)-[addr+X]-1

[addrl 6)-(addrl 6]-1

[addr l 6+X)-[addr16+Xl-l

Zero page indel(ed

Ex.tended direct
Absolute inde)(ed

Compare contents of X register with those of memory location. Only the status

flags are affected.
X-{addrl Zero page direct

X-[addrl 61 EKtended direct

Compare contents of Y register with those of memory location. Only the status

flags are affected
Y-(addr]

Y-laddr16l

Zero page direct

Extended direct

•Add one clock period if page boundary is crossed. In the object code, ..)(.. designates the lndeK register: x "' 0 for

AOQister Y. x "' 1 for Register X.

Type lnUructlon

ROL

addr

addr,X

addr16
;;

j
addr16.X

~
~

i ROR

0
w I ~ ..., i w

!

addr

addr.X
addr16 .

~
addr16,X

~
~
E

~ ASL

~

1
addr

addr.X

addr16

addr16,X

Object Code

26 pp

36 PP
2E ppqq

3E ppqq

66 pp

76 pp

6E pp

7E ppqq

06 PP
16 pp

OE ppqq

1E ppqq

Table 3·4. A Summary of the 6502 Instruction Set (Continued)

Clock
Status

BytH
PMiods s v 0 c

Operetion Perlonned

Rotate contents of memory location one bit left through Carry. Index through

Register X only.

[&ddr)

(addr+X)

[8ddr16)

[addr16+XJ

t:EH 1 ai-1
Rotate contents of memory location one bit right, through Carry. Index through

Register X only

[addr)

[addr+Xl

[addr161

[addr16+X]

l:{±H , . a ~
Arithmetic shift left contents of memory location. Index through Register X

only .

[addr]

(addr+Xl
[addr16]

[addr16+XJ

a

Typo(ln1trvction Object Code

~ ~ I LSR : 8 addr 46 pp ii addr,X 56""
• ; 8ddr16 4E ppqq
~ i addr1 6.X 5E ppqq r
¥ i
.. !

LOA data A9 pp

LOX data A2 pp

"' I I LOY data
;.,

AO pp ..

Table 3-4. A Summary of the 6502 Instruct ion Set (Continued)

Clock 1 S tetus
Bytes Periods

Oper•tion Performed

Logical shift right contents of memory location . lndu through Register X only.

0

iaddr)
[addr+X]
[addr16l

[addr16.X)

Load Accumulator with immediate data .
A-data

Load lndax. Register X with immediate data .
X-data

Load Index. Register Y with immediate data
Y-data

Type I Instruction Object Code

AOC data 69 PP

ANO data 29 pp

CMP data C9 pp
!

i EOR data 49 pp

! ORA data 09 pp
~
~ SBC data E9 pp
~

"' I ;.,
I CPX data "' EO pp

CPY data co pp

JMP label 4C PPQQ
(label) 6C PPQQ

l

Table 3-4. A Summary of the 6502 Instruction Set (Continued)

Clock
Status

BytH
Periods s v c

2 2 x x

Operation Performed

Add immediate with Carry. to Accumulator. The Zero flag is not valid in

Decimal Mode.

A-A+data+C
AND immediate with Accumulator

A - Ai\data
Compare immediate with Accumulator. Only the status flags are affected.

A-data
Exclusive-OR immediate w ith Accumulator.

A-A JJ.data

OR immediate with Accumulator.

A- Av data
Subtract immediate, with borrow. from Accumulator.

A- A-data-C
(Note that Carry value is the complement of the borrow.I

Compare immediate w ith Index Register X. Only the status flags are affected.

X-data
Compare immediate with Index Register Y. Only the status flags are affected .

Y-data

Jump to new location, using extended or indirect addressing

PC - label or PC-[label]

"' I ;..,
O>

Type Instruction Object Code

sec disp 90 pp

BCS disp BO pp

BEQ disp FO pp

BMI disp 30 PP

BNE disp DO pp

BPL d1sp 10 pp

eve disp 50 pp

BVS disp 70 PP

Table 3-4. A Summary of the 6502 Instruction Set (Continued)

Bytes
Clock I Status

Periods S j j j j j I

2 ,..
2 , ..
2 ,..
2 , ..
2 , ..
2 , ..
2 , ..
2 , ..

Operetlon Performed

Note the following for all Branch-on-Condition instructions·
If the condition is satisfied. the displacement is added to the Program
Counter afte1 the Program Counte1 has been incremented to point to the in­
struction following the Branch instruction.

81anch relative 1f Carrv flag is cleared
If C"'O. then PC-PC+disp

B1anch relative if Ca1rv flag is set.
If C• l , then PC -PC+disp

Branch relative if result is equal to zero
If Z=-1. then PC-PC+disp

Branch relative if result is negative .
If S- 1, then PC-PC+disp

Branch relative if result is not zero.
If z- o. then PC - PC+disp

Branch relative it result •S positive
If SsQ. then PC-PC+d1sp

Rranch relattve i f Overflnw flag is cleared.

1f V • 0. then PC-PC+disp
Si'anch relat1ve if Overflow flag is set

It V • l . then PC - PC+d1sp

"Add one clock period if branch occurs to location in same page; add two clock periods if branch to another page

T:r;-tl~
JSR label

Object Cock

20 ppqq

§
~
1
~ I ATS 60

~

"' ~I ;., TAX

"
AA

TXA BA

. TAY AB

~ TVA 9B

!
l TSX BA

! TXS 9A

l

Table 3-4. A Summary of the 6502 Instruction Set (Cont inued)

Bytes
Clock I Status

Periods 1 I v
Operation Performed

Jump to subroutine beginning at address given in bytes 2 and 3 of the instruc­

tion. Note that the stored Program Counter points to the last byte of the JSR in-

struction .

[SP]-PC(HI)

!SP-1]-PCilO)

SP-SP-2
PC-label

Return from subroutine. incrementing Program Counter to point to the instnJc­

tion after the JSR which called the routine .

PC(LO!-{SP+ 11

PCtHll -[SP+2]

SP-SP+2
PC-PC+l

Move Accumulator contents to lnde11 Register X
X-A

Move contents of lnde11 Register X to Accumulator.

A-X
Move Accumulator contents to lnde11 Register Y .

Y-A

Move contents of Index: Register Y to Accumulator.

A-Y
Move contents of Stack Pointer t o Index Register X.

x~sP

Move contents of Index Register X to Stack Pointer

SP-X

Type I Instruction Object Code

DEX CA

DEY SS

INX ES

INY cs

ROLA 2A

w I i I
ROA A ;.

"'
6A

i
I

ASL A OA

LSA A 4A

Table 3-4. A Summary of the 6502 Instruction Set (Con tinued)

Clock
Bytes Periods

Operation Performed

Decrement contents o f Index Register X.

x-x-1
Decrement contents o f Index Register Y.

Y-Y- 1
Increment contents of Index Register X.

X-X+ l
Increment contents of Index Register Y.

Y-Y+1
Rotate contents of Accumulator left through Carry

~
A

Rotate contents o f Accumulator right. through Carry.

L:{±H1 - o ~

Arithmetic shill left contents o f Accumulator.

Logical shift righ t contents of Accumulator

0

0

A

Type I Instruction I Object Code

PHA 48

PLA 68

l I PHP 08

PLP 28

cu 58

w I I ;., SEI 78

"'
RTI 40

8RK 00

Table 3A. A Summary of the 6502 Instruction Set (Conti nued)

Clock
Status

Bytes
Periods s v 0 c

Operation Perfom19d

Push Accumulator contents onto Stack.

[SPl- A

S P- SP - 1
Load Accumulator from top of Stack ("Putr ').

A- ISP+l)

SP - SP+l

Push S tatus register contents onto Stack .

ISPl - P
SP - SP-1

l oad S tatus register from top of Stack ("Pull""I.

P-[SP+1]

SP-SP+l

Enable interrupts by c learing interrupt disable b it o f Status register.

.- o
Disable interrupts ,_,
Return from interrupt ; restore Status

P-[SP+ l l
PCILO)-[SP+2]

PC{HIJ-[SP+3]

SP - SP+ 3

PC - PC+ l
Programmed interrupt . BAK. cannot be disabled. The Program Counter is inc re·

mented twice before it is saved on the Stack.

ISPl-PC(HI)

ISP - 11 - PC(LQ)

!SP-21-P

SP - SP- 3

PC~H ll -[FFFF)

PCILO)-[FFFEI ,_,
B- 1

.,,,. Instruction Object Code

CLC 18

SEC 38

.i! CLO OB

ii
SEO FB

CLV 88

NOP EA

"' w
0

Table 3-4. A Summary of the 6502 Instruction Set (Continued)

Clock '
Status

Bytes
Periods

Clear Carry flag

c-o
Set Carry flag

c-1
Clear Decimal Mode

o-o
Set Decimal Mode

0-1

Clear Overflow flag
V--0

No Operation

Operation Performed

Object Code

00
01 pp

05 pp

06 PP
08
09 pp

OA

00 ppqq

OE ppqq

10 pp

11 pp

l S pp

16 pp

18
19 ppqq

10 ppqq

l E ppqq

20 ppqq

21 pp

24 pp

2S pp

26 pp

28

29 pp

2A

2C ppqq

20 ppqa

2E ppqq

30 pp

31 pp

3S pp

36 pp

38
39 ppqq

30 ppqq

3E ppqq

40
41 PP

4S pp

46 PP
48

49 pp

4A

4C ppqq

40 ppqq

4E ppqq

so pp

51 pp

SS PP

S6 pp

58
S9 ppqq

so ppqq

SE ppqq

60

61 pp

6S pp

66 pp

Table 3-5 . 6502 Instruction Object Codes in Numerical Order

BAK

ORA

ORA

ASL

PHP

ORA

ASL

ORA

ASL

BPL

ORA

ORA

ASL

CLC

ORA

ORA

ASL

JSR

AND

BIT

ANO

AOL

PLP

ANO

AOL

BIT

ANO

AOL

BMI

ANO

ANO

AOL

SEC

ANO

ANO

AOL

RTI

EOR

EOR

LSR

PHA

EOR

LSR

JMP

EOR

LSR

BVC
EOR

EOR

LSR

Cll
EOR

EOR

LSR

ATS

AOC

ADC

ROA

Inst ruction

{addr,X)

addr

'""'
data
A

addr16

addr16

d1sp

!addrl.Y

addr.X

addr.X

addr 16.Y

addr16.X
addr16.X

label

(addr.XI

addr

addr

addr

data

addr16

addr16

addr16

d1sp

laddrl.Y

addr.X

addr.X

addr 16.Y

addr16.X

addr16.X

(addr,XI

addr

addr

data

A
label

addr16

addr16

disp

(addrl.Y

addr.X
addr,X

addr16.Y

addr 16,X

addr l 6.X

{addr.Xf

addr

addr

3-31

Obj•ct Code

BB

69 PP
SA

6C PPQQ
60 ppqq

6E ppqq

70 pp

71 pp

7S pp

76 PP
78
79 PPQQ

70 ppqq

7E ppqq

81 pp

84 pp

8S pp

86 pp

BB

BA

8C ppqq

80 ppqq

BE ppqq

90 PP

91 PP

94 pp

9S pp

96 pp

98
99 ppqq

9A

90 ppqq

AO PP
Al pp

A2 PP

A4 PP
AS pp

A6 pp

AB

A9 pp

AA

AC ppqq

AO ppqq

AE ppqq

BO pp

81 pp

84 PP
BS pp

86 PP
BB

89 ppqq

BA

BC ppqq

BO ppqq

BE ppqq

co pp

Cl pp

C4 pp

PLA

AOC

ROA

JMP

AOC

ROA

BVS
ADC

AOC

ROA

SEI
AOC

ADC

ROA

STA

STY

STA

STX

DEY

TXA

STY

STA

STX

BCC
STA

STY

STA

STX

TYA

STA

TXS

STA

LOY

LOA

LOX

LOY

LOA
LOX

TAY

LOA

TAX

LOY

LOA

LOX

BCS
LOA

LOY

LOA

LOX

CLV

LOA

TSX

LOY

LOA

LOX

CPY

CM P

CPY

lnattuct ion

data

A

UabetJ
addr16

addr16
d1sp

laddrl .Y

addr.X
addr.X

add116.Y

addr16.X

addr16.X
!addr.X)

addr

addr

addr

addr16

addrl6

addr16

d1sp

{addrl.Y

addr.X

addr.X

addr.Y

addr16.Y

addr16.X

data
(addr.X)

data
addr

addr

addr

data

addr16

addr16

addr16

d1sp

(addrl.Y

addr.X
addr,X

addr.Y

addr16,Y

addr16.X

addr16.X

addr16.Y

data

laddr.Xl
addr

Table 3-5. 6502 Instruction Object Codes in Numerical Order (Continued)

Object Code Instruction Object Code Instruction

C5 pp CMP odd< E4 pp CPX addr
CB pp DEC addr ES pp SBC odd<
CB INY E6 PP INC addr
C9 pp CMP data EB INX
CA DEX E9 pp SBC data
cc ppqq CPY addr16 EA NOP
co ppqq CMP addr16 EC ppqq CPX addr16
CE ppqq DEC addr16 ED ppqq SBC addr16
DO pp BNE disp EE ppqq INC addr16
01 pp CMP (addr),Y FO pp BEO disp
05 pp CMP addr.X Fl pp SBC (addr),Y
06 pp DEC addr.X FS pp SBC addr,X
DB CLO F6 pp INC addr.X
09 ppqq CMP addr16,Y FB SEO
DO ppqq CMP addr16.X F9 ppqq SBC addr16,Y
DE ppqq DEC addr16.X FD ppqq SBC addr16,X
EO pp CPX data FE ppqq INC addr 16.X
El pp SBC !addr.XI

3-32

The following symbols are used in the object codes in Table 3-6

Address-mode Selection:

aaa

bb

bbb

cc

ddd

PP

qq

000 pre-indexed indirect - (addr.Xl
001 direct - addr
010 immedia te - data
011 extended direct - addr16
100 post-indexed indirect - (addr).Y
101 base page indexed - addr.X
110 absolute indexed - addr16.Y
111 absolute indexed· addr16.X

00 direct · addr
01 extended direct - addr16
10 base page indexed - addr,X
11 absolute indexed - addr16,X

001 direct - addr
010 accumulator - A
011 extended direct - addrl 6
101 base page indexed - addr.X: addr.Y in STX
111 absolute indexed - addr16.X; addr16.Y in STX

00 immediate - data
01 direct - addr
11 extended di rect - addr16

000 immediate - data
001 direct - addr
011 extended direct - addr16
101 base page indexed - addr.Y in LOX: addr.X in LOY
111 absolute indexed - addr16.Y in LOX: addr16.X in LOY

the second byte of a two- or three-byte instruction

the third byte of a three-byte instruction

one bit choosing the address mode:
0 direct - addr
1 extended direct - addr16

one bit choosing the JMP address mode
0 extended direct - label

indirect - (label)

3-33

Table 3-6. Summary at 6502 Object Codes with 6800 Mnemonics

Mnemonic Operand Object Code BytH
Clock MC6800

Period• Instruction

ADC 01 laaaOl ADCA

data pp dataB
addr PP addr8

addr.X PP .. index

laddr.XI pp 6
{addrl.Y pp s·
addr16 ppqq addr16
addr16.X ppqq ..
addr16.Y ppqq 4 '

AND 00 laaa01 ANDA

data pp dataB

add r pp addr8

addr.X pp indeK

!addr.X) pp

(addr),Y pp s·
addrl6 ppqq addr16
addr16.X ppqq ..
addr16.Y ppqq ..

ASL 000bbb10 ASLA

addr pp

addr,X pp ASL indeK

addr16 ppqq ASL addr16

addr16,X ppqq

BCC disp 90 pp , .. sec disp

BCS disp BO pp , .. BCS d1sp

BEO disp FO pp , .. SEO disp

BIT 0010 .. 100 SITA

addr PP addr8

addr l 6 ppqq addr16

BMI disp 30 pp , .. BMI disp

BNE disp DO PP , .. BNE disp

BPL disp 10 pp , .. BPL disp

BRK 00 ISWI)

eve d1sp 50 pp , .. eve disp

BVS d1sp 70 pp , .. BVS disp

CLC IB CLC

CLO DB

cu SB cu
CLV •• CLV

"Add one clock period if page boundary is crossed .

"'Add one clock period if branch occurs to location in same page; add two clock periods if branch to another

page occurs.

3-34

Table 3-6 Summary of 6502 Object Codes with 6800 Mnemonics {Continued)

Mnemonic Operand Object Code Bytes
Clock MC6800

Period• Instruction

CMP 110aaa01 CMPA

data pp data8
addr PP addrB
addr.X pp index
(addr,X) pp
{addr),Y pp 5'
addr16 ppqQ addr16
addr16.X PPQQ 4'
addr16.Y PPQQ 4'

CPX 1110cc00 CPX
data pp data8
addr pp addr8
addr16 PPQQ addr16

CPY 1100cc00
data pp

addr pp

addr16 ppqq

DEC 110bb110 DEC
addr pp

addr.X pp index
addr16 ppqq addr16
addr16.X ppqQ

DEX CA DEX

DEY BB

EOR 010aaa01 EORA
data pp data8
addr PP addr8
addr.X PP index
(addr,X) pp

(addr),Y pp 5'
addr16 ppqq 4 addr16
addr16.X ppqq 4'
addr16.Y ppqq 4'

INC 111bb110 INC

addr pp

addr,X pp index

addr16 ppqQ addr16
addr16.X ppqQ

INX EB INX

INY CB

JMP 01y01 100 JMP
label ppqq addr16
(label) ppqq

JSR label 20 ppqq JSR addr 16

'Add one clock period if page boundary is crossed.

''Add one clock period if branch occurs to location in same page : add two clock periods if branch to another

page occurs .

3-35

Table 3-6. Summary of 6502 Object Codes with 6800 Mnemonics (Continued)

Mnemonic Operend Object Code By tea
Clock MC8800

Periods Instruction

LOA 101aaa01 LOA.A
da1a pp data8
addr pp addr8
addr,X pp mdex
(addr.XI pp
(addr).Y pp s·
addr16 ppqq addr16
addr16.X ppqq ..
addr16.Y ppqq ..

LOX 101ddd10 LOX
data pp ldata8)
addr pp addr8
addr.Y PP ~index)

addr16 ppqq 4 addr16
addr16.Y ppqq ·-

LOY 10lddd00
data pp
addr pp
addr,X pp
addr16 PPQQ
addr16.X ppqq ·-

LSR 010bbb10 LSRA
addr pp

addr.X pp LSA inde11;
addr16 ppqq LSR addr16
addr16 .X ppqq

NOP EA NOP

ORA 000aaa01 OAAA
data pp data8
addr pp addr8
addr.X pp index
(addr.X) pp
!addd.Y pp s·
addr16 ppqq addr16
addr16.X ppqq ..
addr16.Y ppqq ..

PHA 48 PSHA

PHP 08

PLA 68 PULA

PLP 28

ROL 001bbb10 ROL A
addr pp
addr.X pp AOL indei.;
addr16 ppqq AOL addr16
addr16,X ppqq

'Add one clock period if page boundary is crossed .
''Add one clock period if branch occurs to 1oca1ion in same page : add two clock periods if branch to another

page occurs.

3-36

Table 3-6. Summary of 6502 Object Codes with 6800 Mnemonics (Continued)

Mnemonic Object Coda
Clock MC6800

Operand Bytes Periods Instruction

ROR 011bbb10 RORA
addr pp

addr,X pp ROR inde){
addr16 ppqq ROA addr16

addr16,X ppqq

RTI 40 RTI

RTS 60 RTS

SBC 111aaa01 SBCA
data pp data8
addr pp addr8

addr,X pp 4 index

(addr,Xl pp 6
laddr).Y pp 5·
addrl6 ppqq addr16

addr l 6.X ppqq 4 •

addrl6.Y ppqq 4·

SEC JS SEC

SEO F6

SEI 7S SEI

STA 100aaa01 STAA

addr pp addr8

addr.X pp indei1

1addr.X) pp

faddrl,Y pp

addr l 6 ppqq addr16

addr16.X ppqq

addr16.Y ppqq

STX 100bb110 STX

addr pp addr8

addr,Y pp (inde._)

addr16 ppqq addr16

STY 100bb100
addr pp

addr,X pp

addr16 ppqq

TAX AA

TAY AS

TSX SA TSX

TXA SA

TXS 9A TXS

TVA 9S

"Add one clock period if page boundary is crossed

""Add one clock period if branch occurs to location in same page ; add two clock peflods if branch to another
page occurs.

3-37

ADC-ADD MEMORY , WITH CARRY. TO ACCUMULATOR
This instruction uses eight methods of addressing data memory and al lows the con­
tents of data memory and the carry status to be added to the Accumulator. The eight
methods of addressing memory are:

11 Immediate - ADC data

21 Absolute ldirectl - ADC addr16

31 Zero page ldirectl - ADC addr

4) Pre-indexed with Index Register X - ADC (addr.Xl

51 Post-indexed with Index Register Y - ADC ladd rl.Y

6) Zero-page indexed with Index Register X - ADC addr.X

7) Absolute indexed with Index Register X - ADC addr16.X

8) Absolute indexed with Index Register Y - ADC addr16.Y

The first byte of object code determines which addressing mode is selected as fol lows:

Bit Value
for aaa

000
001
010
011
100
101
110
111

7 6 5 4 3 2 l 0 ...,.._Bi1 Number

ioj 1 j 1 !a! al al o(1 J.,_Ob1ec1 Code

Hexadecimal
Addressing Mode

Ob1ect Code

61 Indirect. pre-indexed with X
65 Zero page {di rect)
69 Immediate
6D Absolute (direct)
71 Indirect post-indexed with Y
75 Zero page indexed with X
79 Absolute indexed with Y
7D Absolute indexed with X

Number
of bytes

2
2
2
3
2
2
3
3

We may illustrate the ADC instruction with immediate addressing as shown below. For
other addressing modes. consult either the discussion of addressing modes or the
description of other arithmetic or logical instructions since other illustrations show
different addressing modes.

v

s' .----+---.....-~7
PC ._-~.._ __ ...,.__

3-38

Program

Memorv

Add the con tents of the next program memory byte (addressing mode selected by bits
2. 3. and 4 of the byte in the instruction reg ister) and the Carry status to the Accumula·
tor. Suppose xx= 3A16· yy = 7C15. C = 1. After the instruction

ADC #$7C

has been executed. the Accumulator will contain B71s.

3A
7C

Carry

No carry. se t C to 0
1 sets S to 1

O .lJ- 1 = 1, Set V to 1

0011101 0
01 1 1 1 1 00

1

101101 1 1

L Nonzero resu It sets Z to 0

AOC is the only 6502 addition instruction. To use it in single· byte ope rations or to add
the low· order bytes of two multibyte numbers. a previous instruction must explicitly set
Carry to zero so that it does not affect the operation. Note that the 6502 microprocessor
has no addition instruc11on that does not include the Carry ADC will perform either bi·
nary or decimal (BCD) addition. depending on whether the Deci mal Mode status is 0 or
1.

3-39

AND -AND MEMORY WITH ACCUMULATOR
This instruction logically ANDs the contents of a memory location with the con tents of
the Accumulator. This instruction offers the same memory addressing options as the
ADC instruction. The first byte of object code selects the addressing mode as follows:

Bit Value
for aaa

000
001
010
011
100
101
110
111

7 6 !:i 4 3 2 I 0 4'-Bi1 Number

~Obiec1Code

Hexadecimal Addressing Mode
Object Code

21 Indirect. pre-indexed with X
25 Zero page (directl
29 Immediate
2D Absolute (direct)
31 Indirect post-indexed wi th Y
35 Zero page indexed with X
39 Absolute indexed with Y
30 Absolute indexed with X

Number
of Bytes

2
2
2
3
2
2
3
3

We will illustrate the AND instruction with zero page (direct) add ressing. See the dis­
cussion of addressing methods and other arithmetic and logical instructions for exam­
ples of the other addressing modes.

SVBOIZC

p !xi I I I I xi I

Dara
Memory

mm mm

mmmm + 1

mmmm + 2

Logically AND the contents of the selected memory byte with the Accumulator and
store the result 1n the Accumulator. Suppose xx =FC15 and yy = 1315 After the in­
struction

AND $40

(assuming that yy is in memory location 0040). the Accumulator will conta in 101s:

FC 1 1 1 1 1 1 00
13 ~ 00010011

00010000

0 in bit 7 sets S to 0 __J L Nonzero result se ts Z to 0

ANO is a frequently used logical instruction.

3-40

ASL-SHIFT ACCUMULATOR OR MEMORY BYTE LEFT
Perform a one-bit arithmetic left shift of the contents of the Accumulator or the con­
tents of the selected memory byte.

First. consider shifting the Accumulator:

mmmm + 1

Suppose that the Accumulator contains 7A16· Perform ing an

ASL A

Deta

Program

instruc tion will set the Carry status to 0. the Sign status to 1. the Zero status to 0, and
will store F415 in !he Accumu lator.

Carry Accumulator

x- o 1 1 1 1 0 1 o- o
0 111101 00

Sets S to 1 __J L Nonzero resul t sets Z to 0

The ASL instruction uses four data memory add ressing opt ions:

11 Zero page (direct) · ASL addr

2) Absolute (directl · ASL addr16

3) Zero page indexed with Index Register X · ASL addr.X

4) Absolute indexed with Index Register X · ASL addr16.X

The first byte of objec t code determines w hich addressing mode is selec ted as follows:

3-41

Bit Value Hexadecimal
Addressing Mode

Number
for bb Object Code of Bytes

00 06 Zero page (direct) 2
01 OE Absolute (direc t) 3
10 16 Zero page indexed with X 2
11 1E Absolute indexed with X 3

We w ill show the ASL instruction with absolute (di rect) addressing. The other addres­
sing modes are shown in other instruction descriptions

z c
x x

mmmm + 3

Data
Memory

Progiam

Suppose ppqq = 3F8615 and the contents of ppqq are C815 After executing an

ASL $3F86

instruct ion. the contents of location 3F8615 will be altered to9615 and Carry will be
set to 1

Carry (3F8615)

x --11001011 - 0
1 100101 1 0

Sets S to 1 _J L Nonzero result sets Z to 0

The ASL instruc tion is often used in multiplication rou tines and as a standard logical in­
struction. Note that a single ASL 1nstruct1on mult1pl1es its operand by 2

3-42

BCC - BRANCH IF CARRY CLEAR (C = 0)
This instruction is a branch with relative addressing in which the branch is only ex­
ecuted if the Carry status equals O; otherwise. the next instruction is executed.

In the following instruction sequence·

sec ___.,,
90

d~C=1::::
DC $40

the ADC $40 inst ru c tion is executed ri ght after the BCC instruction if the Carry status
equals 0. The AND #$7F instru ct ion is executed if the Carry status equals 1. The rela­
tive addressing operates as shown in the nex t illus tration and as shown in the d iscus­
sion of addressing methods presented earlier No statuses and no registers - except
the Program Counter - are affected

Data

SVBD I ZC

•I I I I I I I I

.
~mmmm + "

lf the Ca rry is zero, this instru ction adds the contents of the second object code byte
hak.en as a sig ned 8-bit d isplacement) to the conten ts of the Program Coun ter plus 2;
this becomes the memory address for the next instruct ion to be executed. The previous
contents of the Program Counter are lost

3.43

BCS - BRANCH IF CARRY SET (C = 1)
This instruction operates like the BCC instruction except that the branch is only ex·
ecuted if the Carry status equals 1: otherwise. the next instruction is executed.

In the following instruction sequence:

BCS _,_,
BO

OS NEXT
c =0

D # $7F

.
DC $40

the ADC $40 instruction is executed right after the BCS instruction if the Carry status
equals 1. The AND #$7F instruction is executed if the Carry status equals 0.

BEQ- BRANCH IF EQUAL TO ZERO (Z = 1)
This instruct ion is just like the BCC instruction except that the branch is executed if the
Zero status equals 1. otherwise. the next instruction is executed.

In the fol lowing sequence

SEO _,_,
FO

0
0 NEXT

z =0
D #$7F

DC $40

the ADC $40 instruction is executed right after the BEQ instruction if the Zero status
equals 1. The AND # $7F instruction is executed if the Zero status equals 0.

3-44

BIT - BIT TEST
This instruction logically ANDs the contents of the Accumulator with the contents of a
selected memory location. sets the condition flags accordingly. but does not alter the
contents of the Accumulator or memory byte. The only addressing modes allowed are
absolute !direct) and zero page (direct) The first byte of object code determines the ad­
dressing mode as follows:

Bit Value
for x

0
1

7 6 s 4 3 2 1 a .,__BitNo.

~Object Code

Hexadecimal
Addressing Mode

Object Code

24 Zero page (direct)
2C Absolute (direct)

Number
of Bytes

2
3

We w ill il lustrate the BIT instruction using absolute (d irect) addressing. For the zero
page mode. see the AND instruction and the discuss ion of address ing modes. We
should note that BIT has a rather unusual effect on the status flags. since it sets the Z
flag according to the result of the logical AND operation but sets the Sand V flags ac·
cording to bits 7 and 6 of the contents of the memory location be ing tested; that is.

Z = 1 1f A /\ (M) = 0 : Z = 0 1f A /\ (M) FO

S =b it 7 of (Ml

V =bit 6 of IMI

SVBO l ZC

• ! 1! ' I I I \xi I

3-45

Data

Memory

Program

mmmm + 2

mmmm + 3

Logical ly ANO the contents of the Accumulator with the contents of the specified
memory location and set the Zero condition flag accordingly. Set the Sign and Overflow
condition flags according to bits 7 and 6, respect ively. of the selected memory location
Suppose xx = A615. yy = E015. and ppqq = 164115 After the instruction

BIT $1641

has executed. the Accumu lator wi l l still contain A615. and location 164115 will still
contain E015, but the statuses wilt be modi f ied as follows·

A6 ~ 1 0 1 0 0 1 1 0

10100000
EOJ - 1 100000

Sets S to 1 L Set V to 1

Nonzero result sets Z to 0

BIT instructions frequently precede conditiona l Branch instructions. BIT instructions are
also used to perform masking functions on data.

3-46

BMI - BRANCH IF MINUS (S = 11
BMI

'-v-'

30

This instruction works like the BCC instruction except that the branch is execu ted only
if the Sign status is 1: otherwise. the next instruct ion is executed.

In the following instruction sequence:

0 1 NEXT
s =0

D #$7F

c $40

the AOC $40 instruction is executed right after the BMI instruc tion if the Sign status is
1 The AND #$7F mstructron is executed if the Sign status tS 0.

BNE - BRANCH IF NOT EQUAL TO ZERO (Z = 0)
BNE _,_.,
DO

This instruction IS identical 10 the BCC instruction except that the branch is executed

only if the Zero status 1s 0 : o therwise. the next instruction in sequence is executed.

In the following instruction sequence:

O
E NEXT

z = 1
D #$7F

DC $40

the ADC $40 instruction is execu ted nght after the BNE instruction if the Zero status is
0. The AND #$7F instruction is executed if the Zero status is 1.

3-47

BPL - BRANCH IF PLUS (S = 0)
BPL --10

This instruction operates like the BCC instruction except that the branch is executed
only if the Sign status is 0: otherwise. the nex t instruction in sequence is executed.

In the following instruction sequence:

a l NEXT
s = 1

D #$7F

DC $40

the ADC $40 instruction is executed right after the BPL instruc tion if the Sign status is
0. The ANO #$7F instruction is executed if the Sign status is 1.

3-48

BRK - FORCE BREAK (TRAP OR SOFTWARE INTERRUPT)
BAK _,,_,
00

The Program Counter is incremented by two and the Break status is set to 1. then the
Program Counter and Status (P) register are pushed onto the Stack. The registers and
the corresponding memory locations into which they are pushed are as follows·

Memory Location Register
(Stack Pointer contains ss at start of instruction execution.I

01 ss High byte of Program Counter
01 ss - 1 Low byte of Program Counter
01 ss - 2 Status (P) register with 8 = 1

(Stack Pointer contains ss - 3 at end of instruct ion execution.)

The Interrupt Mask bit is then set to 1. This disables the 6502's interrup t service ability,
i.e .. the processor will not respond to an interrupt from a peripheral device. The con­
tents of the Interrupt Pointer (memory addresses FFFE16 and FFFF16l are then loaded
into the Program Coun ter.

The BAK instru ction can be used for a variety of functions. It can provide a breakpoint
facility for debugging purposes or it can transfer control to a particularly important soft­
ware system such as a disk operating system or a monitor. Note that the programmer
must insert the code required to tell a BAK instruction from a regu lar interrupt response
The coding to do this checks the value of the B status flag in the Stack as fol lows:

PLA
PHA
AND
BNE

#$10
BRKP

:GET STATUS REGISTER
:BUT ALSO LEAVE IT ON STACK
;IS BREAK STATUS SET'
;YES, GO PROCESS BREAK

Note that the opera tion code for BAK is 00. This choice of opera tion code means that
BAK can ·be used to patch programs in fusible-link PROMs since blowing all the fuses
makes the contents of the word 00. Thus an erroneous instru ction can be corrected by
changing the first object code byte to 00 and inserting a patch via the interrupt vector
routine. Remember that a bit in a fusible-link PROM can be set tO zero {by blowing the
fuse) but cannot be reset to one after the fuse has been blown. Such PROMs are no1
erasable.

The ooeration of the BAK instruc1ion may be il lustrated as follows:

!s! v! I 'ID! 'i Zjct
Da1a

SVBDIZC Memory

Pjjj15111

1

3-49

The final contents of the Program Counter are ppqq where pp represents the contents
of the memory location FFFF15 and QQ the contents of memory location FFFE15. Note
that the Stack is always on page 1 of memory: i.e .. the eight most significant bits of the
Stack address are always 0115.

3-50

BVC - BRANCH IF OVERFLOW CLEAR (V = 0)
BVC ----50

This instruction operates like the BCC instruction except that the branch is executed

only if the Overflow status is O: otherwise. the next instruction in sequence is executed.

ln the following instruction sequence:

d C NEXT

D V ~ l #$7F

DC $40

the ADC $40 instru ction is executed right after the BVC instruction if the Overflow

status is 0. The AND #$7F instruction is executed if the Overflow status is 1.

BVS - BRANCH IF OVERFLOW SET (V = 1)
BVS ----70

This instruction is just like the BCC instru ction except that the branch is executed only

if the Overflow status is 1. otherwise. the next instruction in sequence is executed.

In the following instruction sequence :

O
S NEXT

v ~o
D #$7F

DC $40

the ADC $40 instruction is executed right after the BVS instruction if the Overflow

status equals 1. The ANO #$7F instruction is executed if the Overflow status equals 0.

3-51

CLC - CLEAR CARRY
CLC ---18

Clear the Carry status. No other status or register's contents are affected. Note that this
instruction is required as part of a normal addition opera t ion since the only addition in·
struction available on the 6502 microprocessor is ADC. which also adds in the Carry
status. This instruc tion is also required at the start of a multi·bvte addition since there is
never a carry into the least significant byte.

SVBD IZC

p I I I I I I I Oj

mmmm + 1

3-52

Data

Program

mm mm
mmmm + 1

CLO - CLEAR DECIMAL MODE
CLO ..___.
08

Clear the Decimal Mode status. No other status or register's contents are affected. This
instruction is used to return the 6502 processor to the binary mode in which AOC and
SBC instructions produce binary rather than BCD results- This instruction may be used
to ensure that the mode is binary in situations where it may be uncertain whether the
Decimal Mode status has been set or cleared most recently.

SVBO IZC

•I I I lo! I I I

y

!~ 1-----+-~~-v~'T mmmm + 1

3-53

Data

ProgrOJm

mm mm

mmmm + 1

CLI - CLEAR INTERRUPT MASK (ENABLE INTERRUPTS)
cu ._,_...
58

Clear the interrupt mask bit in the Status {P) register. This instruc tion enables the
6502's interrupt service abi lity. i.e., the 6502 will respond to the Interrupt Request con­
trol line. No other registers or statuses are affected. Note that the I bit is a mask or disa­
ble bit. It must be c leared to enable interrupts and set to disable them.

SVBOIZC

Pl I ! I I al I I

3-54

Data

P1ogram

~mm

mmmm + 1

CLV - CLEAR OVERFLOW
CLV --.--
88

Clear the overflow bit in the Status register. No other registers or statuses are affected.

Note that the 6502 has no SET OVERFLOW instruction.

Data

SV8DIZC

•I Io! I I I I I

P109ram

mmmm + 1

3-55

CMP-COMPARE MEMORY WITH ACCUMULATOR
This instruction subtracts the contents of a selected memory byte from the Accumula­
tor. sets the condition f lags accordingly, but does not alter the contents of the Ac­
cumulator or memory byte. This instruction offers the same memory addressing options
as the ADC instruct ion. The first byte of object code selects the addressing mode as
follows:

Bit Value
for aaa

000
001
010
011
100
101
110
11 1

7 6 5 4 3 2 t 0 ...,_.Bit Number

~Object Code

Hexadecimal
Add ressing Mode

Object Code

Cl Indirect pre- indexed with X
C5 Zero page (direct)
C9 Immediate
CD Absolute (direct)
Dl Indirect. post-indexed with Y
D5 Zero page indexed with X
D9 Absolute indexed with Y
DD Absolute indexed with X

Number
of Bytes

2
2
2
3
2
2
3
3

We wil l illustrate the CMP instruction with pre-indexed indirect addressing (usi ng Index
Register X) . See the discussions of add ressing methods and other instructions for exam·
pies of the other addressing modes

SV B OIZC

"!XI I I I !xix!

Data
Memory

OOrr + cc + 1

mmmm + l

mmmm + 2

Subtract the contents of the selected memory byte from the contents of the Accumula·
tor and set the Sign, Zero. and Carry statuses to reflect the result of the subtraction
Suppose xx= FF15. yy = 1815. rr = 2015. cc= 2315. (0043151=6D15. and
10044151=1516 Note that 0043 = rr + cc and we have assumed that
(156D15I =yy = 1815.

3-56

After the instruction

CMP ($23.X)

has been executed. the Accumulator will still contain F615. and memory location
156016 w ill still contain 1815. but the statuses will be modified as follows:

F6 = 11110110
Twos complement of 18 = 1 1 10100 0

1101 1 11 0

Sets C to 1 __JI L Nonzero result sets Z to 0

Sets S to 1

Note that C is equal to the resulting carry. not to its complement as is true on many
other microprocessors. Thu s C = 0 if a borrow is required and C = 1 if no borrow is
necessary.

Compare instructions are most frequently used to set statuses before the execut ion of
Branch-on-Condition instructions.

3-57

CPX - COMPARE INDEX REGISTER X WITH MEMORY
This instruction is the same as CMP except that the memory byte 1s subtracted from In·
dex Register X instead of the Accumulator. The onty addressing modes allowed are im·
mediate. zero page (directl. and absolute (directl. The first byte of object code selects
the addressing mode as follows:

Bit Value
for cc

00
01
10
11

7 6 5 4 3 2 t 0 "4-B•t Number

~ObJ&CtCode

Hexadecimal
Addressing Mode

Object Code

EO Immediate
E4 Zero page {direc t)

Used for INX instruction
EC Absolute (direct)

Number
of By tes

2
2

3

We will illustrate the CPX instruction with immediate addressing. See the discussion of
addressing methods and other arithmetic and logical instructions for examples of the
other addressing modes.

SVBOIZC

•!xi I I I !xix!

Data

Program

Memo,,.

Subtract the contents of the selected memory byte from the contents of Index Register
X. The Sign, Zero. and Carry statuses reflect the result of the subtraction in the same
way as shown for the CMP instruction

3-58

CPY - COMPARE INDEX REGISTER Y WITH MEMORY

This instruction is the same as CMP except that the memory byte is subtracted from In­
dex Register Y instead of the Accumulator. The only addressing modes allowed are im­
mediate. zero page (directl. and absolute (direct). The first byte of object code selects
the addressing mode as follows:

Bit Value
for cc

00
01
10
11

7 6 5 4 3 2 1 O-e.1 Number

~Ob1ec1Code

Hexadecimal
Addressing Mode

Object Code

co Immediate
C4 Zero page {di rect)

Used for INY instruction
cc Absolute (direct)

Number
of Bytes

2
2

3

We will illustrate the CPY instruction with zero page (direct) addressing. See the discus­

sion of addressing methods and other arithmetic and logical instructions for examples
of the other addressing modes.

SVBOIZC

P !XI I I I I xj xj

Data

Memory

Program

mm mm

mmmm + 1

mmmm + 2

Subtract the contents of the selected memory byte from the conten ts of Index Register
Y. The Sign. Zero. and Carry statuses reflect the result of the subtraction in the same
way as shown for the CMP instruct ion.

3-59

DEC- DECREMENT MEMORY (BY 1)
This instruction decrements by 1 the contents of a selected memory location.The DEC
instruction uses four data memory addressing options:

1) Zero page (direct) -DEC addr

21 Absolute (di rec ti - DEC addr16

3) Zero page indexed with Index Register X - DEC add r.X

4) Absolute indexed with Index Register X - DEC addr16,X

The first byte of object code determines which addressing mode is selected as follows:

Bit Value
for bb

00
01
10
11

7 6 5 4 3 2 1 0 4----811Number

! 1I1!o!b!b!1!1 ! 0 ,.__0bJect Code

Hexadecimal
Addressing Mode

Ob1ect Code

C6 Zero page (direct)
CE Absolute (direct)
D6 Zero page indexed with X
DE Absolute indexed with X

Number
of Bytes

2
3
2
3

We will illustrate the DEC instruction with absolute indexed addressing. The other ad­
dress ing modes are shown elsewhere.

Data
SVBDIZC

p I xi I I I !xi I ~B
~ppqq+"

Decrement the contents of the specified memory byte.

mmmm + 1

mmmm + 2

mmmm + 3

If yy = A515. ppqq = 010015. and rr = OA15. then after execution of the instruction

DEC $0100.X

the contents of memory location 010A16 will be altered to A415

A5 1010O101
Ones complement of 1 = 1 1 1 1 1 1 1 1

10100100

Carry is not altered j L Nonzero result sets Z to 0

Sets S to 1 Overflow (V) is not altered

3-60

DEX - DECREMENT INDEX REGISTER X (BY 1)
This instruction decrements by 1 the contents of Index Reg ister X The Zero and Sign
statuses are affected.

DEX __,,_,
CA

The effects of th is instruction are the same as those of DEC except that the contents of
Index Register X are decremented rather than the contents of a memory location.

Data

SVBO I ZC

, , xi I I I Ix I I

Program

mmmm + 1

3-61

DEY - DECREMENT INDEX REGISTER Y (BY 1)
This instruction decrements by 1 the contents of Index Register Y. The Zero and Sign
statuses are affected just as they are by DEC and DEX.

SVBOIZC

•Ix! I I I Ix I I

DEY _,,_,
88

mmmm + 1

3-62

Da1a

Program

mm mm

mmmm + l

EOR - EXCLUSIVE-OR ACCUMULATOR WITH MEMORY
Exclusive-OR the contents of the Accumulator with the contents of a selected memory
byte. This instruction offers the same memory addressing options as the ADC instruc­
tion The first byte of object code selects the addressing mode as follows

Bit Value
for aaa

000
001
010
011
100
101
110
111

7 6 5 4 3 2 1 0 .,__Bot Number

~ObiectCode

Hexadecimal
Addressing Mode

Ob1ect Code

41 Indirect. pre-indexed with X
45 Zero page (direct)
49 Immedia te
40 Absolute (direct)
51 Indirect. post-indexed with Y
55 Zero page indexed with X
59 Absolute indexed with Y
50 Absolute indexed with X

Number
of Bytes

2
2
2
3
2
2
3
3

We will illustrate the EOR instruction with post-indexed indirect addressing (using In­
dex Register Y). See the discussion of addressing methods and other arithmetic and
log1cat instructions for examples of the other addressing modes.

SVBOIZC

p !xi I I I I xi I

3-63

Data

OOcc

1

: OOcc + 1

'

M

mm mm

mmmm + 1

mmmm + 2
mmmm + 3

Logically Exclusive-OR the contents of the Accumulator with the contents of the
selected memory location. treating both operands as simple binary data. Suppose that
xx= E315 and yy = A015. After the instruction

EOR 1$40.YI

has execu ted. the Accumulator wil l contain 43 15. We assume also that rr = 1015.
qq = 14015) = 1E 15. pp= 141 15) = 2515. and l25 1E15l = yy = A015.

E3 111000 1 1
AO = 1 0 1 0 0 0 0 0

01000011

0 sets S to 0 __J L Nonzero result sets Z to 0

EOR is used to test for changes in bit status. Note also that the instruction EOR #$FF
complements the contents of the Accumu lator. changing each T bit to a 'Q' and each
'O' bit to a ·1·

3-64

INC-INCREMENT MEMORY (BY 1)
This instruct ion increments by 1 the contents of a selected memory location. The INC
instruction uses fou r data memory addressing options:

11 Zero page (direct) - INC addr

2) Absolute (direct) - INC addr16

3) Zero page indexed with Index Register X - INC addr.X

4) Absolute indexed with Index Register X - INC addrl 6.X

The first byte of object code determines which addressing mode is selected as follows :

Bit Value
for bb

00
01
10
11

1 6 5 4 3 2 1 0 .,...____ a ,1 Number

~Ob1ec1Code

Hexadecima l
Addressing Mode

Object Code

E6 Zero page {direct)
EE Absolute (direct)
F6 Zero page indexed with X
FE Absolute indexed with X

Number
of Bytes

2
3
2
3

We will illustrate the INC instruction with absolute (direct) addressing. The other ad­
dressing modes are shown elsewhere

SVBOIZC Memorv

• IX! I I I JxJ I
vv . 1

Program

mmmm + 3

3-65

Increment the selected memory byte.

If pp= 0115. qq = A215. and yy = C015. then after executing an :

INC $01A2

instruction. the contents of memory location 01A215 will be incremented to Cl 16·

co 1 100 0 0 0 0
1 = 00000001

11000001

Sets S to 1 ,_J L Nonzero result sets Z to 0

Carry and Overflow are not
altered

The INC instruction can be used to provide a cou nter in a variety of applications such as
counting the occu rrences of an event Or specifying the number of times a task is to be
performed

3-66

INX - INCREMENT INDEX REGISTER X (BY 1)
This instruction increments by 1 the contents of Index Register X. The Zero and Sign
statuses are affected just as by the INC instruction.

sveo1zc

•I xi I I I Ix I I

INC _,,_,
EB

mmmm + 1

Data

Program

Add 1 to the contents of Index Register X and set the Zero and Sign flags according to
the result. Suppose that Index Register X contains 7A1fr After the instruction

INX

has executed. Index Register X will contain 7815. the Zero status will be cleared since
the result is nonzero. and the Sign status will be cleared since the result has 0 in its
most sig nificant bit .

3-67

!NY- INCREMENT INDEX REGISTER Y (BY 1)
This instruction increments by 1 the conten ts of Index Register Y. The Zero and Sign
statuses are affected just as by the INC inst ruction.

SV B OIZC

' !xi I I I Ix I I

INY --..­
cs

mmmm + 1

Data

Program

Add 1 to the contents of Index Register Y and set the Zero and Sign flags according to
the result. Suppose that Index Register Y con tams OC 16· After the instruction INY has
executed. Index Register Y will contain 001 5. the Zero status wi l l be cleared since the
result is nonzero. and the Sign status will be clea red since the result has 0 in its most
significant bit.

3-68

JMP - JUMP VIA ABSOLUTE OR INDIRECT ADDRESSING
This instruc tion will be i llustrated usi ng indirect addressing. Note that It rs the only in­
struction that has the true 1nd1rect addressing mode. The first byte of ob1ect code deter­
mines the addressing mode as follows :

Bit Value
for y

0
1

7 6 5 4 3 2 1 0 ...-e11 Number

~Ob1ec1Code

Hexadecimal
Addressing Mode Object Code

4C Absolute ldirectl
6C Indirect

SVBOIZC

•I I I I I I I I

PPQQ

Number
of Bytes

3
3

Program

Jump to the instruction specified by the operand by loading the address from the
selected memory bytes into the Program Counter.

In the following instruct ion sequence:

CLC
LDA
ADC
STA
LDA
ADC
STA
JMP

#BASEL
INDXL
JADDR
#BASEU
INDXU
JADDR+1

:CALCULATE LSB'S OF DESTINATION ADDRESS

:CALCULATE MSB'S OF DESTINATION ADDRESS

(JADDRI :TRANSFER CONTROL TO DESTINATION

The JMP tnstruction will perform an indexed jump relative to the 16-bit address con­
sisting of BASEU 18 MSBs) and BASEL 18 LSBsl. The index here is assumed to be 16 bits
long and to be 1n1tially stored at addresses INDXL 18 LSBsl and INDXU 18 MSBsl The ad­
dresses following the start of the table could then contain absolute JMP instructions
that transfer con trol to the proper routines.

JMP will not work properly if the indirect address crosses a page boundary - that is. 1f
dd - FF15 in the 1llustrat1on above. The discussion of indirec t addressing earlier 1n this
chapter discusses this peculiarity 1n more detail

The JMP instruction can also use the absolute !dtrectl addressing mode. ln this case.
the second byte of the instruction is loaded into the low byte of the Program Counter.
and the th ird byte of the instruction is loaded into the high byte of the Program
Counter Instruction execution continues from this address

3-69

JSR - JUMP TO SUBROUTINE
This instruction pushes the Program Counter onto the Stack and then trans fers control
to the specified instruction. Only absolute (di rect) add ressing is allowed. Note that the
Stack Pointer is decremented after the storage of each data byte and that the Program
Counter value that is saved is the address of the last (third) byte of the JSR inst ruc­
tion: i.e .. the init ial program counter value plus 2. Remember also tha t the Stack grows
down in memory and that the most significant half of the Program Counter is stored
first and thus ends up at the higher address (i n the usual 6502 address form) .

Data

SVBDIZC Memory

•I I I I I I I I 01ss - 2
_ , ___ ~ 01ss - l

01ss

s; ..--::--i-::OV
Prog1am

PC ._ __ .._ __ ~

The Program Counter is inc remented by 2 and then is pushed onto the Stack. The Stack
Pointer is adjusted to point to the next empty location in the Stack. The address part of
the instruction is then stored in the Program Counter and execution continues from that
point

Assume that mmmm = E34F15 and that ss = E315. Then after the execution of the in·
struct1on

JSR $E100

the Program Counter will contain E10015. the Stack Pointer will contain E115. and the
Stack locations will be as follows·

(01ss) = (01E3) = PC(HI) = E3

l01ss · 11 = l01E21=PCILOI=5115

The next instruction to be executed will be the one at memory address E10016-

3-70

LOA- LOAD ACCUMULATOR FROM MEMORY
Load the contents of the selected memory byte into the Accu mulator. This instruction
offers the same memory addressing opt ions as the AOC instruction and will be illus·
trated using zero-page indexed addressing with Index Register X. See the discussion of
addressing methods and other arithmetic and logical rns tru ctions for examples of the
other addressing modes. The first by te of objec t code selects the addressing mode as
follows:

7 6 5 4 3 2 1 0 .,__8 11 Number

I 1!o(1 j al alalo!1 r---Ob1ec1 Code

Bit Value Hexadecimal
Addressing Mode

for aaa Object Code

000 A l Ind irect pre-indexed with X
001 AS Zero page (d irect)
010 A9 Immediate
011 AD Absolute (direct)
100 Bl Indirect. post-indexed with Y
101 BS
110 B9
111 BD

SVBOIZC

•I xi I I I I xi I

Zero page indexed with X
Absolute indexed with Y
Absolute indexed with X

Oa1a

M emory

Load the conten ts of the selected memory byte into the Accumulator.

Number
of Bytes

2
2
2
3
2
2
3
3

Suppose that Index Register X contains 1015 and cc= 4315. If memory location
005315 contains AA15. then after

LDA $43.X

has executed. the Accumulator will contain AA1fr

AA = 1 0 1 0 1 0 1 0

1 se ts S to 1 __J L Nonzero result sets Z to 0

3-71

LOX - LOAD INDEX REGISTER X FROM MEMORY
Load the contents of the selected memory byte into Index Register X. The add ressing
modes allowed are:

1) Immediate - LOX data

2) Absolute (direct) - LDX add r16

3) Zero page (direct) - LDX addr

4) Absolute indexed with Y - LDX addr16.Y

5) Zero page indexed with Y - LOX addr.Y

Note that there are no indexing modes with Index Register X, and there is no post-i n­
dexing. The fi rst byte of object code selects the addressing mode as fol lows :

Bit Value
for ddd

000
001
010
011
100
101
110
111

1 6 5 4 3 2 1 0 ,._811 Number

~Ob1ec1Code

Hexadecimal
Addressing Mode

Object Code

A2 Immediate
A6 Zero page (di rect)
AA Used for TAX instru ction
AE Absolute (direct)
B2 Not used
B6 Zero page indexed with Y
BA Used for TSX instruct ion
BE Absolute indexed with Y

Number
of Bytes

2
2

3

2

3

We will illustrate the LOX instruction with absolute indexed addressing using Index
Register Y. See the discussion of addressing methods and other arithmetic and logical
instructions for examples of the other addressing modes

SVBDIZC

Pl xi I I I I XI I

y

~t---+-~~ ~r

3. 72

Data
Memory

Load the contents of the selected memory byte into Index Reg ister X. Suppose that In­
dex Register Y contains 2815. ppqq = 2E1A15. and yy = l2E42 15) = 4F15. then after
the execution of the instruction

LDX $2E1A.Y

Index Register X wilt contain 4F15.

4F = 0 1 0 0 1 1 1 1

0 sets S to 0 ,_J L Nonzero result sets Z to 0

3-73

LOY - LOAD INDEX REGISTER Y FROM MEMORY
Load the contents of the selected memory byte into Index Register Y. The addressing
modes allowed are :

1) Immediate - LDY data

2) Absolute (direct! - LDY add r16

3) Zero page (direct! - LDY addr

4) Absolute indexed with X - LDY addr16.X

5) Zero page indexed with X - LOY addr.X

Note that there are no indexing modes with Index Register Y nor is there any p re -index­
ing.

The first byte of ob1ect code selects the addressing mode as follows :

Bit Value
for ddd

000
001
010
011
100
101
110
111

7 6 5 4 3 2 I 0 ..--e .1 Number

~ObJectCode

Hexadecimal Addressing Mode
Ob1ect Code

AO Immediate
A4 Zero page (direct)
AS Used for TAY instruction
AC Absolute (direct)
BO Used for BCS instruction
B4 Zero page indexed with X
BS Used for CLV instruction
BC Absolute indexed with X

Number
of Bytes

2
2

3

2

3

We will illustrate the LOY instruction with immediate addressing. See the discussion of
addressing methods and other arithmetic and logical instructions for examples of the
other addressing modes

S V A Q I l C

•!xi I I I I xi I

mmmm + 2

3-74

Oa!it

Program

Memory

Load the contents of the selec ted memory byte into Index Register Y. Suppose that
yy = 001 s. then after the execution of the instruction

LOY #0
Index Register Y will contain zero.

00 = 00000000

0 sets S to O__J L zero result sets Z to 1

3-75

LSR- LOGICAL SHIFT RIGHT OF ACCUMULATOR OR MEMORY
This instruction performs a one-bit logical right shift of the Accumulator or the selected
memory byte.

First. consider shifting the Accumulator

LSR A
'--....-.'

4A
Data

Program

Shift the contents of the Accumulator right one bit Shift the low-order bit into the Car­
ry status. Shift a zero into the high-order bit.

Suppose the Accumulator contains 7A15. After the

LSR A

instruction is executed. the Accumulator will contain 3016 and the Carry status will be
set to zero

Accumulator Carry

o- 0111101o~ x
00 111101 0

LSR always sets S to 0 ___J L Nonzero result sets Z to 0

Four methods of addressing data memory are ava ilable with the LSR instruction: they
are:

11 Zero page (direct) - LSR addr

21 Absolute (direct) - LSR addr16

3) Zero page indexed with Index Register X - LSR addr.X

4) Absolute indexed w ith Index Reg ister X - LSR addr16.X

The first byte of object code determines which addressing mode is selected as follows :

7 6 5 4 3 2 1 0 .,__Bit Number

~Ob1ectCode

3-76

Bit Value Hexadecimal
Addressing Mode

Number
for bb Object Code of Bytes

00 46 Zero page (direct) 2
01 4E Absolute (direct) 3
10 56 Zero page indexed with X 2
11 5E Absolute indexed with X 3

We will illustrate the LSR instruction with absolute (direct) addressing. The other ad­
dressing modes are shown elsewhere.

SP l--~~~~~.._..--7
PC .._~~ ~~ ,.__: mmmm.;. 3

Prog•am

mmmm .;.1

mmmm.;. 2
mmmm + 3

Logically shift the contents of the selected memory location right one bit .

Suppose that ppqq = 04FA15 and the contents of memory location 04FA15 are 0015
After the instruction

LSR $04FA

has been executed. the Carry status will be 1 and the contents of memory location
04FA15 will be 0615.

(04FA15) Carry
o~-00001101~ x

00000110 1

LSR always sets S to O__J L Nonzero result sets Z to 0

3-77

NOP-NO OPERATION
NOP --­EA

This is a one-byte instruction which does nothmg except increment the Program
Counter. This instruction allows you to give a label to an object program byte. to fine
tune a delay (each NOP instruction adds two clock cycles). and to replace instruction
bytes that are no longer needed because of corrections or changes. NOPs can also be
used to replace instruct ions (such as JSRs) which you may not want to include in
debugging runs. NOP is not very frequently used in finished programs. but it is often
useful in debugging and testing.

Data

SVBDIZC

•I I I I I I I I

mmmm + 1

3-78

ORA- LOGICALLY OR MEMORY WITH ACCUMULATOR
This instruction logical ly ORs the contents of a memory location with the con tents of
the Accumulator. This instru ction offers the same memory addressing opt ions as the
ADC instruction. The first byte of object code selects the addressing mode as follows:

Bit Value
for aaa

000
001
010
011
100
101
110
111

7 6 5 4 3 2 l o ..-e itNumber

~Ob1ectCode

Hexadecimal
Addressing Mode

Object Code

01 Indirect. pre-indexed with X
05 Zero page (di rect)
09 Immediate
OD Absolute (direct)
11 Indirect. post-indexed with Y
15 Zero page indexed with X
19 Abso lute indexed with Y
10 Absolute indexed with X

Number
of Bytes

2
2
2
3
2
2
3
3

We will illustrate the ORA instruction using absolute indexed addressing with Index
Register Y. See the discussion of addressing methods and other arithmetic and logical
instruct ions for examples of the other addressing modes.

SVBOIZC

•I xi I I I ix! I

Data
Memory

mmmm + 1

mmmm -t 2

Logically OR the contents of the Accumulator with the contents of the selected memory
byte. treating both operands as simple binary data

3-79

Suppose that ppqq = 162315. rr = 1015. xx= E315. and yy = AB15. After the execu­
tion of the instruction

ORA $1623.Y

the Accumulator will contain EB16·

E3 = 1 1 1 0 0 0 1 1
AB = 1 0 1 0 1 0 1 1

1110101 1

Sets S to 1 __J ~onzero result sets Z to 0

This is a logical instruction: it is of ten used to turn bits "on". i.e .. make them ' l's. For
example. the instruction

ORA #$80

will unconditionally set the high-order bit in the Accumulator to 1.

3-80

PHA- PUSH ACCUMULATOR ONTO STACK
Th is instruction stores the contents of the Accumulator on the top of the Stack. The
Stack Poin ter is then decremented by 1. No other registers or statuses are affected.
Note that the Accumulator is stored in the Stack before the Stack Pointer is decre·
mented.

sveo1zc
Pl I I I I I I I

PHA --...-
48

Data
Memory

mm mm

mmmm + 1

Suppose that the Accumulator contains 3A15 and the Stack Pointer contains F715
After the instru ction PHA has been executed. 3A15 will have been stored in memory
location 01F715 and the Stack Pointer wilt be altered to F615.

The PHA instruction is most frequently used to save Accumulator con tents before ser·
vicing an interrupt or ca lling a subroutine

3-81

PHP - PUSH STATUS REGISTER (P) ONTO STACK
This instruction stores the contents of the Status (P) register on the top of the Stack.
The Stack Pointer 1s then decremented by 1. No other registers or statuses are affected.
Note that the Status register is stored in the Stack before the Stack Pointer is decre·
mented.

The organization of the status in memory is as foltows :

7 6 S 4 J 2 1 0 .,_811 Number

~Aogister P

Bit 5 ts not used and its value is arbitrary.

S I/ B 0 I Z C

PHP
'-..-'

08
Data

Memory

Ohs - 1
---~L _ _J otss

Program

mmmm • 1

The PHP instruction is generally used to save the contents of the Status register before
calling a subroutine. Note that PHP is not necessary before servicing an interrupt since
the interrupt response (to fRO or NMI) and the BAK instruction automatically save the
contents of the Status register at the top of the Stack.

3-82

PLA- PULL CONTENTS OF ACCUMULATOR FROM STACK
This instruction increments the Stack Pointer by 1 and then loads the Accumulator
from the top of the Stack. Note that the Stack Pointer is incremented before the Ac­

cumulator is loaded.

SVBO IZC

•!xi I I I !xi I

PLA ._,--
68

Data
Memory

mm mm

mmmm + 1

Suppose the Stack Pointer con ta ins F615 and memory location 01F715 contai ns CE15.
After the instruction PLA has executed. the Accumula tor will con tain CE 16 and the
Stack Pointer will con tain F715

F7 ~ 1 l l 1 0 l l 1

Set S to ,__J L Nonzero result sets Z to 0

The PLA instruction is most frequently used to restore Accumulator conten ts that have
been saved on the Stack : e.g .. after servicing an interrupt. or after comple t ing a
subroutine.

3-83

PLP-PULL CONTENTS OF STATUS REGISTER (P) FROM STACK
This instruction increments the Stack Poin ter by 1 and then loads the Status (P) register
from the top of the Stack. No other registers are affected but all the statuses may be
changed. Note that the Stack Pointer is incremented before the Status register is
loaded.

PLP
'-...-'

28

The organization of the status in memory is as follows :

Bit 5 is not used.

SVBDIZC

PXXXXXXX

7 6 5 4 3 2 1 0 '4--811 Number

~Reg1s1erP

0111

Memory

!s)v))e)o)i! z)c!

mmmm..- 1

The PLP instruct ion is generally used to restore the contents of the Status register after
completing a subroutine. Thus. it serves to balance the PHP instruction mentioned
earlier. Note that PLP is not necessary after servicing an interrupt since the ATI instruc­
tion automatically restores the contents of the Status register from the top of the Stack.

3-84

ROL - ROTATE ACCUMULATOR OR MEMORY LEFT THROUGH
CARRY

This instruction rotates the Accumulator or the selected memory byte one bit to the left
through the Carry.

First. consider rotating the Accumulator.

AOL A ..__,,_,,
2A

mmmm + 1

Data

Program

Rotate the Accumulator's contents left one bit through the Carry status.

mm mm
mmmm + 1

Suppose the Accumulator contains 7A15 and the Carry status is set to 1. After the

AOL A

instruction is executed. the Accumulator will contain F515 and the Carry status wi l l be
reset to zero.

Accumulator Carry

0 1 1 1 101 0 1
11110101 0

Set S to 1 __J L Nonzero result sets Z to zero

The ROL instruction allows four methods of addressing data memory; they are:

1) Zero page (direct! - AOL addr

21 Absolute (di rec ti - AOL addrl 6

3) Zero page indexed with Index Register X - AOL addr.X

4) Absolute indexed with Index Register X - AOL addr16.X

The first byte of object code determines which addressing mode is selected as follows:

3-85

Bit Value Hexadecimal
Addressing Mode

Number
for bb Ob1ect Code of Bytes

00 26 Zero page (direct) 2
01 2E Absolute (direct) 3
10 36 Zero page indexed with X 2
11 3E Absolute indexed with X 3

We will illustrate the ROL instru ction with zero page indexed addressing (using Index
Reg ister X) . The other addressing modes are shown elsewhere.

mmmm + 2

Rotate the selected memory byte left one bit through the Carry status. Suppose that
cc = 3415. rr = 1615. the contents of memory location 004A 16 are 2E15. and the Carry
status is zero. After execut ing a

ROL $34.X

instruction. memory location 004A15 will contain 5C16-

(004A15l Carry

00101110 0
01011100 0

Sets to o__J L Nonzero resul t sets z to 0

3-86

ROR - ROTATE ACCUMULATOR OR MEMORY RIGHT,
THROUGH CARRY

This instruction rotates the Accumulator or the selected memory byte one bit to the
right through the Carry.

First consider rota ting the Accumulator.

ROR A
~

6A

mmmm + 1

Dai a

Program

Rotate the Accumulator's contents right one bit through the Carry status. Suppose that

the Accumulator contains 7A15 and the Carry status is set to 1. Execution of the

ROR A

instruction will produce these results : the A ccu mulator w ilt contain 8015 and the Car­

ry status will be 0.

Accumulator Carry

01 1 1 101 0 1
101 1 1101 0

Set S to 1 _j L Nonzero result sets Z to 0

The ROA instru ction allows four methods of addressing data memory: they are:

1 I Zero page ldirectl - ROR addr

21 Absolute (direct! - ROL addr16

3) Zero page indexed with Index Register X - ROA addr,X

4) Absolute indexed with Index Register X - ROA addr16.X

The first byte of ob1ect code determines which addressing mode is selected as follows:

7 6 5 4 3 2 1 0 ..,__8,tNumber

~Ob1ec1Code

3-87

Bit Value Hexadecimal
Addressing Mode

Number
for bb Object Code of Bytes

00 66 Zero page (direct) 2
01 6E Absolute (direct) 3
10 76 Zero page indexed with X 2
11 7E Absolute indexed with X 3

We will il lustrate the ROR instruction with absolute indexed addressing (using Index
Register X). The other addressing modes are shown elsewhere

SVBOIZC

p x x x

mmmm + 3

Suppose that rr = 1416· ppqq = 010015. the contents of memory location 011415 are
ED15. and the Carry status is 1. After executing a:

ROR $0100.X

instruction. the Carry status w ill be 1 and memory location 011415 will contain F615

10114151 Carry
11101101 1
1111011 0 1

Set S to l ___J L Nonzero result sets Z to 0

3-88

RTI - RETURN FROM INTERRUPT
Pull the Status (P) register and the Program Counter off the top of the Stack The
reg isters and the corresponding memory locations from which they are loaded are as
follows. assuming that the Stack Pointer contains ss at the start of instruction execu­
tion :

Memory Location

01ss+1
01 ss+2
01 ss+3

Register

Status (P) register
Low byte of Program Counter
High byte of Program Counter

The final value of the Stack Pointer is its initial value plus 3. The old values of the Status
register and Program Counter are lost

RTI .._,_.,
40

is!v! ieio! l)zfcf
Data

Memory

01ss

------"71-----1 Olss + 1

Program

Olss + 2
Olss + 3

~ ~--

Suppose that the Stack Pointer contains E815. memory location 01 E915containsC115,
memory location 01EA16 contains 3E15. and memory location 01EB16 contains 0515
After the instruction RTI has been executed, the Status register w ill contain C115, the
Stack PoinJer will contain EB15. and the Program Counter will contain D53E15 (this is
the address from which instruction execution will proceed) The statuses will be as
follows:

SV BOIZC

C1 = Iii i! o!o!o!o!o! ii

Note that the Interru pt Mask bit will be set or reset depending on its value at the time
the Status register was stored. assuming that the interrupt service routine did not
cha nge it while it was on the Stack

3-89

RTS - RETURN FROM SUBROUTINE
This instruct ion fetches a new Program Counter value from the top of the Stack and in­
crements it before using it to fetch an 1nstruct1on. Note that the Stack Poin ter is incre­
mented before the loading of each data byte and i ts final value is thus two greater than
its initial value. RTS is normally used at the end of a subroutine to restore the return ad­
dress that was saved in the Stack by a JSR instruction. Remember that the return ad­
dress saved by JSR is actually the address of the third byte of the JSR instruction itself:
hence. ATS must increment that address before using it to resume the main program.
The previous contents of the Program Counter are lost. Every subroutine must contain
at least one ATS instruction.

Sll801ZC

•I I I I I I I I

SP t---:::-+::;Ov
•c ...__,,~.._,...__

ATS _,_,
60

No statuses are altered by an ATS instruction.

Data

Memory

01ss
01ss + 1

--'"' r--;;;;---, 01ss + 2

Program

~ ~-·

Suppose that the Stack Pointer contains DF15. memory locat1on OlE015 contains
0815. and memory location 01El15 con tams 7C 16· After the instruction ATS has been
executed. the Stack Pointer will contain E116 and the Program Counter will contain
7C0915 (this is the address from which instruction execution will proceed).

3-90

SBC-SUBTRACT MEMORY FROM ACCUMULATOR WITH
BORROW

Subtract the contents of the selected memory byte and the complement of the Carry
status (i.e .. 1 - C) from the contents of the Accumulator. Th is instruction offers the

same memory addressing options as does the ADC instruction The first byte of object
code selects the addressing mode as follows:

Bit Value
for aaa

000
001
010
011
100
101
110
111

7 6 5 4 3 2 1 0 '4--811 Number

~Ob1ec1Code

Hexadecimal
Addressing Mode

Ob1ect Code

E1 Indirect. pre-indexed with X
E5 Zero page (direct)
E9 Immediate
ED Absolute (di rect)
F1 Indirect. post-indexed with Y
F5 Zero page indexed with X
F9 Absolute indexed with Y
FD Absolute indexed with X

Number
of Bytes

2
2
2
3
2
2
3
3

We will illustrate the SBC instru ction using pre-indexed indirect addressing (via Index

Register X). See the discussion of addressing methods and other arithmetic and logical
instructions for examples of the other addressing modes

SVBOIZC

p x x x x

u -vv -C

mmmm+ 2

Da1a

OOrr +cc

: : OOrr + cc+ 1

. '

mmmm+ 1

mmmm + 2

Subtract the contents of the selec ted memory byte and the complement of the Carry
status (1 - Cl. from the Accumulator. treating al l register contents as simple binary

data. Note. however. that all data will be treated as decimal (BCD) 1f the D status is set.

3-91

Suppose that xx= 1415. cc= 1515. rr = 3715. ppqq = 07E215. yy = l07E215)= 3415.
and C = 0. After executing a

SBC 1$15.XI

instruction. the contents of the Accumulator would be altered to DF15.

14=00010100
Twos complement of 35 = 1 1 0 0 1 0 1 1 (see note below)

1101 1 1 1 1

Set Carry to o~LNonzero result sets z to 0
Set S to 1 ,.

0 -¥-0 - 0. set V to 0

Note: xx - yy - 11 - Cl =xx - (yy+CI :
hence. 1415 - 3415 -11 - 0) = 1415 - 13415 + 11=1415 - 3515

Note that the resulting Carry is not a borrow. It is. rather. the inverse of a borrow since it
is set to 1 if no borrow is required and cleared if a borrow is required. You shou ld be
careful of this usage since It differs from that of most other microprocessors. which
complement the Carry before 1t 1s stored following a subtraction.

SBC is the only binary subtraction instruction. To use it in single·byte operations or to
subtract the low·order bytes of two multibyte numbers. a previous instruction {SEC)
must explicitly set C to 1 so that it does not affect the operat ion. Remember that C must
be set (not cleared) before a subtraction since its meaning 1s inverted from the usual
borrow. Note also that the 6502 microprocessor. unlike most others, has no subtraction
instruction that does not include the Carry.

3-92

SEC - SET CARRY
SEC

--.,,-'

38

Set the Carry status to 1 No other status or register's contents are affected. Note that
this instruction is required as part of a normal subtraction operation since the only
subtraction instruction available on the 6502 microprocessor is SBC. which also
subtracts the complemented Carry status. This instruction is also required at the start of
a mu !ti·byte subtraction since there is never a borrow from the least significant byte.

Dilta

SVBOIZC

•I I I I I I Iii

Program

3-93

SEO - SET DECIMAL MODE
SEO

----­F8

Set the Decimal M ode status to 1. No other status or register's contents are affected.
This instruction is used to place the 6502 processor in the decimal mode in which AOC
and SBC instructions produce BCD rather than binary results. The programmer should
be careful of the fact that the same program will produce different results. depending
on the state of the Decimal Mode status. Th is can lead to puzzling and seemingly ran­
dom errors if the state of the Decimal Mode status is not carefully monitored.

SVBDIZC

•I I I 111 I I I

P1ogram

mmmm + 1

3-94

SEI - SET INTERRUPT MASK (DISABLE INTERRUPTS)
SEI

'-.,,-.'

78

Set the interrupt mask in the Status register. This instruct ion disables the 6502's rnter~
rupt service ability, i.e .. the 6502 wil l not respond to the Interrupt Request control line
No other registers or statuses are affected. The Interrupt Mask is bit 2 of the Status (Pl
register

SV 8 01ZC

' I I I I !1! I I

mmmm + 1

3-95

Data

~mm

mmmm+ l

STA- STORE ACCUMULATOR IN MEMORY
Store the contents of the Accu mulator into the specified memory location. This instruc­
tion offers the same memory addressing modes as the ADC instruction. with the excep­
tion that an immediate addressing mode is not available. The first byte of object code
selects the add ressing mode as fol lows :

Bit Value
for aaa

000
001
010
011
100
101
110
111

7 6 5 4 3 2 1 0-.s.1 Number

~Object Code

Hexadecimal
Addressing Mode Object Code

81 Indirect. pre-indexed with X
85 Zero page (direct!
89 Not used
BD Absolute (direct!
91 Ind irect. post-indexed with Y
95 Zero page indexed with X
99 Absolute indexed with Y
9D Absolute indexed with X

Number
of Bytes

2
2

3
2
2
3
3

We will illustrate the STA instruction with zero page direct addressing. See the discus­
sion of addressing methods and other arithmetic and log ical instructions for examples
of the other addressing modes. No statuses are affected

SV B DIZC

•I I I I I I I I

mmmm + 2

Da1a
Memory

Program

M

mm mm

mmmm + 1

mmmm + 2

Store the contents of the Accumulator in memory. Suppose that xx= 6315 and
QQ = 3A15. After the instruction

STA $3A

has been executed. the contents of memory location 003A15 will be 6315. No registers
or statuses are affected

3-96

STX - STORE INDEX REGISTER X IN MEMORY
Store the contents of Index Register X in the selected memory location. The addressing
modes allowed are :

1) Zero page (direct! - STX addr

21 Absolute (direct) - STX addr16

3) Zero page indexed with Y - STX addr,Y

Note that there are no indexed modes using Index Register X There is also no absolute
indexed mode. STX and LOX are the only instructions that use the zero page indexed
mode with Index Register Y. No statuses are affected.

The f irst byte of object code selects the addressing mode as follows:

7 6 5 4 3 2 l 0 ..-e11Number

~ObjeclCode

Bit Value Hexadecimal
Addressing Mode

for bb Object Code

00 86 Zero page (direct)
01 BE Absolute (direct)
10 96 Zero page indexed with Y
11 9E Not used

Number
of Bytes

2
3
2

We will illustrate the STX instruction using zero page indexed addressing with Index
Register Y. See the discussion of addressing methods and other arithmetic and logical
instructions for examples of the other addressing modes.

SVBDIZC

Pj I I I I I I I

Data
Memory

Store the contents of Index Register X in the selected memory byte. Suppose that
cc= 2815. rr = 2015. and yy = E915. After executing the

STX $28.Y

instruction. memory location 004816 will contain E915. No registers or statuses are
affected.

3-97

STY - STORE INDEX REGISTER Y IN MEMORY
Store the contents of Index Register Yin the selected memory location. The addressing
modes allowed are:

11 Zero page (direct) - STY addr

2) Absolute (direct) - STY addr16

3) Zero page indexed with X - STY addr.X

Note that there are no indexed modes using Index Register Y. There is also no absolute
indexed mode. No statuses or registers are affected.

The first byte of object code selects the add ressing mode as follows

Bit Value Hexadecimal
Addressing Mode

Number
for bb Object Code of Bytes

00 84 Zero page (di rect) 2
01 SC Absolute (di rect) 3
10 94 Zero page indexed with X 2
11 9C Not used

We will illustrate the STY instruction with absolute direct addressing. See the discus·
s1on of addressing methods and other arithmetic and logical instructions for examples
of the other addressing modes.

5V80lZC

•I I I I I I I I

mmmm + 3

Data

Memorv

Program

Store the contents of Index Register Y in the selected memory byte. Suppose that
VY =0115 and ppqq =08F315. After the

STY $08F3

instruction has executed. memory location 08F315 wi ll contain 0116- No registers or
statuses are affected.

3-98

TAX - MOVE FROM ACCUMULATOR TO INDEX REGISTER X
TAX

--,.-'

AA

Move the contents of the Accumulator to Index Register X Set the Sign and Zero
statuses accordingly

S V B D I Z C

Pj xi I I I !•! I

Data

Program

mm mm
mmmm + 1

Suppose that xx= 0015. After executing the TAX instruction. both the Accumulator
and Index Register X will contain 0015.

00000000

Set S to O___J L Zero result sets Z to 1

The following instruction sequence will res tore the contents of Index Register X from
the Stack after completion of a subroutine or interrupt service routine :

PLA :GET OLD X REGISTER FROM STACK
TAX :RESTORE TO X REGISTER

3-99

TAY - MOVE FROM ACCUMULATOR TO INDEX REGISTER Y
TAY
'-.-'

AS

Move the con tents of the Accumulator to Index Regis ter Y. Set the Sign and Zero
statuses accordingly.

Data

SVBDIZC

Pix! I I I I xi I

Program

Suppose that xx= F116· After executing the TAY instruction. both the Accumulator
and Index Register Y will contain Fl 15.

11 11 0001

Set S to ,___J L Nonzero resu lt sets Z to 0

The followi ng instruction sequence will restore the contents of Index Register Y from
the Stack after completion of a subroutine or interrupt service rout ine:

PLA :GET OLD Y REGISTER FROM STACK
TAY : RESTORE TO Y REGISTER

3-100

TSX - MOVE FROM STACK POINTER TO INDEX REGISTER X
TSX -..-
BA

Move the contents of the Stack Pointer to Index Register X. Set the Sign and Zero
statuses accordingly. Note that TSX is the only 6502 instruction that allows you to ac­
cess the value in the Stack Pointer. A typical instruction sequence that saves the value
of the Stack Pointer in memory location TEMP is:

TSX
STX TEMP

SVBOIZC

•Ix! I I I 1x1 I

;MOVE STACK POINTER TO X
;SAVE STACK POINTER IN MEMORY

Oatai

mmmm + 1

If. for example. the Stack Pointer contains ED15. after executing the TSX instruction.
both the Stack Pointer and Index Register X will contain ED15.

11101101

Set S to ,___J L Nonzero result sets Z to 0

3-1 0 1

TXA- MOVE FROM INDEX REGISTER XTO ACCUMULATOR
TXA --BA

Move the contents of Index Register X to the Accumulator and set the Sign and Zero
statuses accord ingly. The following instruction sequ ence wil l save the conten ts of In­
dex Register X in the Stack before execution of a sub rou t ine or interrupt service routine:

TXA ;MOVE X REGI STER TO ACCUMULATOR
PHA ;SAVE X REGISTER IN STACK

S \I B 0 I Z C

•I xi I I I Ix I I

mmmm + 1

Data

Program

mm mm
mmmm + 1

Suppose that rr = 3815. After executing the TXA instru c tion. both Index Register X and
the Accumulator wil l contain 3815

00 1 11 01 1

Set S to 0 __J L Nonzero result sets Z to 0

3- 102

TXS- MOVE FROM INDEX REGISTER XTO STACK POINTER
TXS

"-v-'
9A

Move the contents of Index Register X to the Stack Pointer. No other registers or
statuses are affected. Note that TXS is the only 6502 instruction that allows you to
determine the value in the Stack Pointer. A typ ical instruc t ion sequence that loads the
Stack Pointer with the value LAST is:

LOX # LAST :GET LOCATION OF STACK ON PAGE 1
TXS ;PLACE STARTING LOCATION IN STACK POINTER

Note that TXS does not affect any statuses. unlike TSX which affects the Zero and Sign
statuses

Data

SVBDIZC

•I I I I I I I I

P1og1am

Suppose that rr = F216- After executing the TXS instruction. both Index Register X and
the Stack Pointer will con tain F216, making 01F215 the current Stack location. No
statuses or other registers are affected.

3-1 03

TVA - MOVE FROM INDEX REGISTER Y TO ACCUMULATOR
TYA -98

Move the contents of Index Reg is ter Y to the Accumulator and set the Sign and Zero
sta tuses accordingly. The following instruction sequence will save the contents of In­
dex Register Y in the Stack before execution of a subroutine or interrupt service routine:

TYA :MOVE Y REGISTER TO ACCUMULATOR
PHA :SAVE Y REGISTER IN STACK

SVBOIZC

P(x) I I I IX) I

mmmm + 1

0111

Program

~mm

mmmm + 1

Suppose that rr = AF16· After execut ing the TYA instruc tion, both Index Reg ister Y and
the Accumulator wi!I contain AF1e.

1010 1 11 1

Set S to 1~ L Nonzero result sets Z to 0

3-104

6800/6602 COMPATIBILITY

Although the 6602 microprocessor can certainly be used on its 8800 8602
own merits, one of its important characterl1tlc1 is its SIMILARITY
similarity to the widely used 6800 microprocessor. This
similarity is not sufficient to allow programs written for one of these processors at
the machine or assembly level to be run on the other, but it is suffic ient so that pro­
grammers can easi ly move from one CPU to the other. Most of the external support
devices designed for one of these processors can also be used with the other. Chapters
9 and 10 of An Introduction to Microcomputers: Volume 2 - Some Real
Microprocessors discuss this hardware compatibi li ty in more detai l.

We w ill briefly describe and compare the 6800 and 6502 microprocessors with regard
to their registers. statuses. addressing modes. and instruction sets. You should note
that the two processors are far from mirror images. but they are much closer to each
other than either is to an 8080. Z80. F8. or 2650 microprocessor. This description
should give you some idea as to what problems you would encounter in going from one
CPU to the other

As for reg isters, both the 6800 and the 6602 have an 8-bit pri­
mary Accumulator IA register) and a 16-bit Program Counter
(or PC register). The other registers, however, are slightly
different. The 6800 has a second 8-bit Accu mulator (B register). a

6800/8602
REGISTER
COMPARISON

16-bit 1ndex register. and a 16-bit Stack Poi nter. The 6502. on the other hand. has two
8-bit Index registers and an 8-bit Stack Pointer. Thus the 6502 Index registers cannot
hold a complete 16-bit memory address while the 6800 Index register can. Furthermore
the 6800's RAM Stack ca n be located anywhere in memory because of its 16-bit Stack
Poin ter while the 6502's RAM Stack is always located on page 1

As for sta tuses. the 6800 and 6602 have identical Zero, Over­
flow, Sign, and J_oierrupt Mask statuses. The difference in the
Carry status is that the 6800 and 6502 version of this flag
have opposite meanings after subtraction operations. The

6800/6602
STATUS
COMPARISON

6800 Carry is set to 1 if a borrow is necessary and to 0 otherwise; the 6502 Carry is set
to 0 if a borrow is necessary and to 1 otherwise. This difference means that. before a
multi-byte subtraction operation, the programmer must clear the Carry on the 6800 and
set the Carry on the 6502. The 6800 and 8602 also differ in how they perform
decimal arithmetic : the 6800 has a Half-Carry flag (or carry from bi t 3) while the 6502
has a Decimal Mode flag. The 6602 also has a Break flag which is not present in the
6800 ; it is not necessary in the 6800 because the 6800 Trap or Software Interrupt in­
struction is automatically vectored separately from the regular interrupt response

The 6602 microprocessor has many more addressing modes
than does the 6800. This is partly necessitated by the fact tha t
the 6502 index registers are only 8 bits long. Table 3-7 compares
the addressing modes available on the two processors. The 6800
microprocessor has no indirect modes. no combinations of index­

6800/6602
ADDRESSING
MODE
COMPARISON

ing and indirection. and no absolute indexed modes. There are also some other
differences in terms of which modes are available with part icular instructions; we will
not discuss those differences. but they are enumerated in Table 3-6.

3-105

Table 3-7 . Memory Addressing Modes Available on the 6800 and 6502
Microprocessors

6800 6602

Immediate Immediate
Direct (zero-page) Zero Page (direc t)
Extended (absolute d irect) Absolute (direct)
Indexed (absolute) Absolute Indexed

Zero Page Indexed
Post-Indexed Indirect
Pre-Indexed Indirect
Indirect

Relative (branches only) Relative (branches only)

Note that many different variations of indexed addressing are available on the
6502 m icroprocessor. but remember that the 6502 index registers are only 8 bits
long while the 6800 Index register is 16 bits long.

The 6800 and 6602 instruction sets are similar but not identi­
cal (see Table 3-6) Table 3-8 compares the two sets. listing first
the instructions which are present in both. then the 6800 instruc·
tions which have no 6502 equ iva lent. and finally the 6502 instruc­

6800/6502
INSTRUCTION
COMPARISON

tions which have no 6800 equivalent. Obviously some of these differences are a direct
result of the differences in the statuses and reg isters. Most of the differences are minor.
and involve instruct ions that are a small part of common applications programs. One
noticeable d ifference is that the 6800 has Add and Subtract instruc t ions that do not in­
volve the Carry status (ADD and SUB) wh ile the 6502 does not. This means that the
6502 assembly language programmer must explic it ly c lear or set the Carry status when
its value sh ould not affect an addition or subtraction operati on. Note that this similarity
in the instruction sets does not extend to the object code level : the actual machine
codes are entirely different on the two microprocessors.

3- 106

Table 3-8. Comparison of 6800 and 6502 Assembly Language Instruction Sets

I. Common Instructions

Instruction Meaning

ADC Add with Carry
AND logical AND
ASL Arithmetic Shift Left
BCC Branch if Carry Clear
BCS Branch if Carry Set
BEO Branch if Equal to Zero (Z = 11
BIT Bit Test
BMI Branch if Minus IS = 11
BNE Branch if Not Equal to Zero IZ = 01
BPL Branch if Plus IS = 01
BVC Branch if Overflow Clear
BVS Branch if Overflow Set
CLC Clear Carry
Cll Clear Interrupt Mask (Enable Interrupt)
CLV Clear Overflow
CMP Compare Accumulator with Memory
CPXl (a lso CPY on 6502) Compare Index Register with Memory
DEC Decrement (by 11
DEXl (also DEY on 6502) Decrement Index Register (by 1)
EOR Logical Exclusive-OR
INC Increment (by 11
INXl (also INY on 65021 Increment Index Register (by 1)
JMP Jump to New Location
JSR Jump to Subroutine
LDA Load Accumu lator
LDXl (also LDY on 65021 Load Index Register
LSR Logical Shift Right
NOP No Operation
ORA Logical (Inclusive) OR
PHA (PSH on 68001 Push Accumulator on to Stack
PLA (PUL on 68001 Pull Accumulator from Stack
AOL Rotate Left through Carry
ROA Rotate Right through Carry
RTI Return from Interrupt
ATS Return from Subroutine
sBc2 Subtract with Carry
SEC Set Carry
SEI Set Interrupt Mask
STA Store Accumulator
STXl (also STY on 65021 Store Index Register
TSX Transfer Stack Pointer to Index Register (X)
TXS Transfer Index Reg ister (X) to Stack Pointer

1 Index Register X is 16 bits long on 6800. 8 bits long on 6502 which has Index
Reg is ter Y as well.

2Note that SBC has a different meaning on the 6502 than on the 6800 since.
for subtraction ope rat ions, the 6800 Carry is the inverse of the 6502 Carry

3-1 0 7

II.

Table 3-8. Compar1Son of 6800 and 6502 Assembly Language Instruction Sets
(Contin ued)

Unique 6800 Instructions

Instruction Meaning

ASA Add Accumulators
ADD Add (without Carry)
ASA Arithmet ic Shift Right
BGE Branch if Greater than or Equal to Zero
BGT Branch if Greater than Zero
BHI Branch if Higher
BLE Branch if Less than or Eq ual to Zero
BLS Branch if Lower or Same
BLT Branch if Less than Zero
BRA Branch Unconditionally
BSR Branch to Subroutine
CSA Compare Accumu lators
CLR Clear
COM Logical Complement
DAA Decimal Adjust Accumulator
DES Decrement Stack Pointer (by 1)
INS Increment Stack Pointer (by 1)
LDS Load Stack Pointer
NEG Negate (Twos Complement)
SBA Subtract Accumulators
SEV Set Overflow
STS Store Stack Pointer
SUB Subtract (without Carry)
SWI Software Interrupt !like 6502 BAK)
TAB Move from Accumulator A to Accumulator B
TAP Move from Accumulator A to CCR
TBA Move from Accumulator B to Accumulator A
TPA Move CCR to Accumulator A
TST Test Zero or Minus
WAI Wait for Interrupt

Ill. Unique 6602 Instruction•

Instruct ion Meaning

BRK Break (like 6800 SWll
CLD Clear Decimal Mode
PHP Push Status Register onto Stack
PLP Pu ll Status Register from Stack
SED Set Decimal Mode
TAX (TAY) Transfer Accumulator to Index Register X (Y)
TXA (TYAI Transfer Index Register X (Y) to Accumulator

3 -1 08

MOS TECHNOLOGY 6502 ASSEMBLER
CONVENTIONS

The standard 6502 assembler is available from 6602 manufacturers and on many
major time-sharing networks; it is also included in most development systems.
Cross-assembler versions are available for most large computers and many
minicomputers.

ASSEMBLER FIELD STRUCTURE
The assembly language instructions have the standard field structure (see Table
2-1). The required delimiters are:

1 l A space after a label. Note that all labels must start in column 1.

2) A space after the operation code.

3) A comma between operands in the address field, i.e .. between the offset ad­
dress and X or Y to indicate indexing with Index Register X or Y respectively .

4) Parentheses around addresses that are to be used indirectly.

5) A semicolon or exclamation point (we will use the semicolon) before a com­
ment.

Typical 6502 assembly language instructions are :

START LDA
ADC

LAST BRK

LABELS

(1000.XI
NEXT

:GET LENGTH

: END OF SECTION

The Assembler often allows only six characters in labels and truncates longer
ones. The first character must be a letter wtiile subsequent characters must be
letters or numbers. The single characters A. X, and Y are reserved for the Ac­
cumulator and the two index registers. The use of operation codes as labels is
often not allowed and is not good programming practice anyway.

PSEUDO-OPERATIONS
The Assembler has the following explicit pseudo-operations:

- Form Byte-Length Data .BYTE
.DBYTE
.END
.TEXT
.WORD

- Form Double-Byte-Length Data with MSBs First
- End of Program
- Form String of ASCII Characters
- Form Double-Byte-Length Data with LSBs First
- Equate

Other pseudo-operations may be implemented by setting the assembler's location
counter (denoted by •) to a new or updated value. Examples are:

• = ADDR - Set Program Origin to ADDR
• = · +N - Reserve N Bytes for Data Storage

.BYTE .. DBYTE . . TEXT. and .WORD are the Data
pseudo-operations used to place data 1n ROM .BYTE 1s
used for 8-bit data . . TEXT for 7·b1t ASCII characters
(MSB 1s zerol. .DBYTE for 16-bi t data with the most sig­

.BYTE •. DBYTE.

.TEXT •. WORD
PSEUDO-OPERATIONS

nificant bits first. and .WORD for 16-bi t addresses or data with the least s1gnif1can1 bits
first Note particularly the difference between .DBYTE and .WORD

3-109

Examples :
ADDR .WORD $3165

results on (ADDR) = 65 and (ADDR+ 1) = 31 (hex).

TCONV .BYTE 32

This pseudo-operation places the number 32 (2015) in the next byte of ROM and
assigns the name TCONV to the address of that byte.

ERROR .TEXT /ERROR/

This pseudo-operat ion places the 7-bit ASCII characters E. R. R, 0. and R into the next
five bytes of ROM and assigns the name ERROR to the address of the first byte. Any
single charac ter (not just fJ may be used to surround the ASCII text. but we wi l l always
use I for the sake of consistency

MASK .DBYTE $1000

results in (MASKI= 10 and IMASK+ll = 00.

OPERS .WORD FADD. FSUB. FMUL.FDIV

This pseudo-operation places the addresses FADD. FSUB. FMUL. and FDIV in the next
eight bytes of memory (least significant bits first) and assigns the name OPERS to the
address of the first byte.

The operation • = ·+N is the Reserve pseudo-operation SET ORIGIN
used to assign locations in RAM ; it allocates a specified PSEUDO-OPERATION
number of bytes. = is the Equate or Define pseudo-opera-
tion used to define names. • = AODR is the standard Origin pseudo-operation.

6502 programs usually have several orig ins which are used as follows :

1l To specify the Reset and interrupt service addresses. These addresses must be
placed in the highest memory addresses in the system (usually FFFA 16 through
FFFF15).

2) To specify the starting addresses of the actual Reset and interrupt service routines.
The routines themselves may be placed anywhere in memory

3) To specify the starting address of the main program

4) To specify the starting addresses of subroutines.

5) To define areas for RAM storage

6) To define an area (always on page 1) for the RAM Stack.

7) To specify addresses used for 1/0 ports and special functions.

Examples :
RESET =$3800

"=$FFFC
.WORD RESET
"=RESET

Note : $ means "hexadecimal''

This sequence places the Reset instruction sequence in memory begmning at address
380015. anCI places that address in the memory locations (addresses FFFC 16 and
FFFD15) from which the 6502 CPU retrieves the Reset address.

The instruction sequence which follows is stored in memory beginning at location
C00015

MAIN =$COOO
"=MAIN

.END simply marks the end of the assembly language program

3-11 0

LABELS WITH PSEUDO-OPERATIONS
The rules and recommendations for labels with 6502 pseudo-operations are as
follows :

1) Simple equates. such as MAIN =$COOO. require labels since their purpose is to
define the meanings of those labels

2) .BYTE . . DBYTE . . TEXT, .WORD. and · = · +N pseudo-operations usually have labels

3) .END should not have a label. since the meaning of such a label is unclear

ADDRESSES
The 6502 Assembler allows entries in the address field in any
of the following forms:

1) Decimal (the default case)
Example: 1247

2) Hexadecimal (must start with $)
Example: $CEOO

3) Octal (must start with @)
Example: @1247

4) Binary (must start with %)
Example: %11100011

5) ASCII (single character preceded by an apostrophe)
Example : 'H

6) As an offset from the Program Counter (•)

Example: ·+7

The various 6502 addressing modes are distinguished as
follows:

Absolute or Zero Page (direct) are the default modes

NUMBERS AND
CHARACTERS IN
ADDRESS FIELD

ADDRESSING
MODES

(the Assembler chooses Zero Page if the address is less than 256. and Ab­
solute otherwise).

for immediate mode (precedes the data)

.X or , Y for indexing (follows the offset address)

Parentheses around addresses that are used indirectly so that

(addr,X) indicates pre-indexing (indexed address used indirectly)

(addr),Y indicates post-indexing (indirect address is indexed)

(addr) indicates indi rection with JMP instru ction only

In the indexed modes. as in the direct modes. the Assembler automatically chooses the
Zero Page version if it 1s permitted and if the address is less than 25.-6·----­

The Assembler also allows expressions in the address fteld . These
expressions consist of numbers and names separated by the
arithmetic operators + , -. • (multiplication). or I (integer division)
The Assembler evaluates expressions from left to right: no

ASSEMBLER
ARITHMETIC
EXPRESSIONS

parentheses are allowed to group operations. nor is there any hierarchy of operations
Fractional results are truncated.

We recommend that you avoid expressions within address fields whenever possi­
ble. If you must compute an address. comment any unclear expressions and be sure
that the evaluation of the expressions never produces a result which is too large for its
ultimate use.

3-111

OTHER ASSEMBLER FEATURES
The standard 6502 Assembler has neither a conditional assembly capabi lity nor a
macro capability. Some 6502 assemblers have one or both of these capabili ties. and
you shou ld consult your manual for a description. We will not use or refer to either
capability again. although both can be quite convenient in actual applications.

3-11 2

Chapter 4
SIMPLE PROGRAMS

The only way to learn assembly language programming is through experience. The
next six chapters of this book contain examples of simple programs that perform
actual microprocessor tasks. You should read each example carefully and try to
execute the program on a 6602-based microcomputer. Finally, you should work
the problems at the end of each chapter and run the resulting programs to insure
that you understand the material.

This chapter contains some very elementary programs.

GENERAL FORMAT OF EXAMPLES
Each program example contains the following parts :

1) A title that describes the general problem.

EXAMPLE
FORMAT

2) A statement of purpose that describes the speci f ic task that the program performs
and the memory locations that it uses.

3) A sample problem with data and results.

4) A flowchart if the program logic is complex.

5) The source program or assembly language listing.

6) The object program or hexadecimal machine language listing.

7) Explanatory notes that discuss the instructions and methods used in the program.

You should use the examples as guidelines for solving the problems at the end of
each chapter. Be sure to run your solutions on a 6502-based microcomputer to in­
sure that they are correct.

The source programs in the examples have been constructed as follows:

1) Standard 6502 assembler notation is used. as summarized in
Chapter 3.

2) The forms in which data and addresses appear are selected for
clari ty rather than for consistency. We use hexadecimal num-

.----......
GUIDELINES
FOR
EXAMPLES

bers for memory add resses, instruction codes. and BCD data; decimal for numeric
constants; binary for logical masks: and ASCII for characters

3) Frequently used instructions and programming techniques are emphasized.

4) Examples illustrate tasks that microprocessors perform in communications. instru­
mentation, computers. business equipment. industrial, and military applications.

5) Detailed comments are included.

6) Simple and clear structures are emphasized. but programs are as efficient as possi­
ble within this guideline. The notes often describe more efficient procedures

7) Programs use consisten t memory allocations. Each program starts in memory loca­
tion 0000 and ends with the Break (BAK) instruc tion. If your microcomputer has no
monitor and no interrupts. you may prefer to end programs with an endless loop in­
struction. e.g ..

HERE JMP

4- 1

HERE

Some 6502-based microcomputers may require a JMP or JSR instruct ion with a
specific destination add ress to return control to the monitor. Other microcomputers
may require you to specify the monitor address to be used by the BAK instruction. For
example. if you are using the popular KIM-1 . you will have to load 1COO into addresses
17FE and 1 ?FF. Be careful - the 00 must be loaded in to address 17FE and the 1 C in to
address 17FF. We will explain later how the 6502 stores addresses and how it imple­
ments the BAK instruction (see Chapter 12).

Consult the User's Manual for your microcomputer to determine the required memory
allocations and terminating instruction for your particular system

GUIDELINES FOR SOLVING PROBLEMS
Use the following guidelines in solving the problems at the end of each chapter:

1) Commen t each program so that others can understand it
The comments can be brief and ungrammatical: they
should explain the purpose of a section or instruction in
the program. Comments should not describe the operation

PROGRAMMING
GUIDELINES

of instructions; that description is available in manuals. You do not have to com­
ment each statement or explain the obvious. You may follow the format of the ex·
amples but provide less detail

2) Emphasize clarity. simplicity. and good structure in programs. W hile programs
should be reasonably efficient. do not worry about saving a single byte of program
memory or a few microseconds.

3) Make programs reasonably general. Do not confuse parameters (such as the num­
ber of elements in an array) with fixed cons ta nts (such as 1T or ASCII C)

4) Never assume fixed initial values for parameters; i.e .. assume that the parameters
are already in RAM.

5) Use assembler notation as shown in the examples and defined in Chapter 3.

6) Use hexadecimal notation for addresses. Use the clearest possible form for data.

7) If your microcomputer allows it. star t al l programs in memory location 0000 and
use memory locations starting with 004015 for data and temporary storage. Other·
wise. establish equivalent addresses for your mic rocompu ter and use them consis­
tently. Again. consult the user's manual

8) Use meaningful names for labels and variables: e.g .. SUM or CHECK rather than X.
Y. or Z.

9) Execute each program on your microcomputer. There is no other way of ensuring
that your program is correct. W e have provided sample data with each problem. Be
sure that the program works for special cases

We now summarize some useful information that you should keep in mind when
writing programs.

Almost all processing instru ctions (e.g .. Add. Subtract. AND. USING THE
OR) use the contents of the Accumulator as one operand and ACCUMULATOR
place the result back in the Accumulator. ln most cases. you
will load the initial data into the Accumulator with LOA. You will store the result from
the Accumulator into memory with STA

4-2

Frequently accessed data and frequently used base addresses or
pointers should be placed on page zero of memory. This data can
then be accessed with zero-page (directl. pre-indexed. post­
indexed. and zero-page indexed addressing. Note in particular that

USING
PAGE ZERO
OF MEMORY

pre-indexing and post-indexing both assume that an address is stored on page zero
The zero-page direct and indexed modes both require less time and memory than the
corresponding absolute addressing modes

Some instructions. such as shifts. increment (add 1l. and decrement (subtract 1) can act
directly on data in memory. Such instru ctions allow you to bypass the user registers but
they require extra execution time since the data must actually be loaded into the CPU
and the result must be stored back into memory.

4-3

PROGRAM EXAMPLES

8-Bit Data Transfer

Purpose: Move the contents of memory location 0040 to memory location 0041 .

Sample Problem :

10040) 6A

Resul t: 1004 1) 6A

Source Program:

LOA
STA
BAK

Object Program:

$40
$41

:GET DATA
:TRANSFER TD NEW LOCATION

Memory Location
(Hex)

Memory Contents Instruction

0000
0001
0002
0003
0004

(Hex)

A5
40
B5
41
00

(Mnemonic)

LOA $40

STA $41

BAK

The LOA (Load Accumulator) and STA (Store Accumulator) need an address to deter­
mine the source or destination of the data. Since the addresses used 1n the example are
on page zero (that is. the eight most significant bits are all zerol. the zero page (direct)
form of the instructions can be used with the address in the next word. The leading
zeros can be omitted. The addresses are really 0040 and 0041 , but the shorthand form
can be used 1ust as in everyday conversation {e.g .. we say "sixty cents" rather than
" zero dollars and sixty cents") .

BRK (Force Break) is used to end all the examples and return control to the monitor.
Remember that you may have to replace this instruction with whatever your microcom­
puter requires.

4-4

8-Bit Addition

Purpose : Add the contents of memory locations 0040 and 0041. and place the result
in memory location 0042.

Sample Problem:

{0040) 38
{0041) 28

Result: {0042) 63

Source Program :

CLC
LOA
ADC
STA
BAK

Object Program:

$40
$41
$42

:CLEAR CARRY TO START
:GET FIRST OPERAND
:ADD SECOND OPERAND
:STORE RESULT

Memory Address Memory Contents
{Hex) !Hex)

0000 18
0001 A5
0002 40
0003 65
0004 41
0005 B5
0006 42
0007 00

Instruction
(Mnemonic)

CLC
LOA $40

ADC $41

STA $42

BAK

The only addition instruction on the 6502 m1croprocessor is ADC (Add with Carry).
wh ich results in (A) =(Al+ (M) +(Carry) where M is the addressed memory location
Thus. we need the init ial CLC (C lear Carry) instru ction if the value of Carry is not to
affect the addition. Remember that the Carry will be included in all additions and
subtractions

The zero-page (direct) forms of all instruc tions are used. since all the addresses are in
the fi rst 256 bytes of memory

ADC affects the Carry bit. but LDA and STA do not. Only arithmetic and shi ft instruc+
tions affect the Carry: logical and transfer instructions do not.

LDA and ADC do not affect the con tents of memory. STA changes the contents of the
addressed memory location but does not affect the contents of the Accumulator.

Be-su re that the Decimal M ode (0) flag is cleared when you execute this program. To be
absolutely certain of the D flag's state. you could add a CLO instruction (0815) to the
start of the program. If you are using the KIM+ 1 microcomputer. you should clear
memory location OOF1 to ensure that the Decimal Mode flag does not interfere with
your programs or with the monitor.

4-5

Shift Left One Bit
Purpose: Shift the contents of memory loca tion 0040 left one bit and place the result

into memory location 0041 Clear the empty bit position.

Sample Problem:

10040) 6F

Result: (0041) DE

Source Program:

LDA
ASL
STA
BRK

Object Program:

$40
A
$41

:GET DATA
:SHIFT LEFT
:STORE RESULT

Memory Address Memory Contents
(Hex) (Hex)

0000 A5
0001 40
0002 OA
0003 85
0004 41
0005 00

Instruction
(Mnemonic)

LDA $40

ASL A
STA $41

BRK

The instruction ASL A shifts the contents of the Accumulator left one bit and clears the
least significant bit. The most significant bit is moved into the Carry. The result is twice
the original data (why ?)

Note that we could also shift the contents of memory location 0040 one bit with the in­
stru ct ion ASL $40 and then move the result to memory location 0041 . This method
would. however. change the contents of memory location 0040 as well as the con tents
of memory location 004 1.

4-6

Mask Off Most Significant Four Bits
Purpose : Place the least significant four bits of memory location 0040 in the least sig­

nificant four bits of memory location 0041 . Clear the most significant four
bits of memory location 0041 .

Sample Problem:

(0040) 30

Result : (0041) OD

Source Program:

LOA
AND
STA
BRK

$40
#%00001111
$41

:GET DATA
:MASK 4 MSB'S
:STORE RESULT

Note: # means immediate addressing and % means binary constant in standard 6502
Assembler notation.

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonicl

0000 A5 LOA $40
0001 40
0002 29 AND #%00001 111
0003 OF
0004 85 STA $41
0005 41
0006 00 BRK

AND #%00001111 logically ANOs the contents of the Accumulator with the number
OF15- not the contents of memory location OOOF. Immediate addressing (indica ted by
#) means that the actual data. not the address of the data. is included in the instruc­
tion.

The mask (00001111) is written in binary to make HS purpose clearer to the reader. Bi·
nary notation for masks is clea rer than hexadecimal notation since logical operations
are performed bit-by·bll rather than dig its or bytes at a time. The result. of course. does
not depend on the programming notation. Hexadecimal notation should be used for
masks longer than eight bits because the binary versions become long and cumber·
some. The comments should explain the masking operation.

A logical AND instruction may be used to clear bi ts that are not in use. For example. the
four least significant bits of the data could be an input from a ten-position switch or an
output to a numeric display.

4- 7

Clear a Memory Location
Purpose : Clear memory location 0040.

Source Program:

LDA
STA
BRK

Object Program:

#0
$40

Memory Address
(Hex)

0000
0001
0002
0003
0004

:CLEAR LOCATION 40

Memory Contents
(Hex)

A9
00
85
40
00

Instruction
(Mnemonic)

LDA #0

STA $40

BRK

Zero is handled no differently than any other number - the 6502 has no explicit Clear
instruction. However, remember that LOA #0 does set the Zero flag to one. Always
watch this logic - the Z (Zero) flag is set to one if the last result was zero.

STA does not affect any status flags.

4-8

Word Disassembly
Purpose : Divide the contents of memory location 0040 into two 4-bit sections and

store them in memory locations 004 1 and 004 2. Place the four most signifi­
cant bits of memory location 0040 into the four least significant bit positions
of memory location 0041, place the four least significant bits of memory
location 0040 into the fou r least significant bit positions of memory location
0042. Clear the four most significant bit positions of memory loca tions 0041
and 0042.

Sample Problem:

(0040) 3F

Result· (0041) 03

Source Program:

(0042) OF

$40
#%00001 111
$42
$40

:GET DATA
:MASK OFF MSffS
:STORE LSB'S
: RESTORE DAT A

LDA
AND
STA
LDA
LSR
LSR
LSR
LSR
STA
BAK

A :LOGICALLY SHIFT DATA RIGHT 4 TIMES
A
A
A
$41 :STORE MSB'S

Object Program:

Memory Add ress Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A5 LDA $40
0001 40
0002 29 AND #%00001111
0003 OF
0004 85 STA $42
0005 42
0006 A5 LDA $40
0007 40
0008 4A LSR A
0009 4A LSR A
OOOA 4A LSR A

0008 4 A LSR A
oooc 85 STA $41
OOOD 41
OOOE 00 BAK

A logical shift right of four positions requires fou r executions of the LSR A instruction

Each LSR instruction clears the most significant bit of the result. Thus. the four most
significant bits of the Accumu lator are all cleared after LSR A has been executed four
times.

You might wish to try rewriting the program so that it saves a copy of the data in Index
Register X rather than loading the same data twice. Which version do you prefer and
why?

4-9

Find Larger of Two Numbers
Purpose: Place the larger of the contents of memory locations 0040 and 004 1 mto

memory location 0042. Assume that the contents of memory locations 0040
and 0041 are unsigned binary numbers.

Sample Problems :

a. (0040) 3F
(0041) 2B

Result: (0042) 3F

10040) 7S
(0041) AB

Result : 10042) AB

Source Program:

LOA $40 :GET FIRST OPERAND
CMP $41 :IS SECOND OPERAND LARGER'
BCS ST RES
LOA $41 :YES. GET SECOND OPERAND INSTEAD

STRES STA $42 :STORE LARGER OPERAND
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 AS LOA $40
0001 40
0002 cs CMP $41
0003 41
0004 BO BCS STRES
ooos 02
0006 AS LOA $41
0007 4 1
OOOB BS ST RES STA $42
0009 42
OOOA 00 BAK

CMP $41 subtracts the contents of memory location 004 l from the contents of the Ac·
cumulator but does not store the result anywhere. The 1nstruct1on 1s used merely to set
the flags for a subsequent conditional branch

CMP affects the flags as follows :

1) N takes the value of the most significant bit of the result of the subtraction

2) Z is set to 1 if the result of the subtraction 1s zero and to 0 otherwise

3) C is set to 1 if the subtraction does not require a borrow and to 0 if it does. Note
that C is an inverted borrow. not the actual borrow as it is on many other
microprocessors

4) V is not affected.

4-10

Note the following cases:

1) 1f the operands are equal. Z = 1: if they are not eq ual. Z = 0

2) If the contents of the Accumulator are greater than or equal to the contents of the
other address (considering both as unsigned binary numbers). C = 1. since no bor­
row would then be needed. Otherwise. C = 0.

All 6502 conditional branch instructions use relative addressing. in which the second
word of the instruction is an 8-bit twos complement number which the CPU adds to the
address of the next instruction to calculate the destination add ress. In the example. the
relative offset is 0008 (destination address) - 0006 (address immediately follow ing the
branch) or 02. Obviously, calcu lating relative offsets is error-prone. particularly if the
result is negative: however. if you label all target instructions. the assembler will per­
form the calculations for you.

BCS causes a branch if the Carry is one. If the Carry is zero, the processor cont inues ex­
ecuting instructions in their normal sequence as if the Branch instruction did not exist

STRES is a label. a name that the programmer assigns to a memory address so that it is
easier to remember and locate. Note that labels are followed by a space on the line
where they are defined. The label makes the destination of the branch clear, particularly
when relative addressing is being used. Using a label is preferable to just specifying the
offset 0.e .. Bcs· +4) since the 6502's instruct ions vary in length. You or another user of
the program could easily make an error in determining the offse t or the destination.

4-11

16-Bit Addition
Purpose : Add the 16-bit number in memory locations 0040 and 0041 to the 16-bit

number in memory loca tions 0042 and 0043. The most significant eight bits
are 1n memory loca tions 0041 and 0043. Store the result m memory loca­
tions 0044 and 0045. with the most significant bits in 0045.

Sample Problem:

10040) 2A
10041) 67
10042) F8
10043) 14

Result=672A + 14F8 = 7C22

10044) 22

Source Program:

CLC
LDA
ADC
STA
LDA
ADC
STA
BAK

Object Program:

100451 = 7C

$40
$42
$44
$41
$43
$45

:CLEAR CARRY TD START
:ADD LEAST SIGNIFICANT BITS

:ADD MOST SIGNIFICANT BITS WITH CARRY

Memory Address
(Hex)

Memory Contents lnstru ct1on

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
oooc
OOOD

(Hex)

18
A5
40
65
42
85
44
A5
41
65
43
85
45
00

(Mnemonic)

CLC
LDA $40

ADC $42

STA $44

LDA $41

ADC $43

STA $45

BAK

You must clear the Carry before the first addition since there is never a carry into the
least significant bits.

AOC then automatically includes the Carry from the least significant bits in the addition
of the most significant bits. Thus the microprocessor can add data of any length : 1t adds
numbers eight bits at a time with the Carry transferring information from one 8-bit sec­
tion to the next Note. however. that each 8-b1t additi on requ ires the execution of three
inst ru ctions (LOA. ADC . STA) since there is only one accumulator.

4- 12

Table of Squares
Purpose: Calculate the square of the contents of memory locatton 0041 from a table

and place the result in memory location 0042. Assume that memory location
0041 contains a number between 0 and 7 inclusive -0 $ (0041) $ 7.

The table occupies memory locations 0050 to 0057.

Memory Address Entry

(Hex) (Hex) (Decimal)

0050 00 0 102)

0051 01 1 (12)

0052 04 4 1221
0053 09 9 (32)
0054 10 16 (42)

0055 19 25 (52)

0056 24 36 (62)
0057 31 49 1721

Sample Problems:

(0041) 03

Resulr 10042) 09

b. 10041) 06

Result : 10042) 24

Remember that the answer is a hexadeci mal number.

Source Program:

LOX
LOA
STA
BAK
"=$50

SOTAB .BYTE

$41
$50.X
$42

0.1.4.9.16.25.36.49

4 - 13

:GET DATA
:GET SQUARE OF DATA
:STORE SQUARE

:SQUARES TABLE

Object Program :

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A6 LDX $41
0001 41
0002 85 LDA $50.X
0003 50
0004 85 STA $42
0005 42
0006 00 BRK

0050 00 SOT AB .BYTE 0
0051 01 1
0052 04 4
0053 09 9
0054 10 16
0055 19 25
0056 24 36
0057 31 49

Note that you must also enter the table of squares in to memory {the assembler pseudo­
operation .BYTE will handle this) . The table of squares is cons tant data. not parameters
that may change; that is why you can initialize the tab le using the .BYTE pseudo-opera­
tion. rather than by executing instructions to load values into the table. Remember that.
in an actual application. the table would be part of the read-on ly program memory. The
.BYTE pseudo-operation places the specified data in memory in the order in which it ap­
pears in the operand field .

The pseudo-operation · = simply determines where the loader {or assembler) will place
the next section of code when it is finally entered into the microcomputer's memory for
execution. Note that the pseudo-operation does not actually result in any object code
being generated

Indexed add ressing (or indexing) means that the ac tu al address used by the instruction
(often referred to as the effective address) is the sum of the address included in the in·
struction and the contents of the Index reg ister. Thus LDA $50.X (.X or .Y indicates in­
dexed addressing with the specif ied Index register in 6502 assembly language) is
eq uiva lent to LDA $50+(X) or LDA $53 if (XI ~ 03. In the example prog ram. Index
Regis ter X contains the number to be squared and the address included in the instruc­
tion is the starting address of the table of squares. Note tha t there is a special zero-page
indexed mode using Index Register X

Indexing always takes extra time since the microcomputer must perform an addition to
calcula te the effective address. Thus LDA $50.X requires four clock cycles while LDA
$50 requires only three. However. it would clear ly take a great deal more time to access
the table entry if the microcomputer lacked indexing and the address calculation had to
be performed with a series of instru ctions.

Remember that the Index registers are only 8 bits long so the maximum offset from the
base add ress is 255 (FF 15l. Note also that the offset is an unsigned number (unlike the
offset in relative addressing) so that it can never be negative. However. we do get wrap­
around. That is. if the sum of the base address and the contents of the index register
exceed the maximum allowed val ue. the most significant bits of the sum are simply
dropped . Jn the case of zero page indexing. the maximum allowed value is FF15. If. for
example. the base address on the zero page is F015 and the index register contains
1815. the effect ive address for zero page indexing is 000815; there is no ca rry to the
more significant byte. Thus we can get the effect of a negative offset.

4 -1 4

There are a few special instructions that operate on one of the Index registers rather
than on the Accumulator. These are·

CPX. CPY - Compare Memory and Index Register
DEX. DEY - Decrement Index Register (by 1)
!NX, INY - Increment Index Register (by 1)
LOX. LOY - Load Index Register from Memory
STX. STY - Store Index Register into Memory
TAX. TAY -Transfer Accumulator to Index Register
TXA. TYA - Transfer Index Register to Accumu lator

Remember that there are only a few address ing modes available with CPX. CPY. LOX.
LOY. STX, and STY. Consult Table 3-4 for more details.

Arithmetic that a microprocessor cannot do directly in a few
instructions is of ten best performed with lookup tables. Lookup
tables simply contain all the possible answers to the problem ;
they are organized so that the answer to a particular problem

ARITHMETIC
WITH
TABLES

can be found easily. The arithmetic problem now becomes an accessing problem -
how do we get the correct answer from the table? We must know two things: the
position of the answer in the table (called the index) and the base. or starting. address
of the table. The address of the answer is then the base address plus the index

The base address. of course. is a fixed number for a particular table. How can we deter­
mine the index? In simple cases. where a single piece of data 1s involved. we can organ­
ize the table so that the data is the index. In the table of squares, the 0th entry in the ta­
ble conta ins zero squared. the first entry one squared. etc. In more complex cases.
where the spread of input values is very large or there are several data items involved
(e.g .. roots of a quadratic equation or number of permutations), we must use more com­
plicated methods to determine indexes.

The basic tradeoff in using a table is time vs. memory. Tables are faster. since no com­
putations are requ ired, and simpler. since no mathematical methods must be devised
and tested. However. tables can occupy a !arge amount of memory if the range of the
input data is !arge. We can often reduce the size of a table by limiting the accuracy of
the results. scaling the input data. or organizing the table cleverly. Tables are often
used to compute transcendental and trigonometric functions. linearize inputs. convert
codes. and perform other mathematical tasks.

4-15

Ones Complement
Purpose: Logically complement the contents of memory location 0040 and place the

resu lt in memory location 0041 .

Sample Problem:

10040) = 6A

Result=l0041) = 95

Source Program:

;G ET DATA LDA
EOR
STA
BAK

$40
#%11111111
$41

;LOGICALLY COMPLEMENT DATA
;STORE RESULT

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) lMnemonic)

0000 AS LOA $40
0001 40
0002 49 EOR #%1111111 1
0003 FF
0004 85 STA $41
0005 41
0006 00 BAK

The 6502 microprocessor lacks some simple instructions. such as Clear or Complement.
that are available in most other sets. However. the required operations are easily ac­
complished with the existing instructions if the programmer simply gives the matter a
little thought.

Exclusive-ORing a bit with ·1· complements the bit since

1 -V-0 = 1
and 1-V-1 =0

So the Exclusive-OR function turns each 'O' bit into a · 1' and each ·1 · bit into a 'O' . just
like a logical complement or inverse. Note. however. that the instruction EOR
#%11111111 occupies two bytes of memory. one for the opera t ion code and one for
the mask. An explicit Complement instru ction would require only one byte.

One problem with th is approach is that the purpose of the instruct ions may not be im­
mediately obvious. A reader would probably have to th ink about exactly what an Ex­
clusive-OR func t ion with an all-ones word actually does. Adequate documentation is
essential here. and the use of macros can also help clarify the situation.

4-16

PROBLEMS
1) 16-Bit Data Transfer

Purpose: Move the contents of memory location 0040 to memory location 0042 and
the contents of memory location 0041 to memory location 0043.

Sample Problem:

(00401 3E
(00411 B7

Result : 10042) 3E
(0043) B7

2) 8 -Bit Subtraction
Purpose: Subtract the contents of memory location 0041 from the con ten ts of memory

location 0040. Place the result into memory location 0042.

Sample Problem:

(0040) 77
(0041) 39

Result : 10042) 3E

3) Shift Left Two Bits
Purpose: Sh ift the contents of memory locat ion 0040 left two bi ts and place the result

into memory locat ion 0041 Clear the two least significant bit positions.

Sample Problem:

10040) 50

Result : (004 1) / 4

4) Mask Off Least Significant Four Bits
Purpose: Place the four most significant bits of the contents of memory location 0040

into memory location 0041 . Clear the four least significant bits of memory
location 0041 .

Sample Problem:

100401 C4

Result : 10041) CO

5) Set a Memory Location to All Ones
Purpose: Memory location 0040 is set to all ones (FF15).

6) Word Assembly
Purpose: Combine the four least significant bi ts of memory locations 0040 and 0041

into a word and store them in memory loca tion 0042. Place the four least sig­
nificant bits of memory location 0040 in to the four most significant bit posi­
tions of memory location 0042 ; place the four least significant bits of memo­
ry location 0041 into the four least signi f icant bit positions of memory loca­
tion 0042.

Sample Problem:

10040) 6A
(0041) B3

Result : 10042) A3

4-17

7) Find Smaller of Two Numbers
Purpose: Place the smal ler of the contents of memory locations 0040 and 0041 in

memory location 0042 . Assume that memory locations 0040 and 0041 con­
tain unsigned binary numbers.

Sample Problems:

(0040) 3F
(0041) 2B

Result : (0042) 2B

(0040) 75
(0041) AB

Result: 100421 75

8) 24-Bit Addition
Purpose : Add the 24-bi t number in memory locations 0040. 0041. and 0042 to the 24-

bu number m memory locattons 0043. 0044. and 0045. The most s1gnif1cant
eight bits are 1n memory locations 0042 and 0045. the least significant eight
bits m memory locations 0040 and 0043. Store the resul t in memory loca­
tions 0046. 0047. and 0048 with the most significan t bits in 0048 and the
least significant bits in 0046

Sample Problem:

(0040) 2A
(0041) 67
(0042) 35
(0043) FB
(0044) A4
(0045) 51

Result" (0046) 22
(0047) oc
(0048) 87

that IS. 35672A
+51A4F8

870C22

9) Sum of Squares
Purpose: Calculate the squares of the con ten-ts of memory loca tions 0040 and 0041

and add them together Place the result 1n memory loca tion 0042. Assume
that memory locations 0040 and 0041 both contain numbers be1ween 0 and
7 inclusive 1 e .0 < (0040) < 7 and 0 < (004 1) < 7. Use the table of
squares from the e;ample en'ti tled Table;! Square~

Sample Problem:

(0040) = 03
(004 11 = 06

Result = (0042) = 2D

that is. 32 + 52 = 9 + 36 = 45 = 2D 16

4 - 18

1 0) Twos Complement
Purpose: Place the twos complement of the contents of memory location 0040 in

memory location 0041 The twos complement 1s the ones complement plus
one.

Sample Problem :

(00401 = 3E

Result (0041) = C2

The sum of the original number and its twos complement is zero. So the twos comple­
ment of Xis 0-X. Which approach (calculati ng the ones complement and adding one. or
subtracting from zero) results in a shorter and fas ter program?

4-19

Chapter 5
SIMPLE PROGRAM LOOPS

The program loop is the basic structure that forces the CPU to repeat a sequence
of lnatructlons. Loops have four sections:

1) The initialization aectlon that establishes the starting values of counters. point­
ers. indexes. and other variables

2) The processing section where the actual data manipulation occurs. This is the
section that does the work.

3) The loop control section that updates counters and indexes for the next itera tion.

41 The concluding section that analyzes and stores the results.

Note that the computer performs Sections 1 and 4 only once while it may perform Sec­
tions 2 and 3 many times. Thus. the execution time of the loop will mainly depend on
the execution time of Sect ions 2 and 3. You will want Sections 2 and 3 to execute as
quickly as possible; do not worry about the execution time of Sections 1 and 4. A typi­
cal program loop can be flowcharted as shown in Figure 5-1. or the positions of the pro­
cessing and loop control sections may be reversed as shown in Figure 5-2. The process­
ing section in Figure 5-1 is always executed at least once. while the processing section
in Figure 5-2 may not be executed at all. Figure 5-1 seems more natural. but Figure 5-2
is of ten more efficient and avoids the problem of what to do when there is no data (a
bugaboo for computers and the frequent cause of silly situations like the computer dun­
ning someone for a bill of $0.00)

The loop structure can be used to process enti re blocks of data. To accomplish this. the
program must increment an Index register after each ite ration so that the effect ive ad­
dress of an indexed instruction is the next element in the data block. The next iteration
will then perform the same operations on the data in the next memory location. The
computer can handle blocks of any length (up to 256. since the Index registers are 8
bits long) with the same set of instructions. Indexed addressing is the key to processing
blocks of data with the 6502 microprocessor. since it allows you to vary the ac tual (or
effective) memory address by changing the contents of Index registers. Note that 1n the
direct and immediate addressing modes. the address used is completely determined by
the instruction and is therefore fixed if the program memory is read-only.

5-1

End

Figure 5- 1_ Flowcha rt of a Program Loop

5-2

S1an

'""

Figu re 5-2. A Program Loop that Allows Zero Iterations

5-3

EXAMPLES
Sum of Data
Purpose: Calculate the sum of a series of numbers. The length of 8-BIT

the series is in memory location 0041. and the series SUMMATION
begins in memory location 0042. Store the su m in
memory location 0040. Assume that the sum is an 8-bit number so that vou
can ig nore carries.

Sample Problem:

(0041)
(0042)
(0043)
(0044)

Resu It: (0040)

03
28
55
26

(004 21 + 10043) + (0044)
28+55+26
A3

There are three entries in the sum. since (0041)=03.

Flowchart:

Start

Eod

Note: (0042 + Index) is the contents of the memory loca t ion whose address is the sum
of 0042 and Index. Remember that on the 6502 microprocessor. 0042 is a 16-bit
address. Index is an 8-bit offset. and (0042 + Index) is an 8-bit byte of data.

5. 4

Source Program:

LOA #0 ;SUM= ZERO
TAX ;INDEX= ZERO

SUMO CLC ;DO NOT INCLUDE CARRY
ADC $42.X ;SUM = SUM+ DATA
INX ;INCREMENT INDEX
CPX $41 ;HAVE ALL ELEMENTS BEEN SUMMED ?
BNE SUMO ;NO, CONTINUE SUMMATION
STA $40 ;YES. STORE SUM
BAK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #0
0001 00
0002 AA TAX
0003 18 SU MO CLC
0004 75 ADC $42.X
0005 42
0006 ES INX
0007 E4 CPX $41
0008 4 1
0009 DO BNE SUMO
OOOA F8
OOOB 85 STA $40
oooc 40
0000 00 BAK

The initialization section of the program is the first two instructions. which set the sum
and index to their starting va lues. Note that TAX transfers the contents of the Ac­
cumulator to Index Reg ister X but leaves the Accumulator as it was. The base address
of the array and the location of the counter are fixed within the program and need not
be initia lized.

The processing sect ion of the program consists of the single instruction ADC $42.X.
which adds the contents of the effective address (base address plus Index Register X) to
the contents of the Accumulator. This instruction does the real work of the program
The CLC instruction simply clears the Carry flag so that it does not affect the summa­
tion. Note that each iteration of the loop adds in the contents of a new effective address
even though the instructions do not change.

The loop control section of the prog ram consists of the instruction INX. This instruction
updates the Index register (by 1) so that the next iteration adds the next number to the
sum. Note that (0041) - X tells you how many iterations are left to be done.

The instruction BNE causes a branch if the Zero flag is 0. CPX sets the Zero flag to 1 if
Index Register X and the contents of memory location 004 1 are the same and to 0 if
they are not. The offset is a twos complemen t number and the count begins from the
memory location immediately following the BNE instruction. In th is case. the required
jump is from memory locat ion 0008 to memory location 0003. So .the offset is:

0003 03
-0008 = + F5

F8

5-5

If the Zero flag is one, the CPU executes the next instruction in sequence (STA $40).
Since CPX $41 was the last instruction before BNE to affect the Zero flag, BNE SUMO
causes a branch to SUMO if CPX $41 does not produce a zero result: that is.

{

SUMO if IXI -100411 FO
(PC) =

IPCl+2 if IX)- (0041 1 =0

The 2 is caused by the two·word BNE instruction. A single instruction combining the
Decrement and the Jump would be a useful addition to the 6502 instruction set.

The order in which instructions are executed is of ten very important. INX must come
after ADC $42.X or else the first number to be added to the sum wilt be the contents of
memory location 0043 instead of the con tents of memory location 0042. CPX $41 must
come right before BNE SUMO. since otherwise the Zero status setting produced by CPX
could be changed by another instruction

CPX and CPY are the same as CMP except that the contents of memory are subtracted
from an Index register rather than from the Accumulator. Note. however. that CPX and
CPY offer limited addressing options (see Table 3-4).

Most computer loops coun t down rather than up so that the Zero flag can serve as an
exit condition, thus eliminating the need for a Compare instruction. This method is a bit
awkward for people although it is used occasionally in launch countdowns and in a few
other situations. Remember that the Zero flag is set to 1 if the result of an instruction is
zero and to 0 if the result is not zero

We could easily revise the loop so that it works backward through the array (see the
next flowchart) . The following programs are revised versions.

Source Program:

LOA
LOX

SUMO CLC
ACD
DEX
BNE
STA
BAK

#0
$41

$41.X

SUMO
$40

:SUM= ZERO
:INDEX =MAXIMUM COUNT
:DO NOT INCLUDE CARRY
:SUM= SUM+ DATA
:DECREMENT INDEX
:BRANCH BACK IF ALL ELEMENTS NOT SUMMED
:STORE SUM

5-6

Note that the addition instruction is now ADC $41 .X instead of ADC $42.X: the number
in the Index register is one larger than before. Clearly. the net resu lt of subtracting one
from the base address and adding one to the index is zero. The reorganized object pro­
gram is:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LOA #0
0001 00
0002 A6 LOX $4 1
0003 41
0004 18 SUMO CLC
0005 75 ADC $41 .X
0006 41
0007 CA DEX
0008 DO 8NE SUMO
0009 FA
OOOA 85 STA $40
0008 40
oooc 00 BAK

In most applications. the slight time and memory differences between one implementa­
tion of a loop and another do not matter very much. You should therefore select the ap­
proach that is the c learest and easiest for you to use. We will discuss program design
and efficiency later in Chapters 13 and 15

You may wiSh to verify the hexadecimal values for the relative offsets in the last two
programs. The final test of any calculations that you make is whether the program runs
correct ly. If. for whatever reason. you must perform hexadecimal calculations fre­
quently, we suggest that you consider a calculator Hike the Texas Instruments Program­
mer) or one of the numerous manual aids that are available.

5-7

Flowchart (of reorganized summation program):

Start

Eod

5-8

16-Bit Sum of Data
Purpoae : Calculate the sum of a series of numbers. The length of the series is in

memory location 0042 and the series itself begins in memory location 0043.
Store the sum in memory locations 0040 and 0041 (eight least significant
bits in 0040).

Sample Problem:

(0042) 03
100431 ca
(0044) FA
(0045) 96

Result = ca + FA + 96 = 025a15
(0040) 5a
(00411 = 02

Flowchart:

End

5-9

Source Program:

LDA #0 SUM= ZERO
TAX INDEX= ZERO
TAY MSB'S OF SUM =ZERO

SUMO CLC DO NOT INCLUDE CARRY
ADC $43.X SUM= SUM + DATA
BCC COUNT
INY :ADD CARRY TO MSB'S OF SUM

COUNT INX
CPX $42
BNE SUMO :CONTINUE UNTIL ALL ELEMENTS SUMMED
STA $40 :STORE LSB'S OF SU M
STY $41 :STORE MSB'S OF SUM
BRK

Object Program:

Memory Address Memory Contents Instru ction
(Hex) (Hex) {Mnemonic)

0000 A9 LDA #0
0001 00
0002 AA TAX
0003 AB TAY
0004 18 SUMO CLC
0005 75 ADC $43.X
0006 43
0007 90 ace COUNT
0008 01
0009 ca INY
OOOA E8 COUNT INX
0006 E4 CPX $42
oooc 42
0000 DO BNE SUMO
OOOE F5
OOOF 85 STA $40
0010 40
0011 84 STY $41
0012 41
0013 00 BRK

The structu re of this program is the same as the structure of the last example. The most
significant bits of the sum must now be initialized and stored. The processing section
consists of fou r instructi ons (CLC ; AOC $43.X ; BCC COUNT; and INY). including a con­
dition jump

BCC COUNT causes a jump to memory location COUNT if Carry= 0. Thus. if there is no
carry from the 8-bit addition. the program jumps around the statement that increments
the most significant bits of the sum The relative offset is

OOOA
-0009

The relative offset for BNE SUMO is

0004
-OOOF

----ol

0004
+FFFl
~

5-10

lNY adds 1 to the contents of Index Register Y, which is used here as a temporary
register to save the carries from the addition. We could also use a memory location to
hold the carries. since the INC instruction can be used to directly increment the con­
tents of a memory location

You might wish to try reorganizing this program so that it decrements the index down
to zero rather than incrementing it. Which version is faster and shorter?

Relative branches are limited to short distances (7F16 or+ 127
forward, 8016 or -128 backward from the end of the branch in­
struction). This !imitation is seldom important. since most pro­
gram branches are short. However, if you need a conditional

LONG
CONDITIONAL
BRANCHES

branch with a greater range. you can always invert the condition logic and branch
around a JMP instruction For example. to branch to location FAR if Carry = 0. use the
sequence

BCS NEXT
JMP FAR

NEXT

NEXT is the address immedia tely following the last byte of the JMP instruction. JMP
allows only absolute (direct) and indirect addressing.

5-11

Number of Negative Elements
Purpose: Determine the number of negative elements (most significa nt bit 1) in a

block. The length of the block is in memory location 0041 and the block itself
starts in memory location 0042. Place the number of negative elements in
memory location 0040.

Sample Problem:

10041)
10042)
100431
10044)
10045)
10046)
10047)

Result: 10040)

flowchart:

06
68
F2
87
30
59
2A

02. since 0043 and 0044 contain
numbers with an MSB of 1.

Start

Eod

5- 12

Source Program:

LOX #0 INDEX= ZERO
LOY #0 NUMBER OF NEGATIVES =ZERO

SRNEG LOA $42.X IS NEXT ELEMENT NEGATIVE'
BPL CHCNT
INY :YES. ADD 1 TO NUMBER OF NEGATIVES

CHCNT INX
CPX $41
BNE SRNEG :CONTINUE UNTIL ALL ELEMENTS EXAMINED
STY $40 :SAVE NUMBER OF NEGATIVES
BAK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A2 LDX #0
0001 00
0002 AO LOY #0
0003 00
0004 B5 SRNEG LOA $42.X
0005 42
0006 10 BPL CHCNT
0007 01
OOOB CB INY
0009 EB CHCNT INX
OOOA E4 CPX $41
OOOB 41
oooc DO BNE SRNEG
0000 F6
OOOE 84 STY $40
OOOF 40
0010 00 BAK

LDA affects the Sign (SJ and Zero (Z) status flags. Therefore. we can immediately check
to see if a number that has been loaded is negative or zero

BPL. Branch-on-Plus, causes a branch over the specified number of locations if the Sign
(or Negative) bit is zero. A sign bit of zero may indicate a positive number or may just in­
dicate the value of the most signi ficant bit position: the interpretation depends on what
the numbers mean.

The offset for BPL is calculated from the first memory location following the two-byte
instruction. Here the offset is simply from 0008 to 0009. or one location (i .e .. the INY in­
struction is skipped if the Negative bit is zerol. The Negative bit will be zero if the most
significant bit of the data loaded from memory by the LOA $42.X instruction is zero.

Remember that negative-signed numbers al l have a most significant bit (bit 7) of 1. All
negative numbers are actual ly larger. in the unsigned sense. than positive numbers.

5-13

Maximum Value
Purpose: Find the largest element in a block of data. The length of the block is in

memory location 0041 and the block itself begins in memory location 0042.
Store the maximum in memory location 0040. Assume that the numbers in
the block are all S·bit unsigned binary numbers.

Sample Problem:

10041)
10042)
10043)
10044)
10045)
10046)

Resu lt: 100401

Flowchart:

05
67
79
15
E3
72

E3. since this is the largest of
the five unsigned numbers.

Start

End

5-14

Source Program:

LOX
LOA

MAXM CMP
BCS
LOA

NOCHG DEX
BNE
STA
BAK

Object Program:

$41
#0
$41 .X
NOC HG
$41 .X

MAXM
$40

Memory Address
(Hex)

0000
0001
0002
0003
0004
0005
0006
0007
OOOB
0009
OOOA
OOOB
oooc
0000
OOOE
OOOF

GET ELEMENT COUNT
MAXIMUM = ZERO (MINIMUM POSSIBLE VALUE)
IS NEXT ELEMENT ABOVE MAXIMUM?
NO. KEEP MAXIMUM

;YES. REPLACE .MAXIMUM WITH ELEMENT

;CONTINUE UNTIL ALL ELEMENTS EXAMINED
;SAVE MAXIMUM

Memory Contents
(Hex)

A6
41
A9
00
05
41
BO
02
B5
41
CA
DO
F7
B5
40
00

MAXM

NOC HG

Instruction
(Mnemonic)

LOX $41

LOA #0

CMP $41 .X

BCS NOC HG

LOA $41 .X

DEX
BNE MAXM

STA $40

BAK

The relative offset for BCS NOCHG is:

OOOA
-OOOB
----oz

The relative offset for BNE MAXM is:

0004
-0000

04
+F3
F7

The first two instructions of this program form the initialization section.

This program takes advantage of the fact that zero is the smallest 8 -bi t unsigned binary
number. When you set the register that contains the maximum va lue - in this case.
the Accumulator- to the minimum possible value before you enter the loop, then the
program will set the Accumulator to a larger value unless al l the elements in the array
are zeros. The program works properly if there are two elements in the array. but not if
there is only one or none at all. Why? How could you solve this problem?

The instruction CMP $41 .X sets the Carry flag as follows where ELEMENT is the con­
tents of the effective address and MAX is the conten ts of the Accumulator·

Carry = 0 if ELEMENT > MAX
Carry= 1 if ELEMENT _:<:; MAX

5- 15

Remember that the carry is an inverted borrow. If Carry = 1. the program proceeds to
address NOC HG and does not change the maximum. If Carry= 0. the program replaces
the old maximum with the current element by execu t ing the instruc tion LOA $41 .X.

The program does not work if the numbers are signed. because negative numbers will
appear to be larger than positive numbers. This problem is somewhat tricky because a
twos complement overflow could make the sign of the result incorrect. A further prob­
lem is that the CMP instruction does not affect the Overflow flag. A program for signed
numbers would therefore have to use the SBC instruction and check both the Sign and
the Overflow flags. The Carry flag would have to be set to 1 before the subtraction
(remember that Carry is an inverted borrow and the SBC instruction inverts it before
subtract ing id. and an addition would be requ ired to restore the original value of the
maximum. Note how convenient it is in the example that CMP does not actually change
the contents of the Accu mulator

5-16

Justify a Binary Fraction
Purpose: Shift the contents of memory location 0040 left until the most signif icant bit

of the number is 1. Store the result 1n memory location 0041 and the number
of left shifts required in memory location 0042. If the contents of memory
location 0040 are zero. clear both 0041 and 0042.

Note: The process is just like conver ting a number to a scient ific notation : for example:

0.0057 ~ 5. 7 x 10·3

Sample Problems:

a. 10040)

Result : 10041)
10042)

b. (0040)

Result: (0041)
(0042)

c. (0040)

Result : (0041)
100421

d. (0040)

Result : (0041)
(0042)

Flowchart :

22

88
02

01

80
07

CB

CB
00

00

00
00

Start

Ye•

Ye>

5-17

(00411 • Numb

(00421 • Nshft

Eod

Source Program:

LOY #0 NUMBER OF SHIFTS ~O
LOA $40 GET DATA
BEG DONE DONE IF DAT A IS ZERO

CHKM S BMI DONE DONE IF MSB IS ONE
INY ;ADD 1 TO NUMBER OF SHIFTS
ASL A ;SHIFT LEFT ONE BIT
JMP CHKMS

DONE STA $41 ;SAVE JUSTIFIED DATA
STY $42 ;SAVE NUMBER OF SHIFTS
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 AO LOY #0
0001 00
0002 A5 LOA $40
0003 40
0004 FO BEG DONE
0005 07
0006 30 CHKMS BMI DONE
0007 05
0008 CB INY
0009 OA ASL A
OOOA 4C JMP CHKMS
OOOB 06
oooc 00
0000 85 DONE STA $41
OOOE 41
OOOF 84 STY $42
0010 42
0011 00 BRK

BMI DONE causes a branch to location DONE 1f the Sign bit is 1 This condition may
mean that the last result was a negative number. or it may jus t mean that its most sig­
nificant bit was 1 - the compute r only supplies the results: the programmer must pro­
vide the interpretation

ASL A shifts the contents of the Accumulator left one bit and clears the least significant
bit

JMP is an unconditional branch instruction that always places a new value in the Pro­
gram Counter. 1t on ly allows absolute (direct) or indirect addressing. The indi rect mode
provides flexibility since the actual destination address can be stored in RAM. Note that
there is no re lative addressing and no special page-zero modes.

The address in the JMP instruction is stored in two successive memory locations with
the least significant bits first (at the lower address). This is the standard way in which
the 6502 microprocessor expects to find addresses. regardless of whether they are part
of instructions or are used ind irectly . The same upside-down method is used in the
8080. 8085. and Z80 microprocessors. bu t the opposi te approach (mos t significant bits
first) is used on the 6800 microprocessor. Note that an add ress occupies two bytes of
memory. although there is a single byte of data loca ted at that address.

5-18

We could reorganize this program so as to eliminate the extraneous JMP instruction
One reorganized version wou ld be

LDY #0 :NUMBER OF SHIFTS= 0
LDA $40 :GET DATA
BEO DONE :DONE IF DATA IS ZERO

CHKMS INY :ADD 1 TO NUMBER OF SHIFTS
ASL A :SHIFT LEFT ONE BIT
BCC CHKMS :CONTINUE IF MSB NOT ONE
ROR A :OTHERWISE. SHIFT BACK ONCE
DEY ;AND IGNORE EXTRA SHIFT

DONE STA $41 :SAVE JUSTIFIED DATA
STY $42 :SAVE NUMBER OF SHIFTS
BRK

This version shifts the data until the Carry becomes 1. Then it adjusts the data and the
number of shifts back one since the last shift was not realty necessary. Show that this
version is also correct. What are its advantages and disadvantages as compared to the
previous programJ You might w ish to try some other organizations to see how they
compare in execution time and memory usage

5- 19

Post-Indexed (Indirect) Addressing
We have already noted the additional flexibility provided by
the indexed addressing mode. The same instructions can be
used to process each element in an array or table But even
more flexibility is provided by the post-indexed addressing
mode in which the instruction only specifies the address on

POST-INDEXED
(INDIRECT)
ADDRESSING
MODE

page zero that contains the base address of the table or array. Now the same program
can handle an array or table located anywhere in memory. All that we have to do is
place the starting address in the appropriate locations on page zero. Note that the start­
ing address occupies two bytes of memory. with the least significant byte first (at the
lower address) . Post-indexing requires extra clock cycles (six as compared to four for
the zero-page indexed model but provides tremendous additional flexibility. En ti re ar­
rays need not be moved. nor are repeated versions of the same program required.

Post-indexed (indirect) addressing can only be used with lndex Register Y. So the max­
imum value program with post- indexed addressing is as follows. assuming that the
length of the array is in memory location 0041 and its starting address is in memory
locations 0042 and 0043.

For example.

(0041)
(0042)
(0043)
(0044)
(00451
(0046)
10047)
(0048)

05
43 (LSBs of starting address minus one)
00 (MSBs of starting address minus one)
67 Hirst element in array)
79
15
E3
72

Result= (40) = E3 since this is the largest
of the 5 unsigned numbers.

Source Program:

LOY
LOA

MAXM CMP
BCS
LOA

NOCHG DEY
BNE
STA
BAK

$41
#0
($421.Y
NOC HG
($421.Y

MAXM
$40

;GET ELEMENT COUNT
:MAXIMUM= ZERO (MINIMUM POSSIBLE VALUE)
;IS NEXT ELEMENT ABOVE MAXIMUM?
; NO. KEEP MAXIMUM
;YES. REPLACE MAXIMUM WITH ELEMENT

:CONTINUE UNTIL ALL ELEMENTS EXAMINED
:SAVE MAXIMUM

5-20

Object Program:

Memory Address Memory Contents Instruction
{Hex) {Hex) (Mnemonic)

0000 A4 LDY $41
0001 41
0002 A9 LDA #0
0003 00
0004 Dl MAXM CMP {$42).Y
0005 42
0006 80 BCS NOC HG
0007 02
0008 81 LDA {$421.Y
0009 42
OOOA 88 NOC HG DEY
0008 DO BNE MAXM
oooc F7
OOOD 85 STA $40
OOOE 40
OOOF 00 BAK

The indi rect address (in memory locations 0042 and 0043) is stored in the usual 6502
fashion. with the least significant bits first (at the lower address)

We could use the same program to find the maximum element in an array of 5 entries
starting in memory address 25E1 . All that we would have to do is change the indirect
address to 25EO before executing the program. that is.

10042) ~ EO ILSBs of starting address min us one)
(0043) = 25 (MSBs of starting address minus one)

How would you handle the array starting in memory address 25E1 if the program used
ordinary indexed addressing (as in the earlier example)? Assume that the program is in
ROM so that you cannot change the addresses in the instructions

5-21

Pre-Indexed (Indirect) Addressing
The pre-indexed addressing mode gives you a different kind of
flexibility. This method allows you to choose one address from
a table of addresses. rather than being limited to a particular
memory address. For example. rather than having memory
location 0041 contain the length of the array in the maximum

PRE-INDEXED
!INDIRECT)
ADDRESSING
MODE

problem. we could let it contai n the index of the address that contains the length of the
array. The tab le of add resses must be located somewhere on page zero. perhaps start­
ing at memory address 0060. that is

(00601 =2F } . · #0 · d {00
6

1l =
00

address 1n which cou nter is store

(0062) = 80} (OOB
3

) =
00

address in which counter #1 is stored

10064) = A5} . . (006S) = 00 address 1n which counter #2 is stored

One problem is that addresses occupy two bytes of memory so that you must multiply
the counter number by two before apply ing the pre- indexed addressing mode. Note
that all addresses are stored in the usual 6502 manner. w ith the least significant bits
first. Pre- indexed addressing is not as useful as post-indexed addressing, but it does
come in handy occasionally.

5-22

PROBLEMS

1 l Checksum of Data
Purpose: Calculate the checksum of a series of numbers. The length of the series is in

memory location 0041 and the series itself begins in memory location 0042
Store the checksum in memory location 0040. The checksum is formed by
Exclusive-ORing all the numbers in the series together.

Note: Such checksums are often used in paper tape and cassette systems to ensure
that the data has been read correctly. The ca lculated checksum is compared to
the one stored with the data - if the two checksums do not agree. the system
will usually either indicate an error to the operator or automatically read the data
again.

Sample Problem:

Result ·

100411
100421
(00431
(00441

(00401

03
28
55
26

100421 Ell (00431 Ell 100441
28 Ell 55 Ell 26
00101000

Ell 010 1 0101
0 1111101

Ell 00100110
0101101 1
58

2) Sum of 16-Bit Data
Purpose : Calculate the sum of a series of 16-bit numbers. The length of the series is in

memory location 0042 and the seri es itself begins in memory location 0043
Store the sum in memory locations 0040 and 0041 (e ight most significant
bits in 0041). Each 16-bit number occupies two memory locations. with the
eight most significant bits in the higher address. Assume that the sum can
be contained in 16 bits

Sample Problem:

(00421 03
(00431 Fl
(00441 28
10045) 1A
(0046) 30
(00471 89
(00481 48

Result: 28F1 + 301A + 4889 =A494
(00401 94
(0041) = A4

5-23

3) Number of Zero. Positive. and Negative Numbers
Purpose: Determine the number of zero. positive (most significant bit zero but entire

number not zero). and negative (most significant bit 1) elements in a block.
The length of the block is in memory location 0043 and the block itself starts
in memory location 0044. Place the number of negative elements in memory
location 0040. the number of zero elemen ts in memory loca t ion 004 1. and
the number of positive elements in memory location 0042 .

Sample Problem:

100431 06
100441 68
100451 F2
100461 87
100471 00
100481 59
100491 2A

Result : 2 negative. 1 zero. and 3 positive. so
100401 02
100411 01
100421 03

4) Find Minimum
Purpose: Find the smallest element in a block of data. The length of the block is in

memory location 0041 and the block i tself begins in memory location 0042.
Store the minimum in memory location 0040 Assume that the numbers in
the block are 8-b1t unsigned binary numbers

Sample Problem:

10041 1 05
100421 67
100431 79
100441 15
100451 E3
100461 72

Result: 100401 15. since this is the smallest of the
five unsigned numbers.

5) Count 1 Bits
Purpose: Determine how many bits 1n memory locat ion 0040 are ones and place the

result in memory location 0041 .

Sample Problem:

100401

Result: 10041 I

38~00111011

05

5-24

Chapter 6
CHARACTER-CODED DATA

Mlcroproce11ors often handle character-coded data. Not only do keyboards,
teletypewriters, communications devices, displays, and computer terminals ex­
pect or provide character-coded data. but many ln1trument1, test systems, and
controllers also require data in this form. The most commonly used code is ASCII.
Baudot and EBCDIC are found less frequently. We will assume all of our character­
coded data to be 7-bit ASCII with the most significant bit zero (see Table 6·11.

Some principles to remember in handling ASCII-coded data
are :

1) The codes for the numbers and letters form ordered sub­
sequences. The codes for the decimal numbers are 3015

HANDLING
DATA IN
ASCII

through 3915 so that you can convert between decimal and ASCII with a simple
additive factor. The codes for the upper case letters are 4115 through 5A16 so that
you can do alphabetic ordering by sorting the data in increasing numerical order.

2) The computer draws no distinction between printing and non-printing charac~
ters. Only the 1/0 devices make that d istinction.

3) An ASCII device will handle only ASCII data. To print a 7 on an ASCII printer.
the microprocessor must ~end 3715 to the prin ter: 0715 is the 'bell" character.
Similarly, the microprocessor w ill receive the character 9 from an ASCII keyboa rd
as 3915: 0915 is the 'tab' character

4) Some ASCII devices do not use the full character set. For example. control
cha racters and lower case letters may be ignored or printed as spaces or question
marks

51 Some widely used ASCII characters are :

OA15 · line feed (LF)

0015 ·carriage return (C R)

2015 • space

3F15 · ? (question mark)

7F15 ·rubout or delete cha racter

6) Each ASCII character occupies eight bits. This allows a large cha racter set but is
wasteful when the data is limited to a small subset such as the decimal numbers
An 8-bit byte. for example, can hold only one ASCII-coded decimal digit. while it
can hold two BCD-coded dig its

6-1

Table 6-1. Hex-ASCII Table

~ 0 1 2 3 4 6 6 7
D

0 NUL OLE SP 0 @ p p
1 SOH OC 1 I 1 A 0 a q
2 STX DC2

..
2 B R b r

3 ETX DC3 # 3 c s c s
4 EDT OC4 $ 4 0 T d t
6 ENO NAK % 5 E u e u
6 ACK SYN & 6 F v f v
7 BEL ETB 7 G w g w
8 BS CAN (8 H x h x
9 HT EM I 9 I y I y
A LF SUB J z I z
B VT ESC + K [k I c FF FS < L \ I I
D CR GS = M I m I
E so RS > N . n -
F SI us I ' 0 - 0 DEL

6-2

EXAMPLES
Length of a String of Characters
Purpose : Determine the length of a string of ASCII characters (seven bits with most

significant bit zero). The string starts in memory location 0041. the end of
the string is marked by a carriage return character ('CR'. 0015). Place the
length of the str ing (excluding the carriage return) into memory locati on
0040.

Sample Problems :

100411 OD
Result: 100401 00 since the f irst character is a carriage return.

b. 10041) 52 .ff

10042) 41 .A.

10043) 54 T
10044) 48 'H'
10045) 45 T
10046) 52 'R'
10047) OD CR

Resu lt" 10040) 06

Flowchart :

Start

6-3

Source Program:

LDX
LDA

CHKCR CMP
SEQ
INX
JMP

DONE STX
BRK

Object Program:

#0
#$OD
$4 1.X
DONE

CHKCR
$40

Memory Address
(Hex)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
0008
oooc
OOOD
OOOE

STRING LENGTH =ZERO
GET ASCII CARRIAGE RETURN TO COMPARE
IS CHARACTER A CARRIAGE RETURN?
YES. DONE
NO. ADD 1 TO STRING LENGTH

;SAVE STRING LENGTH

Memory Contents Instruction
(Hex) (Mnemonic)

A2 LDX #0
00
A9 LDA #$OD
OD
D5 CHKCR CMP $41.X
41
FO SEQ DONE
04
EB INX
4C JMP CHKCR
04
00
86 DONE STX $40
40
00 BRK

The carriage retu rn character. 'CR' . is just another ASCII code (OD1sl as far as the com­
puter is concerned. The fact that this character causes an output device to perform a
control fu nction rather than print a symbol does not affect the computer.

The Compare instruction. CMP. sets the flags as if a subtract ion had been performed
but leaves the ca rriage return character in the Accumulator for later comparisons. The
Zero (Z) flag is affected as follows :

Z = 1 if the character in the string is a carriage retu rn

Z = 0 if it is not a ca rriage return

The instruc t ion INX adds 1 to the string length counter in Index Register X LOX #0 in­
itializes this coun ter to zero before the loop beg ins. Remember to initialize variables
before using them in a loop.

This loop does not terminate because a coun ter is decremented to zero or reaches a
maximum va lue. The computer w ill simply continue examining charac ters until it fi nds
a carriage return. It is good programm ing practice to place a maximum count in a loop
like this to avoid problems with erroneous strings tha t do not contain a carriage return.
What would happen if the example program were used with such a string?

6-4

Note that by rearranging the logic and changing the ini t ial cond itions, you can shorten
the program and decrease its execution time. If we adjust the flowchart so that the pro­
gram increments the string length before it checks for the carriage return, only one
Jump instruction is necessary instead of two. The new flowchart and program are as
follows:

Source Program:

LDX
LDA

CHKCR INX
CMP
BNE
STX
BAK

#$FF
#$OD

$41 .X
CHKCR
$40

Start

Eod

;STRING LENGTH = -1
;GET ASCII CARRIAGE RETURN TO COMPARE
;ADD 1 TO STRING LENGTH
;IS CHARACTER A CARRIAGE RETURN'
;NO. CHECK NEXT CHARACTER
;YES. SAVE STRING LENGTH

This version is not only shorter and faster. but it also contains no absolute destination
addresses; thus it can easi ly be placed anywhere in memory. The earlier version con­
tains a JMP instruction with a specific absolute address. while this version has only
branch instructions with relative addresses.

6-5

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A2 LOX #$FF
0001 FF
0002 A9 LOA #$00
0003 OD
0004 E8 CHKCR INX
0005 05 CMP $41 .X
0006 4 1
0007 DO BNE CHKCR
0008 FB
0009 B6 STX $40
OOOA 40
OOOB 00 BAK

6-6

Find First Non-Blank Charactec
Purpose: Search a string of ASCI I characters (seven bits with most significant bit zero)

for a non-blank character. The string starts in memory location 0042. Place
the index of the first non-blank character in memory location 0040. A blank
character is 2015 in ASCI I.

Sample Problems :

a. (0042) 37 ASCII 7

Result: (0040) 00. since memory location 0042 conta ins a
non-blank character

b. (0042) 20 SP
(0043) 20 SP
(0044) 20 SP
(0045) 46 'F'
(0046) 20 SP

Result: (00401 03. since the three previous memory locations
all contain blanks

Flowchart:

Start

No

6-7

Source Program:

LDX #0 START WITH INDEX= ZERO
LDA #' GET ASCII SPACE FOR COMPARISON

CHBLK CMP $42.X IS CHARACTER AN ASCI I SPACE?
BNE DONE NO.DONE
INX YES. EXAMINE NEXT CHARACTER
JMP CHBLK

DONE STX $40 :SAVE INDEX OF FIRST NON-BLANK
CHARACTER

BAK

Note the use of an apostrophe (') or single quotation mark before an ASCII character.

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A2 LDX #0
0001 00
0002 A9 LDA #'
0003 20
0004 D5 CHBLK CMP $42 .X
0005 42
0006 DO BNE DONE
0007 04
OOOB ES INX
0009 4C JMP CHBLK
OOOA 04
OOOB 00
oooc 86 DONE STX $40
OOOD 40
OOOE 00 BAK

Looking for spaces in strings is a common task. Spaces often are eliminated from
strings when they are used simply to increase readabi lity or to fit particular formats. It is
obviously wasteful to store and transmit beginning, ending. or extra spaces. particularly
if you are paying for the communications capability and memory required . Data and
program entry. however. are much simpler if extra spaces are tolerated. Microcom­
puters are often used in situations like this to convert data between forms that are easy
for humans to use and forms that are efficiently handled on computers and com­
munications lines.

6-8

Again. if we alter the initial conditions so that the loop control section precedes the pro­
cessing section. we can reduce the number of bytes in the program and decrease the
loop's execution time The rearranged flowchart is:

Source Program:

LDX
LDA

CHBLK INX
CMP
BEO
STX

BAK

Object Program:

#$FF
#'

$42.X
CHBLK
$40

Memory Address
(Hex)

0000
0001
0002

' 0003
0004
0005
0006
0007
OOOB
0009
OOOA
OOOB

Start

'"d

:START WITH INDEX = -1
:GET ASCII SPACE FOR COMPARISON
;INCREMENT INDEX
;IS CHARACTER AN ASCII SPACE'
:YES. EXAMINE NEXT CHARACTER
:NO. SAVE INDEX OF FIRST NON-BLANK

CHARACTER

Memory Contents Instruction
(Hex) (Mnemonic)

A2 LDX #$FF
FF
AS LDA # '
20
EB CHBLK INX
D5 CMP $42,X
42
FO BEO CHBLK
FB
86 STX $40
40
00 BAK

6-9

Replace Leading Zeros with Blanks
Purpose : Edit a string of ASC II decimal characters by replacing all leading zeros wi th

blanks. The string starts in memory loca tion 0041: assume tha t it consists
entirely of ASCll -coded decimal digits. The length of the string is in memory
location 0040

Sample Problems:

a. (0040) ~ 02
100411 ~ 36 ASC II 6

The program leaves the string unchanged. since the leading digit is not zero

(00401 08
10041) 30 ASCII 0
10042) 30 ASCII 0
10043) 38 ASCII 8

Result: 10041) 20 SP
10042) 20 SP

The two leading ASCII zeros have been rep laced by ASCII blanks

Flowchart:

Stan

""'

6- 10

Source Program:

CHKZ

DONE

LOX
LOY
LOA
CMP
BNE
STY
INX
CPX
BNE
BAK

#0
#'
#'O
$41.X
DONE
$4 1.X

$40
CHKZ

; INDEX~ ZERO TO START
:GET ASC II SPACE FOR REPLACEMENT
:GET ASCII ZERO FOR COMPARISON
:IS LEADING DIGIT ZERO?
:NO. END REPLACEMENT PROCESS
;IS LEADING DIGIT ZERO?

:EXAMINE NEXT DIGIT IF ANY

Single quotation mark in front of a character indicates that the operand is an ASCII
code.

Object Program:

Memory Address
(Hex)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
oooc
0000
OOOE
OOOF
0010
0011

Memory Contents
(Hex)

A2
00
AO
20
A9
30
05 CHKZ
41
DO
07
94
41
EB
E4
40
DO
F5
00 DONE

Instruction
(Mnemonic)

LOX #0

LOY #'

LOA #'O

CMP $41.X

BNE DONE

STY $41 .X

INX
CPX $40

BNE CHKZ

BAK

You will frequently want to edit decimal strings before they are printed or displayed to

improve their appearance. Common editing tasks include eliminating leading zeros.
justifying numbers. adding signs or other ident ifyi ng markers. and rou nd ing. Clearly.
printed numbers like 0006 or $27.34382 can be confusing and annoying.

Here the loop has two exits- one if the processor finds a nonzero dig i t and the other if
it has examined the entire string.

The instruction STY $41 .X places an ASCII space character {20 hex) in a memory loca ~

tion that previously contained an ASCII zero. Note that STY has only a limited number
of addressing modes (see Table 3-4); there are no indexing modes with Register Y. no
pre-indexing. and no absolute indexing. The only indexed addressing mode is the zero­
page mode with Index Register X.

Alt digits in the string are assumed to be ASCII; that is. the d igits are 3015 through
3916 rather than the ordinary decimal 0 to 9. The conversion from decima l to ASCII 1s
simply a matter of adding 3016 to the decimal digit.

6-11

You can place a single ASCII character in a 6502 assembly language program by pre­
ceding it with an apostrophe{'). You ca n place a string of ASCII characters in program
memory by using the .TEXT (Store ASCII Text) pseudo-operation on the 6502 assem­
bler. A delimiter character (usually fJ must surround the text ; the usual form is :

Label

EMSG

Operation
Code

.TEXT

Operand

/ ERROR/

You may have to be careful. when blanki ng zeros. to leave one zero in the event that al l
the dig its are zero. How would you do this?

Note that each ASC II digit requires eight bits. as compared to four for a BCD digit.
Therefore. ASCII is an expensive format in which to store or transmit numerical data.

6-12

Add Even Parity to ASCII Characters
Purpose: Add even parity to a string of 7-bit ASCI I characters. The length of the string

is in memory location 0040 and the string itself begins in memory location
0041. Place even parity in the most significant bit of each character by set­
ti ng the most significant bi t to 1 if that makes the tota l number of 1 bits in
the word an even number.

Sample Problem:

(00401 06
(00411 31
(00421 32
(00431 33
(00441 34
(00451 35
(00461 36

Result: (00411 81
(004 21 82
(00431 33
100441 84
(00451 35
(00461 36

6-13

Flowchart:

Start

Base = 0040
lndu "' (004 0!

Bit Count = 0

Data = !Base +
lnded

Eod

6-14

Source Program:

LDX $40 ;INDEX =MAXIMUM COUNT
GTDATA LDY #0 ;BIT COUNT= ZERO FOR DATA

LDA $40.X ;GET DATA FROM BLOCK
CHBIT BPL CHKZ ;IS NEXT DATA BIT 1?

INY ;YES, ADD 1 TO BIT COUNT
CHKZ ASL A ;EXAMINE NEXT BIT POSITION

BNE CHBIT :UNLESS ALL BITS ARE ZEROS
TYA
LSR A ;DID DATA HAVE EVEN NUMBER OF ·1· BITS?
BCC NEXTE
LDA $40.X ;NO. SET PARITY BIT
ORA #%10000000
STA $40.X

NEXTE DEX
BNE GTDATA ;CONTINUE THROUGH DATA BLOCK
BAK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A6 LOX $40
0001 40
0002 AO GTDATA LDY #0
0003 00
0004 B5 LOA $40.X
0005 40
0006 10 CHBIT BPL CHKZ
0007 01
0008 CB INY
0009 OA CHKZ ASL A
OOOA DO BNE CHBIT
OOOB FA
oooc 98 TYA
OOOD 4A LSR A
OOOE 90 BCC NEXTE
OOOF 06
0010 B5 LOA $40.X
0011 40
0012 09 ORA #%10000000
0013 80
0014 95 STA $40.X
0015 40
0016 CA NEXTE DEX
0017 DO BNE GTDATA
0018 E9
0019 00 BAK

Parity is often added to ASCII characters before they are transmitted on noisy com­
mun ications lines: this provides a simple error-checking facility . Parity detects all
single-bit errors but does not allow for error correction: that is, you can tell by checking
the parity of the data that an error has occ urred. but you cannot tell which bit was
received incorrectly. All tha t the receiver can do is request retransmission

6-15

The procedure for calculating parity is to count the number of '1' bits in the data words
If that number is odd. the MSB of the data word is set to 1 to make the parity even.

ASL clears the !east significant bit of the number being shifted. Therefore. the result of
a series of ASL instructions will eventually be zero. regardless of the original value of
the data (try itl). The bit counting section of the example program not only does not
need a counter. but also stops examining the data as soon as all remaining bits are
zeros. This procedure saves execution time in many cases.

The MSB of the data is set to '1' by logically ORing it with a pattern that has a Tin its
most significant bit and zeros elsewhere. Logically ORing a bit with one produces a
result of one regardless of the original value. while logically ORing a bit with zero does
not change the original value

6- 16

Pattern Match
Purpoee: Compare two strings of ASCII characters to see if they are the same. The

length of the strings is in memory location 0041. one string starts in memory
location 0042 and the other in memory location 0052. If the two strings
match. clear memory location 0040; otherwise. set memory location 0040 to
FF1a (all ones).

Sample Problems:

a. (004 1) 03

10042) 43 ·c·
10043) 41 'A'
(0044) 54 T

(0052) 43 ·c
(0053) 41 'A '
10054) 54 T

Result: 10040) 00. since the two strings are the same.

100411 03

10042) 52 'R'
10043) 41 'A'
(0044) 54 T

100521 43 ·c·
10053) 41 'A'
10054) 54 T

Result (0040) FF. since the first characters in the
strings differ.

Note: The matching process ends as soon as the CPU finds a difference - the rest of
the strings need not be examined

6-17

Flowchart:

Source Program:

LDX
LDY

CHCAR LDA
CMP
BNE
INX
CPX
BNE
LDY

DONE STY
BAK

#0
#$FF
$42.X
$52.X
DONE

$41
CHCAR
#0
$40

Eod

START WITH FIRST ELEMENT IN STRINGS
MARKER FOR NO MATCH
GET CHARACTER FROM STRING 1
IS THERE A MATCH WITH STRING 2'
NO.DONE

CHECK NEXT PAIR IF ANY LEFT
IF NONE LEFT. MARK MATCH
SAVE MATCH MARKER

6-18

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A2 LDX #0
0001 00
0002 AO LDY #$FF
0003 FF
0004 85 CHCAR LDA $42.X
0005 42
0006 D5 CMP $52.X
0007 52
0008 DO BNE DONE
0009 07
OOOA EB INX
0008 E4 CPX $41
oooc 41
OOOD DO BNE CHCAR
OOOE F5
OOOF AO LDY #0
0010 00
0011 84 DONE STY $40
0012 40
0013 00 BAK

Matching strings of ASCII characters is an essential part of recognizing names or com­
mands. identifying variables or operat ion codes in assemblers and compilers. finding
files, and many other tasks.

Index Register Xis used to access both string;:; - only the base addresses are different
This method allows the strings to be located anywhere in memory. although we would
have to use the absolute indexed addressing modes if the strings were not on page
zero. We could also use the post-indexed mode (with Index Register Y) if we had two
different base addresses stored somewhere on page zero.

The instruction CMP $52.X compa res the Accumulator to the contents of the indexed
memory location. We could replace the LOY #0 instruction with INY. Why? Compare
the time and memory requirements of the two alternatives. Which vers ion do you think
is clearer? The replacement would also allow you to use a memory location for the
marker rather than a register (w hy?).

6-19

PROBLEMS
1) Length of a Teletypewriter Message
Purpose: Determine the length of an ASCII message All characters are 7-bit ASCII

with MSB = 0. The string of characters in which the message is embedded
starts in memory location 0041 . The message itself starts with an ASCII STX
character (02151 and ends with ETX (0315). Place the length of the message
(the number of characters between the STX and the ETX but including
neither) into memory location 0040.

Sample Problem:

(004 11 40
(00421 02 STX
(00431 47 'G'
100441 4F ·o·
(00451 03 ETX

Result: (00401 02. since there are two characters between the STX
in location 0042 and ETX in location 0045.

2) Find Last Non-Blank Character
Purpose: Search a string of ASCII characters for the last non-blank character. The

string starts in memory location 0042 and ends with a carriage return
cha racter (0015). Place the index of the last non-blank character in memory
location 0040.

Sample Problems:

(00421 37 ASCII 7
(00431 OD CR

Result: (00401 00. since the last (and only) non·blank character
is in memory location 0042

b. (00421 41 'A'
(00431 20 SP
(00441 48 'H'
(0045) 41 'A'
(00461 54 T
(00471 20 SP
(00481 20 SP
(00491 OD CR

Resulr (00401 04

6-20

3) Truncate Decimal String to Integer Form
Purpose: Edit a string of ASCII decimal characters by replacing all digits to the right of

the decimal point with ASC11 blanks (2015). The string starts in memory loca­
tion 0041 and is assumed to consist entirely of ASCII-coded decimal digits
and a possible decimal point (2E 15l. The length of the string is in memory
location 0040. If no decimal point appears in the stri ng. assume that the
decimal point is implicitly at the far right.

Sample Problems:

a. 100401 04

100411 37 ASCI I 7
100421 2E ASCII
100431 38 ASCII 8
100441 31 ASCII 1

Result · 100411 37 ASCII 7
100421 2E ASCII
100431 20 SP
100441 20 SP

100401 03

100411 36 ASCII 6
100421 37 ASCII 7
100431 31 ASCII 1

Result" Unchanged. as number is assumed to be 671

4) Check Even Parity in ASCII Characters
Purpose: Check even parity in a string of ASCII characters. The length of the string is

in memory location 0041. and the string itself begins in memory location
0042. If the parity of all the characters in the string is correct. clear memory
location 0040: otherwise. place FF15 (all ones) into memory loca tion 0040.

Sample Problems:

a. 1004 11 03

100421 B1
100431 B2
100441 33

Result : 100401 00. since all the characters have even parity

b. 100411 03

100421 81
100431 86
100441 33

Result: 100401 FF. since the character in memory locat ion 0043
does not have even parity.

6-21

5) String Comparison
Purpose : Compare two strings of ASC II characters to see which is larger {i.e .. which

follows the other in alphabetical ordering). The length of the strings is in
memory location 0041; one string starts in memory location 0042 and the
other in memory location 0052. If the string starting in memory location
0042 is greater than or equal to the other string. clear memory location
0040; otherwise. set memory location 0040 to FF16 (all ones).

Sample Problems:

a. 100411 03

100421 43 'C'
100431 41 'A'
100441 54 T

100521 42 '8'
100531 51 'A'
100541 54 T

Result" 100401 00. since CAT is 'larger' than BAT

b. 100411 03

100421 43 'C'
100431 41 'A'
100441 54 T

100521 43 ·c·
100531 41 'A'
100541 54 T

Result : 100401 00. since the two strings are equal.

c. 100411 03

100421 43 'C'
100431 41 'A'
100441 54 T

100521 43 ·c·
100531 55 ·u·
100541 54 T

Result: 100401 FF. since CUT is 'larger' than CAT.

6-22

Chapter 7
CODE CONVERSION

Code conversion Is a continual problem in most microcomputer applications. Pe­
ripherals provide data in ASCII, BCD. or various special codes. The system must
convert the data into some standard form for processing. Output devices may re­
quire data in ASCII. BCD. seven-segment, or other codes. Therefore, the system
must convert the results to a suitable form after the processing is completed.

There are several ways to approach code conversion :

1) Some conversions can easily be handled by algorithms involving arithmetic or
logical functions. The program may. however. have to handle some special cases
separately.

2) More complex conversions can be handled with lookup tables. The lookup ta­
ble method requires little programming and is easy to apply. However. the table
may occupy a large amount of memory if the range of input values is large

3) Hardware is readily available for some conversion tasks. Typical examples are
decoders for BCD to seven-segment conversion and Universal Asynchronous
Receiver/Transmitters (UARTs) for conversion between parallel (ASCII) and serial
(teletypewriter) formats.

ln most applications. the program should do as much as possible of the code conversion
work. This results in a savings in parts and board space as well as in increased
reliabi lity. Furthermore. most code conversions are easy to program and require linle
execution time.

7-1

EXAMPLES
Hex to ASCII
Purpose: Convert the con tents of memory location 0040 to an ASCII cha racter.

Memory location 0040 contains a single hexadecimal digit (the four most
significant bits are zero) Store the ASCII character in memory location
0041 .

Sample Problems:

Result:

b.

Result :

Flowchart:

Source Program:

ASCZ

LOA
CMP
BCC
ADC
ADC
STA
BAK

(00401

(00411

100401

10041 1

$40
#10
ASCZ
#.A_.9-2
#·o
$41

oc
43

06

36

·c

.ff

Eod

:G ET DATA
:IS DATA LESS THAN 10?

:ND. ADD OFFSET FOR LETTERS !CARRY = 11
.ADD OFFSET FOR ASCII
:STORE ASCII DIGIT

7-2

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A5 LDA $40
0001 40
0002 C9 CMP #10
0003 OA
0004 90 BCC ASCZ
0005 02
0006 69 ADC #'A·'9·2
0007 06
0008 69 ASCZ ADC #'O
0009 30
OOOA 85 STA $41
OOOB 41
oooc 00 BAK

The basic idea of this program is to add ASCII zero (3015) to all the hexadecimal digits
This addition converts the decimal digits to ASCII correctly: however. there is a break
between ASCII 9 (3915) and ASCII A (4115) which must be considered. This break must
be added to the non-decimal digits A, B. C. D. E. and F. The first ADC instruction ac­
complishes this by adding the offset 'A-·9-2 to the contents of the Accumulator. Can
you explain why the offset is "A-"9-2?

The problem here is that the letters do not follow immediately after the decimal d1g1ts in
ASCII. There is a gap occupied by the ASCII codes for such cha racters as (3A15). =
{3015). and @ (4015). To bridge this gap. we must add a constant factor determined by
the distance between the actual value of ASCII A (41151 and the value it would have if
there were no gap (3A 15). There 1s also an extra factor of 1 provided by the Carry flag .
You can compare this situation to the problem of walking from one address to another
on a street that is divided into two discontinuous sections by a canyon or a river

Remember that the ADC instruction always adds in the Carry bit. After the BCC instruc·
tion. we know that the Carry con tains one {otherwise a branch would have occurred) .
So we simply reduce the additive factor by 1 to account for the Carry. As for the second
ADC instruction. the Carry will be zero if the program branched after the CMP instruc­
tion (since the BCC instruction was used) or if the Accumulator contained a valid hex­
adecimal digit (10 through 15) since the additive factor is only 7. Therefore. we do not
have to worry about the Carry in any reasonable case.

This routine could be used in a variety of programs: for example. monitor programs
must convert hexadecimal digits to ASCII 1n order to display the contents of memory
locat ions in hexadecimal on an ASCII printer or CRT display.

Another (quicker) conversion method that requires no condi tional iumps at all is the
following program. described by Allison.1

SED
CLC
LDA
ADC
ADC
STA
CLD
BAK

$40
#$90
#$40
$41

;MAKE ADDITIONS DECIMAL
:CLEAR CARRY TO START
:GET HEXADECIMAL DIGIT
:DEVELOP EXTRA 6 AND CARRY
:ADD IN CARRY. ASCII OFFSET
:STORE ASCII DIGIT
:CLEAR DECIMAL MODE BEFORE ENDING

7-3

Try this program on some digits. Can you explain why it works? Note that you must be
careful to clear the decimal mode flag when you have completed all decimal arithmet ic.
Otherwise. you will get decimal results in programs (includi ng the monitor! where they
are not wanted.

Decimal to Seven-Segment
Purpose: Convert the contents of memory location 0041 to a seven-segment code in

memory location 0042. If memory location 004 1 does not con tai n a single
decimal digit. clear memory location 0042.

Seven-segment table: The following table can be used to convert decimal numbers to
seven-segment code. The seven-segment code is organized with the most significant
bit always zero followed by the code (1 = on. 0 = off) for segments g. f. e. d. c. b. and a
(see Figure 7-1 for the positions of the segments). The segment names are standard but
the organization that we have chosen is arbit rary. In actual applications. the hardware
determines the assignment of data bits to segments

Note that the table uses 70 for 6 rather than the alternative 7C (top bar off) to avoid
confusion with lower case b. and 6F for 9 rather than 67 (bottom bar of fl. for no particu­
lar reason.

Digit Code

0 3F
1 06
2 58
3 4F
4 66
5 6D
6 70
7 07
B 7F
9 6F

Figure 7-1. Seven-segment Arrangement

Sample Problems:

10041) 03

Result: 10042) 4F

10041) 28

Result: 10042) 00

7-4

Flowchart:

Result = 0

Eod

Note that the addition of base address (SSEG) and index (l;)ATA) produces the address
that contains the answer

Source Program:

DONE

SSEG

LOA
LOX
CPX
BCS
LOA

STA

BRK
· 420
.BYTE
.BYTE

#0
$41
#10
DONE
SSEG.X

$42

:GET ERROR CODE TO BLANK DISPLAY
:GET DATA
:IS DATA A DECIMAL DIGIT?
:NO. KEEP ERROR CODE
:YES. GET SEVEN-SEGMENT CODE FROM

TABLE
:SAVE SEVEN-SEGMENT CODE OR ERROR

CODE

:SEVEN-SEGMENT CODE TABLE
$3F.$06.$5B.$4F.$66
$6D.$7D.$07.$7F.$6F

7-5

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #0
0001 00
0002 A6 LDX $41
0003 41
0004 EO CPX #10
0005 OA
0006 BO BCS DONE
0007 02
0008 B5 LDA SSEG.X
0009 20
OOOA 85 DONE STA $42
OOOB 42
oooc 00 BAK

0020 3F SSEG .BYTE $3F
0021 06 $06
0022 5B $5B
0023 4F $4F
0024 66 $66
0025 6D .BYTE $6D
0026 7D $7D
0027 07 $07
0028 7F $7F
0029 6F $6F

The program calculates the memory address of the desired code by adding the index
(i.e .. the digit to be displayed) to the base address of the seven-segment code tab le.
This procedure is known as a table lookup. No explicit instructions are requ ired for the
addition. since it is performed automatically in the indexed addressing modes

The assembly language pseudo-operation .BYTE (define byte-length data) places con­
stant data in program memory. Such data may include tables. headings. error
messages. priming messages. format cha racters. thresholds. etc. The label attached to
a .BYTE pseudo-operation is assigned the value of the address into which the first byte
of data is placed

Tables are often used to perform code conversions that are more complex than the pre­
vious example. Such tables typically contain all the results organized according to the
input data: e.g .. the first entry is the code corresponding to the number zero

Seven-segment displays provide recognizable forms of the decimal digits and a few let­
ters and other cha racters. Calculator-type seven-segment displays are inexpensive.
easy to multiplex. and use little power. However. the seven-seg ment coded digits are
somewhat difficult to read

The assembler simply places the data for the table in memory. Note that one .BYTE
pseudo-operation can fill many memory locations. We have left some memory space
between the program and the table to allow for later additions or corrections.

The table can be placed anywhere in memory. although the absolute indexed address­
ing mode would have to be used if it was not on page zero. We could also use post-in­
dexing (with Index Register Y) and have the base address saved in two memory loca­
tions on page zero. The same program could then be used with any table since the base
add ress would be specified in RAM rather than in ROM.

7-6

ASCII to Decimal
Purpose: Convert the contents of memory location 0040 from an ASCII character to a

decimal digit and store the result in memory location 004 1. If the contents of
memory location 0040 are not the ASCII representation of a decimal digit.
set the contents of memory location 0041 to FF15.

Sample Problems:

a. (0040) 37 (ASCII 7)

Result: (004 1) 07

b. (0040) 55 (an invalid code. since it 1s not an
ASCII decimal digit)

Result: (0041) FF

Flowchart :

Start

Result .. FF 16

End

7-7

Source Program:

DONE

LDX
LDA
SEC
SBC
BCC
CMP
BCS
TAX
STX
BAK

Object Program:

#$FF
$40

#'O
DONE
#10
DONE

$41

Memory Address
(Hex I

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
oooc
OOOD
OOOE
OOOF
0010

GET ERROR MESSAGE
GET DATA
IGNORE CARRY IN SUBTRACTION

:IS DATA BELOW ASCII ZERO?
:YES. NOT A DIGIT
:I S DATA ABOVE ASCII NINE?
:YES. NOT A DIGIT
:SAVE DIGIT IF VALID
:SAVE DIGIT OR ERROR MARKER

Memory Contents Instruction
(Hex) (Mnemonic)

A2 LDX #$FF
FF
A5 LDA $40
40
38 SEC
E9 SBC #'O
30
90 BCC DONE
05
C9 CMP # 10
OA
BO BCS DONE
01
AA TAX
86 DONE STX $41
41
00 BAK

This program handles ASCII-coded characters just like ord inary numbers. Note that the
decima l digits and the letters form groups of consecutive codes Strmgs of letters (like
names) can be alphabetized by placing their ASCI! representati ons 1n increasing
numerical order (ASCII B =ASCII A+ 1 for examp le).

Subtracting ASCII zero (3015) from any ASCII decimal d1gt1 gives the BCD representa­
tion of that digit

The Carry must be set before a subtraction 1f 11 is not to affect the result since SBC pro­
duces (A) =(A) - (M) - (1 - Carry) where M is the contents of the addressed memory
location. Compare instructions, on the other hand. do not include the Carry in their im­
plied subtractions

ASCII-to-decimal conversion is necessary when dec imal numbers are being entered
from an ASCII device like a teletypewriter or CRT terminal

The basic idea of the program is to determine 1f the character 1s between ASCII 0 and
ASCII 9. inclusive. If so. the character is an ASCII decimal d191t since the digits form a
sequence. It may then be converted to decima l s1mpty by subtracting 3015 (ASCII 0) :
e g .. ASCII 7 - ASCII 0 = 37 - 30 - 7

Note that one comparison is done with an actual subtraction (SBC #'0) since the
subraction is necessary to convert ASC II to decimal The othe r comparison is done with
an implied subtraction (CMP #10) since the final result is now in the Accumulator 1f the
original number was valid .

7-8

BCD to Binary
Purpose : Convert two BCD digits in memory locauons 0040 and 0041 to a binary

number in memory location 0042 The most significant BCD digit is in
memory location 0040.

Sample Problems:

(0040) 02
(0041) 09

Result: 100421 1D15 ~ 2910

b. 10040) 07
(00411 01

Result: 10042) 4715 ~ 7110

Note We include no flowchart because the program multiplies the most significant
digit by 10 simply by using the formula 10x =Bx+ 2x. Multiplying by 2 requires
one arithmetic left shift and multiplying by 8 requires three such shifts.

Source Program:

LOA
ASL
STA
ASL
ASL
CLC
ADC
ADC
STA
BRK

Object Program:

$40
A
$42
A
A

$42
$41
$42

Memory Address
(Hex)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
oooc
0000
OOOE

:GET MOST SIGNIFICANT DIGIT (MSDI
;MSD TIMES TWO
:SAVE MSD TIMES TWO
:MSD TIMES FOUR
:MSD TIMES EIGHT

:MSD TIMES TEN (NO CARRY)
:ADD LEAST SIGNIFICANT DIGIT
:STORE BINARY EQUIVALENT

Memory Contents Instruction
(Hex) (Mnemonic)

A5 LOA $40
40
OA ASL A
85 STA $42
42
OA ASL A
QA ASL A
18 CLC
65 ADC $42
42
65 ADC $41
41
85 STA $42
42
00 BRK

7-9

BCD entries are converted to binary in order to save on storage and to simplify calcula·
tions. However. the need for convers ion may offset some of the advantages of binary
storage and arithmetic

Th is program multiplies the BCD dig it in memory location 0040 by 10 using left shifts
and add 1tions.2 Note that ASL A multiplies the con tents of the Accumulator by 2. Th is
allows you to mult iply the contents of the Accumulator by small decimal numbers in a
few instructions. How would you use this procedure to multiply by 16? by 12? by 7?

BCD numbers require about 20% more storage than do binary numbers. Represent ing 0
to 999 requires 3 BCD digits (12 bits) and 10 bits in binary (since 210 = 1024=1000)

7-10

Convert Binary Number to ASCII String
Purpose: Convert the 8-bit binary number in memory location 0041 to eight ASCII

characters (either ASCII 0 or ASCII 1) in memory locations 0042 through
0049 (the most significant bit is in 0042)

Sample Problem:

10041) D2 = 11010010

Result : 100421 31 ASCII 1
100431 31 ASCII 1
10044) 30 ASCI I 0
10045) 31 ASCI I 1
10046) 30 ASCII 0
100471 30 ASCII 0
100481 31 ASCII 1
100491 30 ASCII 0

Flowchart :

'"d

7- 11

Source Program:

LDA
LDX
LDY

CDNV STY
LSR
BCC
INC

COUNT DEX
BNE
BRK

Object Program:

$41
#B
#'O
$41.X
A
COUNT
$41.X

CONV

GET DATA
NUMBER OF BITS ~ 8
GET ASCII ZERO TO STORE IN STRING

:STORE ASC II ZERO IN STRING
:IS NEXT BIT OF DATA ZERO'

:NO. MAKE STRING ELEMENT ASCII ONE
:COUNT BITS

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A5 LDA $41
0001 41
0002 A2 LDX #B
0003 08
0004 AO LDY #'O
0005 30
0006 94 CONV STY $41.X
0007 41
0008 4A LSR A
0009 90 BCC COUNT
OOOA 02
OOOB F6 INC $4 1.X
oooc 41
OOOD CA COUNT DEX
OOOE DO BNE CONV
OOOF F6
0010 00 BAK

The ASCII digits form a sequence so ASCII 1 = ASCII 0 + 1 The INX instruction can be
used to directly increment the contents of a memory location. The savings here are that
no explicit instructions are required to load the data from memory or to store the result
back into meffiory. Nor are any of the user registers (AX. and Y) disturbed. However.
the CPU must actually load the data from memory. save 1t in a temporary register. incre­
ment it. and store the result back into memory. All data processing actually takes place
inside the CPU

Be careful of the difference between INX and an instruction like INC $41.X. The INC in­
struction adds one to the contents of Index Register X: INC $41 .X adds one to the con­
tents of the indexed memory location - 11 has no effect on Index Register X.

Binary-to-ASCII conversion is necessary when numbers are printed in binary form on an
ASCII device.

The conversion to ASCII simply involves adding ASCII zero (3015) .

7-12

PROBLEMS
1) ASCII to Hex
Purpose: Convert the contents of memory location 0040 to a hexadecimal digit and

store the result 1n memory location 0041 . Assume that memory location
0040 contains the ASCII representat ion of a hexadecimal digit (7 bits with
MSB 01.

Sample Problems:

a. 10040)

Result: 10041)

(0040)

43 ASCII C

oc
b. 36 ASCII 6

Result: I004l) 06

2) Seven-Segment to Decimal
Purpose : Convert the contents of memory location 0040 from a seven-segment code

to a decimal number in memory location 0041. If memory locat1on 0040 does
not contain a valid seven-segment code. set memory location 0041 to FF16·
Use the seven-segment table given under the Decimal to Seven-Segment ex­
ample and try to match codes.

Sample Problems :

a. 10040) 4F

Resu lt 100411 03

b 10040) 28

Resu lt: 100411 FF

3) Decimal to ASCII
Purpose : Convert the contents of memory location 0040 from a decimal digit to an

ASCII character and store the result 1n memory location 0041 . lf the number
in memory loca tion 0040 is not a decimal d igit. set the conten ts of memory
location 0041 to an ASCII b lank character (2015).

Sample Problems:

a. 10040) 07

Result: 1004 11 37 ASCII 7

100401 55

Resu It: (0041)

4) Binary to BCD

20 ASCII SPACE

Purpose: Convert the contents of memory location 0040 to two BCD digits 1n memory
locations 0041 and 0042 (most significant digit. 1n 0041) · The number 1n
memory location 0040 is unsigned and less than 100

Sample Problems:

10040) 10 129 dec imal)

Result· 10041) 02
(00421 09

b. 10040) 47 171 decimal)

Resul t: (0041) 07
(0042) 01

7-13

6) ASCII String to Binary Number
Purpose : Convert the eight ASCII characters in memory locations 0042 through 0049

to an 8-bit binary number in memory location 0041 (the most significant bit
is in 0042). Clear memory location 0040 if all the ASCII characters are either
ASCII 1 or ASCII 0 and set 1t to FF16 otherwise

Sample Problems:

a. (00421 31 ASCII 1
(0043) 31 ASCII 1
(0044) 30 ASCII 0
(0045) 31 ASCI I 1
(0046) 30 ASCII 0
(0047) 30 ASCII 0
(0048) 31 ASCII 1
(0049) 30 ASCII 0

Result" (00411 D2
(0040) 00

b. same as 'a' except"
10045) 37 ASCII 7

Result" (0040) FF

7-14

REFERENCES

O_ R. Allison. "A Design Philosophy for Microcomputer Architectures." Computer.
February 1977. pp. 35-41 . This is an excellent article which we recommend highly.

2. Other BCD-to-binary conversion methods are discussed in J.A. Tabb and M.L
Roginsky. "Mic roprocessor Algorithms Make BCD-Binary Conversions Super-fast."
EON. January 5. 1977. pp. 46-50 and in J.B. Peatman. Microcomputer-based
Design. (New York McGraw-Hiii. 1977. pp. 400-406

7-15

Chapter 8
ARITHMETIC PROBLEMS

Most arithmetic in microprocessor applications consists of multiple-word binary
or decimal manipulations. A decimal correction (decimal adjust) or some other
means for performing decimal arithmetic is frequently the only arithmetic instruc­
tion provided besides basic addition and subtraction. You must implement other
arithmetic operations with sequences of instructions.

Multiple-precision binary arithmetic requires simple repetitions of the basic
single-word instructions. The Carry bit transfers information between words. Add
with Carry and Subtract with Carry use the information from the previous arithmetic
operat ions. You must be ca reful to clear the Carry before operating on the first words
(obviously there is no carry into or borrow from the least significant bits)

Decimal arithmetic is a common enough task for microprocessors that most have
special instructions for th is purpose. These mstructions may either perform decimal
opera tions directly or correct the results of binary operations to the proper decimal
form Decimal arithmetic is essential in such applica t ions as pomt·of·sa !e terminals.
calcu lators. check processors. order entry systems. and bankmg terminals.

You can implement multiplication and division as series of addi1ions and subtractions
respectively. much as they are done by hand. Double·word operations are necessary
si nce a mult iplication produces a result twice as long as the operands. while a division
similarly con tracts the length of the result . Mult1pl1cations and div1s1ons are time-con·
suming when done in software because of the repeated arithmetic and shift operations
that are necessary_ Of course. multiplying or divtdmg by a power of 2 i.s simple because
such operations can be implemented wi th an appropriate number of left or nght
arithmetic shi fts

8-1

EXAMPLES
Multiple-Precision Binary Addition
Purpose : Add two multiple-word binary numbers. The length of the numbers (in bytes)

1s m memory location 0040. the numbers themselves start (most significant
bits first) in memory locations 0041 and 0051. respectively. and the sum
replaces the number starting in memory location 0041

Sample Problem:

100401 04

10041 1 2F
100421 5B
100431 A7
100441 C3

100511 14
100521 DF
100531 35
100541 BB

Result : 100411 44
100421 3A
100431 DD
100441 7B

that IS . 2F5BA7C3
+ 14DF3588

443ADD7B

Flowchart :

Start

Eod

8-2

Source Program:

LOX
CLC

ADDW LOA
ADC
STA
DEX
BNE
BAK

Object Program:

$40

$40.X
$50.X
$40.X

ADDW

:INDEX =LENGTH OF STRINGS
:CLEAR CA RRY TO START
:GET BYTE FROM STRING 1
:ADD BYTE FROM STRING 2
:STORE RESULT IN STRING 1

:CONTINUE UNTIL ALL BYTES ADDED

Memory Address
(Hex)

Memory Contents Instruct ion
(Hex) (Mnemonic)

0000
0001
0002
0003
0004
0005
0006
0007
OOOB
0009
OOOA
OOOB
oooc

A6
40
lB
B5
40
75
50
95
40
CA
DO
F7
00

ADDW

The relative address for BNE AOOW is:

0003 03
·OOOC +F4

"'Fl

LOX $40

CLC
LOA $40.X

ADC $50.X

STA $40.X

DEX
BNE ADDW

BAK

The instruction CLC 1s used to clea r the Carry bit si nce there 1s no ca rry involved in the
add1 t1on of the least sign ificant bytes.

The ins tru ction AOC. Add with Carry. includes the Carry from the previous words 1n the
addition. AOC is 1he only instruction in the loop that affects the Carry In particular.
note that increment and decrement 1nstruct1ons (DEC. DEX. DEY. INC. INX. INY) do not
affect the Carry

This program uses the same index wllh two different base ad·
dresses to handle the two stri ngs. The strmgs can be located any­
where m memory Furthermore. there would be no d1f11culty 1n
storing the result in a th ird stnng.

DECIMAL
ACCURACY
IN BINARY

This procedure can add binary numbers of any length. Note that ten binary bits corres­
pond to three decimal digits since 210 = 1024 :::::: 1000. So. you can calculate the num­
ber of b its required to give a certain accuracy m decimal d1g1ts For example. twelve
decimal d igit accu racy requires:

12 x
1~ =40 bits

8-3

Decimal Addition
Purpose : Add two multi-byte decimal (BCD) numbers. The length of the numbers (in

bytes) is in memory location 0040. the numbers themselves start (most sig­
nificant bits first) in memory locations 0041 and 0051 . respectively, and the
sum replaces the number starting in memory location 0041 .

Sample Problem:

100401 04

1004 11 36
100421 70
100431 19
100441 85

100511 12
100521 66
100531 34
100541 59

Result: 100411 49
100421 36
100431 54
100441 44

that is. 36701985
+12663459

49365444

Flow chart:

Start

8-4

Source Program:

SED
LOX $40
CLC

ADDW LOA $40.X
ADC $50.X
STA $40.X
DEX
BNE ADDW
CLO
BAK

Object Program:

Memory Address
(Hex)

0000
0001
0002
0003
0004
0005
0006
0007
OOOB
0009
OOOA
OOOB
oooc
0000
OOOE

:MAKE ALL ARITHMETIC DECIMAL
:INDEX =LENGTH OF STRINGS
:CLEAR CARRY TO START
:GET TWO DIGITS FROM STRING 1
;ADD TWO DIGITS FROM STRING 2
:STORE RESULT IN STRING 1

:CONTINUE UNTIL ALL DIGITS ADDED
:RETURN TO BINARY MODE

Memory Contents Instruction
(Hex) (Mnemonic)

FB SED
A6 LOX $40
40
lB CLC
B5 ADDW LOA $40.X
40
75 ADC $50.X
50
95 STA $40.X
40
CA DEX
DO BNE ADDW
F7
08 CLO
00 BAK

The Decimal mode automatically takes care of the following
situations in which binary and BCD addition differ:

1
6502
DECIMAL
MODE 1) The sum of two digits is between 10 and 15 1nc lus1ve. In this

case. six must be added to the sum to give the right result. 1.e. ,

0101 151
+ 1000 (81

1101 IOI
+ 0110

0001 0011 (BCD 13. which is correct)

2) The sum of two d1g1ts is 16 or more. In this case. the result is a proper BCD d1g1t but
six less than 11 should be. i.e ..

1000 (8)
+ 1001 191

0001 0001 (BCD 111
___±_jl_}_.!_Q
0001 0111 (BCD 17. which IS correct)

Six must be added in both situations_ However. case 1 can be recognized by the fact
that the sum is not a BCD digit. 1 e .. it is between 10 and 15 (or A and F hexadecimal)
Case 2 can only be recognized by the fact that the carry from the d1g11 addition 1s one
since the result is a valid BCD number

8-5

When the Decimal Mode flag is set, all arithemtic is carried out in the decimal
form. This includes subtractions as well as additions. regardless of which address­
ing mode is employed.

However, the Increment and Decrement instructions pro­
duce binary results even when the Decimal Mode flag is
set. Thus DEC. DEX. DEY. INC. INX. and INY can only be used
to maintain binary counters. For example. to increment a

DECIMAL
MODE
LIMITATIONS

decimal counter in memory location 0040. you must use the sequence:

SED
LDA
CLC
ADC
STA
CLD

$40

#1
$40

:MAKE ARITHMETIC DECIMAL
:GET COUNTER
:KEEP CARRY FROM AFFECTI NG ADDITION
:INCREMENT COUNTER !DECIMAL)

:RETURN TO BINARY MODE

The SEO. CLC. and CLO instructions may not be necessary ii other parts of the program
set the status flags appropriately.

Subtractions in the decimal mode produce correct BCD resu Its with the Carry being an
inverted borrow. For example. if the Accumulator contains 03. the addressed memory
location contains 27. and the Carry contains 1. alter the execut ion of an SBC instruction
the Accumulator will contain 76 and the Carry will be 0. As in the binary mode. a Carry
of zero means that a borrow has been generated.

The Sign bit is not meaningful after additions and subtractions when the Decimal
Mode flag is set. It reflects the result of the binary operation. not of the decimal opera­
tion. In the most recently mentioned situation (03-27). the Sign bit wi l l be set {as it
would be if the numbers were binary) even though the decimal result (76) has a most
s1gnil1cant bit of zero

This procedure can add decimal (BCD) numbers of any length. ACCURACY IN
Here fou r binary bits are required for each decimal digit. so BINARY ANO BCD
twelve-digit accuracy requires

12 x 4 = 48 bi tS

as opposed to 40 bits in the binary case. This is six 8-bn words instead of five.

The program for decimal addition is the same as that for binary addition except for the
surrounding CLO and SEO instructions. Thus a single sequence of instructions can pro­
duce two entirely different results depending on the value of a flag that is not even
mentioned explicitly. Can you suggest some problems this might create in connecting
programs written at different times or by different people?

8-6

8-Bit Binary Multiplication
Purpose: Multiply the 8-bit unsigned number in memory location 0040 by the 8-bit

unsigned number in memory location 0041 . Place the eight least significant
bits of the result into memory location 0042 and the eight most significant
bits into memory location 0043.

Sample Problems:

a. (0040) 03
(0041) 05

Resulr 100421 OF
(0043) 00

or in decimal 3 x 5 = 15

(0040) 6F
(0041) 61

Result : (0042) OF
(00431 2A

or 111 x 97 ~ 10.767

You can perform multiplication on a computer in the same way that you do long
multiplication by hand. Since the numbers are binary, the only problem is whether to
multiply by 0 or 1. multiplying by zero obviously gives zero as a result while multiply­
ing by one produces the same number that you started with (the multiplicand). So. each
step in a binary multiplication can be reduced to the fol lowing operation.

If the current bit in the multiplier is 1. add the multiplicand
to the partial product.

"M"""U.,.L T"'1"'P.,.L1"'c""A"'T""1o"'N"'
ALGORITHM

The only remaining problem is to ensure that you line everything up correctly each
time. The following operations perform this task

1) Shift the multiplier left one bit so that the bit to be examined is placed in the Carry.

2) Shift the product left one bit so that the next addition 1s lined up correct ly

The complete process for binary multiplication is as follows :

Step 1 - Initialization

Product= 0
Counter= 8

Step 2 - Shift Product so as to line up properly
Product ~ 2 x Product (LSB = 0)

Step 3 - Shift Multiplier so bit goes to Carry
Multiplier= 2 x Multiplier

Step 4 - Add Multiplicand to Product if Carry is 1
If Carry = 1. Product =Product+ Multiplicand

Step 5 - Decrement Counter and check for zero

Counter= Counter - 1
If Counter 1-0 go to Step 2

8-7

In the case of Samp!e Problem b. where the multiplier is 6116 and the multiplicand is
6F16 the process works as follows·

!nitia lization:

Product 0000
Multiplier 61

Multiplicand 6F
Counter 08

After first iteration of steps 2-5·

Product 0000
Multiplier C2

Multiplicand 6F
Counter 07

Carry from Multiplier 0

After second iteration:

Product 006F
Multiplier 84

Multiplicand 6F
Counter 06

Carry from Multiplier 1

After third iteration·

Produ ct 014D
Multiplier 08

Multiplicand 6F
Counter 05

Carry from Mult iplier 1

After fourth iteration:

Product 029A
Mult1p\1er 10

Multiplicand 6F
Counter 04

Carry from Multiplier 0

After fifth iteration·

Produc: 0534
Multiplier 20

Multiplicand 6F
Counter 03

Carry from Mutt1pt1er 0

After sixth iteration

Product OA68
Multiplier 40

Mult1pJ1cand 6F
Counter 02

Carry from Multiplier 0

After seventh iterat ion·

Product 14DO
Multiplier 80

Multiplicand 6F
Counter 01

Carry from Multiplier 0

8-8

After eighth iteration

Product 2AOF
Mu ltip l ier 00

Multiplicand 6F
Counter 00

Carry from Multiplier 1

Flowchart:

Start

Eod

8-9

Source Program:

LOA #0 LSB'S OF PRODUCT= ZERO
STA $43 MSB'S OF PRODUCT =ZERO
LOX #8 NUMBER OF BITS IN MULTIPLIER = 8

SHIFT ASL A SHIFT PRODUCT LEFT ONE BIT
ROL $43
ASL $41 ;SHIFT MULTIPLIER LEFT
BCC CHCNT ; NO ADDITION IF NEXT BIT IS ZERO
CLC :ADD MULTIPLICAND TO PRODUCT
ADC $40
sec CHCNT
INC $43 ;WITH CARRY IF NECESSARY

CHCNT DEX :LOOP UNTIL 8 BITS ARE MULTIPLIED
BNE SHIFT
STA $42 STORE LSB'S OF PRODUCT
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LOA #0
0001 00
0002 85 STA $43
0003 43
0004 A2 LOX #8
0005 08
0006 OA SHIFT ASL A
0007 26 ROL $43
0008 43
0009 06 ASL $41
OOOA 41
0008 90 sec CHCNT
oooc 07
0000 18 CLC
OOOE 65 ADC $40
OOOF 40
0010 90 BCC CHCNT
0011 02
0012 E6 INC $43
0013 43
0014 CA CHCNT DEX
0015 DO BNE SHIFT
0016 EF
0017 85 STA $42
0018 42
0019 00 BRK

8-10

Besides its obvious use in calculators and point-of-sale terminals. multiplication is a key
part of almost all signal processing and control algorithms. The speed at which
multiplications can be performed determines the usefulness of a CPU in process con·
trot signal detection. and signal analysis.

This algorithm takes between 170 and 280 clock cycles to multiply on a 6502
microprocessor. The precise time depends on the number of l bits in the multiplier.
Other algorithms may be able to reduce the average execu1ion time somewhat. but 250
clock cycles will still be a typical execution time for a software multiplication. Some
microprocessors (such as the 9900. 8086. and Z8000) have hardware multiplication in·
structions that are somewhat faster but maximum speed requires the addition of exter·
nal hardware

8- 11

8-Bit Binary Division
Purpose: Divide the 16-bit unsigned number in memory locations 0040 and 0041

(most significant bits in 0041) by the 8-bit unsigned number in memory loca­
tion 0042. The numbers are normalized so that 1) the most significant bits of
both the dividend and the divisor are zero and 2) the number in memory
location 0042 is greater than the number in memory location 0041 .Thus, the
quotient is an 8-bit number. Store the quotient in memory location 0043 and
the remainder in location 0044

Sample Problems:

a.

b

(0040)
(0041)
(00421

Result

(00401
(00411
(0042)

Result

40 (64 decimal)
00
08

(0043) = 08
10044) = 00
i~. 64/8 = 8

60 (12.909 decima l)
32
47 (71 decimal)

(00431=85 (181 decimal)
(0044) = 3A (58 decimal)
1.e .. 12.909/71 = 181 with a remainder of 58 ..-----..

You can perform division on the computer just like you would per- DIVISION
form division with pen and paper. i.e., using trial subtractions. ALGORITHM
Since the numbers are binary. the only question is whether the bit
in the quotient is 0 or 1. i.e .. whether the divisor can be subtracted from what is left of
the dividend Each step in a binary division can be red uced to the following operation:

If the divisor can be subtracted from the eight
most significant bits of the dividend without
a borrow. the corresponding bit m the quo­
tient is 1. otherwise it is 0.

The only remaining problem is to line up the dividend and quotient properly You can
do this by shifting the dividend and quotient logically left one bit before each trial
subtraction The dividend and quotient can share a 16-bit register. since the procedure
clea rs one bit of the d1v1dend at the same time as 1t determines one btt of the quotient

The complete process for binary division is ·

Step 1 - Initialization :
Quotient - 0
Counter - 8

Step 2 - Shift Dividend and Quotient so as to line up properly :
Dividend = 2 X Dividend
Quotient - 2 X Quotient

Step 3 - Perform trial Subtraction. If no Borrow add 1 to Quotient :
1f 8 MSBs of Dividend > Divisor then
MSBs of Dividend - MSBs of Dividend - Divisor
Quot ient - Quotient + 1

Step 4 - Decrement counter and check for zero :
Counter - Counter - 1
if Counter *-0, go to Step 2
Remainder - 8 MSBs of Dividend

8- 12

In the case of sample problem b. where the dividend is 326016 and the divisor is 4 715.
the process works as follows·

Initia liza tion:
01v1dend 3260

Divisor 47
Quotient 00
Counter 00

Af ter first 1terat1on of S1eps 2 - 4 :
(Note that the dividend is shtfted pr ior to the trtal subtraction)

01v1dend 1 DOA
01v1sor 47

Quotient 01
Counter 07

Af ter second iteration of Steps 2 - 4 :
0 iv1dend 3884

01v1sor 47
Quotient 02
Cou nter 06

After third iteration ·
01v1dend 3068

0 1v1sor 47
Quotient 05
Counter 05

After fourth 1terat1on
D1v1dend 1900

D1v1sor 47
Quotient OB
Counter 04

After fifth iteration:
Dividend 33AO

Divisor 47
Quottent 16
Counter 03

After sixth iterat1on:
0 1v1dend 2040

01v1sor 47
Quotient 20
Counter 02

After seven th 11erat1on :
01v1dend 4080

0 1v1sor 47
Quotient 5A
Counter 01

Af!er eighth 1tera11on:
01v1dend 3AOO

01v isor 47
Ouotient 85
Counter 00

So the quotient is 85 and the remainder is 3A

8-13

The MSBs of dividend and divisor are assumed to be zero: this simplifies calculations
(the shift prior to the t ria l subtraction would otherwise place the MSB of the dividend in
the Carry). Problems that are not in this form must be simplified by removing parts of
the quotient that would overflow an 8-bit word . For example

1024 = 400 (Hex) = 100 + 100 (Hex)
3 3 3

The last problem is now in the proper form An extra division may be necessary.

Flowchart:

Start

Eod

8- 14

Source Program:

LDX #8 ;NUMBER OF BITS IN DIVISOR~ 8
LDA $40 ;START WITH LSB'S OF DIVIDEND
STA $43
LDA $41 :GET MSB'S OF DIVIDEND

DIVID ASL $43 ;SHIFT DIVIDEND. QUOTIENT LEFT 1 BIT
ROL A
CMP $42 :CAN DIVISOR BE SU BTRACTED '
BCC CHCNT ; NO. GO TO NEXT STEP
SBC $42 ;YES. SUBTRACT DIVISOR (CARRY~ 1)
INC $43 ;AND INCREMENT QUOTIENT BY 1

CHCNT DEX ;LOOP UNTIL ALL 8 BITS HANDLED
BNE DIVID
STA $44 ;STORE REMAINDER
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A2 LDX #8
0001 08
0002 A5 LDA $40
0003 40
0004 85 STA $43
0005 43
0006 A5 LDA $41
0007 41
0008 06 DIVID ASL $43
0009 43
OOOA 2A ROL A
OOOB C5 CMP $42
oooc 42
OOOD 90 BCC CHCNT
OOOE 04
OOOF E5 SBC $42
0010 42
0011 E6 INC $43
0012 43
0013 CA CHCNT DEX
0014 DO BNE DIVID
0015 F2
0016 B5 STA $44
0017 44
001B 00 BRK

Division is used in calculato rs. terminals. commun ications error checking. con trol
algorithms. and many other applications.

The algorithm takes between 150 and 230 microseconds to divide on a 6502 with a 1
MHz clock. The precise time depends on the number of 1 bits in the quotient. Other
algorithms can reduce the average time somewhat. but 200 microseconds will still be
typical for a softwa re division.

The instru ctions ASL $43 and AOL A together provide a 16-bit arithmetic left shift of
the dividend (MSBs in A) The AOL instruction picks up the bit which the ASL instru c­
tion left in the Carry

8-15

An B+bit subtraction is necessary. since there 1s no simple way to perform a 16-bit
subtraction or comparison.

Memory location 0043 and the Accumulator hold both the dividend and the quotient
(MSBs in Accumulator) . The quotient simply replaces the dividend 1n memory location
0043 as the dividend is shifted left arithmetically.

We do not have to worry about the Carry in the SBC instruction. It must be ·1 · since
otherwtse BCC would have caused a branch. Remember that a Carry value of T has no
effect on the result of an SBC instruction since the Carry 1s an inverted borrow

The fo1!ow1ng routine offers an improvement in t1m1ng over the previous example
without 1ncreas1ng memory usage. It also performs error checking .

DIV

DIVID

CHCNT

DONE

LDX
LDA
STA
LDA
CMP
BCS
ROL
ROL
CMP
sec
SBC
DEX
BNE
ROL
STA
RTS

#8
S40
S43
$41
S42
DONE
S43
A
S42
CHCNT
$42

DIVID
S43
$44

:NUMBER OF BITS IN DIVISOR= 8
:START WITH LSB'S OF DIVIDEND

GET MSB'S OF DIVIDEND
:SHOULD BE LESS THAN DIVISOR
:IF NOT. ERROR EXIT (CARRY= I I
:SHIFTDIVIDEND. QUOTIENT LEFT I BIT
:!AND NEW ANSWER BIT - SEE DEX BELOW)
:CAN DIVISOR BE SUBTRACTED'
:NO. GO TO NEXT STEP (CARRY= 0)
:YES. SUBTRACT DIVISOR (CARRY= I)
:NOTE CARRY' NEW ANSWER BIT
:LOOP UNTIL ALL 8 BITS HANDLED
:SHIFT IN THE LAST ANSWER BIT
:STORE REMAINDER (CARRY= 0 HERE)
:OUIT (CARRY 0. NORMAL. CARRY I. ERROR)

8-16

Self-Checking Numbers
Double Add Double Mod 10
Purpose: Calculate a checksum digit from a string of BCD digits. The length of the

string of digits (number of words) is in memory location 0041: the str ing of
digits (2 BCD digits to a word) starts in memory location 0042. Calculate the
checksum digit by the Double Add Double Mod 10 technique 1 and store it in
memory location 0040

The Double Add Double Mod 10 technique works as follows:

1) Clea r the checksum to start

2) Multiply the lead ing digit by two and add the result to the
checksum.

3) Add the next digit to the checksum

SELF-CHECKING
NUMBERS

4) Continue the alternating process until you have used all the digits.

5) The least significant digit of the checksum is the self-checking digit

Self-checking d igits are commonly added to identification numbers on credit ca rds. in­
ven tory tags. luggage. parcels. etc .. when they are handled by computerized systems.
They may also be used in routing messages. identifying files. and other appl icat ions.
The purpose of the d igi ts is to minimize entry errors such as transposing digits (69 in­
stead of 96). shifting digits (7260 instead of 3726). missing digits by one (65 instead of
64). etc. You can check the self-checking number automatically for correctness upon
entry and can eliminate many errors immediately

The analysis of self-checking methods is quite complex. For example. a plain checksum
will not find transposition errors (4 + 9 = 9 + 4). The Double Add Double algorithm will
find simple transposition errors (2 x 4 + 9 = 17 1- 2 x 9 + 4); but will miss some errors.
such as transposi tions across even numbers of digits (367 instead of 763). However.
this method will find many common errors! The value of a method depends on what er­
rors 1t will detect and on the probabi l ity of particular errors in an application.

For example_ if the string of digits is

549321

the result will be:

Checksum 5 x 2 + 4 + 9 x 2 + 3 + 2 x 2 + 1 = 40
Self-checking d igit 0 (leas t significan t dig it of a checksum)

Note that an erroneous en try like 543921 w ould produce a different self-checking digit
(4). but erroneous entnes like 049321 or 945321 would not be detec ted.

Sample Problems:

b.

100411 03
100421 36
100431 68
100441 51

Result : Checksum= 3 x 2 + 6 + 6 x 2 + 8 + 5 x 2 + 1 = 43
100401 03

100411
100421
100431
100441
(0045)

04
50
29
16
83

Result : Checksum= 5 x 2 + 0 + 2 x 2 + 9 + 1 x 2 + 6 + 8 x 2 + 3 = 50
(00401 = 00

8-1 7

Flowchart:

Start

MSD =(Base
+lndexl/16

LSD .,,, (Base+lndex)
A.ND 000011 11
{binarvl

Checksum =
Checksum +
2 x MSD +LSD

Eod

8-18

Source Program:

SED MAKE ALL ARITHIMETIC DECIMAL
LDX $41 INDEX = LENGTH OF STRING
LDY #0 CHECKSUM =ZERO

CHKDG LDA $41 .X GET NEXT 2 DIGITS OF DATA
LSR A SHIFT OFF LEAST SIGNIFICANT DIGIT
LSR A
LSR A
LSR A
STA $40
CLC :CLEAR CARRY FROM SHIFTING
ADC $40 :DOUBLE MOST SIGNIFICANT DIGIT
STY $40 :DOUBLING A DIGIT NEVER PRODUCES A

CARRY
ADC $40 :ADD DOUBLED MSD TO CHECKSUM
STA $40
LDA $41 .X :GET LEAST SIGNIFICANT DIGIT
AND #%00001111 : (MASK OFF MSDI
CLC :ADD LSD TO CHECKSUM
ADC $40
TAY
DEX
BNE CHKDG :CONTINUE UNTIL ALL DIGITS SUMMED
AND #%00001111 :SAVE LSD OF SELF-CHECKING DIGIT
STA $40
CLD .RETURN TO BINARY MODE
BAK

8- 19

Object Program:

Memory Address Memory Contents Instruc ti on
(Hex) (Hex) (Mnemon ic)

0000 F8 SED
0001 A6 LOX $41
0002 41
0003 AO LOY #0
0004 00
0005 85 CHKDG LOA $41 .X
0006 41
0007 4A tSR A
0008 4A LSR A
0009 4A LSR A
OOOA 4A LSR A
0008 85 STA $40
oooc 40
0000 18 CLC
OOOE 65 ADC $40
OOOF 40
0010 84 STY $40
0011 40
0012 65 ADC $40
0013 40
0014 85 STA $40
0015 40
0016 85 LOA $41 .X
0017 41
0018 29 AND #%00001111
0019 OF
001A 18 CLC
0018 65 ADC $40
OOlC 40
0010 AS TAY
001E CA DEX
001F DO 8NE CHKOG
0020 E4
0021 29 ANO #%00001111
0022 OF
0023 85 STA $40
0024 40
0025 08 CLO
0026 00 8RK

The digits are removed by shifti ng and masking Fou r logical right shifts are needed to
sepa ra te out the most sign1f1cant digit

All arithmetic 1s performed 1n the decimal mode. Remember, however. that DEX still
produces a bmary result.

There 1s no problem with the Carry from doubling a decimal d1g11 since the result can
never be larger than 18. Y ou may be able to el1 m1nate the final CLC instruction if the
numbers to be summed are known to be too small to ever produce a Carry.

8-20

You can double a decimal number in the Accumulator by
adding it to itself in the decimal mode. A typical sequence is as
follows (using memory location 0040 for temporary storage)

DOUBLING AND
HALVING
DECIMAL
NUMBERS SED

STA
CLC
ADC
CLO

$40

$40

:MAKE ARITHMETIC DECIMAL

:KEEP CARRY FROM AFFECTING ADDITION
:DOUBLE NUMBER
:RETURN TO BINARY MODE

You may not need the SEO, CLC. and CLO instructions if other parts of the program set
the Carry and Decimal Mode flags appropriately. Note that you cannot use ASL A to
double a decimal number because that instruction produces a binary result even if the
Decimal Mode flag is set.

You divide a decimal number by 2 simply by shifting it right logically and then
subtracting 3 from any digit that is 8 or larger (since 10 BCD is 16 binary). The following
program divides a decimal number in memory location 0040 by 2 and places the result
1n memory location 0041 .

LDA $40 :GET DECIMAL NUMBER
LSR A :DIVIDE BY 2 IN BINARY
TAX
AND #%00001111 :IS LEAST SIGNIFICANT DIGIT 8 OR MORE'
CMP #8
BCC DONE
TXA
SBC #3 :YES. SUBTRACT 3 FOR DECIMAL

CORRECTION
TAX

DONE STX $41 :STORE NUMBER DIVIDED BY 2
BAK

There is no problem with the Carry in the SBC instruction since that instruction 1s only
executed if the Carry 1s set. Remember that SBC subtracts off the complemented Carry
(1 - C) so a Carry of 1 does not affect the result.

Try the division method by hand on the decimal numbers 28. 30. and 37. Do you under­
stand why it works? You may also wish to try the program on the same .. d_a_t•---.
Rounding is simple regardless of whether the numbers are binary
or decimal. A btnary number can be rounded as follows:

If the most significant bit to be dropped is 1.
add 1 to the remaining bits. Otherwise. leave
the remain ing bits alone

BINARY
ROUNDING

This rule works because 1 is halfway between 0 and 10 in binary. much as 5 is halfway
in decimal (note that 0.5 decimal = 0.1 binary)

So. the following program will round a 16-bit number in memory locations 0040 and
0041 (MSBs in 0041) to an 8-bn number in memory location 0041

DONE

LOA
BPL
INC
BAK

$40
DONE
$41

:IS MSB OF EXTRA BYTE 1?

:YES. ROUND MSB'S UP

8-21

If the number is longer than 16 bits. the rounding must ripple through all the bytes a:>
needed. Note that we cou ld use BIT $40 instead of LOA $40 since the BIT instruction
se ts the Sign flag according to the most significant bit of the addressed memory loca·
lion. This approach leaves the Accumulator as it was although it does change the
status flags

Decimal rounding is a bit more difficu l t because the crossover
point is now BCD 50 and the rounding must produce a decimal
result. The rule is:

If the most significant digit is to be dropped
is 5 or more. add 1 to the remaining digits.

DECIMAL
ROUNDING

The following program will round a 4·digit BCD number in memory locations 0040 and
0041 (MSDs in 0041) to a two·digit BCD number in memory location 004 1

LDA $40 ;IS BYTE TO BE DROPPED 50 OR MORE'
CMP #$50
BCC DONE
SED :YES. ROUND MSD'S UP BY 1 IN DECIMAL
LDA $41
ADC #0 :ADD IN CARRY (KNOWN TO BE SETI
STA $4 1
CLD :RETURN TO BINARY MODE

DONE BAK

Remember that you cannot use the INC instruction to add 1 because that instruction al·
ways produces a binary result. The instruction ADC#O will add 1 to the Accumulator
since the Carry must be 1 for the instruction to be executed (otherwise the BCC instruc·
tion would have forced a branch) . As usual. we must be ca reful to set and clear the
Decimal Mode flag appropriately. For longer numbers. the rounding must ripple
through more significant digits as needed

8-22

PROBLEMS
1) Multiple-Precision Binary Subtraction

Purpose: Subtract one multiple-word number from another The length of the num­
bers is in memory location 0040. the numbers themselves start (most signifi­
cant bits first) in memory locations 0041 and 005 1. respective ly. and the
difference replaces the number starting in memory location 0041 . Subtrac t
the number starting in 0051 from the one starti ng in 0041 .

Sample Problem:

(0040) 04

(00411 2F
(0042) 5B
(0043) A7
(0044) C3

(0051) 14
(0052) OF
(0053) 35
(0054) BB

Result : (00411 lA
(0042) 7C
(00431 72
(0044) OB

that is. 2F5BA7C3
- 14DF35B8

1A7C720B

2) Decimal Subtraction
Purpose: Subtract one multiple-word decimal (BCD) number from another. The length

of the numbers is in memory location 0040. the numbers themselves start
(most significant digits first) in memory locations 0041 and 005 L respec­
t ively. and the difference replaces the number starting m memory location
0041 . Subtract the number starting in 0051 from the one starting in 0041.

Sample Problem:

(0040) 04

(0041) 36
(0042) 70
(0043) 19
(0044) 85

(0051) 12
(0052) 66
(0053) 34
(0054) 59

Result (00411 24
(0042) 03
(0043) 85
(0044) 26

that is. 36701985
- 12663459

24038526

8-23

3) 8-Bit by 16-Bit Binary Multiplication
Purpose: Multiply the 16-bit unsigned number in memory locations 0040 and 0041

(most significant bits in 0041) by the 8-bit unsigned number in memory loca­
tion 0042. Store the result in memory locations 0043 through 0045, with the
most significant bits in memory location 0045.

Sample Problem•:

a. (00401 03
10041) 00
(0042) 05

Result: (0043) OF
(00441 00
(0045) 00

that is. 3x5=15

b. 10040) 6F
10041) 72 129.295 decimal)
10042) 61 197 decimal)

Result : 10043) OF
10044) 5C
100451 28

that is. 29.295 x 97 = 2.841.615

4) Signed Binary Division
Purpose : Divide the 16-bit signed number in memory locations 0040 and 0041 (most

significant bits in 0041) by the 8-bit signed number in memory location
0042. The numbers are normalized so that the magnitude of memory loca­
tion 0042 is greater than the magnitude of memory location 0041. Store the
quotient (signed) in memory location 0043 and the remainder {always posi­
t ive) in memory locat ion 0044.

Sample Problems:

a.

b.

10040) co
10041) FF (-64)
10042) 08

Result : 10043) F8 1-8) quotient
10044) 00 (0) remainder

10040! 93
10041) EDl-4717)
100421 47 171 dec•mall

Result : 10043) BD 1-67 dec•mal)
10044) 28 1+40 dee.ma ll

Hint: Determine the sign of the resu lt. perform an unsigned division. and ad­
just the quotient and remainder properly.

8-24

5) Self-Checking Numbers Aligned 1, 3, 7 Mod 10
Purpose: Calculate a checksum digit from a string of BCD digits. The length of the

string of digits (number of words) is in memory location 0041. the string of
digits (2 BCD digits to a word) starts in memory location 0042. Calculate the
checksum digit by the Al igned 1, 3. 7 Mod 10 method and store it in memory
location 0040

The Aligned 1. 3. 7 Mod 10 technique works as follows

1) Clear the checksum to start

2) Add the leading digit to the checksum

3) Multiply the next digit by 3 and add the result to the checksum.

4) Multiply the nex1 digit by 7 and add the result to the checksum.

5) Continue the process (Steps 2-4) until you have used all the digits.

6) The self-checking digit is the least significant digit of the checksum

For example. if the string of digits is ·

549321

the result will be :

Checksum

Self -checking digit

Sample Problems:

5+3x4+7x9+3+3x2+7x1 =96
6

b.

10041) 03
10042) 36
10043) 68
10044) 51

Result : Checksum= 3 + 3 x 6 + 7 x 6 + 8 + 3 x 5 + 7 x 1 = 93
10040) 03

10041)
10042)
10043)
10044)
10045)

04
50
29
16
83

Resulr Checksum= 5 + 3 x 0 + 7 x 2 + 9 + 3 x 1 + 7 x 6 + 8
+3x3=80

10040) = 00

Hint: Note that 7=2x3+ 1 and 3=2x1+1, so the formu la
Mi= 2 x Mi -1+1 can be used to calculate the next multiplying factor.

8-25

REFERENCES

1. J. A. Herr. .. Self-Checking Number Systems." Computer Design. June 1974. pp.
85-91 .

Other methods for implementing multipl ica tion. division. and other arithmetic tasks
are discussed in:

S. Davis. "Digital Processing Gets a Boost from Bipola r LSI Multipliers." EON.
November 5. 1978. pp. 38-43.

A. Kolodzinsk i and D. Wainland. "Mult iplying with a Microcomputer:· Electronic
Design. January 18. 1978. pp. 78-83 ---

8. Parasuraman " Hardware Multiplication Techniques for Microprocessor
Systems." Computer Design. Apri l 1977, pp. 75-82

T. F. Tao et at. "Applica t ions of Mi croprocessors in Control Problems." 1977 Join t
Automat ic Control Conference Proceedings. San Francisco. CA .. June 22-24. 1977.

S. Waser "State-of-the-art 1n High-Speed Arithmetic Integrated Circuits." Com·
puter Design. July 1978. pp. 67 -75.

S. Waser "Dedica ted Mu ltiplier ICs Speed Up Processing in Fast Computer
Systems:· Electronic Design. September 13. 1978, pp. 98-103.

S. Waser and A. Peterson. " Mediu m-Speed Multipliers Tr im Cost. Shrink Band­
width in Speech Transmission ... Electronic Design. February 1. 1979. pp. 58-65

A. J. W e1ssberger and T. Toal. "Toug h Mathematical Tasks Are Child 's Play for
Number Cruncher." Electronics. February 17. 1977. pp. 102-107.

8-26

Chapter 9
TABLES AND LISTS

Tables and lists are two of the basic data structures used with all computers. We
have already seen tables used to perform code conversions and ari thmetic. Tables
may also be used to identify or respond to commands and instructions, linearize
data, provide access to files or records, define the meaning of keys or switches,
and chooSe among alternate programs. Lists are usually less structured than ta­
bles. lists may record tasks that the processor must perform, messages or data
that the processor must record, or conditions that have changed or should be
monitored. Tables are a simple way of making decisions or solving problems. since
no computations or logical functions are necessary. The task. then, reduces to
organizing the table so that the proper entry is easy to find. Lists allow the execu­
tion of sequences of tasks, the preparation of sets of results, and the construction
of interrelated data files {or data bases). Problems include how to add elements to
a list and remove elements from it.

9-1

EXAMPLES
Add Entry to List
Purpose : Add the contents of memory location 0040 to a list if it is not already pres­

ent in the list. The length of the list is in memory location 0041 and the list
itself begins in memory location 0042

Sample Problems:

a. (0040) 68
(00411 04
(0042) 37
10043) 61
(0044) 38
(0045) 10

Result · (0041) 05
(00461 68

The entry (68) is added to the list. since it is not already present. The length of the list is
incremented by 1.

b. (00401
(0041)
(00421
(00431
(00441
(00451

68
04
37
68
38
10

Result: No change. since the entry {68) 1s already in the list (in memory loca­
tion 0043)

9-2

Flowchart:

Source Program:

LDA
LDX

SRLST CMP
BEO
DEX
BNE
INC
LDX
STA

DONE BRK

$40
$41
$41 .X
DONE

SRLST
$41
$41
$41 .X

Start

GET ENTRY
INDEX = LENGTH OF LIST
IS ENTRY = ELEMENT IN USP
YES. DONE
NO. GO ON TO NEXT ELEMENT

;ADD 1 TO LIST LENGTH

;ADD ENTRY TO LIST

9-3

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
0008
oooc
OOOD
OOOE
OOOF
0010
0011

A5
40
A6
41
D5
41
FO
09
CA
DO
F9
E6
41
A6
41
95
4 1
00

SALST

DONE

LDA

LDX

CMP

BEO

DEX
BNE

INC

LDX

STA

BAK

Clearly. this method of adding elements is very inefficient if the list
is long. We could improve the procedure by lim iting the search to

$40

$41

$41.X

DONE

SRLST

$41

$41

$41.X

part of the list or by ordering the list. We could limit the search by using the entry to
get a starting point In the list. This method is called " hashing" . and is much like
selecting a starting page in a dictionary or directory on the basis of the first letter in an
entry. We could order the list by numerical value. The search could then end when the
list values went beyond the entry (larger or smaller. depending on the ordering tech·
nique usedl. A new entry would have to be inserted property, and all the other entries
would have to be moved down in the list.

The program could be restructured to use two tables. One table cou Id provide a starting
point in the other table; for example. the search point could be based on the most or
least significant 4-bit digit in the entry

The program does not work if the length of the list is zero (what happens?) . We could
avoid this problem by checking the length initially. The initialization procedu re wou ld
then be:

LDX
BEO

ADELM INC

$41
ADELM

$41

:INDEX = LENGTH OF LIST
:ADD ENTRY TO LIST IF LENGTH IS ZERO

:ADD 1 TO LIST LENGTH

Unlike many other processors. the 6502·s Zero flag is affected by Load instructions.

If each entry were longer than one word. a pattern-matching program would be neces­
sary. The program would have to proceed to the next entry if a match failed : that is.
skip over the last part of the current entry once a mismatch was found.

9-4

Check an Ordered List
Purpose: Check the contents of memory location 0041 to see if that value is in an or­

dered list. The length of the lis t is in memory locat ion 0042: the list itself
begins in memory location 0043 and consists of unsigned binary numbers
in increasing order. If the contents of locat ion 0041 are in the list. clear
memory location 0040: otherwise. set memory location 0040 to FF 16

Sample Problems:

b.

10041)
10042)
10043)
10044)
10045)
10046)

Result : 10040)

10041)
10042)
10043)
10044)
10045)
10046)

Resul t : 100401

68
04
37
55
7D
Al

FF. since 68 is not in the list

68
04
37
55
68
Al

00, since 68 is in the list

9-5

Flowchart :

Start

Eod

The searchmg process is a bit different here since the elements are ordered. Once we
find an element smal ler than the entry (remember that we are moving backward
through the list 1n the usual 6502 fashion). the search 1s over. since subsequent ele­
ments will be even smal ler. You may want to try an example to convi nce yourself that
1he procedure works. Note trat an element smaller than the entry is md1cated by a com­
parison that does not produ,..e a borrow (that is. Carry = 1l.

As in the previous problem. a table or other method that cou ld SEARCHING
choose a good starting point would speed up the search. One METHODS
method would be to start in the middle and determine which
half of the list the entry was in. then divide the half into halves. etc. This method
is called a binary search, since it divides the remaining part of the list in half each
time.1

9-6

Source Program:

LDA $41 :GET ENTRY
LDX $42 :INDEX= LENGTH OF LIST
LDY #0 :MARK= ZERO FOR ELEMENT IN LIST

SRLST CMP $42.X :IS ENTRY EOUAL TO ELEMENT?
BEO DONE :YES. SEARCH COMPLETED
BCS NOTIN :ENTRY NOT IN LIST IF GREATER THAN ELEMENT
DEX
BNE SRLST

NOTIN LDY #$FF :MARK = FF FOR NOT IN LIST
DONE STY $40 :SAVE MARK

BAK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A5 LDA $41
0001 41
0002 A6 LDX $42
0003 42
0004 AO LDY #0
0005 00
0006 D5 SRLST CMP $42.X
0007 42
0008 FO BEO DONE
0009 07
OOOA BO BCS NOTIN
OOOB 03
oooc CA DEX
OOOD DO BNE SRLST
OOOE F7
OOOF AO NOTIN LDY #$FF
0010 FF
0011 B4 DONE STY $40
0012 40
0013 00 BAK

This algorithm is a bit slower than the one in the example given under .. Add Entry to
List" because of the extra conditional jump tBCS NOTIN). The average execution time
for this simple search technique increases linearly with the length of the list while the
average execution time for a binary search increases logarithmically For example. if the
length of the list is doubled. the simple technique takes twice as long on the average
while the binary search method only requires one extra iteration

9-7

Remove Element from Queue
Purpose: Memory locations 0042 and 0043 contain the add ress of the head of the

queue {MSBs in 0043). Place the address of the first element (head) of a
queue into memory locations 0040 and 0041 (M SBs in 0041) and update
the queue to remove the element. Each element in the queue is two bytes
long and contains the address of the next two-byte element in the queue
The last element in the queue conta ins zero to indicate that there is no next
element.

Queues are used to store data in the order in which It will be used. or tasks in the
order in which they will be executed. The queue is a first-in , first·out data struc·
ture; i.e., elements are removed from the queue in the same order in which they
were entered. Operating systems place tasks in queues so that they wi l l be executed
in the proper order. 1/0 drivers transfer data to or from queues so that it will be transmit·
ted or handled in the proper order. Buffers may be queued so that the next ava ilable
one can easily be found and those that are released can easily be added to the availab le
storage Oueues may also be used to link requests for storage. timing. or 1/ 0 so that
they can be satisfied in the correct order

In real applications. each element in the queue will typically contain a large amount of
informat ion or storage space besides the address required to link the element to the
next one

Sample Problems:

{00421
100431
100461
100471
I004DI
I004EI

Result: {00401
100411
100421
{00431

{00421
{00431

Result: 10040!
{0041)

~~ } address of first element in queue

~g} address of second element in queue

~~ } end of queue

~~ } address of element removed from queue

~g } address of new first element m queue

gg} ernpty queue

~~ } no element available from queue

9-8

Flowchart :

Source Program:

DONE

LDA
STA
LOA
STA
ORA
BED
LDY
LDA
STA
INY
LDA
STA
BAK

$42
$40
$43
$41
$42
DONE
#0
($401.Y
$42

1$401.Y
$43

: REMOVE HEAD OF QUEUE

IS QUEUE EMPTY'
YES. DONE
NO. MOVE NEXT ELEMENT TO HEAD OF QUEUE

9-9

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A5 LOA $42
0001 42
0002 85 STA $40
0003 40
0004 A5 LOA $43
0005 43
0006 85 STA $41
0007 41
0008 05 ORA $42
0009 42
OOOA FO 8EO DONE
OOOB OB
oooc AO LOY #0
0000 00
OOOE B1 LOA ($401.Y
OOOF 40
0010 85 STA $42
0011 42
0012 C8 INY
0013 Bl LOA 1$401.Y
0014 40
0015 B5 STA $43
0016 43
0017 00 DONE BRK

Queuing can handle lists that are not in sequential memory locat ions. Each element in
the Queue must contain the add ress of the next element. Such l is ts al low you to handle
data or tasks in the proper order. change var iables. or fill in definitions in a program. Ex­
tra storage is required but elements can easily be added to the queue or deleted from it.

Post-indexing. or indirect indexed add ressing. is very handy here since it al lows us to
use the contents of memory locations 0040 and 0041 as a pointer. Those locations con­
tain the address of the head of the queue which. in turn. con tains the address of the
next element. The memory locations in which the address of the element is stored must
be on page zero. since they are used with the post-indexed addressing mode. All other
addresses ca n be anywhere in memory. The post-indexed mode cou ld also be used la ter
to transfer data to or from the element that has just been removed from the queue.

Remember that post-indexing is only available for addresses on page zero. Furthermore.
on ly Index Register Y can be used in this mode

Note the use of the sequence

LOA $43
ORA $42

to determine 1f the 16-b1t number in memory locations 0042 and 0043 is zero. Try to
devise some other sequences that could handle this problem - it obviously occurs
whenever you use a 16-bit counter rather than the 8-bit counter that we have used in
most of the examples

One problem with the 6502 instruction set is that there are no instructions that
specifically move l 6-b1t addresses (or data) from one place to another or that perform
other 16-bit operations Of cou rse. such instru ct ions would have to operate eight bits at
a time. but some 1nst ru ct1on fetch and decode cycles cou ld be saved. Most other
microprocessors have such 1nstruct1ons

9-10

It may be useful to maintain pointers to both ends of the queue rather than just to
its head.2.3 The data structure may then be used in either a first -in, first-out man­
ner or In a last-in, first-out manner, depending on whether new elements are ad­
ded to the head or to the tail. How would you change the example program so that
memory locations 0044 and 0045 contain the address of the last element (taill of the
queue?

1f there are no elements in the queue. the program clears memory locations 0040 and
0041 . A program that requested an element from the queue would have to check those
memory locations to see if its request had been satisfied Can you suggest other ways
to provide this information?

9-11

8-Blt Sort
Purpose: Sort an array of unsigned binary numbers in to descending order. The length

of the array is in memory location 0040 and the array itself begins in memo­
ry location 0041 .

Sample Problem:

(0040) 06
(0041) 2A
(0042) B5
10043) 60
(0044) 3F
(0045) D1
(0046) 19

Result : (0041) D1
(0042) B5
(0043) 60
(0044) 3F
(0045) 2A
(0046) 19

A simple sorting technique works as follows:

Step 1) Clear a flag INTER.

Step 2) Examine each consecutive pair of numbers in the array. If
any are out of order, exchange them and set INTER

SIMPLE
SORTING
ALGORITHM

Step 3) If INTER = 1 after the entire array has been examined. return to Step 1.

INTER will be set if any consecutive pair of numbers is out of order. Therefore, if IN ­
TER = 0 at the end of a pass through the entire array. the array is in proper order.

The technique operates as shown in the following simple case. Let us assume that we
want to sort an array into descending order ; the array has four elements - 12. 03. 15.
08. We will work backwards through the array in normal 6502 processing style.

1st Iteration :

Step 11 INTER= 0

Step 2) Final order of the array is:
15
12
03
08
since the second pair (03.15) is exchanged and so is the third pair (12.15)
INTER= 1.

2nd Iteration :

Step 1) INTER= 0

Step 21 Final order of the array is:
15
12
08
03
since the first pair (08,03) is excha nged. INTER = 1.

9-12

3rd Iteration:

Step 1) INTER= 0

Step 2) The elements are already in order: no exchanges are necessary. and
INTER remains zero.

Note that one extra iteration is always performed to ensure that the elements are in the
proper order. Clearly, there is a large potential for improvement in this method and new
sort ing techniques are an important area of current research.6

Flowchart:

Start

Temp = (Base+
lndu - 1)

(Base+lndex - 1 l =
IBase+lndexl

(Base+lndex) =
Temp

Inter = 1

End

9-13

Source Program:

SORT LOY #0 INTERCHANGE FLAG ~ZERO
LOX $40 GET LENGTH OF ARRAY
DEX ADJUST ARRAY LENGTH TO NUMBER OF PAIRS

PASS LOA $40.X IS PAIR OF ELEMENTS IN ORDER?
CMP $4 1.X
BCS COUNT :YES. TRY NEXT PAIR
LOY #1 :NO. SET INTERCHANGE FLAG
PHA :INTERCHANGE ELEMENTS USING THE STACK
LOA $41.X
STA $40.X
PLA
STA $41 .X

COUNT DEX :CHECK FOR COMPLETED PASS
BNE PASS
DEY :WERE ALL ELEMENTS IN ORDER'
BEO SORT :NO. GO THROUGH ARRAY AGAIN
BAK

Object Program:

Memory Address Memory Contents Instru ction
(Hex) (Hex) (Mnemonic)

0000 AO SORT LOY #0
0001 00
0002 A6 LOX $40
0003 40
0004 CA DEX
0005 B5 PASS LOA $40.X
0006 40
0007 05 CMP $41 .X
OOOB 41
0009 BO BCS COUNT
OOOA QA
OOOB AO LOY #1
oooc 01
0000 48 PHA
OOOE B5 LOA $41 .X
OOOF 41
0010 95 STA $40,X
0011 40
0012 68 PLA
0013 95 STA $41 .X
0014 41
0015 CA COUNT DEX
0016 DO 8NE PASS
0017 ED
0018 88 DEY
0019 FO BEO SORT
001A E5
001B 00 BAK

9- 14

The case where two elements in the array are equal is very important. The pro­
gram should not perform an interchange in that case since that Interchange would
be performed in every pass. The result would be that every pass would set the In­
terchange flag, thus producing an endless loop. The prog ram compares the elements
in the specified order so that the Carry flag is set if the elements are already arranged
correctly. Remember that comparing two equa l values sets the Carry flag since that flag
is an inverted borrow after subtrac t ions or comparisons.

The 6502 Condit ional Branch instructions can be limiti ng. and are part icularly limit ing
in this program. Following an instruction like CM P. we have only BCC - branch if
(Ml> (A) - and BCS - branch if (M) ~(A) . The 6502 has no Branch instructions for the
cases where the equali ty condit ion is on the other side. that is. (Ml~ (A) and (Ml~ (A)
Therefore. we must be careful of the order of operations

Before starting each sorting pass. we must be careful to reinitialize the Index and the In­
terchange flag.

The program must reduce the Counter by 1 initially, since the number of consecutive
pairs is one less than the number of elements (the last element has no successor) .

This program does not work properly if there are fewer than two elements in the array
How could you handle this degenerate case?

There are many sorting algorithms that vary widely in efficien·
cy. References 1. 4. and 5 describe some of these.

OTHER SORTING
METHODS

The Stack is easy to use for temporary storage in this program since the PHA (Push Ac·
cumulator or Store Accumulator in Stack) and PLA (Pull Accumu lator or Load Ac·
cumu lator from Stack) instructions are each only one byte long The address is in the
Stack Pointer (extended with 01 as its page number) . If you wish. you can substitute a
fixed memory location. such as 003F. The interchange then is ·

STA $3F

LDA $41.X
STA $40.X
LDA $3F
STA $41 .X

;INTERCHANGE ELEMENTS USING TEMPORARY
STORAGE

See Chapter 10 for a further discussion of the 6502 RAM Stack.

9-15

Using an Ordered Jump Table
Purpose: Use the contents of memory location 0042 as an index to a iump tab le start­

ing in memory location 0043. Each entry in the jump table contains a 16-bit
address with LSBs in the first byte. The program should transfer control to
the address with the appropriate index; that is. if the index is 6. the pro­
gram should jump to address entry #6 tn the table. Assume that the table
has fewer than 128 entries.

Sample Preblem:

10042)

(0043)
(0044)
(0045)
(0046)
10047)
10048)
10049)
(004A)

Result: {PC)

Flowchart:

02 index for jump table

~6 } zeroth element in jump table

6~ } first element in iump table

g~ } second element in jump table

g~ } third element in jump table

0054. since that is entry #2 (starting from zero) in the
jump table. The next instruction to be executed will be
the one located at that address.

Start

(0040) = (0043
+lnde,d

(004 1 I = (0044
+ Index)

IPCl =

1004 1 H0040l

The last box results in a transfer of control to the address obtained from the table

Source Program:

LDA
ASL
TAX
LDA
STA
LDA
STA
JMP

$42
A

$43.X
$40
$44.X
$41
($40)

:GET INDEX
:DOU8LE INDEX FOR 2-SYTE TA8LE

:GET LS8'S OF JUMP ADDRESS

:GET MSB'S OF JUMP ADDRESS

:TRANSF ER CONTROL TO DESTINATION

9-16

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A5 LDA $42
0001 42
0002 OA ASL A
0003 AA TAX
0004 85 LDA $43.X
0005 43
0006 85 STA $40
0007 40
0008 85 LDA $44.X
0009 44
OOOA 85 STA $41
0008 41
oooc 6C JMP ($40)
OOOD 40
OOOE 00

Jump tables are very useful in situations where one of several routines must be
selected for execution. Such situations arise in decoding commands (entered, for
example, from a control keyboard), selecting test programs. choosing alternative
methods, or selecting an 1/0 configuration.

The jump table replaces a series of conditional jump operations. The program that
accesses the jump table could be used to access several different tables merely by
using the post-indexed. or indirect indexed. addressing mode. in which the starting ad­
dress of the table is placed in RAM on page zero.

The data must be multiplied by 2 to give the correct index since each entry in the 1ump
table occupies two bytes.

The instruction JMP ($40) uses indirect add ressing : the destination 1s the address
stored at the specified location rather than the specif ied location itself. JMP 1s the only
6502 instruction that uses indirect addressing. Note that there is no page-zero mode
and that the address is stored in the usual 6502 fashion with the least significant bits
first.

The terminology used in describing Jump or Branch 1nstruct1ons 1s JUMP AND
often quite confusing. A Jump instruction that is described as BRANCH
using direct addressing actually loads the specified address into TERMINOLOGY
the Program Counter: this works more like immediate addressing
than like direct addressing as applied to other instructions such as Load or Store. A
Jump instruction using indirect addressing works like other instructions using direct
addressing

No ending operation (such as a BAK instruction) 1s necessary since JMP ($40) transfers
control to the address obtained from the Jump table.

References 7 and 8 contain additional examples of the use of 1ump tables. The program
assumes that the 1ump table contains fewer than 128 entries (why?l. How could you
change the program to allow longer tables?

9- 17

PROBLEMS
1 I Remove an Entry From a List
Purpose: Remove the contents of memory location 0040 from a list if it is present

The length of the list is in memory location 0041 and the list itself begins in
memory location 0042. Move the entries below the one removed up one
position and reduce the length of the list by 1.

Sample Problems:

a. (0040)

(0041)

(0042)
(0043)
10044)
(0045)

6B entry to be removed from list

04 length of list

37 f irst element in list
61
28
10

Result : No change. since the entry is not in the list

b. (0040) 68 entry to be removed from list

(00411 04 length of list

(0042) 37 first element in lis t
(0043) 68
(0044) 28
(0045) 10

Result · (0041) 03 length of list reduced by 1

(0042) 37
(0043) 28 other elements in list moved up one position
(0044) 10

The entry is removed from the list and the ones below it are moved up one position. The
length of the list is redu ced by 1.

9-1 8

2) Add an Entry to an Ordered List
Purpose: Place the contents of memory location 0040 into an ordered list if they are

not already there. The length of the list is in memory location 004 1. The list
itself begins in memory location 0042 and consists of unsigned binary num­
bers in increasing order. Place the new entry in the correct position in the
list. adjust the elements below it down. and increase the length of the list by
1.

Sample Problems:

(00401 66 entry to be added to list

(004 1) 04 length of list

100421 37 fi rst element in list
(00431 55
(00441 7D
(00451 Al

Result: (00411 05 length of list increased by 1

(00441 6B entry placed in list
100451 7D other elements in the list moved down one

position
100461 Al

(00401 66 entry to be added to lis1

(0041) 04 length of list

(00421 37 first element in list
(00431 55
(00441 66
(00451 Al

Result : No change. since the entry is already 1n the list.

3) Add an Element to a Queue

Purpose : Add lhe address in memory locations 0040 and 0041 IMSBs in 0041110 a
queue. The address of the firs t element of the Queue •S in memory locations
0042 and 0043 (MSBs in 0043). Each element in the queue con tains either
the address of the next element in the queue or zero if there is no next ele­
ment: all addresses are 16 bits long with the least significant bits in the first
byte of the element. The new element goes at the end (taill of the queue: its
address will be m the element that was at the end of the queue and it will
contain zero to indicate that it is now the end of the queue.

Sample Problem:

100401
100411
(00421
(00431

(00461
100471

Result: 100461
(00471

(004DI
(004EI

4D }
00

new element to be added to queue

~~ } pointer to head of queue

gg } last element 1n queue

40 l old last element points to
00 r new last element

00 t
00 r new last element m Queue

How would you add an element to the queue if memory loca tions 0044 and 0045 con­
tained the address of the ta i l of the queue (the last elementl?

9-19

4) 16-Bit Sort
Purpose : Sort an array of unsigned 16-bit binary numbers into descending order. The

length of the array is in memory location 0040 and the array itself begins in
memory location 0041. Each 16-bit number is stored with the least signifi­
cant bits in the fi rst byte.

Sample Problem:

(0040)

(004 11
(0042)

(0043)
(0044)

(0045)
(0046)

Result: (0041)
(0042)

(0043)
(0044)

(0045)
10046)

03

01
19

60
3F

2A
65

2A
65

60
3F

01
19

length of list

LSBs of first element in list
MSBs of first element in list

LSBs of first element in sorted list
MSBs of first element in sorted list

The numbers are 652A. 3F60. and 1901 .

6) Using a Jump Table with a Key
Purpose: Use the contents of memory location 0040 as the key to a jump table start­

ing in memory location 0041 . Each entry in the jump table contains an 8-bit
key value followed by a 16-bit address (MSBs in second byte) to which the
program should transfer control if the key is equal to that key value.

Sample Problem:

10040) 38 key value for search

(0041) 32 key value for first entry
(0042) 4A LSBs of jump address for first entry
(0043) 00 MSBs of jump address for first entry

(0044) 35
(0045) 4E
(0046) 00

(0047) 38
100481 52
(0049) 00

Result : (PC) 0052. since that address corresponds
to key value 38.

9-20

REFERENCES

1. D. Knuth. The Art of Computer Pro rammin . Volume 111 : Sartin and Searchin
(Reading. Mass. : Addison-Wesley. 1978

D. Knuth. "Algorithms," Scientific American. April 1977. pp. 63-80.

2. K. J. Thurber and P. C. Patton. Data Structures and Computer Architecture (Lex­
ington. Mass.: Lexington Books. 1977 .

3. J. Hemenway and E Teja. ··Data Structures - Part 1:· EON. March 5. 1979. pp
89-92. -

4. 8. W . Kernighan and P. J. Plauger. The Elements of Programming Style (New
York : McGraw-Hill. 1978).

5. K. A. Schember and J. A. Rumsey. "Minimal Storage Sorting and Searching Tech­
niques for RAM Applications." Computer. June 1977. pp. 92-100.

6. ··sort ing 30 Times Faster with DPs:· Datamation. February 1978. pp. 200-203.

7. L. A. Leventhal. "Cut Your Processor's Computation Time. " Electronic Design.
August 16, 1977. pp. 82-89.

8 J . B. Peatman, Microcomputer-Based Design (New York : McGraw-Hill. 1977).
Chapter 7.

9-21

Chapter 10
SUBROUTINES

Nona of the examples that we have shown so far is typically a program all by it­
self. Most real programs perform a series of tasks. many of which may be the
same or may be common to several different programs. We need a way to formu­
late these tasks once and make the formulations conveniently available both in
different parts of the current program and in other programs.

The standard method is to write subroutines that perform par- SUBROUTINE
ticular tasks. The resulting sequences of instructions can be LIBRARY
written once, tested once. and then used repeatedly. They can
form a subroutine library that provides documented solutions to common prob­
lems.

Most microprocessors have special instructions for SUBROUTINE
transferring control to subroutines and restoring control to INSTRUCTIONS
the main program. We often refer to the special instruction
that transfers control to a subroutine as Ca!L Jump- to-Subroutine. Jump and Mark
Place. or Jump and Link. The special instruction that restores control to the main pro­
gram is usually called Return. On the 6502 microprocessor. the Jump-to-Subroutine
(JSR) instruction saves the old value of the Program Counter in the RAM Stack before
placing the starting address of the subroutine into the Program Counter: the Return­
from-Subroutine (RTS) instruction gets the old value from the Stack and puts it back in
the Program Counter. The effect is to transfer program control. fi rst to the subroutine
and then back to the main program. Clearly the subroutine may itself transfer control to
a subroutine. and so on

In order to be really useful, a subroutine must be general. A routine that can perform
only a specialized task. such as look ing for a particular letter in an input string of fixed
length. will not be very useful. If. on the other hand. the subrou tine can look for any let­
ter in strings of any length. it will be far more helpful. We call the data or addresses
that the subroutine allows to vary "parameters." An important part of writing
subroutines is deciding which variables should be parameters

One problem is transferring the parameters to the subroutine; this PASSING
process is called passing parameters. The simplest method is for PARAMETERS
the main program to place the parameters into registers. Then the
subroutine can simply assume that the parameters are there. Of course. this technique
is limited by the number of registers that are available. The parameters may. however.
be addresses as well as data. For example. a sorting routine could begin wi th Index
Register X containing the address on page zero at which the length of the array is lo·
cated.

The 6602 microprocessor is limited by the fact that it has no address-length (16-
bit) registers in which to pass address-length parameters. However, such
parameters can easily be passed by reserving locations on page zero; these loca­
tions effectively act as additional registers. A further advantage of this approach
is that addresses on page zero can be accessed using the post-indexed (indirect
indexed) and pre-indexed (indexed indirect) addressing modes. as well as the
short page-zero forms of direct and indexed addressing.

10-1

Another approach is to use the Stack. The main prog ram can p lace the parameters in
the Stack and the subroutine can retrieve t hem. The advan tages of this method are tha t
the Stack is usually fairly large (up to one page) and that data in the Stack is not los t
even if the Stack is used again. The disadvan tages are that few 6502 instructions use
the Stack. and the Jump-to-Subrou tine instruction stores the re turn address at the top
of the Stack.

Sti l l another approach is to assign an area of memory for pa rameters. The ma in program
can place the add ress of the area on page zero and the subrout ine can retrieve the data
using the post-indexed addressing mode. However, th is approach is aw kward if the
parameters are themselves addresses

Sometimes a subroutine must have special characteri stics. A I RELOCATION (
subroutine is relocatable if it can be placed anywhere in
memory. You can use such a subroutine easi ly. regardless of the placement of other
programs or the arrangement of the memory. A strictly relocatable program can use
no absolute addresses ; all addresses must be relative to the start of the program.
A relocating loader is necessary to place the program in memory properly; the loader
wil l start the prog ram after other programs and w ill add the starting address or re loca­
tion constant to all addresses in the prog ram.

A subroutine is reentrant if it can be interrupted and called by REENTRANT
the interrupting program and still give the correct results for SUBROUTINE
both the interrupting and interrupted programs. Reentrancy is
important for standard subroutines in an interrupt-based system. Otherwise the inter­
rupt service rout ines cannot use the standard subroutines withou t causi ng errors.
Microprocessor subroutines are easy to make reen trant. since the Call instruction uses
the Stack and that procedure is automatically reentrant. The only remaining require­
ment is that the subroutine use the registers and Stack rather than fixed memory loca­
tions for temporary storage. This is a bit awkward, but usually can be done if necessary

A subroutine is recursive if it calls itself. Such a subroutine clearly must also be re­
entrant. However. recursive subroutines are uncommon in microprocessor applicat ions

Most programs consist of a main program and several subroutines. This is advan­
tageous because you can use proven routines and debug and test the other
subroutines separately. You must, however, be careful to use the subroutines pro­
perly and remember their exact effects on registers, memory locations, and flags.

SUBROUTINE DOCUMENTATION
Subroutine listings must provide enough information so
that users need not examine the subroutine's internal
structure. Among the necessary spec1 f icat1ons are :

• A descript ion of the pu rpose of the subroutine

•A list of inpu t and output parameters

• Registers and memory locations used

• A sample case

If these guidelines are followed. the subroutine will be easy to use.

10-2

DOCUMENTING
SUBROUTINES

EXAMPLES
It is important to note that the following examples al l reserve an area of memory for the
RAM Stack. If the monitor in your microcomputer establishes such an area, you may use
it instead. If you wish to try establishing your own Stack area. remember to save and
restore the monitor's Stack Pointer in order to produ ce a proper return at t.he end of
your main program.

To save the monitor Stack Pointer. use the instruction sequence

TSX
STX TEMP

To restore the monitor Stack Pointer. use the sequence

LOX TEMP
TXS

Note that the Stack Pointer can only be loaded or stored via Register X Remember that
the 6502 always keeps its Stack on page 1 of memory so that the real Stack address is
01 ss. where ss is the contents of the 8-bit Stack Pointer register.

We have used address 01Ff16 as the starting point for the Stack. You may have to con­
sistently replace that address with one more suitable for your configuration. You should
consult your microcomputer"s User"s Manual to determine the required changes.

The basic sequence for initializing the Stack Pointer is thus

LOX
TXS

#$FF ;PLACE STACK AT TOP OF PAGE 1

10-3

Hex to ASCII
Purpose : Convert the contents of the Accumulator from a hexadecimal digit to an

ASCII character. Assume that the original conten ts of the Accumulator form
a valid hex digit.

Sample Problems:

a. (A) QC

Resul t: (A) 43 ASCI I C

b. (A) 06

Result : (A) 36 ASCII 6

Flowchart :

Start

'"d

The calling program starts the Stack at memory location 01 FF. gets the data from
memory location 0040. calls the conversion subroutine. and stores the result in memory
location 0041 .

·=o
LOX
TXS
LOA
JSR
STA
BAK

#$FF

$40
AS DEC
$41

:PLACE STACK AT END OF PAGE 1

:GET HEXADECIMAL DATA
:CONVERT DATA TO ASCII
: STORE RESULT

The subroutine converts the hexadecimal data to ASCH.

"=$20
ASDEC CMP

BCC
ADC

ASCZ ADC
ATS

#10
ASCZ
#·A-·9-2
#·o

:IS DATA A DECIMAL DIGIT'

:ND. ADD OFFSET FDR LETTERS
:CONVERT TO ASCII BY ADDING ASCII ZERO

10-4

Subroutine Documentation :

:SUBROUTINE ASDEC

:PURPOSE: ASDEC CONVERTS A HEXADECIMAL
DIGIT IN THE AC CU MULA TOR TO AN
ASCII DIGIT IN THE ACCUMULATOR

:INITIAL CONDITIONS: HEX DIGIT IN A

:FINAL CONDITIONS : ASCII CHARACTER IN A

:REGISTERS USED : A

:SAMPLE CASE
INITIAL CONDITIONS : 6 IN ACCUMULATOR
FINAL CONDITIONS : ASCII 6 (HEX 361

IN ACCUMULATOR

Object Program:

Memory Address Memory Contents
(Hex) (Hex)

1) Calling program

0000 A2
0001 FF
0002 SA
0003 A5
0004 40
0005 20
0006 20
0007 00
0008 85
ooos 41
OOOA 00

21 Subroutine

0020 cs
0021 OA
0022 so
0023 02
0024 6S
0025 06
0026 6S
0027 30
0028 60

Instruction
{Mnemonic)

LOX #$FF

TXS
LOA $40

JSR ASDEC

STA $41

BRK

ASDEC CMP #10

BCC ASCZ

ADC #'A-'S-2

ASCZ ADC #'O

RTS

The instructions LOX #$FF and TXS start the Stack at memory location 01 FF Remem­
ber that the Stack grows downward (toward lower addresses) and that the 6502 Stack
Poin ter always contains the address on page one of the next empty location (rather than
the last filled one as on some other microprocessors).

10-5

The Jump-to-Subroutine instruction places the subroutine starting address (0020) in
the Program Counter and saves the old Program Counter (the address of the last byte of
the JSR instruction) in the Stacie The procedu re is :

STEP 1 - Save MSBs of old Program Counter in Stack. decrement Stack Pointer.

STEP 2 -Save.LSBs of old Program Counter in Stack, decrement Stack Pointer.

Note that the Stack Poi nter is decremented after the data is stored

The MSBs of the Program Counter are stored first. but those bits end up at the higher
add ress (in the usual 6502 fashion) since the Stack is growing down.

The result in the example is:

(01 FFI 00
(01 FE) 07

ISi FD

The value which the Jump-to-Subroutine instruction saves is the Program Counter
before the last byte of the JSR instruction has been fetched. This value is therefore one
less than the proper return add ress. The Return-from-Subrouti ne (ATS) instruction
retrieves the top two entries from the Stack. adds one (because of the odd 6502 offset
just mentioned), and places the result back in the Program Counter. The procedure is:

STEP 1 - Increment Stack Pointer. load eight bits from Stack. place result into LSBs of
Program Counter

STEP 2 -Incremen t Stack Pointer. load eight bits from Stack. place result into MSBs of
Program Counter

STEP 3 -Increment Program Counter before actually fetching an instruction

Here the Stack Pointer is incremented before the data is loaded.

The result in the example is:

(PC) IOOFF)(OOFEI + 1
0008

ISi FF

This subroutine has a single parameter and produces a single result. The Accumulator
is the obvious place to put both.

The ca lling program consists of three steps: placing the data in the Accumulator. call·
ing the subroutine. and storing the result in memory. The overall initialization must also
place the Stack in the appropriate area of memory.

The subroutine is reentrant since it uses no data memory; it is relocatable since the ad·
dress ASCZ is only used in a Conditional Branch instruct ion with relative addressing

Note that the Jump-to-Subroutine instruction results in the execution of four or five in·
structions taking 13 or 14 clock cycles. A subroutine call can take a long time even
though it appears to be a single instruction in the program.

If you plan to use the Stack for passing parameters. remember that Jump-to-Subroutine
saves the return address at the top of the Stack. You can move the Stack Pointer to In·
dex Register X to get access to the data, but you must remember to provide the proper
offsets. You can also gain access to the data by using two extra PLA instructions to
move the Stack Pointer past the return address. but you mu st then remember to adjust
the Stack Pointer back to its orig inal value before returning.

10-6

Length of a String of Characters
Purpose : Determine the length of a string of ASCII characters. The starting address of

the string is in memory locations 0040 and 0041 . The end of the string is
marked by a carriage return character (CR. 00151. Place the length of the
string (excluding carr iage return) in the Accumulator.

Sample Problems :

a. (0040) 43 starting address of string
(0041) 00

(0043) 52 'R'
(0044) 41 'A'
(0045) 54 T
(0046) 48 'H.

(0047) 45 'E'
(0048) 52 'R'
10049) OD CR

Result: (A) 06

(0040) 43 starting add ress of string
(0041) 00

(0043) OD
Result: (Al 00

Flowchart:

Start

End

10-7

Source Program :

The calling program starts the Stack: at memory location 01 FF. stores the starting ad­
dress of the string in memory locations 0040 and 0041. cal ls the string length
subroutine. and stores the result in memory location 0042 Memory locations 0040 and
0041 are used as if they were extra registers.

"=0
LOX
TXS
LOA
STA
LOA
STA
JSR
STA
BRK

#$FF

#$43
$40
#0
$41
ST LEN
$42

;PLACE STACK AT END OF PAGE 1

:SAVE STARTING ADDRESS OF STRING

:DETERMINE LENGTH OF STRING
:STORE STRING LENGTH

The subroutine determines the length of the string of ASCII characters and places the
length in the Accumulator

"=$20
STLEN LOY

LOA
CHKCR INY

CMP
BNE
TYA
RTS

#$FF
#$00

($401.Y
CHKCR

Subroutine Documentation:

:SUBROUTINE STLEN

:STRING LENGTH=· 1
:GET ASCII CARRIAGE RETURN TO COMPARE
:ADD 1 TO STRING LENGTH
:IS NEXT CHARACTER A CARRIAGE RETURN>
:NO. KEEP LOOKING
;SAVE STRING LENGTH IN ACCUMULATOR

;PURPOSE: STLEN DETERMINES THE LENGTH OF AN ASCII STRING
(NUMBER OF CHARACTERS BEFORE A CARRIAGE RETURN)

;INITIAL CONDITIONS: STARTING ADDRESS OF STRING IN MEMORY
LOCATIONS 0040 AND 0041

:FINAL CONDITIONS NUMBER OF CHARACTERS IN A

;REGISTERS USED : A. Y. ALL FLAGS EXCEPT OVERFLOW
; MEMORY LOCATIONS USED: 0040 . 0041

:SAMPLE CASE:
INITIAL CONDITIONS: 0043 IN MEMORY LOCATIONS 0040 AND 0041

(0043) = 35. 10044) = 46. (00451 = OD
FINAL CONDITIONS : IA)= 02

10-8

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonicl

1) Calling program
0000 A2 LOX #$FF
0001 FF
0002 9A TXS
0003 A9 LOA #$43
0004 43
0005 B5 STA $40
0006 40
0007 A9 LOA #0
OOOB 00
0009 B5 STA $41
OOOA 41
OOOB 20 JSR ST LEN
oooc 20
0000 00
OOOE B5 STA $42
OOOF 42
0010 00 BAK

21 Subroutine

0020 AO STLEN LOY #$FF
0021 FF
0022 A9 LOA #$00
0023 OD
0024 CB CHKCR INY
0025 Dl CMP ($401.Y
0026 40
0027 DO BNE CHKCR
002B FB
0029 9B TYA
002A 60 ATS

The calling program consists of four steps: initializing the Stack Pointer. placing the
sta rt ing address of the string in memory locations 0040 and 0041 . calling the
subroutine, and storing the result.

The subroutine is not reentrant. since it uses fixed memory addresses 0040 and 0041
However. if these locations are considered as extra registers and their contents are au­
tomatically saved and restored with the user registers. the subroutine can be used in a
reentrant manner. Many computers of all sizes use registers that are actually located in
memory: this approach makes memory management more complex but does not
change the basic procedures.

The subroutine changes Index Register Y as well as the Accumu lator. The programmer
must be aware that data stored in Index Register Y will be lost the subroutine docu­
mentation must describe what registers are used

10-9

One way to preserve register contents during a subroutine is to save them in the Stack
and then restore them before return ing. This approach makes life easier for the user of
the routine. but costs extra time and memory (in the program and in the Stack). To save
and restore Index Register Y. you would have to add the sequence

TYA :SAVE OLD CONTENTS OF Y
PHA

to the beginning of the program and

PLA :RESTORE OLD CONTENTS OF Y
TAY

to the end of the program.

This subroutine has a single input parameter. which is an address. The easiest way to
pass this parameter is through two memory locations on page zero. The 6502 has no
address-length registers in which this parameter could be passed

If the terminating character were not always an ASCII carriage return. we could make
that character into another parameter. Now the calling program would have to place
the terminating character in the Accumulator and the starting address of the string in
memory locations 0040 and 0041 before calling the subroutine

One way to pass parameters that are fixed for a particular ca!I is to place their values in
program memory immediately after the Jump-to-Subroutine instruction.1 You can use
the old Program Counter (saved at the top of the Stack) to access the data. but you
must adjust the return address !increase it by the number of bytes used for parameters)
before transferring control back to the main program. For example. we could pass the
value of the terminating character this way. The main program would contain the
pseudo-operation .BYTE' immediately after the JSR instruction. The subroutine cou ld
place the return address in memory locations 0050 and 0051 and access the various
parameters using post-indexing. The following sequence could save the return address.
remembering that the Stack is always on page 1 of memory and that the Stack Pointer
always contains the address of the next available location.

TSX
LOA
STA
LOA
STA

$0101.X
$50
$0102.X
$51

:GET STACK POINTER
:GET MSB'S OF RETURN ADDRESS

:GET LSB'S OF RETURN ADDRESS

Be careful of the fact that the return address is actually the address of the last (third)
byte of the JSR instruction. not the address immediately after the JSR instruction as it
is on most other microprocessors. The actual return address must also be offset by 1.
since ATS will automatically add 1 to it.

The instruct ions PHA (Store Accumulator in Stack) and PLA (Load Accumulator from
Stack) transfer eight bits of data between the Accumulator and the RAM Stack. Index
Registers X and Y can only be saved and restored via the Accumulator. As in the Jump­
to-Subroutine instruction. the Stack Pointer is decremented after data is stored in the
Stack and incremented before da ta is loaded from it. Remember that the RAM Stack
grows downward (to lower addresses).

10-10

Maximum Value
Purpo1e: Find the largest element in a block of unsigned binary numbers. The length

of the block is in Index Register Y and the start ing address of the block is in
memory locations 0040 and 0041 . The max imum value is returned in the Ac­
cumu lator.

Sample Problem:

IYI
100401
10041)

(0043)
(0044)
(0045)
10046)
(0047)

Result : IAI

Flowchart :

05 length of block
43 start (ng address of block
00

67
79
15
E3
72
E3. since th is is the largest of five unsigned numbers

Start

Eod

10-11

Source Program:

The calling program starts the Stack at memory locat ion 01 FF. sets the starting address
of the block to 0043. gets the block length from memory location 0030. calls the max­
imum subroutine. and stores the maximum in memory location 0042.

·=o
LOX
TXS
LOA
STA
LOA
STA
LOY
JSR
STA
BAK

#$FF

#$43
$40
#0
$41
$30
MAXM
$42

;PLACE STACK AT END DF PAGE 1

;SAVE STARTING ADDRESS OF BLOCK

;GET LENGTH OF BLOCK
;FIND MAXIMUM VALUE
:SAVE MAXIMUM VALUE

The subroutine determines the maximum value in the block.

· 420
MAXM LOA
CMPE DEY

PHP
CMP
BCS
LOA

NOCHG PLP
BNE
ATS

#0

($40).Y
NOC HG
($40) .Y

CMPE

Subroutine Documentation:

:SUBROUTINE MAXM

:MAXIMUM= ZERO (MINIMUM POSSIBLE VALUE)
:DECREMENT INDEX
:SAVE STATUS
;IS NEXT ELEMENT ABOVE MAXIMUM'
;NO. KEEP MAXIMUM
;YES. REPLACE MAXIMUM W ITH ELEMENT
; RESTORE ST A TUS
;CONTINUE UNTIL ALL ELEMENTS EXAMINED

:PURPOSE : MAXM DETERMINES THE MAXIMUM VALUE IN A BLOCK
OF UNSIGNED BINARY NUMBERS

;INITIAL CONDITIONS: STARTING ADDRESS OF BLOCK IN MEMORY
LOCATIONS 0040 AND 0041 . LENGTH OF BLOCK IN Y

;FINAL CONDITIONS : MAXIMUM VALUE IN A

;REGISTERS USED: A. Y. ALL FLAGS EXCEPT OVERFLOW
:MEMORY LOCATION'S USED: 0040. 0041

;SAMPLE CASE:
IN ITIAL CONDITIONS: 0043 IN MEMORY LOCATIONS 0040 AND 0041

IYI = 03. 100431 = 35. 100441 = 46. 100451 = OD
FINAL CONDITIONS: (A) = 46

Th is subroutine has two parameters - an address and a number. Memory locations
0040 and 0041 are used to pass the address. and Index Register Y is used to pass the
number. The result is a single number that is returned in the Accumulator.

The call ing program must place the starting address of the block in memory locations
0040 and 0041 and the length of the block in Index Register Y before transferring con­
trol to the subroutine.

10-1 2

7 6 s 4 3 2

Carry
Zero Result

~--- Interrupt Disable
'----- Decimal Mode

'-------Break Command
~------(Not used)

'--------Overflow
'---------Negative Result (Sign)

Figure 10-1 The 6502 Status Regis ter

The subroutine returns control with zero in Index Register Y. It is not reentrant unless
memory locat ions 0040 and 0041 are treated as extra registers. 1 t is relocatable since
the addresses are relative and the Stack is used for temporary storage

Note the use of the 1nstruct1ons PHP and PLP which save and restore the Status
register. This register ts organized as shown in Figure 10-1. We could reorganize the
program and change the in1t1al cond1t1ons so as to el1m1nate the need for these instruc­
tions (see Chapter 5). The key here would be to provide the address one before the start
of the array as a parameter. This is easy to do with most assemb lers since they allow
simple arithmetic expressions (such as STAAT-1) in the operand field (see Chapter 3)
However. the user of the subroutine must be warned that this offset is necessary

10-13

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

1) Calling Program

0000 A2 LOX #$FF
0001 FF
0002 9A TXS
0003 A9 LOA #$43
0004 43
0005 85 STA $40
0006 40
0007 A9 LOA #0
0008 00
0009 85 STA $41
OOOA 41
0008 A4 LOY $30
oooc 30
0000 20 JSR MAXM
OOOE 20
OOOF 00
0010 85 STA $42
0011 42
0012 00 BRK

21 Subroutine

0020 A9 MAXM LOA #0
0021 00
0022 BB CMPE DEY
0023 08 PHP
0024 01 CMP ($40).Y
0025 40
0026 BO BCS NOC HG
0027 02
0028 Bl LOA ($401. Y
0029 40
002A 28 NOC HG PLP
002B DO BNE CMPE
002C F5
0020 60 RTS

10-14

Pattern Match2
Purpose: Compare two strings of ASC II cha racters to see if they are the same. The

length of the strings is in Index Register Y. The starting address of one string
is in memory locations 0042 and 0043 ; the starting address of the other is in
memory locations 0044 and 0045. If the two strings match. clear the Ac­
cumulator; otherwise. set the Accumulator to FF15.

S1mpl1 Problems:

a. (Y) 03 length of strings

(0042) 6~} starting address of string #1
(0043)

(0044) ~g} starting address of string #2
(0045)

(0046) 43 ·c·
(0047) 41 'A'
(0048) 54 T

(0050) 43 ·c·
10051) 41 'A'
10052) 54 T

Result · (A) 00. since the strings are the same

b (Y) 03 length of strings

(0042) ~~} starting address of string #1
(0043)

(0044) ~g } starting address of string #2
(0045)

(0046) 52 'R'
(0047) 41 'A'
(0048) 54 T

10050) 43 'C'
10051) 41 'A'
(0052) 54 T

Result: (A) FF. since the first characters differ

10-15

Flowchart:

10-16

Source Program:

The calling program starts the Stack at memory location OlFF. sets the two starting ad­
dresses to 0046 and 0050 respectively. gets the string length from memory location
0041 , calls the pattern match subroutine. and places the result in memory location
0040.

·=o
LDX
TXS
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDY
JSR
STA
BAK

#$FF

#$46
$42
#0
$43
#$50
$44
#0
$45
$41
PMTCH
$40

:PLACE STACK AT END OF PAGE 1

:SAVE STARTING ADDRESS OF STRING 1

:SAVE STARTING ADDRESS OF STRING 2

:GET LENGTH OF STRINGS
:CHECK FOR MATCH
:SAVE MATCH INDICATOR

The subroutine determines if the two strings are the same.

·=$20
PMTCH LDX
CMPE DEY

LDA
CMP
BNE
TYA
BNE
LDX

DONE TXA
RTS

#$FF

($421.Y
($441.Y
DONE

CMPE
#0

:MARK =FF (HEX) FOR NO MATCH

:GET CHARACTER FROM STRING 1
:IS THERE A MATCH WITH STRING 2?
:NO. DONE-STRINGS DO NOT MATCH
;RESTORE STATUS FROM INDEX

;MARK =ZERO. STRINGS MATCH

10·17

Subroutine Documentation:

:SUBROUTINE PMTCH

:PURPOSE : PMTCH DETE~MINES IF TWO STRINGS MATCH

:INITIAL CONDITIONS : STARTING ADDRESSES OF STRINGS
IN MEMORY LOCATIONS 0042 AND 0043. 0044 AND 0045
LENGTH OF STRINGS IN INDEX REGISTER Y

:FINAL CONDITIONS: ZERO IN A IF STRINGS MATCH.
FF IN A OTHERW ISE

. REGISTERS USED: A. X. Y. ALL FLAGS EXCEPT OVERFLOW
:MEMORY LOCATIONS USED: 0042. 0043. 0044. 0045

:SAMPLE CASE :
INITIAL CONDITIONS : 0046 IN 0042 AND 0043. 0050

IN 0044 AND 0045. (Y) = 02
(0046) = 36. (004 7) = 39
(0050) = 36. (005 1) = 39

FINAL CONDITIONS: (A) = 0 SINCE THE STRINGS MATCH

10- 18

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

1) Calling program

0000 A2 LOX #$FF
0001 FF
0002 9A TXS
0003 A9 LOA #$46
0004 46
0005 85 STA $42
0006 42
0007 A9 LDA #0
0008 00
0009 85 STA $43
OOOA 43
0008 A9 LOA #$50
oooc 50
0000 85 STA $44
OOOE 44
OOOF A9 LOA #0
0010 00
0011 85 STA $45
0012 45
0013 A4 LOY $41
0014 41
0015 20 JSR PMTCH
0016 20
0017 00
0018 85 STA $40
0019 40
001A 00 8RK

21 Subroutine

0020 A2 PMTCH LOX #$FF
0021 FF
0022 88 CMPE DEY
0023 81 LOA ($42).Y
0024 42
0025 01 CMP ($44). Y
0026 44
0027 DO BNE DONE
0028 05
0029 98 TYA
002A DO BNE CMPE
0028 F6
002C A2 LOX #0
0020 00
002E SA DONE TXA
002F 60 RTS

10-19

This subroutine. like the preceding ones. changes all the flags except Overflow. You
should generally assume that a subroutine ca ll changes the flags unless it is specifically
stated otherw ise. If the main program needs the old flag va lues (for later checking), it
must save them in the Stack before call ing the su brou t ine. This is accomplished wi th
the PHP instruction.

This subroutine uses all the registers ar11..1 wur memory locations on page zero. There are
three parameters - two starting add resses and the length of the strings.

The instruction TYA has no purpose other than to set the Zero flag according to the
contents of Index Register Y. We could eliminate the need for that instruction by
reorganizing the subroutine. One alternative wou ld be to change the parameters so that
the addresses were both offset by 1 (that is. both string addresses wou ld actually refer
to the byte immediately preceding the character string). Remember. however. that the
user should be able to supply parameters to the subroutine in the simplest and most ob­
vious form possible. The user should not have to offset addresses by one or make other
adjustments for the convenience of the subroutine: such practices result in numerous.
annoying programming errors. The program should make such rote adjustments unless
time or memory constraints are cri tical.

Another alternative would be to decrement the index by 1 in itia lly to avoid the problem
of accessing beyond the end of the stri ng. The end of the loop wou ld then decrement
the index and branch back as long as the resul t was positive. 1.e ..

DEY
BPL CMPE

This approach would work as long as the string was less than 130 bytes long The
limitation occu rs because the 6502 Sign flag is set if the resu lt is an unsigned number
greater than 127 (decimal).

10-20

Multiple-Precision Addition
Purpose : Add two multiple-byte binary numbers. The length of the numbers (in bytes)

is in Index Register Y. the starting addresses of the numbers are in memory
locat ions 0042 and 0043 and in 0044 and 0045. and the starting address of
the result is in memory locations 0046 and 0047. All the numbers begin with
the most significant bits.

Sample Problem:

IYI 04 length of numbers in bytes

(00421 ~~ } starting address of fi rst number 100431

100441 ~g} starting address of second number 100451

(00461 ~g } starting address of result (00471

(00481 2F MSBs of first number
100491 5B
I004AI A7
I004BI C3 LSBs of first number

I004CI 14 MSB s of second number
I004DI DF
(004EI 35
1004FI BB LSBs of second number

Resulr 100501 44 MSBs of result
10051) 3A
100521 DD
(005 3) 7B LSBs of result

that IS. 2F5BA7C3
+ 14DF35B8

443ADD7B

10-21

Flowchart:

Start

Index a jV)
Base1 -

{0042 and 00431
Base2 •

(0044 and 00451
Base3 .,

(0046 and 004 7)
Carry • 0

Eod

10-22

Source Program:

The calling program starts the Stack at memory location 01 FF. sets the start ing ad­
dresses of the various numbers to 0048. 004C. and 0050. respectively. gets the length
of the numbers from memory location 0040. and calls the multiple-precision addition
subroutine.

·=o
LDX
TXS
LDA
STA
LDA
STA
LDA
STA
LDA
STA
STA
STA
LDY
JSR
BAK

#$FF

#$48
$42
#$4C
$44
#$50
$46
#0
$43
$45
$47
$40
MPADD

:PLACE STACK AT END OF PAGE 1

:SAVE STARTING ADDRESS OF FIRST NUMBER

:SAVE STARTING ADDRESS OF SECOND NUMBER

:SAVE STARTI NG ADDRESS OF RESULT

:SAVE PAGE NUMBER FOR ALL ADDRESSES

:GET LENGTH OF NUMBERS IN BYTES
:MULTIPLE-PRECISION ADDITION

The subroutine performs multiple-precision binary addition.

"=$20
MPADD CLC
ADDB DEY

LDA
ADC
STA
TYA
BNE
ATS

1$421. Y
($44). Y
($461. Y

ADDB

Subroutine Documentation:

:SUBROUTINE MPADD

:CLEAR CARRY TO START

:GET BYTE FROM FIRST NUMBER
:ADD BYTE FROM SECOND NUMBER
:STORE RESULT
:ALL BYTES ADDED ?
: NO. CONTINUE

;PURPOSE: MPADD ADDS TWO MUL Tl -BYTE BINARY NUMBERS

:INITIAL CONDITIONS: STARTING ADDRESSES OF NUMBERS (MSB'S)
IN MEMORY LOCATIONS 0042 AND 0043. 0044 AND 0045
STARTING ADDRESS OF RESULT IN MEMORY LOCATIONS 0046 AND 0047
LENGTH OF NUMBERS IN INDEX REGISTER Y

:REGISTERS USED: A. Y. ALL FLAGS
:MEMORY LOCATIONS USED: 0042. 0043. 0044. 0045. 0046. 0047

:SAMPLE CASE:
INITIAL CONDITIONS : 0048 IN 0042 AND 0043.

004C IN 0044 AND 0045. 0050 IN 0046 AND 0047.
(YI = 02. 10048) = A 7. (00491 = C3. I004CI = 35. I004DI = BB

FINAL CONDITIONS: (0050) =DD. (0051) = 7B

10-23

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

1) Calling program

0000 A2 LOX #$FF
0001 FF
0002 9A TXS
0003 A9 LOA #$48
0004 48
0005 85 STA $42
0006 42
0007 A9 LOA #$4C
0008 4C
0009 85 STA $44
OOOA 44
0008 A9 LOA #$50
oooc 50
0000 85 STA $46
OOOE 46
OOOF A9 LOA #0
0010 00
0011 85 STA $43
0012 43
0013 85 STA $45
0014 45
0015 85 STA $47
0016 47
0017 A4 LOY $40
0018 40
0019 20 JSR MPADD
001A 20
0018 00
001C 00 8RK

21 Subrou tine

0020 18 MP ADD CLC
0021 88 ADDS DEY
0022 Bl LDA 1$421.Y
0023 42
0024 71 ADC ($44).Y
0025 44
0026 91 STA ($46).Y
0027 46
0028 98 TYA
0029 DO BNE ADDB
002A F6
0028 60 RTS

This subroutine has four parameters - three addresses and the le ngth of the numbers
Six memory locations on page zero and Index Register Y are used for passing
parameters.

As wnh the previous example. we could eliminate the need for the TYA instruction by
reorganizing the program or by offsetting the add ress parameters by 1.

10-24

PROBLEMS
Note that you are to write both a calling program for the sample problem and a properly
documented subroutine

1) ASCII to Hex
Purpose: Convert the contents of the Accumulator from the ASCII representation of a

hexadecimal digit to the actual digit. Place the result in the Accumulator.

Sample Problems:

a.

Result:

(Al

(Al

43 ASCII C

oc
(Al 36 ASCII 6

Result: (Al 06

2) Length of a Teletypewriter Message
Purpose: Determine the length of an ASC11-coded teletypewriter message. The start­

ing address of the string of characters in which the message is embedded is
in memory locations 0042 and 0043. The message itself starts with an ASCI I
STX character 102151 and ends with ASCII ETX (03151. Place the length of
the message (the number of cha racters between the STX and the ETX) in the
Accumulator

Sample Problem:

(00421
(00431
(00441
(00451
(00461
(00471
(00481

Result : (Al

3) Minimum Value

44 } . f .
00

starting address o string

49
02 STX
47 'G
4F 'O'
03 ETX

02

Purpose : Find the smallest element in a block of unsigned bina ry numbers. The length
of the block is in 1ndex Register Y and the starting address of the block is in
memory locations 0040 and 0041 . The minimum value is returned in the Ac­
cumulator

Sample Problem:

IYI
(00401
(00411

(00431
(00441
(00451
(00461
100471

Result: (Al

05 length of block

~~ } starting address of block

67
79
15
E3
73

15. since this is the smallest of the five
unsigned numbers

10-25

4) String Comparison
Purpo1e : Compare two strings of ASCII characters to see which is larger {i.e .. which

follows the other in "'alphabet ical" ordering). The length of the strings is in
Index Register Y. the starting address of string 1 is in memory locations 0042
and 0043. and the starting address of string 2 is in memory locations 0044
and 0045. If string 1 is larger than or equal to string 2. c lear the Accumula­
tor; otherwise. set the Accumulator to FF15.

Sample Problems :

a. (Y) 03 length of strings

(0042) 6~ } starting address of string #1 (0043)

10044) 6~ } starting address of string #2 10045)

(0046) 43 ·c
(0047) 41 ·A'
(0048) 54 T

(004A) 42 '8'
(0048) 41 'A'
I004C) 54 T

Result : tAI 00. since 'CAT' is "larger" than "BAT'

b. (YI 03 length of strings

(0042) 46}
100431 00

starting address of string #1

(0044) 6~ } start ing address of string #2 10045)

(0046) 43 'C'
10047) 41 'A'
10048) 54 T

(004A) 43 'C'
10048) 41 'A'
I004C) 54 T

Resuli: IA) 00. since the two SHings are the same

(Y) 03 length of strings

100421 ~~ } starting address of string #1 (0043)

(00441 4A I
(00451 00

starting address of string #2

(0046) 43 'C'
10047) 41 'A'
10048) 54 T

(004A) 43 'C'
(00481 55 'U'
I004CI 54 T

Result: (A) FF. since ·cur is "larger" than 'CAT'

10-26

5) Decimal Subtraction
Purpose: Subtract one mult iple-dig i t decimal (BCD) number from another. The length

of the numbers (in by tes) is in Index Reg is ter Y and the starting add resses of
the numbers are in memory locations 0042 and 0043 and 0044 and 0045.
Subtract the number with the starting address in 0044 and 0045 from the
one with the sta rt ing address tn 0042 and 0043. The starting address of the
result is in memory loca tions 0046 and 0047. A ll the numbers begin with the
most significant digits. The sign of the result is returned in the Accumula­
tor - zero if the result is positive. FF 16 if it is negative

Sample Problem:

IYI 04 length of numbers in bytes

100421 ~~ } starting address of minuend (00431

(00441 ~g } starting address of subtrahend
(00451

(00461 g~ } starting address of d ifference
(00471

100481 36 most significant digits of minuend
(00491 70
1004AI 19
(00481 85 least significant digits of minuend

1004C) 12 most significant digits of subtrahend
I004DI 66
I004EI 34
(004FI 59 least significant digits of subtrahend

Resul t: (Al 00 positive result

(00501 24 most significant d igi ts of difference
(0051) 03
(00521 85
(00531 26 least significan t d igi ts of difference

that is. 36701985
- 12663459

+ 24038526

10-27

REFERENCES

1. Other examples of this technique Uor the 8080 m icroprocessor) are in S. Mazor and
C. Pi tchford. "Develop Cooperative Microprocessor Subroutines." Elec tronic
Design. June 7. 1978. pp. 116-118. ---

2. J . T. O'Donnell. "6502 Routine Compares Character Strings," ~ August 5. 1978.
p. 54.

10-28

Chapter 11
INPUT/OUTPUT

There are two problems in the design of input/ output sections: one is how to in­
terface peripherals to the computer and transfer data, status, and control sig­
nals; the other is how to address 1/0 devices so that the CPU can select a particu­
lar one for a data transfer. Clearly. the first problem is both more com plex and more in­
teresting_ We will therefore discuss the interfacing of peripherals here and leave ad­
dressing to a more hardware-oriented book.

In theory, the transfer of data to or from an 1/ 0 device is similar
to the transfer of data to or from memory. In fact we can con­
sider the memory as just another 1/0 device. The memory is,
however. special for the following reasons :

11 It operates at almost the same speed as the processor.

l/OAND
MEMORY

2) It uses the same type of signals as the CPU. The only circuits usually needed
to interface the memory to the CPU are drivers, receivers, and level transla·
tors.

3) It requires no special formats or any control signals besides a Read/Write
pulse.

4) It automatically latches data sent to it.

5) Its word length is the same as the computer's.

Most 1/0 devices do not have such convenient features. They may operate at
speeds much slower than the processor: for example. a teletypewriter can t ransfer on ly
10 characters per second. while a slow processor can transfer 10.000 characters per
second. The range of speeds is also very wide - sensors may provide one reading
per minute. while video displays or floppy disks may transfer 250.000 bits per second
Furthermore. 1/0 devices may require continuous signals (motors or thermometers).
currents rather than voltages (teletypewritersl. or voltages at far different levels
than the signals used by the processor (gas·d1scharge displays). 1/0 devices may also
require special formats. protocols. or control signa!s. Their word lengths may be much
shorter or much longer than the word length of the computer These variations make
the design of 1/0 sections difficul t and mean that each peripheral presents its own
special interfacing problem.

We may, however, provide a general description of devices
and interfacing methods. We may roughly separate devices
into three categories. based on their data rates :

1/0
CATEGORIES

1) Slow devices that change state no more than once per second. Changing their
states typically requires milliseconds or longer Such devices include lighted dis­
plays. switches. relays. and many mechanical sensors and actuators

2) Medium·speed devices that transfer data at rates of 1 to 10.000 bits per sec·
ond. Such devices include keyboards. printers. card readers. paper tape readers
and punches. cassettes. ordinary communications lines. and many analog data ac-
qu1s1t1on systems

3) High·speed devices that transfer data at rates of over 10,000 bits per second.
Such devices include magnetic tapes. magnetic disks. high-speed line printers.
high-speed communications lines. and video displays

11-1

The interfacing of slow devices is simple. Few control sig- INTERFACING
nals are necessary unless the devices are multiplexed, i.e.. SLOW DEVICES
several are handled from one port. as shown in Figures 11- 1 to
11-4. Input data from slow devices need not be latched, since it remains stable for a
long time interval. Output data must, of course. be latched. The only problems with
input are transitions that occur while the compu ter is reading the data. One-shots.
cross-coupled latches. or software delay rou t ines can smooth the transitions.

A single port can handle several slow devices. Figure 11 -1 shows a demultiplexer
that automatically directs the next output data to the next device by counting output
operations. Figure 11-2 shows a control port that provides select inputs to a
demultiplexer. The data outputs here can come in any order. but an additional output
instruction is necessary to change the state of the control port. Output demultiplexers
are commonly used to drive several displays from the same output port. Figures 11-3
and 11-4 show the same alternatives for an input multiplexer

Note the differences between input and output with slow devices:

1) Input data need not be latched, since the input device holds the data for an enor­
mous length of time by computer standards. Output data must be latched. since
the output device wil l not respond to data that is present for only a few CPU clock
cycles.

2) Input transitions cause problems because of their duration; brief output tran­
sitions cause no problems because the output devices (or the observers)
react slowly.

3) The major constraints on input are reaction time and responsiveness, the ma-
jor constraints on output are response time and observabipli-'ty_. ____ _

Medium-speed devices must be synchronized in some way
to the processor clock. The CPU cannot simply treat these
devices as if they he ld their data forever or could receive data
at any time. Instead. the CPU must be able to determine when

INTERFACING
MEDIUM-SPEED
DEVICES

a device has new input data or is ready to receive output data. It must also have a way
of tell ing a device that new output data is available or that the previous input data has
been accepted. Note that the peripheral may be or contain another processor

The standard unclocked procedure is the handshake. Here the IHANDSHAKE)
sender indicates the availability of data to the receiver and
transfers the data ; the receiver completes the handshake by acknowledging the recep­
tion of the data. The receiver may control the situation by 1n1t1atly requesting the data or
by indicating its readiness to accept data; the sender then sends the data and com­
pletes the handshake by indicating tha t data 1s available. Jn either case. the sender
knows that the transfer has been completed successfully and the receiver knows when
new data is available

11-2

Data Outpull 0 .
Data Bus)

Ou<put Data • Port) Inputs .
Data Outputs 1

Sirobe)
Port Selection logic • Demultiplexer

t Data Outputs 2 .
Oock > .

"""'' Counter
Inputs Data Outputs ~

>

TIWI Counter controls where the Demultiplexer sends the data.

Figu re 11 -1. An Output Demultiplexer Controlled by a Counter

Data Data
Port Inputs

Da1a Bus

Demultiplexer

Control ~O<t

Port Inputs

The CPU sends control information to the Control Port: that port then determines

where the Demulliplexer sends the data.

Data Ou1puts 0

Data Outputs 1

Data Outputs 2

Oa1a Outputs 3

Figure 11 -2. An Output Demultiplexer Controlled by a Pon

11-3

D•t• Inputs 0

Data Bus l
(Input Data

Pon Outputs

Data Inputs 1

'"""' I(' • .
Port Selection Logic

t
Multiplex.er

Data 1nputs 2

Clod< .
Selec1

Counter
Inputs

A Data Inputs 3

IC •

The Counter controls which input the Multiplex.er gates to the Input Pon

Figure 11-3. An Inpu t M ultiplexer Con trolled by a Counter

Data Inputs 0

Input Data Bus l
(

Data Data
Pon Outputs

Cata Inputs 1

' .
Mulltplox.er

Cata Inputs 2

'
Output Data Bus

'
Control """'' Data lnpo1s 3 . Pon Inputs

)

The control information which the CPU sends to the COflltol Pon (with an ootput operatJOn!

determines which input the Multiplex.er routes to the Data Port.

Figure 11 -4 An Input Multiplexer Con trolled by a Port

11-4

Figures 11-5 and 11 -6 show typical input and ou tput operat ions using the handshake
method. The procedure whereby the CPU checks the readiness of the peripheral
before transferring data is called "polling" . Clearly, polling can occupy a large
amount of processor time if there are many 1/0 devices. There are several ways of
providing the handshake signals. Among these are ·

• Separate dedicated 1/ 0 lines. The processor may handle these as addi t ional 1/0
ports or through special tines or interrupts. The 6502 microprocessor does not have
special serial 1/0 lines. bu t such lines are avai lable on the 6520 Peripheral Interface
Adapter (or PIA) . the 6522 Versat i le Interface Adapter (or VIA), and the 6532 Pe·
ripheral Interface/Memory (or Multifunction) device.

• Special patterns on the 1/0 lines. These may be single start and stop bi ts or entire
characters or groups of characters. The patterns must be easy to distinguish from
background noise or inactive states.

We often call a separate 1/0 line that indicates the availability
of data or the occurrence of a transfer a "strobe". A strobe
may. for example. c lock data into a latch or fetch data from a buffer.

Many peripherals transfer data at regular intervals: 1.e .. synchronously. Here the only
problem is starting the process by lining up to the fi rst input or marking the first output
!n some cases. the peripheral provides a clock input from which the processor can ob­
tain timing information

Transmission errors are a problem with medium-speed
devices. Several methods can lessen the likelihood of such
errors; they include:

· Sampling input data at the center of the transmission

REDUCING
TRANSMISSION
ERRORS

interval in order to avoid edge effects; that 1s. keep away from the edges where
the data is changing.

· Sampling each input several times and using majority logic such as best three
out of five.1

· Generating and checking parity ; an ext ra bit 1s used that makes the number of 1
bits in the correct data even or odd

· Using other error detecting and correcting codes such as checksums. LRC
(longitud inal redundancy check). and CRC (cyclic redundancy check).2

.------.
INTERFACING
HIGH-SPEED
DEVICES

DIRECT
MEMORY
ACCESS

High-speed devices that transfer more than 10.000 bits per
second require special methods. The usual techn ique is to

cons truct a specia l-purpose controller that transfers data
directly between the memory and the 1/0 device. This process
is called direct memory access (OMA) The OMA con troller
must force the CPU off the busses. provide addresses and con­
trol signals to the 1-nemory. and transfer the data. Such a con­
troller will be fa irly complex, typically consisting of 50 to 100
chips. although LSI devices are now available.3 The CPU must in itially load the Address
and Data Counters in the controller so that the controller will know where to start and
how much to transfer

11-5

Data Bus

CPU

Input

.------. Acknowledge

1/0
Section

Data

Data Ready

al Peripheral provides data and Data Ready signal to computer 1/ 0 section.

Data Bus

CPU

Input

..------, Acknowled~

1/0

S.Ctiori

Data

~

Data Ready

Peripheral

b) CPU reads Data Ready signal from 1/ 0 section (this may be a hardware interrupt connectionl.

Data BYs

CPU

c) CPU reads data from 1/ 0 section.

Data Bus

CPU

Input

.-----.. Acknowledge

110

Section

Data

Data Reedy

Input

.-----.. Acknowledge

1/ 0
Sec1ion

Data

_i:ata Ready

Peripheral

Peripheral

d i CPU sends Input Acknowledge signal to 1/ 0 section . 'Nhich then provides Input Acknowledge signal

to Per1pheral !this may be a hardware connectionl.

Figure 11 -5 An Input Handshake

11-6

.. Data Bus

CPU .

r-----.. Output Ready

1/0
Section

Oa1a

Peripheral Ready

•l Penptierel provides Peripheral Ready signal to computer 1/ 0 section.

Oita Bus

CPU

r-----,.Output Ready

1/0
Section

Data

Peripher11Aeedy

Peripberel

bl CPU reads Peripheral Ready signal from 1/0 section (this may be a hardware interrupt connec"tion) .

Oat• Bus ..

CPU

cl CPU sends data to Peripheral.

Data Bus

CPU)

.-----.. Output Ready

1/0
Section

Data

Peripheral Reedy

.------.Output Ready

1/0
Section

Data

d) CPU sends Output Ready signal to Peripheral (this may be a hardware coonection).

Figure 11-6. An Output Handshake

11-7

- Peripheral

Penpher1I

TIMING INTERVALS (DELAYS)
One problem that we will face throughout the discussion of in­
put/output is the generation of timing intervals with specific
lengths. Such intervals are necessary to debounce mechanical
switches (i .e .. to smooth their irregular transitions). to provide

USES OF
TIMING
INTERVALS

pulses with specified lengths and frequencies for displays. and to provide timing for
devices that transfer data regularly (e.g .. a tele typewri ter that sends or rece ives one bit
every 9.1 ms).

We can produce timing intervals in several ways:

1) In hardware with one-shots or monostable multivibra­
tors. These devices produce a single pulse of fixed dura­
tion in response to a pulse input

2) In a combination of hardware and software with a flex-

METHODS FOR
PROOUCING
TIMING
INTERVALS

ible programmable timer such as those that are included in the 6522 Versatile In­
terface Adap ter (to be described later in this chapter) . The 6522 timers can provide
t1m1ng intervals of various lengths wi th a variety of starting and ending condit ions

3) In software with delay routines. These routines use the processor as a counter
This use is possible since the processor has a stable clock reference. but it clearly
underutilizes the processor. However, delay routines require no additional hard-
ware and often use processor time tha t would otherwise be wasted ____ _

The choice among these three methods depends on your ap- CHOOSING
plication. The software method 1s inexpensive but may over- A TIMING
burden the processor. The programmable timers are relatively ex- METHOD
pensive but are easy to interface and may be able to handle many
complex timing tasks. The timers that are included in the 6522 Versatile Interface
Adapter and in the 6530 and 6532 Multifunction Devices are available at no additional
cost as long as those parts are being used These parts may be somewhat more expen­
sive than simpler devices. but may be jus11f iable as complete packages. Such parts with
integral timers are used in many board-level microcomputers. including the KIM. SYM.
VIM . and AIM -65. The use of one-shots should be avoided whenever possible.

11-8

DELAY ROUTINES
A s1mple delay routine works as follows:

Step 1 · Load a register with a specified value

Step 2 - Decrement the register

Step 3 - If the result of Step 2 1s not zero. repeat Step 2

BASIC
SOFTWARE
DELAY

This routine does nothing except use time. The amount of time used depends upon

the execution time of the various instructions The maximum length of the delay is
limited by the size of the register; however. the entire routine can be placed 1ns1de a
similar routine that uses another register. and so on

Be careful - the actual time used depends on the clock rate at which the pro­
cessor is running, the speed of memory accesses. and operating conditions such
as temperature, power supply voltage. and circuit loading which may affect the
speed at which the processor executes instructions.

The following example uses Index Registers X and Y to TRANSPARENT
provide delays as long as 266 ms. The choice of regis ters 1s DELAY
arbitrary You may find the use of the Accumulator or of ROUTINE
memory locations more convenien t Remember. however. that
the 6502 has no explic11 Decrement Accumulator instruction We could produce a
routine that does not change the contents of any user registers The sequence

PHP ;SAVE STATUS REGISTER
PHA :SAVE ACCUMULATOR
TXA ;SAVE INDEX REGISTER X
PHA
TYA :SAVE INDEX REGISTER Y
PHA

would save the contents of all the registers m111ally and the sequence

PLA :RESTORE INDEX REGISTER Y
TAY
PLA :RESTORE INDEX REGISTER X
TAX
PLA ;RESTORE ACCUMULATOR
PLP :RESTORE STATUS REGISTER

would restore the registers at the end of the rou11ne A subroutine that does not affect
any registers or flags is said to be " transparent" to the calling program. The 1n·
struction sequences that save and restore the registers must. of course. be included m
the time budget

11 -9

DELAY PROGRAM
Purpose : The program provides a delay of 1 ms times the contents of Index Register Y.

Flowchart :

The value of MSCNT depends on the speed of the CPU end the memory cycle

Source Program:

DELAY LDX
DLY1 DEX

BNE
DEY
BNE
ATS

#MSCNT

DLY1

DELAY

GET COUNT FOR 1 MS DELAY
COUNT = COUNT · 1
CONTINUE UNTIL COUNT = ZERO
DECREMENT NUMBER OF REMAINING MS
CONTINUE UNTIL NUMBER OF MS = ZERO

11 - 10

Object Program: (s tarting in location 0030)

Memory Location
(Hex)

0030
0031
0032
0033
0034
0035
0036
0037
0038

Time Budget :

LDX
DEX
8NE
DEY
BNE
RTS

Memory Contents
(Hex)

A2
MSCNT
CA
DO
FD
88
DO
F8
60

#MSCNT

DLYl

DELAY

Instruction
{Mnemonic)

DELAY LDX #MSC NT

DLYl DEX
8NE DLYl

DEY
BNE DELAY

RTS

Number of Times Executed

(YI
(YI x MSCNT
(YI x MSCNT
IYI
(YI
1

The total time used should be (Y) x 1 ms. If the memory is operating at full speed. the
instructions require the following numbers of clock cycles.

LDX #MSCNT
DEX or DEY
8NE
RTS

2 or 3
2
2. 3. or 4
6

Ignoring Page Boundaries
2
2
2 or 3
6

The alternative times for LDX #MSCNT depend on whe ther a page boundary is
crossed. The alternat ive times for BNE depend on whether the branch does not occur
{2), occurs to an address on the same page (3). or occu rs to an address on a different
page (4). A page is a set of 256 contiguous memory locations which have the same
eight most significant bits (or page number) in thei r addresses. We wil l assume that the
routine is located so that no page boundaries are crossed. and we can use the rightmost
column of the last table for timing purposes

Ignoring the Jump-to-Subroutine (JSR) and Return from Subroutine (ATS) instructions
(which occur only once). the program takes:

(YI x (2 + 5 x MSCNT - 1 + 51 - 1 clock cycles

The -1·s are caused by the fact that the BNE instruction requ ires less time du ring the
final iteration when the Counter has reached zero and no branch occu rs

So. to make the delay 1 ms.

5 + 5 x MSCNT =Ne

where Ne 1s the number of clock cycles per millisecond At the standard 1 MHz 6502
clock rate. Ne = 1000 so

5 x MSCNT = 995

MSCNT = 199 (C715) at a 6502 clock rate of 1 MHz

11-11

6502 DELAY
LOOP
CONSTANT

6502 INPUT/OUTPUT CHIPS
Most 6602 input/ output sections are based on LSI interface chips. These devices
combine latches. buffers. flip-flops, and other logic circuits needed for handshak­
ing and other simple interfacing techniques. They contain many logic connections.
certain sets of which can be selected according to the contents of programmable
registers. Thus the designer has the equivalent of a Circuit Designer's Casebook
under his or her control. The initialization phase of the program places the ap­
propriate values in registers to select the required logic connections. An in­
put/ output section based on programmable LSI interface chips can handle many
different applications and changes or corrections can be made in software rather
than by rewiring.

We will discuss the following LSI interface chips that can be used with the 6502
microprocessor :

1) The 6520 Peripheral Interface Adapter. This device contains two 8-bit l/O ports
and four individual con trol lines: it is exactly the same as the 6820 device used
with 6800-based microcomputers 4

21 The 6522 Versatile Interface Adapter. This device contains two 8-bll 1/0 ports.
four individual control lines. two 16-bit counter/timers. and an 8-b1t shift register

3) The 6530 Peripheral Interface/Memory or Multifunction (Support) Device.
This device contains two 8-bit 1/0 ports. an 8-b1t counter/timer with a prescaler.
I 024 bytes of ROM. and 64 bytes of RAM

4) The 6532 Peripheral Interface/Memory or Multifunction (Support) Device.
This device contains two 8-bit 1/0 ports. an 8-bll counter/timer with a prescaler.
and 128 bytes of RAM .

The following acronyms are often used in describing these devices : the 6520 PIA. the
6522 VIA. and the 6530 or 6532 RIOT (for ROM or RAM. 1/0. and T,mer comb, nation)
Our t/O examples la ter in this chapter will all use the 6522 Versatil~ Interface Adapter.
Examples of the use of the 6520 device can be found in 6800 Assembly Language Pro­
gramming:5 those examples can easily be adap1ed to the 6502 microprocessor
(remember the comparisons of the instruction sets m Tables 3-6 and 3-7)

11 - 12

THE 6520 PERIPHERAL INTERFACE ADAPTER
Figure 11·7 is the block diagram of a PIA. The device contains two nearly identical 8-
bit ports -A. which 1s usually an input port. and 8. which is usually an ou tput port .
Each port contains :

• A Data or Peripheral register that holds either input or
output data. This register is latched when used for output
but unlatched when used for input.

PIA
REGISTERS
AND CONTROL
LINES • A Data Direction register. The bits in this register deter·

mine whether the corresponding data register bits (and
pins) are inputs (0) or outputs (1)

• A Control register that holds the status signals required for handshaking. and
other bits that select logic connections within the PIA.

• Two control lines that are configured by the control registers. These lines can
be used for the handshaking signals shown in Figures 11 -5 and 11-6

The meanings of the bits in the Data Direction and Control registers are related to the
underlying hardware and are entirely arbitrary as far as the assembly language pro­
grammer is concerned. You must either memorize them or look them up in the ap­
propriate tables (Tables 11-2 through 11-6).

Each PIA occupies four memory addresses. The RS (register PIA
select) lines choose one of the four registers. as described in Table ADDRESSES
11-1 . Since there are six registers (two peripheral. two data direc-
tion. and two control) in each PIA. one further bit is needed for addressing. Bit 2 of each
control register determines whether the other address on that side refers to the Data
D1rect10n register (0) or 10 the Peripheral reg is ter (1) . This sharing of an external address
means that:

1) A program must change the bit in the Control register in order to use the register
that is not currently being addressed

2) The programmer must know the contents of the Control register in order to know
which register is being addressed. RESET clears the Control register and thus ad­
dresses the Data Direction register.

Table 11 1. Addressing 6520 PIA Internal Reg isters

Addre11 Lines

AS1 ASO

X :::: Either 0 or 1

Control Register Bit
Regis ter Select

CRA -2 CRB-2

11-13

X Peripheral Reg ister A
X Data Direction Register A

Control Register A
Peripheral Register B
Data D1rect1on-Reg1ster B
Control Register B

ilRlA

DO

DI

02

03

04

05

06

07

cso

CSI

m
RSO

ASI

A/ W

Enable

Resat

Data Bus

Bullers

!OB8l

Bus Input

Register

(BIR)

Chip

Select

'"' A/ W

Control

Output

Register B

iORBl

Input Bus

Penphera\

Interface

Penpheral

ln1erface

Figure 11-7. Block Diagram of the 6520 Peripheral Interface Adapter

11-14

CAI

CA2

CBI

CB2

PIA CONTROL REGISTER
Table 11-2 shows the organization of the PIA Control reg isters. We
may describe the general purpose of each bit as follows·

Bit 7 status bit set by transitions on control line 1 and cleared by
reading the Per ipheral (Data) register

Bit 6 · same as bit 7 except set by transitions on control li ne 2

Bit 5 : determines whether cont rol line 2 is an input (Ol or output (1)

PIA
CONTROL
REGISTER
BITS

Bit 4 : Control tine 2 input: determines whether bit 6 is set by high- to-low transitions
(0) or low-to-high transitions (1) on control line 2
Control line 2 ou tput : determines whether control line 2 is a pulse (0) or a level
111

811 3 Control line 2 input: if 1, enables in terrupt output from bit 6
Control line 2 ou tput : determines ending condition for pulse (0 =handshake
ackn owledgemen t lasting until next transition on control line 1. 1 =brief strobe
lasting one clock cycle) or value of level

Bit 2: selects Data Direction register (0) or Data reg ister (1)

Bit 1 determines whether bit 7 is set by high-to-low tra nsitions (0) or low-to-high tran-
sitions (1) on control line 1

Bit 0 : 1f 1. enables inte rrupt output from bit 7 of Control register.

Tables 11 -3 through 11 -6 describe the bits in more detai l. Since E is normally tied to the
4>2 clock. you can interpret "E" pulse as "clock pu lse."

Tab(e 11-2. Organization of the PIA Control Registers

7 6 5 I 4 I 3 2 1 I 0

CAA DDRA
IRQAl IROA2 CA2 Control Access CA 1 Control

7 6 5 I 4 I 3 2 1 I 0

CRB DDRB
IROB l IROB2 CB2 Control Access CBl Control

11-15

Table 11 -3 Cont rol of 6520 PIA Interrupt Inputs CAl and CB l

CRA-1 CRA-0 Interrupt Input lnterrupl Flag
MPU Interrupt

Request ICRB - tl ICRB -01 CA l IC Bl l CRA-7 fC RB -71
IROA flROBJ

I Active Set high on I of CA 1 Disabled - iRO re·
ICBl l mains high

I Active Set high on I of CA 1 Goes low when the
fCBll 1nterrup1 flag bit CAA- 7

!C AB -7) goes high

1 Ac tive Set high on I of CA 1 Disabled - iAO re-
ICBtl mains high

I Ac tive Set high on I of CA 1 Goes low when the
IC Btl interrup t flag bit CAA· 7

(CAB-7) goes h1 ~h

Notes
1 I 1nd1ca1es oos111ve 1rans111on !low to h1ghl

2 I 1nd1cates nega tive trans1 t1on {high to low)

The Interrup t flag bit CRA -7 is clea red by an MPU Read ol the A Da ta Regis ter and
CAB- 7 is cleared by an MPU Read of the B Da ta Register

4 If CRA-0 (CRB-Ol ts low when an in terrup t occu rs Un1erruo1 c11sabled) and •S 1a1e1 brought
high IRQA (lRQB) occurs after CRA-0 (C RB -0) 15 wr1 11en to a .. one ..

Table 11-4. Control of 6520 PIA Interrupt Inputs CA2 and CB2

CRA·5 CRA -4 CRA-3 Interrupt Input lnterfUPl Flag
MPU In terrupt

Reouest ICRB ·51 ICRB-41 ICRB·31 CA2 ICB21 CRA-6 IC RB -61
IROA liROiiJ

0 0 0 l Active Set high on I o f CA2 Disabled - iRO
ICB21 remains high

0 0 t I Ac tive Set high on I of CA2 Goes tow when the
ICB21 interrupt flag bit CRA-6

(C RB -61 goes high

0 t 0 I Ac tive Set high on 1 of CA2 Disabled - ifi5
ICB21 remains high

0 t t I Active Set high on 1 of CA2 Goes 1ow when the
ICB21 in terrupt Hag bit CRA-6

(C RB -6) goes high

Notes
t 1 1nd1ca tes pos1 t1ve trans1t1on (low to high)

2 J 1nd1 ca tes nega tive transit ion (high to low)

3 Tne Interrupt flag bit CRA-6 is cleared by an MPU Read of the A Data Register and CRB·6
is cleared bv an MPU Read of the B Data Register

4 If CAA·3 (C RB -3) is low when an interrupt occurs hnterrupt disabled) and is la ter broughl
high iAOA (~) occurs after CAA·3 (C RB -3) is written to a '"one·

11 - 16

Table 11-5. Control of 6520 PIA CB2 Output Line

CRB-5 CRB-4 CRB-3
CB2

Cleared

Low on the pos111ve t rans111on of
the first E pulse following an
MPU Write "B" ' Data Register
operation

low on the oos1t1ve trans1t1on of
the first E pulse after an MPU
Wnte ·a· · Data Register opera ­
tion

low when CAB-3 goes low as a
result of an MPU Wnte in Con­
trol Register ··s--

Always high as long as CRB -3 is
high Will be cleared when an
MPU Wnte Control Register " B'
results tn clearing CRB-3 10
"zero··

Set

High when the interrupt llag bit
CRB -7 is set by an active transt ·
t1on of the CB 1 signal

High on the posll1ve edge of the
first 'T' pulse following an " E
pulse which occurred while the
part was deselected

Always low as long as CRB-3 is
low Will go high on an MPU
Write tn Control Register "B"
that changes CRB·3 to " one··

High when CRB-3 goes high as
a result of an MPU Write into
Control Register "B"

Table 11 -6. Control of 6520 PIA CA2 Output Line

CA2
CRA-5 CRA-4 CfiA-3 ~----------.-----------1

Cleared

Low on negative transition of E
alter an MPU Read ··A" Data
operation

Low on negative 1rans1t1on of E
alter an MPU Read .. A" Data
operation

Low when CRA-3 goes low as a
result of an MPU Write to Con·
trol Register .. A ..

Always high as long as CRA·3 is
high Will be cleared on an MPU
Write 10 Control Reg1ste1 " A"
1hat clears CRA-3 to a " zero··

, 1- 17

Set

High when the interrupt flag bit
CAA ·7 is set by an active trans1·
t1on of the CA 1 signal

High on the nega11ve edge of
the first 'T ' pulse which occurs
during a deselect

Always low as long as CRA·3 is
low Will go high on an MPU
Write to Control Register " A"
that changes CAA·3 to " one

High when CAA·3 goes high as
a resull of an MPU Wnte to Con·
trol Register .. A ·

CONFIGURING THE PIA
The program must select the logic connections in the PIA
before using it. This selection (or configuration) is usually
part of the startup routine. The steps in the configuration are:

1) Address the Data Direction register by clearing bit 2 of the

STEPS IN
CONFIGURING
A PIA

Control regis ter. Since the Reset signal clears all the internal registers. this step is
unnecessary in the overa l l startup routine.

2) Establish the directions of the 1/0 pins by loading the Data Direction register

3) Select the required logic connec tions in the PIA by loading the Control register. Set
bit 2 of the Control register so as to add ress the Data register.

Step 1 can be performed as follows:

LDA #0 :CLEAR PIA CONTROL REGISTER
STA PIACR

or
LDA PIACR
AND #%11111011 :SELECT DATA DIRECTION REGISTER
STA PIACR

Once the program has performed Step 1, Step 2 is simply a matter of clearing each in­

put bit position and setting each output bit position in the Data Direction Register
Some simple examples are:

11 LDA #0 :ALL LINES INPUTS
STA PIADDR

21 LDA #$FF :ALL LINES OUTPUTS
STA PIADDR

31 LDA #$FO :MAKE LINES 4· 7 OUTPUTS. 0-3 INPUTS
STA PIADDR

Step 3 is clearly the difficult part of the configuration. since it involves selecting the
logic connections in the PIA . Some points to remember are :

1) Bits 6 and 7 of the Control register are set by transitions on the control lines and are
cleared by reading the Data register. You cannot change these bits by writing data
into the Control registe r.

2) Bit 2 of the Control register must be set to address the Data register

3) Bit 1 determines which pulse edge will set bit 7. Bit 1 is 0 for a high-to-low transi­
tion; bit 1 is 1 for a low- to-high transition.

4) Bit 0 is the interrupt enable for control line 1. Remember that it must be set to ena­
ble interrupts. unlike the 6502 interrupt bit. which must be cleared to enable inter­
rupts. Chapter 12 describes interrupts in more detail

5) Bit 5 must be set if control line 2 is to be output. Bits 3 and 4 then determine how
control l ine 2 works. Remember that sides A and B differ. since side A can only pro­
duce a read strobe while side B can only produce a write strobe. Once the strobe
option has been selected. the strobes automatical ly follow each reading of Data
Register A or writing of Da ta Register B. You must configure each side of each PIA
in the startup program.

11-18

EXAMPLES OF PIA CONFIGURATION
1) A simple input port with no control lines (as needed for a

set of switches):
PIA
CONFIGURATION
EXAMPLES

LDA #0 :CLEAR OUT CONTROL REGISTER
STA PIACR
STA PIADDR :MAKE ALL LINES INPUTS
LDA #%00000100 :SELECT DATA REGISTER
STA PIACR

Bit 2 of the Control register must be set to address the Data register . The same se­
quence can be used if a high-to-low transition (negative transition) on control li ne 1
ind icates Data Ready or Per ipheral Ready

2) A simple output port with no control lines (as needed for a set of single LED dis­
plays) :

LDA #0 :CLEAR OUT CONTROL REGISTER
STA PIACR
LDA # $FF :MAKE ALL LINES OUTPUTS
STA PIADDR
LDA #%00000100 :SELECT DATA REGISTER
STA PIACR

3) An input port with a control input that ind icates DATA READY with a low-to-high
transition (posit ive transition) :

LDA #0 :CLEAR OUT CONTROL REGISTER
STA PIACR
STA PIADDR :MAKE ALL LINES INPUTS
LDA #%00000110 :MAKE DATA READY ACTIVE LOW-TO-HIGH
STA PIACR

The DATA READY or DATA AVAILABLE line is tied to control line CA 1 or CB 1 Bit 1 of
the Control register is set so as to recognize low-to-high trans itions on control line 1
This configura tion is suitable for most encoded keyboards

4) An outpu t port that produces a brief strobe to indicate DATA READY or OUTPUT
READY hhis could be used for multiplexing displays or for providing a DATA
AVAILABLE signal to a printer) :

LDA #0 :CLEAR OUT CONTROL REGISTER
STA PIACR
LDA #$FF :MAKE ALL LINES OUTPUTS
STA PIADDR
LDA #%00101100 :MAKE CONTROL LINE 2 A BRIEF STROBE
STA PIACR

Bit 5 = 1 to make control line 2 an output. bit 4 = 0 to make 1t a pulse. and bit 3 = 1 to
make it a brief ac tive-tow strobe (one clock period in duration). The strobe w ill automat­
ical ly follow each instruction that w rites data into the B side of the PIA: for example. the
instruction

STA PIADRB

wi ll both transfer data and ca use a strobe. However. the A side will produce a strobe
only after a read operat ion. The sequence

STA
LDA

PIADRA
PIADRA

:WRITE DATA
:PRODUCE AN OUTPUT STROBE

will both transfer data and cause a strobe. The LOA instruction is a " dummy read": it
has no effect other than to cause the strobe (and waste some time). Other instructions
besides LOA could also be used - you should try to name some of them.

11-19

5) An input port with a handshake Input Acknowledge strobe that ca n be used to tell
a peripheral that the previous data has been accepted (and the computer is ready
for more):

LOA
STA
STA
LOA

#0
PIACR
PIADDR
#%00100100

STA PIACR

:CLEAR OUT CONTROL REGISTER

:MAKE ALL LINES INPUTS
:CONTROL LINE 2 =HANDSHAKE

ACKNOWLEDGE

Bit 5 = 1 to make control line 2 an output. bit 4 = 0 to make it a pulse. and bit 3 = 0 to
make 1t an active· low acknowledgment that remains low until the next active transition
on control line 1. The acknowledgment will automatically follow a read operation on the
A side of the PIA: for example. the instruction

LOA PIADRA

will both read data and cause the acknowledgment However, the B side will produce
an acknowledgment only after a write operation. The sequence

LOA
STA

PIADRB
PIAO RB

:READ DATA
:PRODUCE ACKNOWLEDGMENT

will both read data and produce an acknowledgment. The STA instruction is a ··dummy
write''; it has no other effect than to cause the acknowledgment (and was te some t ime)
Note that the order of the sequence is reversed from the previous example. This con·
figuration is suitable for many CRT terminals that require a complete handshake.

6) An output port with a latched zero control bit (latched individual output or level
output). Such an output can be used to turn the peripheral on or off or to control its
mode of operation

LOA #0 :CLEAR OUT CONTROL REGISTER
STA PIACR
LOA #$FF :MAKE ALL LINES OUTPUTS
STA PIADDR
LOA #%00110100 :CONTROL LINE 2 =LATCHED ZERO LEVEL
STA PIACR

Bit 5 = 1 to make control line 2 an outpu t. bit 4 = 1 to make it a level or latched bit. and
bit 3 = 0 to make the level zero. This output is not affected by operations on the Data
register : its value can be changed by changing the value of bit 3 of the PIA Control
register. i.e ..

LDA PIACR
ORA #%00001000 :MAKE LEVEL ONE
STA PIACR

LDA PIACR
AND #%11110111 :MAKE LEVEL ZERO
STA PIACR

You can use this configuration to produce active-high strobes or to provide pulses with
software·controt led lengths

11-20

USING THE PIA TO TRANSFER DATA
Once the PIA has been configured, you may use its data
registers like any other memory locations. The simplest in·
structions for data transfer are :

PIA INPUT/
OUTPUT

Load Accumulator. which transfers eight bits of data from the specified input pins to
the Accumu lator. and

Store Accumulator. which transfers eight bits of data from the Accumulator to the
specified output pins.

You must be careful in situations where input and output ports do not behave like
memory locations. For example. it often makes no sense to write data into input ports or
read data from output ports. Be particularly careful if the input port is no t latched or if
the output port is not buffered

Other instructions that transfer data to or from memory can also serve as 1/0 in­
structions. Typical examples are:

Bit Test, which sets the Zero flag as if the values of a set of input pins had been
logically ANDed with the contents of the Accumula tor. The Sign {Negative) flag is set to
the va lue of bit 7 of the input port and the Overflow flag ts set to the value of bit 6 of the
input port. This instruction provides a simple way to test the PIA status flags; that
is. the instruction

BIT PIACR

sets the Sign flag to the value of Control register bit 7 hhe status latch for con trol tine 1)
and the Overflow flag to the value of Control register bit 6 {the status latch for control
line 2)

Compare, which sets the flags as if the values of a set of input pins had been
subtracted from the contents of the Accumulator.

Here also you must be aware of the physical limitations of the 1/0 ports. Be particularly
careful of instructions like shifts. Increment. and Decrement. which involve both read
and write cycles.

We cannot overemphasize the importance of careful documentation. Of ten. com­
plex 1/0 transfers can be concealed in instructions with no obvious functions. You must
describe the pu rposes of such instructions carefully. For example. one could easi ly be
tempted to remove the dummy read and w rite operations mentioned earlier since they
do not appear to accomplish any thing.

Bit 7 of the PIA Control register often serves as a status bit,
such as Data Ready or Peripheral Ready You can check its value
with either of the following sequences:

LDA PIAC R ;IS READY FLAG 1'
BMI DEVRDY ;YES. DEVICE READY

BIT PIACR ;IS READY FLAG 1'
BMI DEVRDY :YES. DEV ICE READY

PIA STATUS
BITS

Note that you should not use the shift instructions. since they w111 change the contents
of the Control register (why?). The following program will wait for the Ready flag to go
high :

WAITR BIT PIACR :IS READY FLAG 1'
BPL WAITR ;NO. WAIT

How would you change these programs so that they examine bit 6 instead of bit 7?

11-21

The only way to clear bit 7 (or bit 6) is to read the Data register. A dummy read will
be necessary if a read opera tion is not normally part of the response to the bit being set.
If the port is used for output. the sequence

STA
LOA

PIADR
PIADR

:SEND DATA
: CLEAR READ FLAG

will do the 1ob. Note tha t here the dummy read is necessary on either side of the PIA.
The Bit Test instruction can also clear the strobe without changing anythi ng except the
flags. Be par11cularly careful in cases where the CPU is not ready for input data or has
no output data to send

11 -22

THE 6522 VERSATILE INTERFACE ADAPTER (VIA)
The 6522 Versatile Interface Adapter is an enhanced version of the 6520 Periph­
eral Interface Adapter.6, 7,8

The 6522 VIA contains the following (see the block diagram in
Figure 11-8) :

1) Two 8-bit 1/0 ports (A and Bl. Each pin can be individua lly
selected to be either an input or an output

2) Four status and control lines (two associated with each port)

6522 VIA
FUNCTIONS

3) Two 16-bit counter/ timers which can be used to generate or count pulses. These
timers can produce single pulses or a continuous series of pulses.

4) An 8-bit Shift register which can convert data between serial and parallel forms.

5) Interrupt logic (to be described in Chapter 12) so that 1/0 can proceed on an in ter-
rupt-driven basis.

Thus the Versatile Interface Adapter provides the functions of the PIA plus two 16-bit
counter/timers and an 8-bit Shift register. We will describe the use of the
counter/timers later in this chapter. The Shift register provides a simple serial 1/0
capability that 1s only occasional!y useful: we wi ll not discuss it any further.

Each VIA occupies sixteen memory addresses. The RS (register
select) lines choose the various internal registers. as described in
Table 11-7 The way that a VIA operates is determined by the
contents of four registers.

VIA
ADDRESSES

1) Data Direction Register A (DORA) determines whether the pins on Port A are in­
puts {Os) or outputs {1 sl

2) Data Direction Register B IDDRBI determines whether the
pins on Port Bare inputs (Os) or outputs (1 s)

3) The Peripheral Control register IPCR) determines which
polarity of transition (rising edge or falling edge) is recogn ized
on the input status lines (CA 1 and CB 1) and how the other

VIA
REGISTERS
ANO CONTROL
LINES

status lines (CA2 and CB2) ope rate. Figure 11-9 describes the bit assignments in

the Peripheral Control register; as usual. the funct ions and bit positions are ar­
bitrarily selected by the manufacturer. Note that the 6522 Peripheral Control
register does not contain status bits (latches) like the 6520 Control register: these
bits are located in the separate Interrupt Flag register (see Figure 11-1 ll

4) The Auxi liary Control register {ACR) determines whether the data ports are
latched and how the timers and Shift register operate. These functions are not pre­
sent in the 6520 PIA. Figu re 11-10 descr ibes the bit assignments in Auxiliary Con­
trol register.

Note that there is a data direction reg ister for each side but only one cont rol register
{unlike the 6520. which has a separate cont rol register for each sidel. Ports A and 8 are
virtually identical. One important difference is that Port 8 can handle Darlington tran­
sistors. which are used to drive solenoids and re!ays. We wilt use Port A for mput and
Port B for output in our examples later in this chapter

11-23

Data Data

""' ""' Buffers

"' ,.

R/W
CLK

CS 1
CS2

Chip

RSO
Access

RSl
Control

RS2
RS3

Peripheral
!PCR)

Au .. i1iary
(ACR)

Timer 1

latch latch
ITll- Hl (Tll-Ll

- c:u:t; - t -~:,:; -
fTIC- Hl ITIC-Ll

Timer 2

Latch
(T2L-Ll

Counter Counter
(T 2C-H) (T2C -Ll

Port A Registers

Input

latch

Data Dir.
\DDRB)

Buffers
{PAI

Port A

... ..._---------CA1

... ..._--------~CA2

i..,.,_-1_. _____ ___.. ce1
i..,.,__..,_ _____ ___.. CB2

Buffers
!PB)

Port B

Figure 11-8 Block Diagram of the 6522 Versa tile lnterf:ice Adapter

Table 11 ·7. Addressing 6522 VIA Internal Registers

Select Lines

Label "' N ;;; 0 Addressed Location

"' "' "' a: a: a: a:

DEV 0 0 0 0 Output register for 1/0 Port 8
DEV+1 0 0 0 1 Output register for 1/0 Port A. with handshaking
DEV+2 0 0 1 0 l/O Port B Data Direction register
DEV+3 0 0 1 1 1/0 Port A Data Direction register
DEV+4 0 1 0 0 Read Timer l Counter low-order byte

Write to Timer l Latch low-order byte
DEV+5 0 1 0 1 Read Timer l Counter high-order byte

Write to Timer 1 Latch high-order byte and
initiate count

DEV+6 0 1 1 0 Access Timer 1 Latch low-order byte
DEV+7 0 1 1 1 Access Timer 1 Latch high-order byte
DEV+S 1 0 0 0 Read low-order byte of Timer 2 and reset

Counter interrupt
Write to low-order byte of Timer 2 but do not
reset interrupt

DEV+9 1 0 0 1 Access high-order byte of Timer 2: reset
Counter interrupt on write

DEV+A 1 0 1 0 Serial 1/0 Shift register
DEV+B 1 0 1 1 Aux iliary Control register
DEV+C 1 1 0 0 Peripheral Control register
DEV+D 1 1 0 1 Interrupt Flag register
DEV+E 1 1 1 0 Interrupt Enable register
DEV+F 1 1 1 1 Output register for 1/0 Port A. without handshaking

11-25

Peripheral Control register

0 Request ir11errupt oo high -to-low }
transition of CA 1 On ir11errupt request set

1 Requ~~t interrupt on low-10-high Interrupt Flag register bit 1

trans11ton of CAl

000 CA2 input mode t Request interrupt oo } On interrupl

001 CA2 i.ndependent i.nput mode f high -to-lo. w CA2 transi.tio. n request set
010 CA2 input mode } Request interrupt on lntetTupt Flag

011 CA2 independent mput mode low-to-high CA2 tran11t100 registll" bit 0

100 CA2 output low oo CPU read or write

101 CA2 output low pulse on CPU read or write

110 Output CA2 low

111 Output CA2.high

0 Request interrupt on high-to-low }
transition of CB 1 On intel'Tupt request set

1 ~:~~~;~n~;r~~t on low -to-higtl Interrupt Flag registll" bit 4

L--------000 CB2 input mode l Request interrt.1pt oo } On interrupt
001 CB2 independent input mode f high-to -low CB2 transition request set

010 CB2 input mode } Request interrupt oo lnte!'Tupt Flag

011 CB2 independent input mode low-to-high CB2 1ransition register bit 3

100 CB2 output low on CPU write

101 CB2 output low pulse on CPU write

110 Output CB2 low

111 Output CB2 high

Figure 11-9. 6522 VIA Peripheral Control Register Bit Assignments

7 6 5 4 3 2 1 0 ~Bit Number

I I I I I I I I ~AuKiliary Control register

1

TI=O Disable input latch on Port A
1 Enable input latch on Port A

0 Disable input latch on Port B

1 Enable input latch on Port B

000 Disable $hilt register

001 Shift mat Counter 2 rate

010 Shih in at ¢12 clock rate

011 Shift in at eKternal clock rate

100 Free-running output at Counter 2 rate

101 Shift out at Counter 2 rate

110 Shift out at ¢12 clock rate

111 Shift out at eKternal clock rate

L--------0 Oecrement Counter 2 on ¢12 clock. in one-shot mode

1 Decrement Counter 2 on external pulses input via PB6

0 Oisable ou. tput :ia PB7}
1 Enable output via PB7

Counter 1 controls
L-------0 One-shot mode

1 Free-running mode

Figure 11-10. 6522 VlA Aux iliary Control Register Bit Assignments

11-26

CONFIGURING THE VIA
The program must select the logic connections in the VIA
before using it . This selection (or configuration) is usually
part of the startup routine. The steps are to establish the
directions of the 1/0 pins by loading the Da ta Direction register

STEPS IN
CONFIGURING
AVIA

and to select the required log ic connections in the VIA by loading the Peripheral Con·
tro1 register and. if necessary. the Auxiliary Control register.

You can establish the directions of the 1/0 pins as follows :

11 A 'O' in a bit in the Data Direction register makes the
corresponding pin an input. For example. a ·o· in bit 5 of
Data Direction Register A makes pin PA5 an input

2) A '1' in a bit in the Data Direction register makes the

ESTABLISHING
VIA PIN
DIRECTIONS

corresponding pin an output. For example. a T in bit 3 of Data Direction Register
B makes pin PB3 an ou tput

The directions of almost all 1/0 pins are fixed after the initialization since most input and
ou tput lines tra nsfer data in only one direction (i.e .. the microprocessor will never fetch
data from a printer or send data to a keyboard) .

Some simple examples of setti ng directions are:

1) LDA #0 :ALL LINES INPUTS
STA VIADDRA

2) LDA #$FF :ALL LINES OUTPUTS
STA VIADDRB

3) LDA #$FO :MAKE LINES 4-7 OUTPUTS. 0-3 INPUTS
STA VIADDRB

You can mix inputs and outputs on a single port by establishing the directions of in­
d1v1dual pins appropriately. Port B 1s buffered so that its contents can be read correctly
even when it 1s being used for output: Port A is not buffered so that its conten ts can be
read correctly only if it is light ly loaded (or designated as inputs) .

Configuring the VIA is difficult because of its many func­
tions. Most of the 1/0 port functions are controlled by the
Peripheral Control register, and we shall discuss these first.
Some points to remember are:

.------......
VIA PERIPHERAL
CONTROL
REGISTER

1) Reset clears all the VIA registers. making all lines inputs and disabling all inter­
rupts. All edge detection facilities are set to trigger on falling edges (high-to-low
transitions) .

2) Bits 0-3 of the Peripheral Control register are used to establish the logic con­
nections for control lines CA 1 and CA2: bits 4-7 have the same purposes for
control lines CB1 and CB2.

3) Control lines CA 1 and CB1 are always inputs. The only choice is whether the
corresponding status latches Onterrupt Flag register bits 1 and 4 - see Figure
11-11) are set on falling edges (high-to-low, or negative. trans111ons) or on nsing
edges (low-to-high. or positive. transitions). For CA 1. bit 0 = 0 for falhng edges and
1 for rising edges; for CB 1. bit 4 = 0 for falling edges and 1 for nsing edges

4) Control lines CA2 and CB2 can be either inputs or outputs (see Tables 11-8 and
11-9). For CA2. bit 3 = 1 to make it an output and 0 to make it an input.

11 -27

Table 11-8. Configurations for 6522 VIA Control Line C82

PCR7 PCR6 PCR6 Mode

0 0 0 Interrupt Input Mode - Set C82 Interrupt flag
(IFR3) on a negative transition of the CB2 input
signal. Clear IFR3 on a read or write of the Pe-
npheral B Output register.

0 0 1 Independent Interrupt Input Mode-Set IFR3 on
a nega11ve transition of the C82 input signal.
Reading or writing ORB does not clear the Inter-
rupt flag .

0 1 0 Input Mode - Set C82 Interrupt flag on a posi-
tive trans i tion of the CB2 input signal. Clear the
CB2 Interrupt flag on a read or write of ORB.

0 1 1 Independent Input Mode -Set IFR3 on a posi-
tive transition of the CB2 input signal. Reading or
writing ORB does not clear the C82 Interrupt
flag .

1 0 0 Handshake Output Mode-Set CB2 low on a
write ORB operation. Reset CB2 high with an ac-
11ve trans1t1on of the CB1 input signal

1 0 1 Pulse Output Mode -Set CB2 low for one cycle
following a write ORB operation

1 1 0 Manual Output Mode -The CB2 output 1s held
low m this mode.

1 t 1 Manual Output Mode-The CB2 output is held
high in this mode.

11 - 28

Table 11-9. Configurations for 6522 VIA Control Line CA2

PCR3 PCR2 PCR1 Mode

0 0 0 Input Mode - Set CA2 Interrupt flag llFROI on a
negative transition of the inpu t signal. Clear IFRO
on a read or write of the Peripheral A Output
register.

0 0 1 Independent Interrupt Input Mode - Set IFRO on
a negative transition of the CA2 input signal.
Reading or writing ORA does not clear the CA2
Interrupt flag.

0 1 0 Input Mode - Set CA2 Interrupt f1ag on a posi·
tive transition of the CA2 input signal. Clear IFRO
with a read or w rite of the Periphera l A Output
register.

0 1 1 Independent Interrupt Input Mode -Set IFRO on
a positive transition of the CA2 input signal.
Reading or writing ORA does not clear the CA2
Interrupt flag .

1 0 0 Handshake Output Mode - Set CA2 output low
on a read or write of the Peripheral A Output
register. Reset CA2 high with an active transition
on CA1

1 0 1 Pulse Output Mode -CA2 goes low for one cy·
cle following a read or write of the Peripheral A
Output register.

1 1 0 Manual Output Mode -The CA2 output 1s held
low in this mode.

1 1 1 Manua l Output Mode-The CA2 output is held
high in this mode.

11 - 29

0 ,..___ Bit Number

~,R-O--T-,~-T2~-c-s1_j _c-s2--s-R~-c-A_1_j~c-A_2.,.j.-- 1o1"'"'' Fl•g "•'""

Bit No. Set By

Active transition of the signal

on the CA2 pin.

Active transit ion of the signal

on the CA1 pin.

Completion of eight shifts.

Active transition of the signal

on the CB2 pin .

Active transition of the signet

on the CB1 pin

Time-out of Timer 2

Time-out of Timer 1

Active and enabled interrupt

condition

Cleared By

Reading or writing the A Port Output
register (ORA) using address 0001 .

Reading or writing the A Port Output

register (ORAi. using address 0001

Reading or writing the Shift

register.

Reading or writing the B Port

Output register.

Reading or writing the B Port

Output register.

Reading T2 low-order counter or

writing T2 high-order counter

Reading T 1 low-order counter or

writing T1 high-order latch

Action which clear interrupt

condition .

Bits 0 , 1, 3, and 4 are the 1/0 handshake signals . Bit 7 (IRQ) is 1 if any of the interrupts is both active

and enabled (see Chapter 12)

Figure 11-11 The 6522 VIA Interrupt Flag Register

11 -30

Further funct ions are as follows :

CA2 Input
Bit 2 = 1 to trigger on a rising edge. 0 to trigger on a falling edge

Bit 1 = 1 to make Interrupt Flag register bit 0 (the CA2 input status latch) independent
of operations on 1/0 Port A. 0 to have that bit cleared by operations on 1/0 Port
A

The independent mode is useful when CA2 is being used for purposes (such as a real­
time clock) that are completely unrelated to the data transfers through the 1/0 port. The
regular mode is useful when CA2 is being used as a handshaking signal which must be
clea red to prepare for the next 1/0 operation (see Figures 11 -5 and 11-6).

CA2 Output
Bit 2 = 1 to make CA2 a !eveL 0 to make it a pulse

If CA2 is a level. bit 1 is its value

If CA2 is a pulse. bit 1 is 0 to have CA2 go low when the CPU transfers data to or from
Port A and remain low until an active transition occurs on CA 1. bit 1 is 1 to have
CA2 go low for one clock cycle after the CPU transfers data to or from Port A

C82 is handled exactly the same (using bits 7. 6. and 5 of the Peripheral Control register
and bit 3 of the Interrupt Flag register) except that pulses are produced on CB2 only
after data is written into Port B. To produce a pulse after reading data. you must use a
"dummy write" . that is:

LDA
STA

VIAD RB
VIADRB

:GET DATA FRDM PORT B
; PRODUCE STROBE FROM PORT B

The only 1/0 port function governed by the Auxiliary Control VIA INPUT
register (Figure 11-10) is input latch ing. Bit 0 (for Port A) or bit 1 LATCHES
(for port Bl must be set to latch the input data on the active transi-
t ion on control line 1 (as determined by the Peripheral Control reg ister). Note the
following feature• of the latching function :

11 RESET disables the input latches. The 6522 VIA then operates like the 6520 PIA.
which has no input latches.

2) For Port A. the data that is latched will always be the data on the peripheral pins
Since Port A is not buffered. that data may not be the same as the data 1n the Out­
put register when the port 1s being used for output.

3) For Port B. the data that is latched is either the data on the per ipheral pins (for those
pins defined as inputs) or the contents of the Output register (for those pins defined
as outputs)

Some simple examples of activating the input latches are:

LDA
STA

LDA
STA

LDA
STA

#%00000001
VIAACR

#%00000010
VIAACR

#%00000011
VIAACR

:ACTIVATE LATCH ON PORT A

;ACTIVATE LATCH ON PORT B

;ACTIVATE LATCHES ON PORTS A AND B

Note that 6522 output ports are automatically latched. just like 6520 output ports

11-31

EXAMPLES OF VIA CONFIGURATION
1) A simple input port with no control lines (as needed for

a set of switches)·
VIA
CONFIGURATION
EXAMPLES

LDA
STA
STA

#0
VIAPCR
VIADDRA

:MAKE ALL CONTROL LINES INPUTS
:MAKE PORT A LINES INPUTS

Remember that Reset clears all the in ternal registers so that th is sequence may not
even be necessary. The same sequence can be used if a high-to-low edge (falling
edge) on control line CA 1 indicates Data Ready or Peripheral Ready

2) A simple output port with no control lines (as needed for a set of single LED dis-
plays):

LDA
STA
LDA
STA

#0
VIAPCR
#$FF
VIADDRB

: MAKE ALL CONTROL LINES INPUTS

: MAKE PORT B LINES OUTPUTS

3) An input port with an active low-to-high DATA READY signal attached to CA1
(as needed for an encoded keyboard):

LDA
STA
LDA
STA

#0
VIADDRA
#1
VIAPCR

:MAKE PORT A LINES INPUTS
:MAKE RISING EDGE ACTIVE

Bit 1 of the Peripheral Control register is set so as to recognize low-to-high trans111ons
on control tine CA1 . Such a transition wi ll set bit 1 of the Interrupt Flag register (see
Figure 11-10): reading the data from the port will clear that bit (see the table associated
with Figure 11-11). Input latching can be provided by setting bit 0 of the Auxiliary Con­
trol register

4) An output port that produces a brief strobe to indicate DATA READY or OUT­
PUT READY (this could be used for multiplexmg displays or for providing a DATA
AVAILABLE signal to a printer)

LDA
STA
LDA
STA

$FF
VIADDRB
#%10100000
VIAPCR

:MAKE PORT B LINES OUTPUTS

The brief strobe on control line CB2 will occur after every output operation Bit 7 of the
Peripheral Control reg ister is 1 to make CB2 an output. bit 6 is 0 to make CB2 a pu lse.
and bit 5 is 1 to make CB2 a brief (one clock cycle) pulse following each output.

6) An input port with a handshake Input Acknowledge strobe that can be used to
tell a peripheral that the previous data has been accepted (and that the com­
puter is ready for morel:

LDA
STA
LDA

#0
VIADDRA
#%00001000

:MAKE PORT A LINES INPUTS
:CONTROL LINE 2 ~HANDSHAKE

ACKNOWLEDGE

The strobe on control line CA2 will occur after every input or output operation. It will re­
main low until the next active transition on control line CA 1. Bit 3 of the Peripheral Con­
trol register 1s 1 to make CA2 an output. bit 2 1s 0 to make CA2 a pulse. ~nd bit 1 1s 0 to
make CA2 an active-low acknowledgment that lasts unttl the next active trans1t1on on
CA 1. Note that the active trans1t1on on CA 1 is a falli ng edge smce bit 0 of the Peripheral
Control register is 0 . This configuration 1s suitable for many CRT terminals that require a
complete handshake.

11-32

6) An output port with a latched active- low control bit (latched output or level
output). Such an output bit can be used to turn a peripheral on or off or to control
its mode of opera tion.

LDA
STA
LDA
STA

#$FF
VI ADD RB
#%11000000
VIAPCR

:MAKE PORT B LINES OUTPUTS

:CONTROL LINE 2 =LATCHED ZERO LEVEL

Bit 7 = 1 to make control line C82 an output. bit 6 = 1 to make it a level or latched bit.
and bit 5 = 0 to make the active level zero. This bit is not affected by operauons on the
1/0 port or Output register : its value can be changed by changing bit 5 of the Peripheral
Control register. 1.e ..

LOA
ORA
STA
LOA
AND
STA

VIAPCR
#%00100000
VIAPCR
VIAPCR
#%11011111
VIAPCR

:MAKE LEVEL ONE

:MAKE LEVEL ZERO

You can use this configuration to produce an active-high or active-low strobe or to pro­
vide pulses with software-controlled lengths

11 -33

USING THE VIA TO TRANSFER DATA
Once the VIA has been configured. you may use its data registers VIA INPUT/
like any other memory location (just as with the PIA). The common OUTPUT
ways to transfer data. status. and control are with the instructions
Load Accumulator. Store Accumula tor. Bit Test. and Compare. Note that Output
Regis ter A can be addressed in two ways - one with handshaking (address 1) and one
without handshaking (address F). The address without handshaking allows you to use
CA 1 independently of the peripheral attached to 1/0 Port A. That control line could be
used for an alarm. c lock input. control panel interface. or extra control input from
another peripheral. The Interrupt flag for that input can be cleared directly by clearing
the appropriate bits in the Interrupt Flag register (see Figure 11 -11). The alternate ad­
dress for Output Register A and the independent modes for control lines CA2 and CB2
allow use of control lines without having to worry about the automatic handshaking
features of the VIA

11-34

VIA INTERRUPT FLAG REGISTER
We have mentioned the VIA Interrupt Flag register (see Figure VIA INTERRUPT
11-11) on several occas;ons. The table in Figure 11-11 ex- FLAG REGISTER
plains the meanings of the various bits (bit 7 is a general in-

terrupt request bit that is 1 if any interrupt is both active and enabled).

Any of the flags in the Interrupt Flag register may be explicitly cleared by writing
a logic 1 into the corresponding bit position. This procedure is useful when the con­
trol lines are being used independently of the data ports (as in the independent input
mode described in Tables 11-8 and 11-9) or when no data transfers are actual ly re­
quired in response to the flag being set. Some examples of explicitly clearing the flags
are :

LDA #%00000010
STA VIAIFR :CLEAR CA 1 INTERRUPT FLAG

LDA #%00001000
STA VIAIFR :CLEAR CB2 INTERRUPT FLAG

LDA #%11111111
STA VIAIFR :CLEAR ALL INTERRUPT FLAGS

The value written into bit 7 does not matter. since that flag cannot be expl icitly set or
cleared from the CPU

Bits 0. 1. 3. and 4 of the VIA Interrupt Flag register often serve as handshake status bits
such as Data Ready or Peripheral Ready You can check their values with appropriate
masking or shifting operations.

LDA VIAIFR
AND #%00000010 : IS CA 1 FLAG SET'
BNE DEVRDY :YES. DEVICE READY

LDA VIAIFR
AND #%00010000 :IS CBl FLAG SET'
BNE DEVRDY :YES. DEVICE READY

The flag is then automatically cleared by reading or writing the appropriate port or by
exi) lici tly clearing the bit in the Interrupt Flag register. The following program will wait
for a Ready flag attached to input CA 1 to go high ·

WAITR LDA
AND
BEG

VIAIFR
#%000000 10
WAITR

: IS CA 1 FLAG SET'
:NO. WAIT

How would you change these programs to handle Ready lines attached to CA2. CB 1. or
CB2l

Note that the flag will remain set unless some operation clears it. If no operation 1s
actually required. some dummy operation (such as reading the port and discarding the
data) will be necessary simply to clear the flag . Be particularly careful in cases where
the CPU is not ready for data or has no output data to send . Obviously. careful docu­
mentation is essential in cases where the purposes of operat ions may be far from ob­
vious.

11-35

VIA TIMERS9. 10

As we noted earlier. the VIA contains two 16-bit counter/timers.
These timers are handled as follows:

lvtA TIMERS I
1) They may be read or written as six memory locations, four for timer 1 and two

for timer 2 (see Table 11 -7).

2) Their modes of operation are controlled by bits 5. 6. and 7 of the Auxiliary
Control register (see Figure 11-10)

3) Their status may be determined by examining bits 5 and 6 of the Interrupt
Flag register (see Figure 11- 11l.

The timers can be used as follows :

1) To generate a single time interval. The timer must be loaded with the number of
clock pulses that are requi red

2) To count pulses on pin PBS (timer 2 only). The timer mus t be loaded w it h the
number of pulses to be counted. This use of PB6 takes precedence over its normal
use as an 1/0 pin.

3) To generate continuous time intervals ltimer 1 only) for use in real· time ap·
plications. The timer must be loaded with the number of clock pulses per interval.

4) To produce a single pulse or a continuous series of pulses on pin PB7 (ti mer 1
only) . The timer must be loaded w i th the number of clock pulses per interval. This
use of PB7 takes precedence over ns normal use as an 1/0 pin.

11-36

OPERATION OF 6522 VIA TIMER 2
Timer 2 is simpler than timer 1 and can be used only to generate a single time in­
terval (the one-shot mode) or to count pulses on pin PB6. Bit 5 of the Auxiliary Con­
trol register selects the mode:

Bit 5 = 0 for one-shot mode. 1 for pulse-counting mode.

The 16-bit timer occupies two memory locations (see Table 11-7). The first address is
used to read or w rite the 8 least significant bits: reading this address also clears the
timer 2 interrupt flag (Figure 11-11). The second address is used to read or w rite the 8
most significant bits: writing into this address loads the counters. clears the timer 2 in­
terrupt flag. and starts the timing operation. The complet1on of the operation sets the
timer 2 interrupt flag (bit 5 of the Interrupt Flag register as shown in Figure l l-1 1).

Examples of timer 2 operation are as follows :

11 Wait for 1024 (040015) clock pulses to elapse

LOA #0 :PUT TIMER 2 IN ONE-SHOT MODE (BIT

STA
STA
LOA
STA
LOA

WAITD BIT
BEG
LOA
BRK

VIAACR
VIAT2L
#4
VIAT2H
#%00100000
VIAIFR
WAITD
VIAT2L

5 = 0)

.MAKE PULSE LENGTH 0400 HEX

:START TIMING INTERVAL
:GET MASK FOR TIMER 2 INTERRUPT FLAG
:IS TIMER 2 FLAG SET'
:NO. INTERVAL NOT COMPLETED
:YES. CLEAR INTERRUPT FLAG

Note the following steps in the program :

a) Putting the timer in the one-shot mode by clearing bit 5 of the Auxiliary Control
register.

b) Loading the timer with the initial count (040015) required to give the correct inter­
val. Loading the MSBs of the timer also starts the timing operation

cl Wai t ing for the interval to be completed. A timeout sets b it 5 of the In terrupt Flag
regis ter

d) Clearing the interrupt flag so that 1t does not interfere wllh other operations. The in­
struction LOA VIAT2L performs this function

2) Generate a delay of length given by 10 pulses on pin PB6.

LOA #0
STA VIAODRB :MAKE PORT B INPUTS
LOA #%00100000 :PUT TIMER 2 IN PULSE-COUNTING MODE

(BIT 5 = 11
STA VIAACR
LOA #10 :MAKE PULSE COUNT 10
STA VIAT2L
LOA #0
STA VIAT2H :START PULSE COUNTING
LOA #%00100000 :GET MASK FOR TIMER 2 INTERRUPT FLAG

WAITC BIT VIAIFR :IS TIMER 2 FLAG SET'
BEG WAITC :NO. COUNT NOT COMPLETE
LOA VIAT2L :YES. CLEAR INTERRUPT FLAG
BRK

This program is the same as the previous example. except that the mode of timer 2
is different. Here the input on pin PB6 could be a per iodic clock line or a line tha t is
simply pulsed with each occurrence of some external operation.

11-37

OPERATION OF 6522 VIA TIMER 1
Timer 1 haa four operating modes (see Figure 11-101 which allow It to generete e
single time-interval (one-shot mode) or a continuous aeries of intervals (free-ru n­
ning mode). Furthermore. each load ing operation can generate an output pulse on PB?
which can be used to control external hardware. Bits 6 and 7 of the Auxi liary Contro l
register determine the mode of timer 2 as follows:

Bit 7 = 1 to generate output pu lses on pin PB7. 0 to disable such pulses (in the free-run­
ning mode. P87 is inverted each time the cou nter reaches zero).

Bit 6 = 1 for free-running mode. 0 for one-shot mode.

Timer 1 occupies four memory addresses (see Table 11-7). The fi rst two addresses
are used to read or write the counters. Writing into the second address loads the coun·
ters. clears the timer 1 Interrupt flag. and starts the timing operation. The next two ad­
dresses are used to read from or write into the latches wi thout affecti ng the counters.
This allows the genera t ion of complex waveforms in the free-running mode. Writing
into the most significant bits of the latches also clears the timer 1 interrupt flag .

Examples of timer 1 operation are as follows :

1) Wait for 4096 (100015) clock pulses to elapse before producing an output on pin
PB7.

LDA

STA
STA
LDA
STA
LDA

WAITD BIT
BEO
LDA
BRK

#0

VIAACR
VIATlL
#$10
VIAT1CH
#%01000000
VIAIFR
WAITD
VIAT1L

:PUT TIMER 1 IN SINGLE PULSE. NO OUTPUT
MODE

:PULSE LENGTH~ 1000 HEX

:START TIMING INTERVAL
:G ET MASK FOR TIMER 1 INTERRUPT FLAG
:IS TIMER 1 FLAG SET?
:NO. INTERVAL NOT COMPLETED
:YES. CLEAR TIMER 1 INTERRUPT FLAG

The only changes from the program for timer 2 are the different addresses used to load
the pulse length and the d ifferent bit position (bit 6 instead of bit 5) that is examined for
the interrupt flag .

2) Produce an interrupt every 2048 (080015) clock pulses and produce a continuous
series of cycles on pin PB7 with a half-width of 2048 clock pulses

LDA
STA
LDA

STA
LDA
STA
LDA
STA
BAK

#$FF
VIADDRB
#%11000000

VIAACR
#0
VIAT1L
#8
VIATlCH

:MAKE PORT B LINES OUTPUTS

:PUT TIMER 1 IN CONTINUOUS MODE WITH
OUTPUT TO PB7

:MAKE PULSE LENGTH 0800 HEX

:START TIMING INTERVALS

This routine will produce a continuous series of intervals that will be marked by the set­
t ing of the timer 1 Interrupt flag (bit 6 of the Interrupt Flag register). The main program
can look for the occurrence of each interval (with the waiting routine from Example 1).
or (more sensibly) the end of each interval can produce an interrupt (see Chapter 12)
The level on PB7 will be inverted at the end of each timer interval (i t will go low when
the first interval starts). Timer 1 will run continuously with the val ues in the latches au­
tomatically being reloaded into the counters each time the counters reach zero.

11-38

THE 6530 AND 6632 MUL Tl FUNCTION SUPPORT DEVICES
The 6630 and 6532 devices contain memory as well as 1/0
ports. They are sometimes referred to as combination
chips , multifunction support devices, or ROM
(RAM) /10/TIMER chips (RIOTs). The 6530 device has :

1024 bytes of ROM
64 bytes of RAM

6630 AND 6632
MUL Tl FUNCTION
DEVICES

Two 8-bit 1/0 ports (A and Bl. although pins 5 through 7 of Port 8 are often used for
chip selects and an in terrupt output
One 8-bit timer

Figu re 11 -12 is a block diagram of the 6530 device and Table 11-10 describes tts inter­
nal addressing . The 6532 device has :

128 bytes of RAM
Two 8-bit 1/0 ports {A and B), although pin 7 of Port A is often used as a strobe input
comparab le to pins CA 1 or CB 1 of a 6520 or 6522 device
One 8-b1t timer

Figure 11-13 is a block diagram of the 6532 dev ice and Table 11-11 describes its 1nter­
nat add ress ing. Note that 6532 devices contain no ROM

The following features of 6530 and 6532 devices should be noted :

1) Neither contains any dedicated 1/0 control lines. although pin 7 of Port A on a 6532
device can be used for this purpose

2) Both con tain a single 8-b1t timer with a prescaler that allows timing intervals with
multiplying factors of 1. 8. 64. or 1024 clock pulses The timer can thus be used to
provide intervals far longer than the basic 256 clock counts

3) The end of the timing interval either causes an interrupt or sets a flag which can be
read

The 6530 and 6532 devices are used in such popular single-board microcomputers as
the KIM. VIM. SYM. and AIM·6511·14

11-39

1/ 0 Port A

1/ 0 Port A

Data 01fecl1on

1egister

8 0

Data

Bulfe1

64 Bvtes
of

RAM

1/ 0 Port 8
Data Duec1100

reg1ste1

Data

lnteNal

'""''

1024 Bvtes
o f

ROM

l:ontrol

""' SeleclloglC

~ · ~

Figure 11-12 Block Diagram of the 6530 Multifunctton Device

11 -40

RSO

Table 11 -10. Internal Addressing for the 6530 Mult1func t1 on Device

Pimary Select

RAM 1/0 Timer

Select" Select"

•W

•W

•w
•w
•W

Acceued Locations

AO - A9 d!1ectly address one of 1024 ROM bytes

AO A!i directly addren one of 64 RAM by1es

Secondary

Select

A3 A2 At AO

Interpretation

Access 1/ 0 Port A
Access 110 Pof"I A Data Direc1t0n regis1e1

A ccess 1/ 0 Pon B

Access 1/ 0 Pon B Da1a Oir1c11on ••g•s•e•

Disable iRQ
ErnibleiRO'
Wri•e to 11mer. then decremenl every 1>2 pulse

Wrilfl to timer. !hen decremen1 every 8 '1•2 pulses

Write to 11mer. then decremen1 every 64 1'2 pulses

Wrne to 11mer. then dec1ement every 1024 ¢>2 pylses

Reed 11mer

Read 1nte1rup1 flag

• RAM select and 1/ 0 select are ··true .. if 1, or ··false·· 1f O; true and false are functions of your

spec1fK:at1on. You specify the combination of address lines that create a .. true" line condition.

X represents ··don't care·· Bits may be 0 or 1.
lA represents Selecl during a read .
lW represenls Selecl during a write.

11 -41

00

D•t•
&!fer

07
128 Bytes

ot
RAM

Data

Contro!

'"" Select l og•c

AO

Figu re 11- 13. Block Diagram of the 6532 Multifunction Device

Tab le 11 - 11 Internal Add ressing for the 65 32 Mu ltifunction Device

A6

Primary Select Secondary Select

RAM

Select

l/OTimer

Select

lW

lW

lW

lW

lW

lW

'" lR

lW

lW

lW

lW

A4 A3 A2 A1 AO

reprHents ""don' t care .. Bits may be O or 1.

Interpretation

AO All directly .ctdresse1 one of 128 RAM bytn
Accen 1/ 0 Port A
Access 1/ 0 Port A Data Direction register
Access 1/ 0 Port B
Accn1 1/ 0 Port B Oita Direction register

Oiuble iRci
EnableiRci

Write to timer, then decrement every <Zl2 pulse
Write to timer, then decrement every 8 <Zl2 pylse1
Write to timer. then decrement every 64 412 pylses
Write to timer. then decrement every 1024 412 polaes

Rud timer
AHd interrupt flag•

ReQuest interrupt on hi~-to-low PA7 tr•nsition
Request interrupt on low-to-high PA7 transition
Enable PA7 intemJpt request
Diuble PA7 interrupt request

1R repreaents Read •cces1. lW rapresentt Write access.

11-42

EXAMPLES
A Pushbutton Switch
Purpose: To interface a single pushbutton switch to a 6502 microprocessor by means

of a 6522 Versatile Interface Adapter. The pushbutton is a single mechani­
cal swi tch that provides a contact closu re (logic level 'O') while pressed

Figure 11-14 shows the ci rcuitry required to interface the pushbulton. It uses one bl! of
a 6522 VIA. which acts as a buffer: no latch is needed since the pushbutton remains
closed for many CPU clock cycles. Pressing the button grounds the VtA input bit The
pullup resistor ensu res that the input bit is '1' 1f the button is not being pressed

•SV
()

To CPU
~ 6522)

VIA

(

Puihbunon ~

1
':'

Figure 11-14. A Pushbutton Circuit

11 -43

Programming Examples:

We will perform two tasks with this circuit . They are :

al Set a memory location based on the state of the button.

b) Count the number of times that the button is pressed.

Task 1 : Determine Switch Closure

Purpose: Set memory location 0040 to one if the button is not being pressed. and to
zero if i t is being pressed

Sample Cases:

1) Button open {i.e .. not pressed)
Result~ (0040) ~ 01

2) Button closed (i.e. pressed)
Result~ (0040) ~ 00

Flowchart :

Source Program:

DONE

LOA
STA
STA
STA
LOA
ANO
BED
INC
BRK

#0
VIAPCR
VIAOORA
$40
VIAORA
#MASK
DONE
$40

Start

fod

;MAKE All CONTROL LINES INPUTS
;MAKE PORT A LINES INPUTS
; MARKER ~ ZERO
;READ BUTTON POSITION
;IS BUTTON CLOSED (LOGIC ZEROI'
;YES. DONE
; NO. MARKER ~ 1

11-44

Object Program:

Memory Location Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LOA #0
0001 00
0002 80 STA VIAPCR

0003f
0004

VIAPCR

0005 SD STA VIADDRA

0006}
0007

VIADDRA

0008 85 STA $40
0009 40
OOOA AD LOA VIAORA

0008}
oooc VIAORA

0000 29 AND #MASK
OOOE MASK
OOOF FO BEO DONE
0010 02
0011 E6 INC $40
0012 40
0013 00 DONE BAK

The add resses VIAPCR (Peripheral Control register). VIADDRA (Data Direction Register
Al. and VIAORA (Output Register A) depend on how the VIA is connected in you r
microcomputer. The VIA control lines are not used in this example: the contents of the
Peripheral Control register are thus irrelevant but we have cleared that register as a pre­
caution against spurious operations. We have assumed (as is usually the case) that the
VIA addresses are not on page zero

MASK depends on the bit to which the pushbutton is connected; it has a one in the
button position and zeros elsewhere.

Button Position Mask

(Bit Number) Binary Hex

0 00000001 01
1 00000010 02
2 00000100 04
3 00001000 08
4 00010000 10
5 00100000 20
6 01000000 40
7 10000000 80

11-45

If the button is attached to bit 6 or bit 7 of the VIA input port. the program can use a Bit
Test instruction to set the Overflow or Sign bits and thereby determine the button's
state. For example,

§.!.!]
BIT
BPL

!!l!.§.
BIT
BVC

VIAORA
DONE

VIAORA
DONE

;IS BUTTON CLOSED (LOGIC ZEROI'
;YES, DONE

;IS BUTTON CLOSED (LOGIC ZEROI'
;YES, DONE

Note the use of BVC or BVS to check the value of bit 6.

We could also use shift instructions if the button is attached to bits 0. 6. or 7. These·
quence for bit 0 is:

LSR
BCC

VIAORA
DONE

; IS BUTTON CLOSED (LOGIC ZERO)?
;YES. DONE

The instructions ASL or ROL can be used with bits 6 or 7. Do the contents of the VIA
Data register actually change? Explain your answer.

11-46

Task 2 : Count Switch Closures

Purpose: Count the number of button closures by incrementing memory location 0040
af ter each closure.

Sample Case:

Pressing the button ten times after the start of the program should give

(0040) = OA

Note : In order to count the number of times that the button has SWITCH
been pressed. we must be sure that each closure causes a single BOUNCE
transition. However. a mechanical pushbutton does not produce a
single transition for each closu re. because the mechanical contacts bounce back and
forth before settling into the ir final posi tions. We can use hardware to eliminate the
bounce or we can handle it in software

The program can debounce the pushbutton by waiting after it DEBOUNCING
finds a closure. The required delay 1s called the debouncing IN SOFTWARE
time and is part of the specifications of the pushbutton. It is
typically a few milliseconds long. The program should not examine the pushbutton dur­
ing this period because it might mistake the bounces for new closures. The program
may either enter a delay routine like the one described previously or may simply per­
form other tasks for the specified amount of ttme

Even after debouncing, the program must stilt wai t for the present closure to end before
looking for a new closu re. Th is procedure avoids double counting. The following pro­
gram uses a software delay of 10 ms to debounce the pushbutton. You may want to try
varying the delay or eliminating it entirely to see what happens. To run this program.
you must also en ter the delay subroutine in to memory starting at location 0030.

Flowchart:

, 1-47

Source Program :

LDA #0
STA VIAPCR MAKE ALL CONTROL LINES INPUTS
STA VIADDRA MAKE PORT A LINES INPUTS
STA $40 COUNT =ZERO INITIALLY

CHKCL LDA VIAORA
AND #MASK ;IS BUTTON BEING PRESSED l
BNE CHKCL .NO. WAIT UNTIL IT IS
INC $40 ;YES. ADD 1 TO CLOSURE COUNT
LDY #10 :WAIT 10 MS TO DEBOUNCE BUTTON
JSR DELAY

:HKOP LDA VIAORA
AND #MASK IS BUTTON STILL BEING PRESSED'
SEO CHKOP YES. WAIT FOR RELEASE
BNE CHKCL NO. LOOK FOR NEXT CLOSURE

11 -48

Object Program:

Memory Location Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #0
0001 00
0002 SD STA VIAPCR

0003 }
0004

VIAPCR

0005 SD STA VIADDRA

0006 }
0007

VIADDRA

ooos 85 STA $40
0009 40
OOOA AD CHKCL LDA VIAORA

0008}
oooc VIAORA

OOOD 29 AND #MASK
OOOE MASK
OOOF DO BNE CHKCL
0010 F9
0011 E6 INC $40
0012 40
0013 AO LDY #10
0014 OA
0015 20 JSR DELAY
0016 30
0017 00
0018 AD CHKOP LDA VIAORA

0019 f
001A

VIAORA

0018 29 AND #MASK
001C MASK
001D FO BEO CHKOP
001E F9
001F DO BNE CHKC L
0020 E9

The three instru ctions beg inning with the labe l CHKOP are used to determine when the
switch reopens

Clearly we do not really need a VIA for this simple in terface An addressable tri -state
buffer would do the Job at far lower cost .

11-49

A Toggle Switch
Purpose: To interface a single-pole. double- throw (SPOT) toggle switch to a 6502

microprocessor. The toggle 1s a mechanical device that 1s either in the nor­
mally closed (NC) posit ion or the normally open (NO) pos1 t1 on.

Circuit Diagram:

Figure 11-15 shows the circu itry required to interface the
swi tch. Like the pushbutton. the switch uses one bit of a 6522
VIA that serves as an add ressable buffer. Unlike the button. the
switch may be left 1n either position. Typical program tasks are
to determine the switch pos1t1on and to see 11 the pos111on has

DEBOUNCING
WITH
CROSS-COUPLED
NANO GATES

changed. Enher a one-shot with a pulse length of a few mdhseconds or a pair of cross­
coupled NANO gates (see Figure 11 -16) can debounce a mechanical switch.

NC

~ l 0

•SV

Oebounce

C1rcu1t

6522
VIA

To CPU

Figure 11 -15. An Interface for a Toggle Switch

•Sv

To 110 port (VIA)

Figure 11-16. A Debounce Circui t Based on Cross-coupled NANO Gates

11 -50

The circuits will produce a single step or pulse in response to a change in switch posi­
tion even if the switch bounces before settling into its new posttion

Programming Examples:

We will perform two tasks involving this circuit. They are :

1) Set a memory location to one when the switch is closed.

2) Set a memory location to one when the state of the switch changes.

Task 1: Wait for Switch to Close

Purpose: Memory location 0040 is zero until the switch 1s closed and then is set to
one: that is. the processor clears memory location 0040. waits for the switch
to be closed. and then sets memory location 0040 to one

The switch could be marked Run/Halt. since the processor will not proceed until the
switch is closed.

Flowchart :

Source Program:

LOA
STA
STA
STA

WAITC LOA
AND
BNE
INC
BAK

#0
VIAPCR
VI ADD RA
$40
VIADRA
#MASK
WAITC
$40

:MAKE ALL CONTROL LINES INPUTS
:MAKE PORT A LINES INPUTS
:MARKER= ZERO
:READ SWITCH POSITION
:IS SWITCH CLOSED l'O'i'
:NO. WAIT
:YES. MARKER= ONE

11-51

Object Program:

Memory Loca tion Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LOA #0
0001 00
0002 80 STA VIAPC R

0003 f
0004

VIAPCR

0005 80 STA VIADDRA

0006 }
0007

VIADDRA

0008 85 STA $40
0009 40
OOOA AD WAITC LOA VIAORA

0008 }
oooc VIAORA

0000 29 AND #MASK
OOOE MASK
OOOF DO 8NE WAITC
0010 F9
0011 E6 INC $40
0012 40
0013 00 8RK

11 -52

Task 2: Wait for Switch to Change

Purpose : Memory location 0040 remains zero until the swi tch position changes and 1s
then set to 1. i.e .. the processor waits until the switch changes position. then
sets memory location 0040 to 1.

Flowchart:

Source Program:

LDA
STA
STA
STA
LDA
AND
STA

WAITCH LDA
AND
CMP
BEO
INC
BRK

#0
VIAPCR
VIADDRA
$40
VIAORA
#MASK
$41
VIAORA
#MASK
$41
WAIT CH
$40

Start

Eod

:MAKE ALL CONTROL LINES INPUTS
:MAKE PORT A LINES INPUTS
:MARKER= ZERO
:GET OLD SWITCH POSITION

:GET NEW SWITCH POSITION

:ARE NEW AND OLD POSITIONS THE SAME'
:YES. WAIT
:NO. MARKER= ONE

11-53

Object Program:

Memory Location Memory Contents Instruction
(Hex) (Hex) (M nemonic)

0000 A9 LDA #0
0001 00
0002 SD STA VIAPCR

0003 }
0004

VIAPCR

0005 SD STA VIADDRA

0006 }
0007

VIADDRA

ooos S5 STA $40
0009 40
OOOA AD LDA VIAORA

0008 }
oooc VIAORA

OOOD 29 AND #MASK
OOOE MASK
OOOF S5 STA $41
0010 41
0011 AD WAITCH LDA VIAORA

0012 }
0013

VIAORA

0014 29 AND #MASK
0015 MASK
0016 C5 CMP $41
0017 41
001S FO BEO WA ITCH
0019 F7
001A E6 INC $40
001 B 40
001C 00 BRK

A Subtract or Exclusive OR could replace the Compare instruction in the program. Either
of these instructions would. however. change the conten ts of the Accumulator. The
Exc lusive OR would be useful if several switches were at tached to the same VIA since
it would produce a one bit for each switch that changed state. How would you rewrite
this program so that it de bounces the switch in software?

11-54

A Multiple-Position (Rotary, Selector, or Thumbwheell Switch
Purpose: To interface a multiple-position switch to a 6502 microprocessor. The lead

corresponding to the switch position is grounded. while the other leads are
high (logic ones!.

Circuit Diagram:

Figure 11-17 shows the circuitry required to interface an 8-position switch. The switch
uses all eight data bits of one port of a VIA. Typical tasks are to determine the position
of the switch and to check whether or not that position has changed. Two special situa·
tions must be handled

1) The switch is temporarily between positions so that no leads are grounded

2) The switch has not yet reached its final position

The first of these situations can be handled by waiting until the input is not all 'l's. i.e ..
until a switch lead is grounded. We can handle the second situation by examining the
switch again after a delay (such as 1 or 2 seconds) and only accepting the input when it
remains the same. Th is delay will not affect the responsiveness of the system to the
switch. We can also use another switch (i .e .. a Load switch) to tell the processor when
the selector switch should be read

Programming Examples :

We will perform two tasks involving the circuit of Figure 11-17 These are:

al Monitor the switch until it is in a definite position. then determine the position and
store its binary value in a memory location.

b) Wait for the position of the switch to change. then store the new position in a
memory location

If the switch is in a position. the lead from that position is grounded through the com­
mon line. Pullup resistors on the input lines avoid problems caused by noise.

o;+-----PA7
Oo;;f------ PA5
C>-'.f------PA5
O-i,f------- PA4

1i"t:J.*f------.PA3
(>';+------ PA2
0-::+------ PA1
C>''f------- ·Ao

6522
VIA

To CPU

Figure 11-17 An lnterface for a Multi-Position Switch

11-55

Task 1: Determine Switch Position

Purpose: The prog ram waits for the swi tch to be in a specific position and then stores
the posi tion number in memory location 0040.

Table 11-12 contains the data inputs corresponding 10 the various swi tch positions.

Table 11-12. Data Input vs. Switch Position

Data Input
Switch Position

Binary Hex

0 111 11 110 FE
1 11111101 FD
2 11 11 1011 FB
3 11110111 F7
4 11101111 EF
5 11011 11 1 OF
6 10111111 BF
7 01111111 7F

Th is scheme 1s ineffic ient. since it requires eight bus 10 d1stmguish among
eight different positions.

A TTL or MOS encoder could redu ce the number of inpu t bits
needed. Figure 11 -18 shows a c1rcu11 usmg 1he 74LS148 TTL 8-
to-3 encoder.15 We attach the switch outputs in inverse order.
smce the 74LS148 device has active-low mputs and outputs. The

USING
A TTL
ENCODER

outpu t of the encoder c1rcu1t 1s a 3-b1 1 representation of the sw itch position. Many
switches include encoders so that their ou tputs are coded. usually as a BCD d1g 1t (1n
negauve logic)

0.:4---i io
O-''J--- f1
Q-!'J--- f,
O.:'J--.i1,

Y':T'l~-........ i4 74l.S148

D-'4---T5 8-10-J

<"">-'+---i fs Encoder
1,

PA2 6522

PA1 VIA

••o

Figure 11 -1 8. A Mul11ple·Pos111on Switch wi th an Encoder

11-56

To CPU

The encoder produces active-low outputs. so. for example. switch position 5. which is
attached to input 2. produces an outpu t of 2 in negative logic (or 5 m positive logic).
You may want to verify the double negative for yourself.

Flowchart :

'""
Source Program:

LDA #0
STA VIAPCR :MAKE ALL CONTROL LINES INPUTS
STA VIADDRA :MAKE PORT A LINES INPUTS

CHKSW LDA VIAORA
CMP #$FF :IS SWITCH IN A POSITION>
BEO CHKSW :NO. WAIT UNTIL IT IS
LDX #0 :SWITCH POSITION= ZERO

CHKPOS ROR A :IS NEXT BIT GROUNDED POSITION>
BCC DONE :YES. SWITCH POSITION FOUND
INX :NO. INCREMENT SWITCH POSITION
JMP CHKPOS

DONE STX $40 :SAVE SWITCH POSITION
BRK

11-57

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #0
0001 00
0002 80 STA VIAPCR

0003 f
0004

VIAPCR

0005 80 STA VIADDRA

0006 f
0007

VIADDRA

0008 AD CHKSW LOA VIAORA

0009 f
OOOA

VIAORA

0008 C9 CMP #$FF
oooc FF
0000 FO SEO CHKSW
OOOE F9
OOOF A2 LOX #0
0010 00
0011 6A CHKPOS ROA A
0012 90 sec DONE
0013 04
0014 E8 INX
0015 4C JMP CHKPOS
0016 11
0017 00
0018 86 DONE STX $40
0019 40
001A 00 BAK

Suppose that a faulty switch or defective VIA results in the input always being FF15
How could you change the program so that 11 would detect this error?

This program cou ld easi ly be restructured to make 11 shorter and faster - and relocat­
able as well One option would be IO replace JMP CHKPOS with BCS CHKPOS: why is
this possible and what improvements result? Another option would be to change the
1n1 t1 al conditions so that only one 1ump instruction was required. How would you
accomplish that? Hint: start with FF15 1n Index Register X and increment X before
sh1f11ng the Accumulator

This example assumes that the switch is debounced in hardware. How would you
change the program to debounce the switch 1n software?

11-58

Task 2 : Wait For Switch Position To Change

Purpose: The program waits for the switch position to change and places the new
position (decoded) into memory location 0040. The program waits until the
switch reaches its new position

Flowchart:

Eod

Source Program:

LDA #0
STA VIAPCR ;MAKE ALL CDNTRDL LINES INPUTS
STA VIADDRA :MAKE PORT A LINES INPUTS

CHKFST LDA VIAORA
CMP #$FF ;IS SWITCH IN A POSITION?
BED CHKFST ;NO. WAIT UNTIL IT IS
TAX ;SAVE OLD POSITION

CH KS EC LDA VIAORA
CMP #$FF ;IS SWITCH IN A POSITION?
BED CHKSEC ;NO. WAIT UNTIL IT IS
CPX VIAORA ;IS POSITION SAME AS BEFORE'
BED CHKSEC ;YES. WAIT FOR IT TO CHANGE
LDX #$FF ;NO. START SWITCH POSITION AT -1

CHKPOS INX ;SWITCH POSITION ~SWITCH POSITION + 1
ROR A ;IS NEXT BIT GROUNDED>
BCS CHKPOS ;NO. KEEP LOOKING
STX $40 ;STORE SWITCH POSITION
BAK

11-59

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #0
0001 00
0002 80 STA VIAPCR

0003 }
0004

VIAPCR

0005 80 STA VIADDRA

0006 }
0007

VIADDRA

0008 AD CHKFST LOA VIAORA

0009 }
OOOA

VIAORA

0008 C9 CMP #$FF
oooc FF
0000 FO BEO CHKFST

OOOE F9
OOOF AA TAX
0010 AD CHKSEC LOA VIAORA

0011 f
0012

VIAORA

0013 C9 CMP #$FF
0014 FF
0015 FO BEO CH KS EC
0016 F9
0017 EC CPX VIAORA

0018 }
0019

VIAORA

001A FO BEO CHKSEC
0018 F4
001C A2 LOX #$FF
0010 FF
001E E8 CHKPOS INX
001 F 6A ROA A
0020 BO 8CS CHKPOS
0021 FC
0022 86 STX $40
0023 40
0024 00 BRK

An alternative method for determining if the switch ts 1n a posit ion ts·

CHKSW INC VIAORA
BEO CHKSW

Why does this work? What happens to the input data? Rewrite the program to use the
alternative method: how much less memory 1s required?

11-60

A Single LED
Purpose: To interface a single light-emitting diode to a 6502 microprocessor. The LED

can be attached so that either a logic zero or a logic one turns it on.

Circuit Diagram:

~igure 11-19 shows the circuitry required to interface an LED. The LED
LED lights when its anode is positive with respect to its cathode CONTROL
(Figure 11-19a). Therefore. you can either light the LED by ground-
ing the cathode and having the computer supply a one to the anode (Figure 11-19b) or
by connecting the anode to +5 volts and having the computer supply a zero to the
cathode (Figure 11-19c). Controlling the cathode is the most common approach. The
LED is brightest when it operates from pulsed cu rrents of about 10 or 50 mA applied a
few hundred times per second. LEDs have a very short turn-on time (in the microsecond
range) so they are well suited to multiplexing (operating several from a single port) . LED
circuits usually need periphera! or transistor drivers and current- limit ing resistors. MOS
devices normally cannot drive LEDs directly and make them bright enough for easy
viewing

Note: The VIA has an output latch on each port However. the 8 port is normally used
for output. since it has somewhat more drive capability. In particular. the B port outputs
are capable of driving Darlington transistors (providing 3.0 mA minimum at 1.5 V)
Darlington transistors are high-gain transistors capable of switching large amounts of
cu rrent at high speed; they are useful 1n driving solenoids. relays. and other devices

11 -61

el Buie LED circuitry. The reai1tor R should limit th• maKimum cumtnt to 50 mA and

From CPU

the •verage cu!'l'ent to 10 mA.

6522
VIA

MO

•5V

Driver

b) Interfacing an LED with positive logic. A logic ·1· from the CPU turns the LED on.

From CPU
6522

VIA

MO

Driver

c) Interfacing an LED with negative logic A logic ·o· from the CPU turns the LED on The driver 01 the

CPU may invert the logic levels

Figure 11-19. Interfacing an LED

11-62

Task : Turn the Light On or Off

Purpose: The program turns a single LED either on or off.

A Send a Logic One to the LED (turn a positive display on or a negative display off).

Source Program:

{form data initially)

LDA
STA
LDA
STA
LDA
STA
BRK

#0
VIAPCR
#$FF
VIADDRB
#MASKP
VIADRB

:MAKE ALL CONTROL LINES INPUTS

:MAKE PORT B LINES OUTPUTS
:GET DATA FOR LED
:SEND DATA TO LED

The B side of the VIA 1s used because of the buffering. The CPU can therefore read the
data from the output port

(update data)

LOA
ORA
STA
BRK

VIAORB
#MASKP
VIAORB

:GET OLD DATA
:TURN ON LED BIT
:SEND DATA TO LED

MASKP has a one bit in the LED position and zeros elsewhere Logically ORing with
MASKP does not affect the other bit pos1t1ons. which may contain values for other
LEDs. Note that we can read the VIA Output (Data) Register even when the pins are
assigned as outputs.

11-63

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

(form data ini ti al ly)

0000 A9 LOA #0
0001 00
0002 80 STA VIAPCR
0003 }
0004

VIAPCR

0005 A9 LOA #$FF
0006 FF
0007 80 STA VIADDRB
0008 }
0009

VIAD ORB

OOOA A9 LOA #MASKP
0008 MASKP
oooc 80 STA VIAORB

oooof
OOOE

VIAORB

OOOF 00 BAK

(update data)

0010 AD LOA VIAORB
0011 }
0012

VIAORB

0013 09 ORA # MASKP
0014 MASKP
0015 BO STA VIAORB

0016 f
0017

VIAORB

0018 00 BAK

B Send a Logic Zero to the LED (turn a positive display off or a negative display on)

The differences are that MASKP must be replaced by its logical complement MASKN
and ORA #MASKP must be replaced by AND #MASKN MASKN has a zero bit 1n the
LED position and ones elsewhere. Logically AND1ng w ith MASKN does not affect the
other bit positions.

11 -64

Seven-Segment LED Display
Purpose: To interface a seven-segment LED display to a 6502 microprocessor. The dis­

play may be either common-anode (nega tive logic) or common-cathode
(positive logic).

Circuit Diagram:

Figure 11-20 shows the circuitry required to interface a
seven-segment display. Each segment may have one. two.
or more LEDs .attached in the same way. There are two
ways of connecting the displays. One is tying all the
cathodes together to ground (see Figure 11-21a); this is a

COMMON-ANODE
OR
COMMON-CATHODE
DISPLAYS

"common-cathode" display. and a logic one at an anode lights a segment The other is
tying all the anodes together to a positive voltage supply (see Figure 11-21 b); this is a
··common-anode" display. and a logic zero at a cathode lights a segment. So the com­
mon-cathode dis;:>lay uses positive log ic and the common-anode display negative logic
Either display requires appropriate drivers and resistors

The Common tine from the display is tied either to ground or to +5 volts. The display
segments are customarily labelled:

Note : The seven-segment display ts widely used because it contains the smallest num­
ber of separately con trolled segments that can provide recognizable representations of
al l the decimal d igi ts (see Figure 11-22 and Table 11-13). Seven-segment displays can
also produce some letters and other charac ters (see Table 11-14) Better representa ­
tions requ ire a subs ta ntially larger number of segments and more circuitry 16 Since
seven-segment drsptays are so popular. low-cost seven-segment decoder/d rivers have
become widely available. The most popular devices are the 7447 common-anode driver
and the 7448 common-cathode driver: 17 these devices have Lamp Test inputs (that
turn alt the segments on) and blanking inputs and outputs (for blanking leading or trad­
ing zeros).

11-65

From CPU

6522
VIA

MO

>SV

PB7 may be used for a decimal point LED

-
Common

i-- --1
-=' O +sv

!Common- !Commc>fl -
C.thodel Anode!

Figure 11 -20. Interfacing a Seven-Segment Display

Table 11-13. Seven-Segment Representations of Decimal Numbers

Hexadecimal Representation
Number

Common-cathode Common-anode

0 3F 40
1 06 79
2 58 24
3 4F 30
4 66 19
5 60 12
6 70 02
7 07 78
8 7F 00
9 67 18

Bit 7 is always zero and the others are g. f. e. d. c. b. and a 1n decreasing order of
significance.

11 -66

al Common-cathode

bl Common-anode -sv

Figure 11-21. Seven-Segment Display Organization

11 -67

0: Segments f. e. d. c , b. 1 ~ 3: Segments g. d, c. b. 1 ~

fl I b I b

·I
,, ,,

1: Segments c . b '!!) 4: Segments g, f . c_ b Q!:1

I b I I I b

I'
,,

2: Segments g. e. d. b. a ~ 5: Segments g, I. d. c. a ~

I b fl

·I I,

Figure 11 -22. Seven-Segment Representati ons of Decimal 0 1911s

11-68

6: Segmenu g, f. e . d. c. • ~ 8: Segments g, f. e. d , c, b, 1 ~

fl fl I b

·I ,, ·I I,
Note ttwu the altem.te representation with.!. off may This is the seme as Lamp Test .
be reserved for the lower case letter "b'

7: Segments C, b. I ~ 9: Segments g. t. c. b. a~
0

lb ·I lb

I'
,,

An attem1te has segment d on also

Figu re 11-22 Seven-Segment Representations of Decimal Digits (C ontinued)

Table 11 -14. Seven-Segment Representations of Letters and Symbols

Lower-case Letters
Upper-case letters and Special Characters

Hexadecimal Hexadecimal

Letter
Representation

Character
Representation

Common- Common- Common- Common-
cathode anode cathode anode

A 77 08 b 7C 03
c 39 46 c 58 27
E 79 06 d 5E 21
F 71 OE h 74 OB
H 76 09 n 54 28
I 06 79 0 5C 23
J IE 61 r 50 2F
L 38 47 u lC 63
0 3F 40 40 3F
p 73 oc ' 53 2C
u 3E 41
y 66 19

11 -69

Task 1: Display a Decimal Digit

Purpose: Display the contents of memory location 0040 on a seven-segment display if
it contains a decimal digit. Otherwise. blank the display

Sample Problems:

a. (0040) = 05

Result is 5 on display
b 10040) = 66

Result is a blank display

Flowchart:

11-70

Source Program:

LOA
STA
LOA
STA
LOA
LOX
CPX
BCS
LOA

DISPLY STA
BAK

#0
VIAPCR
#$FF
VIAD ORB
#BLANK
$40
#10
DSPLY
SSEG.X

VIAORB

:MAKE ALL CONTROL LINES INPUTS

:MAKE PORT B LINES OUTPUTS
:GET BLANK CODE
:GET DATA
:IS DATA 10 OR MORE?
:YES . DISPLAY BLANKS
.NO. CONVERT DATA TO SEVEN-SEGMENT

CODE
:SEND CODE TO DISPLAY

BLANK is 00 for a common·ca thode display. FF for a common·anode display. An alter·
native procedure would be to put the blank code at the end of the table and replace al l
improper data values with 10. 1.e the instruc tions after STA VtADDRB are :

LOX
CPX
BCC
LOX

CNVRT LOA

$40
#10
CNVRT
#10
SSEG.X

:GET DATA
:IS DATA 10 OR MORE?

:YES. REPLACE IT WITH 10
:CONVERT DATA TO SEVEN-SEGMENT CODE

Table SSEG is either the common·cathode or common·anode representation of the
decimal digits from Table 11·13.

11 - 71

Object Program :

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #0
0001 00
0002 SD STA VIAPCR

0003 }
0004

VIAPCR

0005 A9 LDA #$FF
0006 FF
0007 SD STA VIADDRB

0008 }
0009

VIADDRB

OOOA A9 LDA #BLANK
0008 BLANK
oooc A6 LDX $40
OOOD 40
OOOE EO CPX #10
OOOF OA
0010 80 BCS DSPLY
0011 02
0012 85 LDA SSEG.X
0013 20
0014 SD DSPLY STA VIAORB

0015 }
0016

VIAORB

0017 00 BRK

0020-0029 SSEG (seven-segment
code table)

Several displays may be multiplexed. as shown in Figure 11-23_ A brief strobe on con­
trol line CB2 clocks the counter and directs data to the next display. RESET starts the
decimal counter at 9 so that the first output opera tion clears the counter and directs
data to the first display.

The following program uses the delay routine to pulse each of ten common-cathode
displays for 1 ms

11-72

Task 2 : Display Ten Decimal Digits

Purpose: Display the contents of memory locations 0040 through 0049 on ten 7-seg·
ment displays that are multiplexed with a counter and a decoder. The most
significant d1g1t is in 0049

Sample Problem:

100401 66
100411 3F
100421 7F
100431 7F
100441 06
100451 5B
100461 07
100471 4F
100481 6D
100491 7D
The displays read 6537218804

The circuit in Figure 11 -23 uses the VIA handshake signal CB2 as a brief output strobe

to indicate the occurrence of a data transfer

Source Program:

LDA #$FF
STA VI ADD RB :MAKE PORT B LINES OUTPUTS
LDA #%10100000
STA VIAPCR .PROVIDE DATA READY STROBE

SCAN LDX #10 :NUMBER OF DISPLAYS~ 10
DSPLY LDA $3F,X :GET DATA FOR DISPLAY

STA VIAORB :SEND DATA TO DISPLAY
JSR DELAY :WAIT 1 MS
DEX
BNE DSPLY :COUNT DISPLAYS
BEO SCAN :START ANOTHER SCAN

Peripheral Control register bit 7 = 1 to make C82 an output. bit 6 = 1 to make it a pu lse.
and bit 3 = 1 to make it a brief strobe. We have assumed here that subroutine DELAY
has been modified to provide a transparent 1 ms wait

11-73

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LOA #$FF
0001 FF
0002 80 STA VIADDR8

0003 f
0004

VIADDR8

0005 A9 LOA #%10100000
0006 AO
0007 80 STA VIAPCR

0008 f
0009

VIAPCR

OOOA A2 SCAN LOX #10
0008 OA
oooc 85 DSPLY LOA $3F.X
0000 3F
OOOE ·80 STA VIAOR8

OOOF f
0010

VIAOR8

0011 20 JSR DELAY
0012 30
0013 00
0014 CA DEX
0015 DO 8NE DSPLY
0016 F5
0017 FO 8EO SCAN
0018 Fl

11-74

0, C, B. and A (0 most signifUl\1. A.

least signiticantl are the • -bit output

lrom the coun1er. These• bits ecbvete

!he COffHPC)ndingly nufl"ber9d output

lrom the decoder. end nenc. me COf ­

respondingly numbentd diapay.

From CP\J

ce2

Oock

65 22
VIA

7490

00

01

0 2

OJ

06

0 1

OB

09

7442
Decade 4 to 1 O

Counter Oecoder!Oriver

R9 At-----"4 ..._ ______ _,

Reset

Figure 11 -23. Interfacing Multiplexed Seven-Segment Displays

11-75

PROBLEMS

1) An On-Off Pushbutton

Purpose: Each closure of the pushbutton complements (inverts) all the bits in memory
location 0040. The location init ially contains zero. The program should con­
tinuously examine the pushbutton and compleme nt location 0040 with each
closure. You may wish to complement a display output port instead, thus
making the results easier to see

Sample Case :

Location 0040 initially contains zero.

The first pushbutton closure changes location 0040 to FF15. the second changes it
back to zero. the third back to FF15. etc. Assume that the pushbutton is debounced in
hardware. How would you include debouncing in your program?

2) Debouncing a Switch in Software

Purpose: Debounce a mechanical switch by waiting until two readings. taken a de­
bounce time apart. give the same result . Assume that the debounce time (in
ms) is in memory location 0040 and store the switch position in memory
location 0041 .

Sample Problem:

(0040) = 03 causes the program to wait 3 ms between readings.

3) Control for a Rotary Switch

Purpose: Another switch serves as a Load switch for a four-position unencoded rotary
switch. The CPU waits for the Load switch to close {be zerol. and then reads
the position of the rotary switch. This procedure allows the operator to move
the rotary switch to its final posit ion before the CPU tries to read it. The pro­
gram should place the position of the rotary switch into memory location
0040. Debounce the Load switch in software.

Sample Problem:

Place rota ry switch in position 2 Close Load switch

Result 10040) ~ 02

11-76

4) Record Switch Positions on Lights

Purpose: A set of eight switches should have their positions reflected on eight LEDs.
That 1s to say, 1f the switch is closed (zero). the LED should be on. otherwise
the LED should be off Assume that the CPU output port is connected to the
cathodes of the LEDs

Sample Problem:

SWITCH 0 CLOSED
SWITCH 1 OPEN
SWITCH 2 CLOSED
SWITCH 3 OPEN
SWITCH 4 OPEN
SWITCH 5 CLOSED
SWITCH 6 CLOSED
SWITCH 7 OPEN

Result

LED 0 ON
LED 1 OFF
LED 2 ON
LED 3 OFF
LED 4 OFF
LED 5 ON
LED 6 ON
LED 7 OFF

How would you change the program so that a switch attached to bit 7 of Port A of VIA
#2 determ ines whether the displays are active (i.e .. if the control switch is closed. the
displays attached to Port B reflect the switches attached to Port A ; if the control switch
is open. the d isplays are always offl? A control switch is useful when the d1splays may
distract the operator. as in an airplane.

How would you change the program so that it makes the control switch an on-off
pushbutton; that is. each closure inverts the previous state of the displays? Assume
that the displays start in the active state and that the program examines and debounces
the pushbutton before sending data to the displays.

5) Count on a Seven-Segment Display

Purpose: The program should coun t from 0 to 9 continuously on a seven-segment dis­
play. starting with zero.

Hint: Try different timing lengths for the displays and see what happens. When does
the count become visible? What happens if the display is blanked part of the time?

11 -77

MORE COMPLEX 1/0 DEVICES

More complex 1/0 devices differ from simple keyboards. switches. and displays in that:

1) They transfer data at higher rates

2) They may have their own internal clocks and timing.

3) They produce status information and require control information. as well as
transferring data.

Because of their high data rates. you cannot handle these 1/0 devices casually. If the
processor does not provide the appropriate service. the system may miss input data or
produce erroneous output data. You are therefore working under much more exacting
constraints than in dealing w ith simpler devices. Interrupts are a convenient method for
handling complex 1/0 devices. as we shall see in Chapter 12.

Peripherals such as keyboards. teletypewriters. cassettes.
and floppy disks produce their own internal timing. These
devices provide streams of data. separated by specific tim­
ing intervals. The computer must synchronize the initial in­

SYNCHRONIZING
WITH 1/0
DEVICES

put or output operation with the peripheral clock and then provide the proper interval
between subsequent operations. A simple delay loop like the one shown previously can
produce the timing interval. The synchronization may require one or more of the follow­
ing procedures ·

1) Looking for a transition on a clock or strobe line provided by the peripheral for tim­
ing purposes. The simplest method 1s to tie the strobe to a VIA control line and wait
until the appropriate bit of the VIA Interrupt Flag register 1s set

2) Finding the center of the time interval during which the data is stable. We would
prefer to determine the value of the data at the center of the pulse rather than at
the edges. where the data may be changing. Finding the center requires a de lay of
one-half of a transmissi on interval (bit time) after the edge. Sampling the data at
the center also means that small timing errors have little effect on the accuracy of
the reception

3) Recognizing a special starting code. Th is is easy if the code is a single bit or if we
have some timing information. The procedure 1s more complex 1f the code is long
and could start at any time. Shifting will be necessary to determine where the
transmitter is starting its bits. characters. or messages (this 1s often called a search
for the correct " framing") .

4) Sampling the data several times This reduces the probab1l1ty of receiving data in­
correctly from noisy lines. Maj ority logic (such as best 3 out of 5 or 5 out of 8) can
be used to decide on the actual data value.

Reception 1s. of course. much more difficult than transmission. since the peripheral con·
trols the reception and the computer must interpret timing information generated by
the peripheral. In transmission. the computer provides the proper timing and formatting
for a specific peripheral.

Peripherals may requ ire or provide other information besides
data and timing. We refer to other informatton transmitted by
the computer as "control information": 1t may select modes of
operation. start or stop processes. clock reg is ters. enable

CONTROL
AND STATUS
INFORMATION

buffers. choose formats or protocols. provide operator displays. count operations. or
identify the type and priority of the operation. We refer to other 1nformat1on transmitted
by the peripheral as "status information": it may indicate the mode of operation. the
readiness of devices. the presence of error conditions. the format of protocol in use. and
other states or conditions

11 -78

The computer handles control and status information just like data. This information
seldom changes. even though ac tual data may be transferred at a high rate The control
or status information may be single bits. digits. words. or multiple words. Often single
bits or short fields are combined and handled by a single input or output port.

Combining status and control information into bytes reduces the total number of 1/0
port addresses required by the peripherals. However. the combination does mean that
individual status input bits must be separately interpreted and control output bits must
be separately determined. The procedures for isolat ing status bits and setting or reset­
ting control bits are as follows:

Separating Out Status Bits

Step 1) Read status data from the peripheral

Step 2) Logical ANO with a mask (the mask has ones in bit
positions that must be examined and zeros
elsewhere)

SEPARATING
STATUS
INFORMATION

Step 3) Shift the separated bits to the leas t significant bit positions

Step 3 is unnecessary 11 the field 1s a single bit. since the Zero .-8-IT_T_E_S_T_.....,
flag will contain the complement of that bit after Step 2 (try it!l INSTRUCTION
A Shift or Load instruction can replace Step 2 if the field 1s a
single bit and occupies the least significan t. most significant. or next to most significant
bit position (positions 0. 7. or 6). These positions are often reserved for the most fre­
quently used status information. You shou ld try to write the required instruction se­
quences for the 6502 processor. Note. in particular. the use of the Bit Test instruction.
This instru ction performs a logical ANO between the contents of the Accumulator and
the contents of a memory location but does not save the result: the flags are set as
follows :

Zero flag= 1 if the logical ANO produces a zero resu!t. 0 1! 11 does not

Sign flag = bit 7 of the contents of the memory location (independent of the value in
the Accumulator)

Overflow flag = bit 6 of the contents of the memory locat1on (independent of the value
in the Accumulator! .

Setting and Clearing Control Bits

Step 1) Read prior control information

Step 2) Logical AND with mask to clear bits (mask has zeros
in bit positions to be clea red. ones elsewhere)

COMBINING
CONTROL
INFORMATION

Step 3) Logical OR with mask to set bits (mask has ones in bit positions to be set. zeros
elsewhere)

Step 4) Send new control information to peripheral

Here again the procedure is simpler if the field is a single bit and occupies a position at
either end of the byte

11-79

Some examples of separating and combining status bits are:

1) A 3-bit field in bit positions 2 through 4 of a VIA Ouput (Data) register is a scaling
factor . Place that factor into the Accumulator.

. READ STATUS DATA FROM INPUT PORT

LDA VIAOR ;READ STATUS DATA

; MASK OFF UNWANTED BITS AND SHIFT RESULT

AND * %00011100 ;MASK SCALING FACTOR
LSR A ;SHIFT TWICE TO NORMALIZE
LSR A

2) The Accumulator contains a 2-bit field that must be placed in bit positions 3 and 4
of a VIA Output (Data) register .

TEMP - $0040
MASK - %11 1001 11

. MOVE DATA TO FIELD POSITIONS

ASL A ;SHIFT DATA TO BIT POSITIONS 3 AND 4
ASL A
ASL A
AND * %00011000 ;CLEAR OUT OTHER BITS
STA TEMP

COMBINE NEW FIELD VALUE WITH OTHER DATA

LDA
AND
ORA
STA

VIOADR
HMASK
TEMP
VIOAR

;CLEAR FIELD TO BE CHANGED
;COMBINED NEW DATA WITH OLD
;OUTPUT COMBINED DATA

Documentation is a serious problem in handling control and
status information. The meanings of status inputs or control
outputs are seldom obvious. The programmer should clearly in­
dicate the purposes of input and output operations in the com­
menls. e.g .. "CHEC K IF READER IS ON.'' "CHOOSE EVEN

DOCUMENTING
STATUS AND
CONTROL
TRANSFERS

PARITY OPTION:· or "ACTIVATE BIT RATE COUNTER: · The Logical and Shift instruc­
tions will otherwise be very difficult to remember. understand. or debug.

11-80

EXAMPLES
An Unencoded Keyboard
Purpose: Recognize a key closure from an unencoded 3 x 3 keyboard and place the

number of the key that was pressed into the Accumulator

Keyboards are just collections of switches (see Figure 11-24) Small numbers of keys are
easiest to handle if each key is attached separately to a bit of an input port. Interfacing
the keyboard is then the same as interfacing a set of switches

Keyboards with more than eight keys require more than one input MATRIX
port and therefore multibyte operations. This is particularly KEYBOARD
wasteful if the keys are logically separate. as in a calculator or ter-
minal keyboard where the user wilt only strike one at a time. The number of input Imes
required may be reduced by connecting the keys into a matrix. as shown in Figure
11-25. Now each key represents a potential connecuon between a row and a column
The keyboard matrix requires n + m external lines. where n 1s the number of rows and
m is the number of columns This compares to n x m external lines if each key is sepa­
rate . Table 11-15 compares the number of keys required by typical configurations

A program can determine which key has been pressed by using KEYBOARD
the external lines from the matrix. The usual procedure is a SCAN
"keyboard scan·· We ground Row 0 and examine the column
lines. If any tines are grounded. a key in that row has been pressed. causing a row- to­
column connection. We can determine which key was pressed by determining which
column line is grounded: that is. which bit of the input port is zero If no column line 1s
grounded. we proceed to Row 1 and repeat the scan. Note that we can check to see 1f
any keys at alt have been pressed by grounding all the rows at once and examining the
columns

The keyboard scan requires that the row lines be tied to an output port and the column
lines to an input port. Figure 11-26 shows the arrangement. The CPU can ground a par­
ticular row by placing a zero in the appropriate bit of the output port and ones in the
other bits

The CPU can determine the state of a particular column by examining the appropriate
bit of the input port

Table 11-15_ Comparison Between Independent Connections
and Matrix Connections for Keyboards

Keyboard Size
Number of Lines with Number of Lines with

Independent Connections Matrix Connections

3 x 3 9 6
4x4 16 8
4x6 24 10
5 x 5 25 10
6x6 36 12
6x8 48 14
8x8 64 16

11-81

r • .., 1

...l..
0 -

r KoV 2

J_
0 -

r KeyJ

J_
0 -

Each key 1s a switch just Hke a pushbutton end grounds an input bit tf it is pressed. ~

Figure 11-24 A Small Keyboard

ColumnO Column 1 Column 2

Each key now seNes to connect a row to a column. For instance. key 4 connects row 1 w column 1

Figure 11 -25. A Keyboard Matrix

11 -82

o...a..
{tram CPUI

ColulTW't 0 Column 1

VIA

Input

Port

Data Bos ho CPU)

Figure 11 -26. 1/0 Arrangement for a Keyboard Scan

11-83

Colurnn2

Task 1: Determine Key Closure

Purpose: Wait for a Key to be Pressed

The procedure 1s as follows: WAITING
FOR A 1) Ground all the rows by clearing a11 the output bits.
KEY CLOSURE

2) Fetch the column inputs by reading the input port
3) Return to Step 1 1f all the col umn inputs are ones

Flowchart:

Source Program:

LDA
STA
LDA
STA
STA
STA

WAITK LDA
AND
CMP
SEO
BRK

#$FF
VIADDRB
#0
VIAPCR
VIADDRA
VIAORB
VIAORA
#%00000111
#%00000111
WAITK

Ground all

keyt>oa1d rows

'""

;MAKE PORT B LINES OUTPUTS

;MAKE ALL CONTROL LINES INPUTS
;MAKE PORT A LINES INPUTS
;GROUND ALL KEYBOARD ROWS
;GET KEYBOARD COLUMN DATA
;MASK COLUMN BITS
;ARE ANY COLUMNS GROUNDED'
;NO. WAIT UNTIL ONE IS

11-84

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #$FF
0001 FF
0002 SD STA VIADDRB

0003}
0004

VI ADD RB

0005 A9 LDA #0
0006 00
0007 SD STA VIAPCR

ooos}
0009

VIAPCR

OOOA SD STA VIADDRA

0008}
oooc VI ADD RA

OOOD SD STA VIAORB

OOOE}
OOOF VIAORS

0010 AD WAITK LDA VIAORA

0011 }
0012

VIAORA

0013 29 AND #%00000111
0014 07
0015 C9 CMP #%00000111
0016 07
0017 FO BED WAITK
001S F7
0019 00 BRK

VIA Port 8 is the keyboard output port and Port A is the input port.

Masking off all but the column bits eliminates any problems that could be caused by
the states of the unused input lines.

We could generalize the routine by naming the output and mask ing patterns·

ALLG =%11111000
OPEN =%00000111

These names could then be used in the actual program: a different keyboard would re ­
quire only a change in the definitions and a re-assembly.

Of course. one port of a VIA is all that is really necessary for a 3 x 3 or 4 x 4 keyboard
Try rewriting the proqram so that it uses only Port A.

11 -85

Task 2 : Identify Key

Purpose: Identify a key closure by placing the number of the key into the Accumulator.

The procedure is as follows ·

1) Set key number to -1. keyboard output port to all ones except for a zero in bit 0.

and row counter to number of rows.

2) Fetch the column inputs by reading the input port

3) 11 any column inputs are zero. proceed to Step 7

4) Add the number of columns to the key number to reach next row.

5) Update the contents of the ou 1pu t port by shifting the zero bit left one position.

6) Decrement row counter. Go to Step 2 11 any rows have not been scanned. other·

wise go to Step 9.

7) Add 1 to key number. Shift column inputs right one bit.

8) If Carry = 1. return to Step 7.

9) End of program

Flowchart:

Start

v ..

11-86

Source Program:

LOA #0
STA VIAPCR :MAKE ALL CONTROL LINES INPUTS
STA VIADDRA :MAKE PORT A LINES INPUTS
LOA #$FF
STA VIADDRB :MAKE PORT B LINES OUTPUTS
TAX :KEY NUMBER= -1
LOA #%11111110 :START BY GROUNDING ROW ZERO
STA VIAORB
LOY #3 :COUNTER = NUMBER OF ROWS

FROW LOA VIAORA :GET COLUMN INPUTS
AND #%00000111 :ISOLATE COLUMN BITS
CMP #%00000111 :ARE ANY COLUMNS GROUNDED?
BNE FCOL :YES. GO DETERMINE WHICH ONE
TXA :NO. MOVE KEY NUMBER TO NEXT ROW
CLC
ADC #3 :BY ADDING NUMBER OF COLUMNS
TAX
ASL VIAORB UPDATE SCAN PATTEN FOR NEXT ROW
DEY HAVE ALL ROWS BEEN SCANNED?
BNE FROW NO. SCAN NEXT ONE
BAK

FCOL INX KEY NUMBER = KEY NUMBER + 1
LSR A IS THIS THE COLUMN GROUNDED?
BCS FCOL NO. EXAMINE NEXT ONE
BRK

11-87

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #0
0001 00
0002 8D STA VIAPCR

0003 }
0004

VIAPCR
LD A.00001111 B

0005 BD STA VIADDRA

0006 }
0007

VIADDRA

0008 A9 LDA #$FF
0009 FF
OOOA 8D STA VIADDRB

0008 }
oooc VIADDRB

OOOD AA TAX
OOOE A9 LDA #%11111110
OOOF FE
0010 8D STA VIAORB

0011 }
0012 VIAORB

0013 AO LDY #3
0014 03
0015 AD FROW LDA VIAORA

0016 }
0017 VIAORA

0018 29 AND #%00000111
0019 07
001A C9 CMP #%00000111
0018 07
001C DO BNE FCOL
001D QC
001E BA TXA
001F 18 CLC
0020 69 AOC #3
0021 03
0022 AA TAX
0023 OE ASL VIAORB

0024}
0025 VIAORB

0026 88 DEY
0027 DO BNE FROW
0028 EC
0029 00 BRK
002A EB FCOL INX
0028 4A LSR A
002C BO BCS FCOL
002D FC
002E 00 BAK

11-88

We have included a CLC instruction for clarity, but it is not actually necessary. The only
case in which the BNE instruction does not cause a branch is the one in which the two
operands used in CMP are equal. In that case. the Carry flag is always set to indicate
that no borrow has been generated. So we could replace the sequence

CLC
ADC #3

with the single instruction

ADC #2

:BY ADDING NUMBER OF COLUMNS

:BY ADDING NUMBER OF COLUMNS (NOTE
CARRY= 1)

Each time a row scan fails. we must add the number of columns to the key number to
move past the curren t row (try the procedure on the keyboard in Figur1;; 11-26)

What is the resu lt of the program if no keys are being pressed? Change: the program so
that it starts the scan over again in that case. We could insert an extra INX instruction
before the first BRK. What would the final value be in Index Register X if no keys were
being pressed? Would it be different from the case in which the highest numbered key
was being pressed? Note that the Zero flag could also be used to d istinguish the case
where no keys were pressed. Can you explain how?

An alternative is to use the bidirectional capability of the V1A. The procedure would be:

1) Ground all the columns and save the row inputs.

2) Ground all the rows and save the column inputs.

3) Use the row and column inputs together to determine the key number from a table

Try to write a program to implement this procedure

This program can be generalized by making the number of rows. the number of col­
umns. and the masking pattern into named parameters with EQUATE (=) pseudo­
operat1ons

11 -89

An Encoded Keyboard18
Purpose: Fetch data. when it is available. from an encoded keyboard that provides a

strobe along with each data transfer.

An encoded keyboard provides a unique code for each key. It has internal electronics
that perform the scanning and identificat ion procedure of the previous example. The
tradeoff is between the simpler software required by the encoded keyboard and the
lower cost of the unencoded keyboard.

Encoded keyboards may use diode matrices. TTL encoders, or MOS encoders. The
codes may be ASCII. EBCDIC. or a cus tom code. PROMS are often part of the encoding
circuitry.

The encoding circuitry may do more than just encode key
closures. It may also debounce the keys and handle " rollover." the

I ROLLOVER I
problem of more than one key being struck at the same time. Common ways of
handling rollover are: "2-key rollover," whereby two keys (but not more) struck at the
same time are resolved into separate closu res. and "n-key rollover." whereby any
number of keys struck at the same time are resolved into separate closures.

The encoded keyboard also provides a strobe with each data transfer. The strobe sig­
nals that a new closu re has occu rred. Figu re 11-27 shows the interface between an en­
coded keyboard and the 6502 microprocessor. The 6522 Versati le Interface Adapter
provides input latching on both Ports A and B: these latches are enabled by setting bit
1 (for Port B) or bit 0 (for Port A) of the Auxiliary Control register (see Figure 11-10). In
this mode. the data on the input pins is latched when the Interrupt flag is set and wil
not change until the Interrupt flag is clea red. Note that the latching works somewhat
differently on the B side. where the contents of the Output register are latched if the pin
is programmed as an output

The keyboard strobe is tied to input CA1. A transition on the strobe line causes Inter­
rupt Flag Register bit 1 to go high. Bit 0 of the Periphera l Control register (see Figu re
11-9) determines whether the VIA recognizes high-to- low transi t ions on CA 1 (bit 0 = 0)
or low-to-high transitions (bit 0 = 1). Thus the VIA contains an edge-sensitive latched
status port as well as a data port. It also contains an inverter that can be used to handle
strobes of either polarity. A VIA can replace many simple circuit elements; you can
make corrections in ci rcuit logic by changing the contents of the Control registers (in
software) rather than by rewiring a breadboard. For example. changing the active edge
requires the chang ing of a single program bit. whereas it might require additional parts
and rewiring on a breadboard.

Data Bus

10 CPU
6522
VIA

Keyboard Data Inputs

Figure 11-27 1/0 Interface for an Encoded Keyboard

11-90

Task : Input from Keyboard

Purpose: Wait for an active-low strobe on VIA control line CA 1 and then place the

data from Port A into the Accumulator. Note tha t reading the data from the
Output (Data) register clears the status bit in the Interrupt Flag register (this
ci rcuitry is part of the 6522 VIA) .

Flowchart:

End

The hardware must hold the control lines 1n a logic '1' state during reset to prevent the
accidental setting of status flags. An initial read of the Data (Output) registers in the

startup routme may be used to clear the status flags. As noted earlier. you ca n also clear
bits in the 6522 lnterrup1 Flag reg1ster by writing logic Ts into them.

Source Program:

LDA
STA
STA
LDA
STA
LDA

KBWAIT BIT
BEG
LDA
BAK

#0
VIAPCR
VIADDRA
#%00000001
VIAACR
#%00000010
VIAIFR
KBWAIT
VIAORA

:MAKE ALL CONTROL LINES INPUTS
:MAKE PORT A LINES INPUTS

ENABLE LATCHING ON PORT A
GET PATTERN FOR EXAMINING CA l FLAG
IS THERE NEW KEYBOARD DATA'
NO. WAIT UNTIL THERE IS
YES. FETC H DATA

11 -91

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) {Mnemonic)

0000 A9 LDA #0
0001 00
0002 BD STA VIAPCR

0003 f
0004

VIAPCR

0005 BD STA VIADDRA

0006 }
0007

VIADDRA

0008 A9 LDA #%00000001
0009 01
OOOA BD STA VIAACR

0008 }
oooc VIAACR

OOOD A9 LDA #%00000010
OOOE 02
OOOF 2C KBWAIT BIT VIAIFR

0010 }
0011

VIAIFR

0012 FO SEO KBWAIT
0013 FB
0014 AD LOA VIAORA

0015 }
0016

VIAORA

0017 00 BRK

To make the status bit respond to low-to-high trans itions on CA1, you must set bit U of
the Peripheral Control register

The other handshake status flags are bits 0 (for CA21. 3 (for CB2). and 4 (for CB 1 I of the
Interrupt Flag register.

Show that reading the Output (Da ta) register clears the status flag . Hint: save the con­
tents of the Interrupt Flag register in memory before the instruction LOA VIAORA is ex­
ecuted. What happens 1f you replace LOA with STA? How about CMP. INC, ROL? Note
that either reading or writing the Ou tput (Da ta) register clears the status bit What hap­
pens if you read Port A from the non-handshaking address (see Table 11-7)? What hap­
pens if you replace LOA VtAORA wl!h LOA V!AORB?

11-92

A Digital-to-Analog Converter19-22
Purpose: Send data to an 8-bit digital-to-analog converter. which has an active-low

latch enable.

Digital -to-a na log converters produce the continuous signals required by motors.
heaters. actuators. and other electrical and mechanica l output devices. Typical conver­
ters consist of switches and resis tor ladders with the appropriate resistance values. You
must generally p rovide a reference voltage and some other digital and analog ci rcuitry.
al though complete units are becoming available at low cost.

Figure 11-28 describes the 8-bit Signetics NE5018 D/A converter. which con tains an
on-chip 8-bit paralle l data input latch. A low level on the IT (Latch Enable) input gates
the input data into the latches. where it remains after IT goes high.

Figure 11-29 il lustrates the interfacing of the device to a rD_/_A_C_O_N_V_E_R_T_E_R"'
6502 system. Note that the B side of the VIA automatically INTERFACE
produces the active- low strobe required to latch the data
in to the converter: CB2 acts as an Output Ready signal. Remember that CB2 automat­
ically goes low for one cycle following a write operation on the B port Output (Data)
register if CB2 is in the pulse output mode (see Table 11-9). The Peripheral Control
register bits are :

811 7 = 1 to mak.e CB2 an output
Bot 6 = 0 to make CB2 a pulse
Bn 5 = 1 to mak.e CB2 a brief Output Ready strobe (one clock cycle

in duration).

Note that the VIA contains an output latch The da ta therefore remains stable during
and after the conversion. The converter typical ly requires only a few microseconds to
produce an analog output. Thus. the converter latch could be left enabled 1f the port
were not used for any other purpose

ln applications where eight bits of resolution are not enough. 10- to 16-bit converters
can be used. Add itional port logic 1s required to pass all the data bits: some converters
provide part of this logic.

The VIA here serves both as a pa rallel data port and as a control port. CB2 is a pulse
that lasts one clock cycle after the data is latched into the VIA. This pulse is long
enough to meet the requ irements {typica l ly 400 ns) of the NE5018 converter

11 -93

Vee

W vi;:o-~.._~~--' ,.

Vee
All R values equal 5 k ii and we thermally matched

Figure 11 -28 S1gnet1cs NE5018 D/A Converter

Data Bus Analog

from CPU
6522 PB7 NE501 8 Output

' VIA PBo ~ DIA .
Coovert er

cs, L:E

I •
Figure 11-29 Interface for an 8-bit Digital - to-Analog Converter

11-95

Taak : Output to Converter

Purpose: Send data from memory location 0040 to the converter.

Flowchart:

Source Program:

LOA
STA
LOA
STA
LOA
STA
BAK

#$FF
VIADDRB
#%10100000
VIAPCR
$40
VIADRB

End

:MAKE PORT B LINES OUTPUTS

PROVIDE BRIEF LATCH ENABLE STROBE
GET DATA
SEND DA TA TO DAC AND LATCH

11-96

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #$FF
0001 FF
0002 SD STA VIADDRB

00031
0004

VIADDRB

0005 A9 LDA #%10100000
0006 AO
0007 SD STA VIAPCR

ooosl
0009

VIAPCR

OOOA A5 LDA $40
ooos 40
oooc SD STA VIAORS

OOODI
OOOE

VI AO RB

OOOF 00 BAK

The pulse for the Latch Enable input is produced automatically when data is stored in
Output (Data) Register B. Note, however. that the pulse 1s a fairly brief one. lasting only
one clock cycle; this may be insufficient for some applications.

We could use the level (manual) output from CB2 d the Latch Enable signal were ac­
tive-high or if the required length were g reater. The program would then be. :

LDA
STA
LOA
STA
LDA
STA
LDA
STA
LDA
STA
BAK

#$FF
VIADDRB
#%11000000
VIAPCR
$40
VIAORB
#%11100000
VIAPCR
#%11000000
VIAPCR

:MAKE PORT BE LINES OUTPUTS

:MAKE LATCH ENABLE A LEVEL (LOW)
:GET DATA
:SEND DATA TO DAC OUTPUT PORT

:OPEN DAC LATCH (ENABLE HIGH)

:LATCH DATA (ENABLE LOW)

Here bit 6 of the Peripheral Control register is set to make CB2 a level with a value g iven
by bi t 5 of the Peripheral Control register. This is referred to as the Manual Output mode
in 6522 literature. Note how many more instructions are required to pulse the Latch
Enable than in the previous example. since no automatic pulse 1s provided. An inverter
gate could also be used to invert the polarity of the strobe

In the Manual mode. CB2 is completely independent of the pa rallel data port. It is
simply a control output that is available for any purpose. The only problem involved in
using 1t is that you must not accidentally change any of the other bits in the Peripheral
Control register. since they may have unrelated functions

11-97

Analog-to-Digital Converter19-23
Purpose: Fetch data from an 8-bit analog-to-digita l converter that requires a Start

Conversion pulse to start the conversion process and provides an End of
Conversion output to indicate the completion of the process and the
availabi li ty of valid data.

Analog-to-digital converters handle the continuous signals produced by various types
of sensors and transducers. The converter prod uces the digital input which the com­
puter requires

One form of analog- to-dig ital converter is the successive approximation device. which
makes a direct 1-bit comparison during each clock cycle. Such converters are fast but
have little noise immunity. Dua l slope integrating converters are another form of
analog-to-digi tal converter. These devices take longer but are more resistant to noise.
Other techniques. such as the incremental charge balancing technique. are also used.

Analog-tu-digital conve rters usually requ ire some external analog and digita l circuitry.
although complete units are becoming available at low cost

Figu re 11-30 conta ins a genera l description and a timing d iag ram for the National
MM5357 8-bit A/D converter. The device contains output latches and tristate data out­
puts. A pu lse on the Start Conversion (STRT CONV) line starts conversion of the ana log
inpu t: after about 40 clock cyc les (the converter requires a TTL level clock with a
minimum pulse width of 400 ns). the result will go to the output latches and the End of
Conversion (EOC) output wil l indica te this by going high. Data is read from the latches
by applyi ng a T to the Output Enable input. Figure 11-31 shows the connections for
the device and some typ ical applicat ions circuits.

Figure 11-32 shows the interface for the 6502 processor A/D CONVERTER
and the 5357 A/D converter. Control line CA2 is used in the INTERFACE
Manual (Level) Output mode to provide a Start Conversion
pulse (active-high) of sufficient length. The End of Conversion signal is tied to control
line CA 1 so that EOC going high will set bit 1 of the Interrupt Flag reg ister. The impor­
tant edge on the End of Conversion line is the low-to-high edge. which indicates the
completion of the conversion. Note that we are using the 6522 device to handle both
control input and control output. since the converter interface involves a complete
handshake. The Output Enable pin on the converter is tied high. since we are not plac­
ing the data directly on the processor's tri -state data bus. Note (see Figure 11-30) that
the converter data ou tputs are complementary binary (all zeros is full-scale)

11-98

NATIONAL
MM6367 8-bit /.

General Description

The MM5357 is an 8-bit monolithic A/D converter using P-channel ion-implanted MOS technology . It contains
a high input impedance comparator, 256 series resistors and analog switches, control logic and output latches
Conversion is performed using a successive appro11timation technique where the unknown analog voltage is
compared to the resistor tie points using analog switches. When the appropriate tie point voltage matches the
unknown voltage. conversion is complete and the digital outputs contain an 8-bit complementary binary word
corresponding to the unknown. The binary output is tri-state to permit bussing on common data lines.

Features

• low cost
• :::t:5 V, 10 V input ranges
• No missing codes
• High input impedance
• Ratiometric conversion
• Tri-state outputs
• Contains output latches

• TTL compatible

Key Specs

• Resolution
• Linearity
• Conversion speed
• Input impedance
• Supply voltages
• Clock range

Timing Diagram:

8 bits

:::t:l /2 LSB
40µs

> 100 MO
+5 V, -12 V. GNO

5.0 kHz to 2.0 MHz

EOC +
5

v \,_,,~---~40 X (llfl-------1

0 v • l
Output +5 V-----------·----------.1
Enable

Enable
Delay

Data is complementary binary (full scale is "Os"' output) .

Disable

Delay

Figure 11 -30. General Descript ion and Timing Diagram for the National 5357 A/D
Converter

11-99

Connec tion Diagram

,..
2-3
2-2

{MSB) i-1

A Network

STAT CONV

Output Enabla

VGG
EOC

Typical Application

+5 v
+5 v
GND
-5 v

-12 v
Analog Input

Clock

Start Conversion

Output Enable

18

17
16

MM5357 15

AID
14

Converter
12

Converter

+5 V 5 V1N 5 -5 V

vDD ,.. ,..
+VREF
2-7

2-8 !LSBl

VIN
Clock

Vss

~'} Digital

Output

LSS

End of Conversion

Figure 11-31 . Connection Diagram and Typical Application for the Nat ional 5357
AID Converter

Data Bus Analog

10 CPU National Input

< 6522 P~7 5357
VIA PAo AID

Converter

STRT
CA1 CA2 EOC CONV

I + I ' Figure 11 -32 Interface for an 8-bit Analog-to-Digital Converter

11-100

Task: Input from Converter

Purpose: Start the conversion process. Wait for End of Conversion to go low and then
high. and then read the data and store it in memory location 0040.

Flowchart:

Start

,,.
Note that here the VIA serves as a parallel data port. a status port. and a control port.

Source Program:

LOA #0
STA VI ADORA :MAKE PORT A LINES INPUTS
LOA #%00001101
STA VIAPCR :BRING START CONV LOW. ENABLE EOC

LOW TO HIGH
LOA #%00001111
STA VIAPCR :PULSE START CONVERSION HIGH
LOA #%00001101
STA VIAPCR :PULSE START CONVERSION LOW

WTEOC LOA VIAIFR
ANO #%00000010 IS CONVERSION COMPLETE?
BNE WTEOC NO. WAIT
LOA VIAORA YES. FETCH OATA FROM CONVERTER
EOR #%11111111 COMPLEMENT DATA FOR TRUE VALUE
STA $40 SAVE CONVERTER DAT A
BAK

11-101

Object Program :

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #0
0001 00
0002 8D STA VIADDRA

0003 }
0004

VI ADD RA

0005 A9 LDA #%0000110 1
0006 OD
0007 8D STA VIAPCR

0008 }
0009

VIAPCR

OOOA A9 LDA #%00001111
0008 OF
oooc 8D STA VIAPCR

OOOD f
OOOE

VIAPCR

OOOF A9 LDA #%00001101
0010 OD
0011 8D STA VIAPCR

0012 }
0013 VIAPCR

0014 AD WTEOC LDA VIAIFR
0015 }
0016

VIAIFR

0017 29 AND #%00000010
0018 02
0019 DO 8NE WTEOC
001A F9
0018 AD LDA VIAORA

001Cf
· 0010 VIAORA

001E 49 EOR #% 1111 11 11
001F FF
0020 85 STA $40
0021 40
0022 00 8RK

The VIA Peripheral Control register brts are:

Bit 3 = 1 to make CA2 an output
811 2 = 1 to make CA2 a level {Manual Output mode)
Bit 1 =value of level on CA2
Bit 0 = 1 to set Status flag on a !ow-to-high trans1t1on on CA 1

Note that VIAs can be addressed using the Postindexed mode. The starting address of
the VIA (VIAORB) is placed in two memory loca tions on page zero; all VIA registers can
then be reached with appropriate offsets in Index Register Y

11-102

A Teletypewriter (TTY)
Purpose : Transfer data to and from a standard 10-charac ter·per-

second serial teleypewnter

The common teletypewriter transfers data 1n an asynchronous
serial mode. The procedu re 1s as follows·

1) The line is normally in the one state

2) A Start bi t (zero bid precedes each character.

3) The charac ter 1s usually 7-btt ASCII with the least s1gn1f1cant
bl! transmitted first

4) The most s1gn1f1ca nt bit is a Parity bit. which may be even.
odd. or fixed at zero or one

5) Two stop bits (!091c one) follow each cha racter.

TTY
INTERFACE

STANDARD
TTY

CHARACTER
FORMAT

Figure 11-33 shows the format . Note that each character requires the transmission of
eleven bits. of wh ich only seven con tain information. Since the da ta rate 1s ten cha rac­
ters per second. the bit rate is 10 x 11, or 110 Baud. Each bit therefore has a width of
1/110 of a second, or 9.1 milliseconds. This width 1s an average: the teletypewriter
does not maintain it to any high level of accuracy

.,, ·er .,. ·er .,. ·er

~_,,..,..,.., .. _.-'"-:"'°::::::.,,~:s.~~~~
en 1 Data Bus Bit Bit Bit

~ritcter i1 ASOI "E' wilh odd parity (45 he11).

Remember me1 the trenllmiuion onW i1 Siert bit

r o·1. bitO. bit 1. bit2. bit :i. bi14. bit s. bits. Pltlitv
bit. S1op bit l' n Stop bit l' n

Figure 11-33. Te letypewriter Data Format

For a teletypewriter to communicate properly with a computer, the following pro­
cedures are necessary.

Receive (flowcharted 1n Figu re 11-34):

Step 1) Look for a Start bit (a logic zero) on the data line

Step 2) Center the recept ion by waning one-half bit time. or 4.55
milliseconds.

Step 3) Fetch the data bits. wa11 ing one bit 11me before each one. Assemble the data
bits into a word by fi rst shifting the bit to the Carry and then ci rcularly shift ing
the data with the Carry. Remember that the least significant bit is received
first.

Step 4) Generate the received Parity and check 1t against the transmitted Par ity. If
they do not match. indicate a " Parity error."

Step 5) Fetch the Stop bits (wai ting one bit time between inputs). If they are not cor­
rect (if both Stop bits are not onel. ind ica te a "fra ming error"

11-103

Figure 11-34. Flowchart for Receive Procedure

11-104

Task 1. Read Data

Purpose: Fetch data from a teletypewriter through bit 7 of a VIA data port and place

the data into memory location 0060. For procedure. see Figure 11-34

Source Program:

{Assume that the serial port is bn 7 of the VIA and that no parity or framing check 1s

necessary)

LDA
STA
STA

WAITS LDA
BMI
JSR
LDA

TTYRCV JSR
ROL
ROR
sec
STA
BRK

(Delay program)

DLY2 LDY
BNE

DELAY LDY
DLYl LDX
DLY DEX

BNE
DEY
BNE
RTS

#0
VIAPCR
VIADDRA
VIAORA
WAITS
DLY2
#%10000000
DELAY
Pl AD RA
A
TTYRCV
$60

#5
DLY1
#10
#$84

DLY

DLYl

:MAKE ALL CONTROL LINES INPUTS
.MAKE PORT A LINES INPUTS
.IS THERE A START BIT'
.NO. WAIT
.YES . DELAY HALF BIT TIME TO CENTER
.COUNT WITH BIT IN MSB
.WAIT 1 BIT TIME
.GET DATA BIT
.ADD DATA BIT TO DATA WORD
.CONTINUE IF COUNT BIT NOT IN CARRY

.COUNT FOR 4 55 MS

. COUNT FOR 9 1 MS

.GET COUNT FOR 0.91 MS

Remember that bit 0 of the data is received first

11-105

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #0
0001 00
0002 SD STA VIAPCR
0003 f
0004

VIAPCR

0005 SD STA VIADDRA
0006 f
0007

VIADDRA

0008 AD WAITS LDA VIAORA

0009 f
OOOA VIAORA

0008 30 8MI WAITS
oooc F8
OOOD 20 JSR DLY2
OOOE 30
OOOF 00
0010 A9 LDA #%10000000
0011 80
0012 20 TTYRCV JSR DELAY
0013 34
0014 00
0015 2E ROL VIAORA
0016 f
0017

VIAORA

0018 6A ROR A
0019 90 ace TTYRCV
001A F7
0018 85 STA $60
001C 60
001D 00 8RK

0030 AO DLY2 LDY #5
0031 05
0032 DO 8NE DLYl
0033 02
0034 AO DELAY LDY #10
0035 OA
0036 A2 DLY1 LDX #$84
0037 84
0038 CA DLY DEX
0039 DO 8NE DLY
003A FD
0038 88 DEY
003C DO 8NE DLY1
003D F8
003E 60 RTS

11-106

This program assumes that the Stack can be used for subroutine calls. i.e .. that the
monitor has already initialized the Stack Pointer. Otherwise you will have to initialize
the Stack Pointer as shown in Chapter 10.

The constants for the delay routine were calculated just as shown earl ier in this chapter
You might try determin ing them for yourself. The delays do not have to be highly accu­
rate because the recep t ion is centered. the messages are short. the bit rate is low. and
the teletypewriter is not highly accurate itself

How would you extend this program to check parity?

11-107

Task 2: Write Data

Purpose: Transmit data to a teletypewriter through bit 0 of a VIA Output (Data)
reg ister. The data 1s in memory location 0060.

Transmit (flowcharted 1n Figure 11-35)

Step 1) Transmit a Start bi t (1.e., a logic zero).
Step 2) Transmit the seven data bits, starting with the least

significant bit.
Step 3) Generate and transm it the Parity bit.
Step 4) Transmit two Stop bits (i .e .. logic ones).

TTY
TRANSMIT
MODE

The transmission routine must wait one bit ume between each operation.

Figure 11-35. Flowchart for Transmit Procedure

11 - 108

Source Program

(Assume that parity need not be generated)

LDA #0
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS
STA VIAORB ;FORM START BIT
LOA #$FF
STA VIADDRB ;MAKE PORT B LINES OUTPUTS
LOA $60 :GET DATA
LOX #11 ;COUNT = 11 BITS IN CHARACTER

TBIT JSR DELAY ;WAIT 1 BIT TIME
SEC ;SET CARRY TO FORM STOP BIT
ROR A ;GET NEXT BIT OF CHARACTER
ROL VIAORB ;SEND NEXT BIT TO TTY
DEX
BNE TBIT
BRK

The DELAY subrout ine used here must preserve the Accumulator and Index Register X.
Remember that bit 0 of the data must be transmitted first.

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LOA #0
0001 00
0002 80 STA VIAPCR

0003 }
0004

VIAPCR

0005 80 STA VIAORB

0006 }
0007

VIAORB

0008 A9 LOA #$FF

0009 FF
OOOA 80 STA VIADDRB

0008 }
oooc VIADDRB

0000 A5 LOA $60

OOOE 60
OOOF A2 LOX #1 1

0010 OB
0011 20 TBIT JSR DELAY
0012 30
0013 00
0014 3B SEC
0015 6A ROR A
0016 2E ROL VIAORB

0017 }
0018

VIAORB

0019 CA DEX
001A DO BNE TBIT
0018 F5
001C 00 BRK

11 -109

In actual applications. you will find It necessary to place a one on the teletypewriter line
alter configurauon. since that hne should normally be in the mark (one) state

Each character consists of 11 bits. with a Start bit (zero) and ending with two Stop bits
lonesl.

Note that you can generate parity by counting bits as shown in Chap ter 6 The program
is:

LDY #0 :BIT COUNT= ZERO
LDA $60 :GET DATA

CHBIT BPL CHKZ :IS NEXT DATA BIT 1?
INY :YES. ADD 1 TO BIT COUNT

CHKZ ASL A :EXAMINE NEXT BIT POSITION
BNE CHBIT :UNLESS ALL BITS ARE ZEROS
BRK

Index Register Y contains the number of ·1 · bits in the data. The least significant bit of
Index Register Y is therefore an even Pari ty bit

These procedures are suff1c1ently common and complex to merit a I UART I
special LSI device the UART. or Universal Asynchronous
Rece1ver!Transm11ter 24 The UART will perform the reception procedure and provide
the data in parallel form and a Data Ready signal It will also accept data m parallel
form. perform the transmission procedure. and provide a Peripheral Ready signal when
11 can handle more data UARTs may have many 01her features. including:

1) Ab ili ty to handle various bit lengths (usually 5 to 8). parity options. and numbers of
Stop b'ts (usually 1. 1-1/2. and 21 .

2) Indicators for framing errors. parity errors. and '"overrun errors·· (failure to read a
character before another one 1s received)

3) Rs-23225 compat1btl1ty. ie. a Request -to-Send (RTS) output signal that 1nd1cates
the presence of data to communications equipment and a Clear·to-Send (CTS) m­
put signal that 1nd1cates. in response to ATS. the readiness of the communications
equipment There may be provisions for othe r RS-232 signals. such as Received
Signal Ouahty. Data Set Ready. or Data Terminal Ready

4) Tristate outputs and control compa11bil1ty with a microprocessor
51 Clock options that allow the UART IO sample 1ncom1ng data several times in order

to detect false Start bits and other errors
6) Interrupt fac1l1t1es and con trols.

UARTs act as four parallel ports: an input data port. an output data port. an input
status port. and an output control port The status bits include error indicators as well
as Ready flags The control bits select various opt ions UARTs are inexpensive ($5 to
$50. depending on features) and easy to use

11-110

THE 6850 ASYNCHRONOUS COMMUNICATIONS INTERFACE
ADAPTER (ACIA)26, 27

The 6850 ACIA, or Asynchronous Communications Inter- 6860 ACIA
face Adapter (see Figure 11-361 is a UART specifically REGISTERS
designed for use in 6800- and 6502-based microcom-
puters. It occupies two memory addresses and contains two read-only registers
(received data and status) and two write-only registers I transmitted data and con­
trol). Tables 11-16 and 11-17 describe the contents of these registers

Note the following special features of the 6850 ACIA :

1) Read and write cycles address physically d1st1nct registers
Therefore. you cannot use the ACtA registers as addresses
for 1ns1ructions like Increment. Decrement. or Shift. which
involve both read and write cycles.

...-----.....
SPECIAL
FEATURES
OF 6860 ACIA

2) The ACIA Control register cannot be read by the CPU. You wi l l have to save a copy
of the Control register 1n memory 1f the program needs ns value

3) The ACIA has no Reset input It can be reset only by placing ones 1n Control register
bits 0 and 1 This procedure (called MASTER RESET) 1s necessary before the ACIA
1s used. 1n order to avoid having a random starting character

4) The RS-232 signals are all active-low Request-to-Send (R TS). in particular. shoutd
be brought high to make 1l 1nact1ve rf 11 1s not rn use

5) The ACIA requires an external clock. Typically 1760 Hz 1s supplied and the + 16
mode (Control register bit 1 = 0. bit 0 = 1) 1s used The ACIA will use the clock to

center the reception 1n order to avoid false Start bits caused by noise on the lines

6) The Data Ready (Receive Data Register Full. or RDRF) flag is bit 0 of the Status
register The Peripheral Ready (Transmit Data Register Empty. or TORE) tlag tS bit 1
of the Status register

11-111

Table 11-16. Defini tion of 6850 ACIA Register Contents

Buffer Address

Data RS·RfW RS·R/W iiS-il/W RS·R/W
Bus Transmit Receive
Line Data Data Control Status

Number Register Register Register Register

!Write Only) (Read Only) (Write Only) (Read Only)

0 Data Bit o· Data Bit 0 Counter Divide Receive Data Register
Select 1 ICROI Full IRDRF)

1 Data Bit 1 Data Bit 1 Counter Divide Transmit Data Register
Select 2 IC R11 Empty (TDREI

2 Data Bit 2 Data Bit 2 Word Select 1 Data Carrier Detect
IC R21 IDCDI

3 Data Bit 3 Data Bit 3 Word Select 2 Clear-to-Send
(C R3) ICTSI

4 Data Bit 4 Da ta Bit 4 Word Select 3 Framing Error
(CR4) (FE)

5 Data Bu 5 Data Bot 5 Transmit Control 1 Receiver Overrun
ICR51 IOVRNI

6 Data Bit 6 Data Bit 6 Transmit Control 2 Parity Error (PEI
ICR61

7 Data Bit 7" 00 Data Bit r· Receive Interrupt Interrupt Request
Enable IC R71 (IRO)

• Leading bit = LSB = Bit 0
••Data bit will be zero in 7-bit plus parity modes

••• Data bit is " don't care"" in 7-bit plus parity modes

11 -112

Table 11·17. Meaning of the 6850 ACIA Control Register Bi ts

CR& CR6 Function

0 0 Ri'S" =low. Transm1tt1ng Interrupt Disabled
0 1 RTS =low. Transmm1ng Interrupt Enabled
1 0 R"fS = htgh. Transm1ttmg Interrupt Disabled
1 1 RTS =tow. Transmits a Break level on the

Transmit Data Output Transm1tt1ng
-fn te rrupt Disabled

CR4 CR3 CR2 Function

0 0 0 7 Bits + Even Parity + 2 Stop Bits
0 0 1 7 Bits + Odd Par ity + 2 Stop B its

0 1 0 7 Bi ts + Even Fan ly + 1 Stop Bit

0 1 1 7 Bits + Odd Par ity + 1 Stop Bit
1 0 0 8 Bits + 2 Stop Bits
1 0 1 8 Bits + 1 Stop Bit
1 1 0 8 Bits + Even Paniy + 1 Stop Brt
1 1 1 8 Bits + Odd Pa rity + 1 Stop Bit

CR1 CAO Function

0 0 + 1
0 1 + 16
1 0 + 64
I I Master Reset

11 - 113

Transmit

Ck><k

Enable

Read / Write

Chip Select 0

Chip Select 1

Register

Select

DO

01

02

03

04

OS

06

07

Clock

G•o

Chip

Select Transmit

"'" Data
Read/ Wnte Register

Control

Status

Register

Data

""' Bullers

Control

Reg1s1e1

Receive

Rey1ster

Pafl\y

°'"

Transmit

SM1
Register

Interrupt

logic

Rece1v1i

Control

Sync

logic

Figure 11-36. Block Diagram of the 6850 ACIA

11 - 114

Transmit

Oa1a

Oeif"To.
Send

Interrupt

AeQUesi

Data
c;;;er

Deieet

Reques1 -

to- Send

Receive

Data

Task : Receive data from 11 teletypewriter through a 6850 ACIA and store the data
in memory location 0060

Source Program:

LDA
STA
LDA

#%00000011
ACIACR
#%01000101

:MASTER RESET ACIA

:CONFIGURE ACIA FOR TTY WITH ODD
; PARITY

STA
WAITD LDA :GET ACIA STATUS

LSR
BCC
LDA
STA
BRK

ACIACR
ACIASR
A
WAITD
ACIADR
$60

;HAS DATA BEEN RECEIVED'
:NO. WAIT
;YES. FETCH DATA FROM ACIA
;SAVE DATA

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

0000 A9 LDA #%00000011
0001 03
0002 SD STA ACIACR

0003}
0004

ACIACR

0005 A9 LDA #%01000101
0006 45
0007 SD STA ACIACR

0008 }
0009

ACIACR

OOOA AD WAITD LDA ACIASR

0008}
oooc ACIASR

OOOD 4A LSR A
OOOE 90 BCC WAITD
OOOF FA
0010 AD LDA ACIADR

0011 }
0012

ACIADR

0013 85 STA $60
0014 60
0015 00 BRK

The program must reset the ACIA originally by placing ones in Control register bits 0
and 1. The ACIA does have an interna l power-on reset which holds the ACIA in the
reset state until Master Reset is applied.

The program conf igures the ACIA Control Reg ister as
follows:

Bit 7 = 0 to disable the receiver interrupt

Bit 6 = 1 to make Request-to-Send (RTSI high (inactive)

Bit 5 = 0 to disable the transmitter interrupt

Bit 4 = 0 for 7-bit words

Bit 3 = 0. Bit 2 = 1 for odd parity with 2 Stop bits

EXAMPLE
OF 6860 ACIA
CONFIGURATION

Bit 1 = 0. Bit 0 = 1 for .;- 16 clock (1760 Hz must be supplied)

11-116

The Received Data Status flag is Status regis ter bit 0. Suppose we tried to replace

LOA ACIASR
LSR A

with the single 1nstruct1on

LSR ACIASR

What would happen?

Remember that the Status and Control registers share an add ress but are physical ly d is­
tinct

Try adding an error-checking routine to the program Set.

(0061) = 0 1f no errors occurred
= 1 1f a parity error occurred

(Status register bit 6 = 1)
= 2 1f an overrun error occurred

(Status register bit 5 = 1)
= 3 1f a framing error occurred

(Status register bit 4 = 1)

Assume that the priority of the errors 1s from MSB to LSB 1n the ACIA Status register
(ie. parity errors have priority over overrun errors which. in !Urn. have priority over
framing errors 11 more than one error has occu rred)

1, _,16

Task : Send data from memory location 0060 to a teletypewriter through a 6850
ACIA

Source Program:

LDA
STA
LOA

STA
LOA

WAITR BIT
BEO
LOA
STA
BAK

Object Program:

#%00000011
ACIACR
#%0 1000101

AC IACR
#%00000010
ACIASR
WAITR
$60
ACIADR

: MASTER RESET ACIA

:CONFIGURE ACIA FOR TTY WI TH ODD
PARITY

:IS ACIA READY FOR DATA?
:NO. WAIT UNTIL IT IS
:YES. GET DATA
:AND TRANSMIT IT

Memory Address Memory Contents Instruc tion
(Hex) (Hex) (Mnemonic)

0000 A9 LOA #%00000011
0001 03
0002 80 STA ACIACR

0003 f
0004

ACIACR

0005 A9 LDA #%01000101

0006 45
0007 80 STA ACIACR

OOOB f
0009

ACIACR

OOOA A9 LOA #%00000010

OOOB 02
oooc 2C WAITR BIT ACIASR

OOOD f
OOOE

ACIASR

OOOF FO BEO WAITR
0010 FB
0011 A5 LDA $60
0012 60
0013 BD STA ACIADR

0014 }
0015

ACIADR

0016 00 BAK

The Transmitter Status flag is Status register bit 1. How could you modi fy the rece ive
program to use the Bit Test Instruction?

11-117

THE 6551 ASYNCHRONOUS COMMUNICATIONS INTERFACE
ADAPTER (ACIA)
The 6551 ACIA is a variation of the 6850 device that can also 6551 ACIA
be used in 6800- or 6502-based systems. Figure 11-37 1s a REGISTERS
block diagram of this device. It has most of the features of the
6850 ACIA and also has an on-chip baud rate generator that can provide 15
programmable baud rates derived from a standard 1.8432 MHz external crystal.
Thus the 6551 ACIA can provide virtually any of the common baud rates without
an external timer or baud rate generator. The device has four internal registers
addressed as described by Table 11 -1 8. Its operation is controlled by two registers :

1) The Control reg ister (see Figure 11-38) controls the baud rate generator. the word
length. the number of stop bits. and the receiver clock sourc._e·-----~

2) The Command register (see Figure 11-39) controls parity EXAMPLE OF
checking and generat ion, interrupt enabling. and the 6551 ACIA
RS-232 handshake signals Note that the program may CONFIGURATION
reset the 6551 ACIA at any time by writing any data into
the address of the Status register (see Figure 11-40) For example, the following
program resets a 6551 ACIA and configures it for a 10 charac ter per second
teletypewriter with odd parity and two stop bits

LDA
STA
STA

LDA
STA

#%10110011
ACIASR
ACIAMR

#%00100011
ACIACR

:RESET 6551 ACIA
:CONFIGU RE MODE FOR TTY 17 BITS. 2 STOP

BITS)

:CONFIGU RE FOR ODD PARITY. NO
INTERRUPTS

We have given the name ACIAMR to the Control (Mode) Register

The program configu res the 6551 ACIA Control (Mode) register as follows

Bit 7 = 1 for 2 stop bits
Bit 6 = 0, bit 5 = 1 for 7-b it words
Bit 4 = 1 to generate receiver clock from the on-board baud rate gene rator
Bits0-3 = 0011 for 109.92 Baud (10 characters per second) from the inte rnal

baud rate generator

The program configu res the 6551 ACIA Command register as follows:

Bit 7 = O.b1t 6 = 0, bit 5 = 1 fo r odd parity on both receiver and transmitter
Bit 4 = 0 so cha racte rs are not automatically echoed back through the

transmitter

Bit 3 = 0. bit 2 = 0 to disable the transmitter interrupt and bring RTS high
(inactive)

Bit 1 = 1 to disable the receive r interrupt (this is a mask bit)
Bit 0 = 1 to enable the Receiver/Transmitter

11 - 118

<1>2
RiW

CSo

cs;
RSo

RS1

AES

DBo

RS1

Select
and

Control

Logic

Data

""' Buffers

Transmit
Data

Register

Status
Reg ister

Control

Register

Receive

Data
Register

Command
Register

Transmit
Control

Transmit
Stu It

Register

Interrupt

Logic

Baud

Rate

Generator

Receive

Shift

Register

Receive

Contro l

Figure 11 -37. Block Diagram of the 6551 ACIA

Table 11 -18 Addressing 6551 ACIA Internal Registers

RSo Write Read

Transmit Data Register Receiver Data Register

Programmed Reset (Date 1s ··oon't Care") Status Register

Command Register

Control Register

CTs

hO

iRQ
oco

DSR

R•C

XTAL 1

XTAL2

R•D

The table shows that only the Commend and Control reg isters are read /write. The Programmed Reset operat ion

does not cause any data transfer, but is used to clear the SV6551 reg isters The Programmed Reset is slightly
different from the Hardware Reset (RES) and these differences ere described in the individual register defini­
tions.

11-1 19

7 6 5 4 3 2 1 0 ..,__Bit Number

I I I I I I I -~Control Register

L_B'"d Roto Gon"oto'
0 0 0 0 1 6K Eitternel Clock Beud
o o o 1 50
0 0 1 0 75

0 109.92
1 134.58

0 1 0 1 150

0 1 t 0 300

0 1 600

1 0 1200
1 0 0 1 1800

0 t 0 2400
0 t 1 3600

1 t 0 0 4800
1 t 0 t 7200
t t t 0 9600
t t t t 19.200

'------Receiver Clock Source
0 = EKternal Receiver Clock
1 = Baud Rate Generator

~------Word Length
Bit Data Word

65 ~

00 B
0 t
t 0
I t

'--------Stop Bits

"Allows for 9-bit transmission
(8 data bits plus parity) .

o "' 1 Stop Bit
1 = 2 Stop Bits

l Stop Bit if Word Length
= B Bits and Parity•

1 •; , Stop Bits if Word Length
= 5 Bits and No Parity

7 6 5 4 3 2 1 0 4--Bit Number

~Hardware Reset

~Program Reset

Figu re 11-38. Definition of 6551 ACJA Control Register Contents

11-120

7 6 5 4 3 2 1

Data Terminal Ready

0 = Disable Receiver/Transmitter (OTA highl

1 == Enable Receiver /Transmitter (OTA low)

Receiver Interrupt Enab!e

0 = iRQ Interrupt Enabled from Bit 7

of Status Register

1 = iRO Interrupt Disabled

~----Transmitter Controls

Bit Transmit m
1-2 Interrupt Level Other

0 0 Disabled High

0 1 Enabled Low

1 0 Disabled Low

1 1 Disabled Low Transmit BRK

~----- Normal/Echo Mode for Receiver

0 "" Normal

1 = Echo

~-------Parity Check Controls

Bit

1........§__2_ Operation

0 Parity Disabled . No Parity Bit

Generated - No Parity Bit Received

O O 1 Odd Parity Receiver and Transmitter

0 1 Even Parity Receiver and

Transmitter

l O 1 Mark Pari ty Bit Transmotted,

Parity Check Disabled

1 1 Space Parity Bit Transmitted.

Parity Check Disabled

7 6 5 4 3 2 1 O .,__Bit Number

1°/0 1° I ~ I ~ I ~ \ ~ l ~ J:=;::::eR::::t

Figure 11-39. Definition of 6551 ACIA Command Register Contents

11-121

7 6 5 4 3 2 1 0 .,...__Bit Number

I I I I I ,, 1-Status Register

-

Parity Error•
0 = No Parity Error
1 = Parity Error Detected

Framing Error•
0 = No Framing Error
1 = Framing Error Detected

Overrun'

0 = No Overrun
1 = Overrun Has Occurred

Receiver Date Register Full

0 =Not Full
1 = Full

Transmitter Data Register Empty
O = Not Empty
1 = Empty

Data Carrier Detect (DCD)

0 = OCO low !Detect)
1 = DCD high !Not Detected)

Data Ready (DSR!

0 = 5SR low (Readyl
1 = i5SA high (Not Ready)

Interrupt URQ)
0 = No Interrupt

·No interrupt occurs for these conditions 1 = Interrupt Has Occurred

7 6 5 4 3 2 1 0 ~Bit Number

~Hardware Reset

~Program Reset

Figure 11 -40. Def init ion of 6551 ACIA Status Register Contents

11 - 122

LOGICAL AND PHYSICAL DEVICES28
An important goal in writing 1/0 routines is to make them !LOGICAL DEVICES!
independent of particular physical hardware. The routines
can then transfer data to or from 1/0 devices. with the actual addresses being sup­
plied as parameters. The 1/0 device that can actually be acce11ed through a partic­
ular interface is referred to as a physical device. The 1/0 device to which the pro­
gram transfers data is referred to as a logical device. The operating system or
supervisor program must provide a mapping of logical devices on to physical
devices, that is, assign actual physical 1/0 addresses and characteristics to be
used by the 1/0 routines.

Note the advantages of this approach:

1) The operating system can vary the assig nments under user control. Now the user
can easily substitute a test panel or a development system interface for the actual
1/0 devices. Th is is useful in field maintenance as welt as in debug ging and testi ng.
Furthermore. the user can change the 1/0 devices for different situations: typical
examples are directing intermediate output to a video display and final output to a
printer or obtaini ng some input from a remote communications line rather than
from a local keyboard

2) The same 1/0 routines can handle severa l identical or similar devices. The operating
system or user only has to supply the address of a particular teletypewriter. RS-232
terminal. or printer. for example

3) Changes. corrections. or additions to the 1/0 configura t ion are easy to make smce
only the assignments (or mapping) must be changed .

On the 6502 microprocessor. either the Preindexed (Indexed Indirect) or Postindexed
(Indirect Indexed) addressing mode can be used in the 1/0 routines to provide indepen·
dence of specific physical addresses. Preindex1ng is convenient si nce 1t allows the
choice of a physical device add ress from a table.

If a table of 1/0 addresses is maintained on page zero. all that 1/0 DEVICE
an 1/0 routine needs 1s an index in to that table. It can then ac- TABLE
cess the 1/0 device by using the Preindexed (or Indexed In·
direct) addressing mode. If. for example. the device number is in memory loca tion DEV.
the program to calculate the index would be :

LOA
ASL
TAX

DEV
A

:GET DEVICE NUMBER
:MULTIPLY BY 2 FOR 2-BYTE ADDRESS TABLE

Data may now be transferred to or from the appropria te 1/0 device with the instructions

or

LOA DATA :GET DATA
STA llOTBL.X) :SEND TO LOGICAL 1/0 DEVICE

LDA
STA

llOTBL.XI
DATA

:GET DATA FROM LOGICAL 1/0 DEVICE
:SAVE DATA

The same 1/0 routine can transfer data to or from many different 1/0 devices merely by
being supplied with different indexes. Compare the flexibility of this approach with the
inflexibility of 1/0 routines that use d irect addressing and are therefore tied to specific
physical addresses

1, _,23

STANDARD INTERFACES
Other standard interfaces besides the TTY current ·loop and
RS-232 can also be used to connect peripherals to the m1crocom­
puter. Popular ones include :

1) The serial RS-449. RS -422. and RS-423 interfaces.29

STANDARD
INTERFACES

2) The 8-blt parallel General Purpose Interface Bus. atso known as IEEE-488 or

Hewle1t-Packard Interface Bus (HPIB) 30

3) The S-100 or A1tair/l msai hobbyist bus.31 This is also an 8-bit bus.

4) The Intel Mul tibus.32 Th is is another 8-bit bus that can. however. be expanded to

handle 16 bits in paralle l.

11 - 124

PROBLEMS
1) Separating Closures from an Unencoded Keyboard
Purpose: The program should read entries from an unencoded 3 x 3 keyboard and

save them in an array. The number of entries is in memory location 0040 and
the array starts in memory locat ion 0041.

Separate one closure from the next by waiting for the current closure to end. Remember
to debounce the keyboard (this can be simply a 1 ms waid.

Sample Problem:

(0040) = 04
Entries are 7. 2. 2. 4

Result: (0041) 07
(0042) 02
(0043) 02
(0044) 04

2) Read a Sentence from an Encoded Keyboard
Purpose: The program should read entries from an ASCII keyboard (7 bits with a zero

Parity bit) and place them man array until it receives an ASCII period 2E15.
The array starts in memory location 0040. Each entry is marked by a strobe
as in the example given under An Encoded Keyboard

Sample Problem:

Entries are H. E. L. L. 0.

Result: (0040) 48 H
(0041) 45 E
(0042) 4C L
10043) 4C L
(0044) 4F 0
(0045) 2E

11-125

3) A Variable Amplitude Square. Wave Generator
Purpose: The program should generate a square wave. as shown in the next figure.

using a D/A converter. Memory location 0040 contains the sca!ed amplitude
of the wave. memory location 0041 the length of a half cycle in milliseconds.
and memory location 0042 the number of cycles.

Assume that a digital output of 8016 to the converter results in an analog output of zero
volts. In general. a digital output of 0 results in an analog output of (D-80)/80 X -VREF
volts

Sample Problem:

Result:

+VREF I

(0040)
(0041)
(0042)

-+VREF :
Output 4 0 t-----

Voltage -VAEF

---.--- ,

AO (hex)
04
03

-VREF~
: 4 ms I Time ---------~

The base voltage 1s 8015 = 0 vol ts Full scale 1s 10015 = -VREF volts
So A016 = {A0-80)/80 X -VREF = -VREF/4

The program produces 3 pulses of amplitude VREF/4 with a half cycle length of 4 ms.

4) Averaging Analog Readings
Purpose : The program should take four readings from an A/O converter 10 milli­

seconds apart and place the average 1n memory location 0040. Assume that
the A/0 conversion time can be ignored.

Sample Problem:

Readings are (hex) 86. 89. 81. 84
Resull (0040) = 85

5) A 30 Character-per-Second Terminal
Purpose: Modify the transmit and receive routines of the example given under A

Teletypewriter to handle a 30 cps terminal that transfers ASCII data with one
stop bit and even parity. How could you write the routines to handle either
terminal depending on a fl ag bit 1n memory location 0060; e.g .. (0060) = 0
for the 30 cps terminal. (0060) = 1 for the 10 cps terminal?

11 - 126

REFERENCES

1. J. Barnes. and V. Gregory. "Use Microprocessors to Enhance Performance with
Noisy Data." EON. August 20. 1976. pp. 71-72.

2. J. E. McNamara. Technical Aspects of Data Communications (Maynard.
Mass.: Digital Equipment Corporation. 1977L Chapter 13.

R. Swanson."Understanding Cyclic Redundancy Codes." Computer Design.
November 1975. pp. 93-99

J. Wong. et aL "Software Error Checking Procedures for Data Communications
Protocols." Computer Design. February 1979. pp. 122-125.

The last article contains some 6800 assembly language programs for CRC genera­
tion.

For example. the 6844 Direct Memory Access Controller for 6800- or 6502-based
microcomputers is described in An Introduction to M ic rocomputers: Volume 2 -
Some Real Microprocessors. pp. 9-106 through 9-123.

4 A. Osborne. et al.. An Introduction to Microcomputers: Volume 2 - Some Real
Microprocessors. pp. 9-45 through 9-54

J. Gilmore. and R. Huntington. "Designing with the 6820 Peripheral Interface
Adapter." Electronics. December 23. 1976. pp. 85-86

5. L. Leventhal. 6800 Assembly Language Programming. pp. 11 -3 1 through 11-4 7.
11-49 through 11-74

6 A. Osborne. et al.. An Introduction to Microcomputers: Volume 2 - Some Real
Microprocessors. pp. 10-29 through 10-47.

R6500 Microcomputer System Hardware Manual (Anaheim. Calif.: Rockwell In­
ternational!. pp. 1-65 through 1-97.

8. W. C Mavity. "Megabit Bubble Modules 1n on Mass Storgage:· Electronics. March
29. 1979. pp. 99-103

J. G1ery1c. "SYM-1 6522-Based Timer ... Micro. April 1979. pp. 11 :31 through
11 :32. The magazine Micro is dedicated exclusively to 6502-based personal com­
puters: it is available {monthly publication) from the COMPUTERIST. Inc .. P. 0. Box
3. South Chelmsford. MA 01824.

10 M. L. DeJong. "A Simple 24-Hour Clock for the AIM 65 ... Micro. March 1979. pp.
10 :5 through 10:7.

11 A. Osborne et al.. An Introduction to Microcomputers: Volume 2 - Some Real
Microprocessors. pp. 10-47 through 10-55

12. C. Foster. Programming a Microcomputer: 6502 {Read ing. Mass .. Addison­
Wesley. 1978). This is a very elementary introduction to computers based on the
KlM microcomputer

13. R. C. Camp, et al .. Microcomputer Systems Principles Featuring the 6502/KIM
(Portland: Matrix Publishers. 1978)

14 A. Caprihan. et al. "A Simple Microcomputer for Biomedical Signal Processing."
4th Annual Conference on Industrial Applications of Microprocessors. 1978. pp.
18-23. Proceedings {since 1975) are available from IEEE. 445 Hoes Lane. Pisca ta­
way. NJ 08854

11 - 127

15. The TTL Data Book for Design Engineers. Texas Instruments Inc .. P. 0 . Box 5012.
Dallas. TX 75222. 1976. pp. 7-151 through 7-156.

16. E. Dilatush. "Special Report : Numeric and Alphanumeric Displays." EON. Febru­
ary 5. 1978. pp. 26-35.

17. See Reference 15. pp. 7-22 through 7-34.

18. M. L. DeJong. "6502 Interfacing for Beginners: an ASCII Keyboard Input Port."
Micro. February 1979. pp. 9- 11 through 9-13.

19. E R. Hnatek. A Users Handbook of D/A and AID Converters (New York: Wiley.
19761.

20. J. Kane et al.. An Introduction to Microcomputers: Volume 3 - Some Real Sup­
port Devices. Section E.

21. M. L. OeJong, "Digital-Analog and Analog-Digital Conversion Using the KIM-1 ...
The Best of Micro. Volume 1. pp. 30-33

22. P. H. Garrett. Analog Systems for Microprocessors and M inicomputers (Reston,
VA.: Reston Publ ishing Co .. 19781.

23. G. L. Zick and T. T. Sheffer. " Remote Failure Analysis of Micro-based Instru menta­
tion:· Computer. September 1977. pp 30-35.

24. For a discussion of UARTs. see P. Rony et al. . "The Bugbook Ila." E and L Instru­
ments Inc .. 61 First Street. Derby. CT. 06418 or D G. Larsen et al,
"INWAS: Interfacing w ith Asynchronous Serial Mode." IEEE Transactions on In­
dustrial Electronics and Control Instrumentation. February 1977. pp. 2-12. See
also McNamara. Reference 2.

25. The offic ial RS-232 standard is available as "'Interface Between Data Terminal
Equipment and Data Communications Equipment Employing Serial Binary Data
Interchange" EIA RS-232C August 1969. You can find mtroductory descnptions
of RS-232 in G. Pick les ... Who·s Afraid of RS-232' ... Kilobaud. May 1977. pp. 50·4
and in C. A. Ogdin. "'Microcomputer Buses - Part 11.·· M1n1-M icro Systems. July
1978. pp. 76-80. Ogd1n also describes the new RS-449 standa rd

26. A. Osborne et al .. An Introduction to Microcomputers : Volume 2 - Some Real
Microprocessors. pp. 9-55 through 9-61 .

27 . K. Fronheiser. "Device Operation and System Implementation of the
Asynchronous Commun1cat1ons Interface Adapter.·· Motorola Semiconductor Pro­
ducts Application Note AN-754. 1975.

28. C. W . Gear. Computer Organization and Programming 2/E (New York : McGraw­
Hill. 19741. Chapter 6.

29. D. Moms. "Revised Data Interface Standards." Electronic Design. September 1.
1977. pp. 138-1 41 . -----

30. Institute of Electrica l and Electronics Eng ineers. " IEEE Standard Digital Interface
for Programmable Instrumentation." IEEE Std488-1978. IEEE. 445 Hoes Lane.
Piscataway. NJ 08854.

J. B. Peatman. Microcomputer-Based Design (New York : McGraw-Hill. 1977)

D. C Loughry. and M. S. Allen ... IEEE Standard 488 and Microprocessor Synerg­
ism: Proceedings of the IEEE. February 1978. pp. 162-172.

11 - 128

31. G. Morrow, and H. Fullmer ... Proposed Standard for the S-100 Bus:· Computer.
May 1978. pp. 84-89 ----

M. L. Smith, " Build Your Own Interface:· Kilobaud, June 1977. pp 22-28.

32 T. Rolander. "I ntel Multibus Interfacing:· Intel Application Note AP-28. Intel Cor­
poration. Santa Clara, CA. 1977 See also An Introduction to Microcom­
puters : Volume 3 ·Some Real support Devices. Secuon J.

11-129

Chapter 12
INTERRUPTS

Interrupts are Inputs that the CPU examines as part of each lnatruction cycle.
These Inputs allow the CPU to react to asynchronous events In a more efficient
manner than polling each device. The use of Interrupts generally involvee more
hardware than does ordinary (programmed) 1/0 , but Interrupts provide a faster and
more direct rasponsa.1

W hy use interrupts? Interrupts allow events such as alarms.
power fa ilu re. the passage of a certain amount of time, and periph­
erals having data or being ready to accept data to get the
Immediate attention of the CPU . The program does not have to

REASONING
BEHIND
INTERRUPTS

examine (poll) every potential source, nor need the programmer worry about the
system completely missing event s. An interrupt system is like the bel l on a
telephone- it rings when a call is received so that you don't have to pick up the
receiver occasionally to see if someone is on the line. The CPU can go about its normal
business (and get a lot more done). When something happens. the interrupt rouses the
CPU and forces it to service the input before resumi ng normal operations. Of course.
this simple description becomes more compl icated (just like a telephone switchboard)
when there are many interrupts of varying importance and there are tasks that cannot
be interrupted

The implementation of interrupt systems varies greatly.
Among the questions that must be answered to character­
ize a particular system are:

1) How many interrupt inputs are there?

2) How does the CPU respond to an interrupt?

CHARACTERISTICS
OF INTERRUPT
SYSTEMS

3) How does the CPU determine the source of an in terrupt if the number of sources
exceeds the number of inputs?

4) Can the CPU differentiate between important and unimportant interrupts?

5) How and when is the interrupt system enabled and disabled?

There are many different answers to these questions. The aim of all the implementa­
tions. however. Is to have the CPU respond rapidly to interrupts and resume normal
activity afterwards.

The number of interrupt inputs on the CPU chip determines the number of
different responses that the CPU can produce w ithout any additional hardware or
software. Each input can produce a different internal response. Unfortunately. most
microprocessors have a very small number (one or two. typica l ly) of separate interrupt
inputs.

12-1

The ultimate response of the CPU to an Interrupt must be to transfer control to the
correct interrupt service routine and to save the current value of the Program
Counter. The CPU must therefore execute a Jump-to-Subroutine or Call instruction
with the beginni ng of the interrupt service routine as its address. This action w il l save
the return address in the Stack and transfer control to the interrupt service routine. The
amount of external hardware required to produce this response varies greatly. Some
CPUs internally generate the instruction and the address: others require external hard·
ware to form them. The CPU can only generate a different instruction or add ress for
each separate input.

If the number of interrupting devices exceeds t he number of
inputs, the CPU will need extra hardware or software to iden­
tify the source of the interrupt. In the simplest case, the soft­
ware can be a polling routine which checks the stat us of the

POLLING

VECTORING

devices that may be interrupting. The only advantage of such a system over nor­
mal polling is that the CPU knows that at least one device is active. The alterna­
tive solution is for additional hardware to provide a unique data input (or " vec­
tor") for each source. The two alternatives can be mixed ; the vectors can identify
groups of inputs from which the CPU can identify a particular one by polling.

An interrupt system that can differentiate between important I PRIORITY I
and unimportant interrupts is called a "priority interrupt
system." Internal hardware can provide as many priority levels as there are in­
puts. External hardware can provide additional levels through the use of a Priority
register and comparator. The external hardware does not allow the interrupt to
reach the CPU unless its priority is higher than the contents of the Priority
register. A priority interrupt system may need a special way to handle low-priority
interrupts that may be ignored for long periods of time.

Most interrupt systems can be enabled or disabled. In fact,
most CPUs automatically disable Interrupts when a RESET Is
performed (so that the programmer can configure the interrupt
system) and on accepting an interrupt (so that the interrupt wi l l
not interrupt its own service routine) . The programmer may wish

ENABLING
AND
DISABLING
INTERRUPTS

to disable interrupts while preparing or processing data. performing a timing loop. or
executing a multi-byte operation

An interrupt that cannot be disabled (sometimes called a
" non-maskabte interrupt") may be useful to warn of power
failure, an event that obviously must take precedence over all
other activities

NON -MASKABLE
INTERRUPT

The advantages of interrupts are obvious. but there are also DISADVANTAGES
disadvantages : OF INTERRUPTS

1) Interrupt systems may require a large amount of extra
hardware.

2) Interrupts still requi re data transfers under program con trol throug~1 the CPU. There
is no speed advantage as there is with OMA.

3) Interrupts are random inputs. which makes debugging and test ing difficult Errors
may occur sporadically. and therefore may be very hard to find .2

4) Interrupts may involve a large amount of overhead if many registers must be saved
and the source must be determined by polling.

12-2

6602 INTERRUPT SYSTEM
The 6602 microprocessor's internal response to an interrupt is moderately com­
plex. The interrupt system consists of:

1 l An active-low maskable Interrupt Input (fRQ) and an ac­
tive- low nonma1kable interrupt input (NM'i).

2) An interrupt disable (or mask) bit which disables the
maskable interrupt. If the Interrupt Disable bi t is 1. no

6602
INTERRUPT
INPUTS

maskable interrupts are allowed; the I bi t is stored in bit 2 of the Processor Status
(or Pl register.

The 6602 checks the current status of the interrupt system at
the end of each Instruction. If an interrupt is active and
enabled. the response 11 as follows :

1 l The CPU saves the Program Counter (most significant bits

6602
INTERRUPT
RESPONSE

first) and the Status register in the Stack. Figu re 12-1 shows the order in which
these registers are saved. Note that the Accumulator and Index registers are not
saved automatically.

2) The CPU disables the maskable interrupt (IRQ) ; that is, it sets bit 2 of the
Status register.

3) The CPU fetches an address from a specified pair of memory addresses and
puts that address in the Program Counter. Table 12-1 contains the pairs of ad·
dresses assigned to the various inputs and to the Break instruction

Note the following special features of the 6502 interrupt '"s_P_E_C_l_A_L_F_E_A_T_U_R_E_S..,

sys tem·

1) The 6502 automatically saves the Program Counter
and the Status register in the Stack. Remember that

OF 6602 INTERRUPT
SYSTEM

the Status register includes the Interrupt Disable flag and the Break Command flag.

21 The 6502 provides no external signals to indicate that it has accepted an interrupt
other than the address that it places on the Address Bus.

3) The 6502 has no special internal provisions for determining the source of an inter·
rupt when there are several sources tied to the same input.

The 6602 has the following special instructions to manipulate its interrupt
system:

1) CLI (Clear Interrupt Disable Bit) clears bit 2 of the Status register and thus ena·
bles the maskable interrupt

2} SEI (Set Interrupt Disable Bit) sets bit 2 of the Status register and thus disables
the maskable interrupt.

3) BRK (Force Break) sets the Break Command flag. saves the Program Counter and
Status register in the Stack. disables the maskable interrupt. and places the con·
tents of addresses FFFE and FFFF in the Program Counter.

4) RTI !Return from Interrupt} restores the Status register and the Program
Counter from the Stack. The result is that the old values are retu rned to the Pro·
gram Counter and the Status register (including the Interrupt bit) . RTI diffe rs from
ATS (Return from Subroutine) in that RT1 restores the Status register as well as the
Prog ram Counter and RTI does not add 1 to the return address as RTS does
(see Chapter 11 for a discussion OfRTS)

12-3

Be for•

Oh•-41-0lss -3
Otss -2
Ol ss -1

01 ss Stack

Olss +l T Pointer

Olss +2

Stack

After 01 ... 4. ~~ :: : ~ pp T ~:~~~r
Olss -1 PCL

01ss PCH
Otss +1

01ss +2

Steck

I
ss =original contents of Stack Pointer I
pp = original contents of Status (P) register

PCH "" or~g'.na! contents of 8 higher order ~its of Program Counter

PCL = original contents of 8 lower order bits of Program Counter

Figure 12-1 . Saving the Status of the Microprocessor in the Stack

Table 12-1 . Memory Map for 6502 Addresses Used in
Response to Interrupts and Reset

Source

Interrupt ReQuest (IRQl and BAK Instruction
Reset (RESET)

Nonmaskable Interrupt !NMi)

AddreH UHd !Hexedecimel)

FFFE and FFFF
FFFC and FFFD
FFFA and FFFB

The addresses are stored in the usual 6502 fashion w ith the least significant bits at the lower address

The BAK (Force Break) instruction produces almost exactly BAK
the same response as an interrupt Input (IRQJ . The only INSTRUCTION
difference ia that the Break Command flag (bit 4 of the Status
register) la aet. Thus a service routine can differentiate between a BAK instruction
and an iRO input by examining bit 4 of the top byte in the Stack (remember Figure
12-1) A typical program would be :

PLA :GET STATUS REGISTER FROM STACK
AND #%00010000 :IS BREAK COMMAND FLAG SET?
BNE BREAK :YES. GO TO BREAK ROUTINE

The BAK instruction is useful for debugging (see Chapter 14) and for returning control
to a monitor or operating system. See Chapter 3 for more information about the BRK in­
struction

The non-maskable Interrupt is an edge-sensitive In- NON-MASKABLE
put. The processor therefore reacts only to the edge of a INTERRUPT
pulse on this line. and the pulse will not interrupt its
own service rout ine. Non-maskable interrupts are useful for applications that must res­
pond to loss of power O.e .. must save data in a low-power memory or switch to a back­
up battery). Typical applicat ions are communications equipment that must retain codes
and partial messages. and test equipment that must keep track of partially completed
tests. We will not discuss the non-maskable interrupt any further. We will assume that
all interrupt inputs are tied to lRO.

12-4

6520 PIA lnterrupts3
Most 6502 interrupt systems involve programmable interface 6620 PIA
chips or mult ifunction devices such as the 6520 Peripheral Inter- INTERRUPTS
face Adapter. the 6522 Versatile In terface Adap ter, or the 6530
and 6532 Multifunction Devices. Each side of the 6520 PIA has the following
features for use w ith Interrupts:

1) An active-low Interrupt output.

2) Interrupt enable bits (bit 0 of the Control register for control line 1, bit 3 for con­
trol line 2).

3) Interrupt status bits {bit 7 of the Control register for control line 1. bit 6 for control
line 21

Bits 1 and 4 of the Control register determine whether a rising edge (low-to-high
transition) or falling edge (high-to-low transition) on the control line causes an in­
terrupt.

Note that :

1) The PIA interrupt enable blt1 have the opposite polarity from tha 6502 I (or In­
terrupt Disable) flag ; that is, they must be '1' to enable an interrupt

2) RESET clears the PIA Control registers and thus disables all the interrupts.

3) The CPU can check bits 6 and 7 of the Control reg ister to see if a PIA has an
interrupt pending. Once set, these bits will remain set until the CPU reads the
PIA Data reg ister.

4) The PIA will remember an interrupt that occurs while PIA interrupts are dis­
abled and will output an interrupt request as soon as the PIA interrupt is
enablad.

12-5

6522 VIA INTERRUPTS
The 6622 Versatile Interface Adapter may also be used as a
source of Interrupts. This device has an Interrupt Enable
register (IER) w hich can be used to enable the various interru pt

6622 VIA
INTERRUPTS

sources and an Interrupt Flag register (IFR) which con tains the status of the various
sou rces. Figure 12-2 shows the posit ions of the various enabling bi ts in the Interrup t
Enable register and Figu re 12-3 describes the Interrupt Flag register.

An interrupt source can be enabled by setting the corres- "E""N"'A""e=u"'N"'G="""A..,.N"'o""
ponding enable bit. Note that the most significant bit con- DISABLING
trols how the other enable bits are affected: 6622 VIA

11 If IER7 = 0. each ·1· in a bit position clears an enable bit
and thus disables that interrupt.

INTERRUPTS

2) If IER7 = 1. each ·1 · in a bit position sets an in terrupt bit and thus enables that
interrupt.

Zeros in the enabling bi t positions leave the enable bits unchanged

Some examples of enab li ng and disabl ing 6522 VIA interrupts are:

1) Enable CA 1 interrupt. disable alt others.

LOA #%0111 1101 :DISABLE ALL OTHER INTERRUPTS
STA VIAIER
LOA #%10000010 ;ENABLE CA1 INTERRUPT
STA VIAIER

The first operat ion sets 1ER7 to zero, so that the ·1 ·sin bit positions 0. 2. 3. 4. 5, and 6
clear the corresponding enable bits and thus disable those interrupts. The second
operation sets IER7 to one. so that the· 1 · in bit position 1 sets the corresponding enable
bit (CA 1 interru pt) and thus enables that interrupt.

21 Enable CB1 and CB2 interrupts. disable all others.

LOA #%01100111 ;DISABLE ALL OTHER INTERRUPTS
STA VIAIER
LOA #%1001 1000 ;ENABLE CB1. CB2 INTERRUPTS
STA VIAI ER

The first operation sets IER7 to zero. so that the ·1 ·sin bit positions 0. 1. 2, 5. and 6 clear
the corresponding enable bits and thus disable those interrupts. The second operation
sets IER7 to one. so that the Ts in bit posit ions 3 and 4 set the corresponding enable
bits (bit 3 for CB2. bit 4 for CB1) and thus enable those interrupts.

Besides the conditions described in Figure 12-3. the bits in the Interrupt Flag register
can also be cleared by writing '1 's into the required bit positions In that address.
This procedure is useful for clearing flags that are being used in the independent modes
and for eliminating undesired interrupts tha t may have been caused accidentally duri ng
reset or startup. Note that the Interrupt Flag register bit positions are the same as the
Interrupt Enable reg ister bit positions so that we can easily ex tend the previous
examples to elimi nate stray interrupts. This can be done with either enabling or disab­
li ng operations. si nce the value of bit 7 does not matter. The extended examples are :

1) Enable CA 1 interrupt. disable all others. clear CA 1 in terrupt flag .

LOA #%01111101 ;DISABLE ALL OTHER INTERRUPTS
STA VIAIER
LOA #%1000001 0
STA VIAIFR ;CLEAR CA 1 INTERRUPT FLAG
STA VIAIER ;ENABLE CA 1 INTERRUPT

12-6

0 .,...___ B1 1 Number

r-:s~.,-.----r---.--.--..--..... -~-­
c1ear

con trol
Interrupt Enable register

~----+---+---+---+--e--- Oesignated interrupt enable

1 ·Interrupt enabled

0 · Interrupt disabled

~------------------ Set or clear bits 0- 6

See Figure 12-3 for meaning of interrupt names

Bit 7 is explained funher m the mam te xt

1 • Writing 1 sets bit to 1

0 • Writing 1 sets bit to O

Writing 0 to any of

bits 0 - 6 has no ef fect

Figu re 12-2. Description of the 6522 VlA Interrupt Enab le Regis ter

0 ~Bit Number

....... ,R-Q-.-T-...... -T2-~C-B1 l _c_B2 l_s_R....,._C_A_•_l,...c_A_2_i.-- '""''"P' "'' "'"'"

Bit 7 indicates the status of the iRQ out put. This bit corresponds to the following logic funct ion

IAQ .. UFR6 A IEA 6) V (IFR S A IER51 V UFR4 A IER4) V (IFR3 A IER3l V !IFR2 A IER21 V 0FR1 A IER 1l V

UFRO A IEROI

Bits 0 - 6 are latches which are set and cleared as follows

Bil No. Se 1 by

Acl!ve trans111on of the signal

on the CA2 pm

Active trans1t1on of the signal

on the CAl pm

Completion of eight shifts

Achve transition of the signal

on the CB2 pm

Active trans1t1on of the srgnal

on the CB1 pm

T1me·OUI of T1me1 2

Time-out ol Timer 1

Cl eared by

Reading or writing the A Port Output

register (ORAl using address 0001

Reading or wri11ng the A Port Output

register tORAl. using address 0001

Reading or writing the Shift

register

Reading or writing the B Port

Output register

Reading or writing the B Port

Output register

Reading T2 low-order counter or

writing T2 high-order counter

Read mg T 1 low-order counter or

wntmg T 1 high -order latch

Figure 12-3. Desc ription of the 6522 V1A Interrupt Flag Register

12-7

2) Enable CB1 and CB2 interrupts. disable all others. clear CBl and CB2 flags.

LOA #%01100111 :DISABLE ALL OTHER INTERRUPTS
STA VIAI ER
LDA #%10011000
STA VIAIFR :CLEAR CB1. CB2 INTERRUPT FLAGS
STA VIAIER :ENABLE CB l . CB2 INTERRUPTS

Note that bi t 7 of the Interrupt Flag register and bit 7 of the Interrupt Enable
regl1ter are both special. Bit 7 of the Interrupt Flag register Indicates the statu1 of
the IRQ output - that is. it is 1 if any of the interrupts are both active and enabled. Bit
7 of the Interrupt Enable register is the Set/Clear control mentioned ea rl ier. Note
that bit 7 of the Interrupt Flag register cannot be cleared directly; it can only be cleared
by either clearing al l the active interrupt flags or by disabling all the active interrupts.

Note the following about VIA interrupts:

11 The VIA interrupt enable bits have the opposite polarity from the 6602 I (or
Interrupt Disable) flag; tha t is. they must be '1' to enable an interrupt

21 RESET di11bles all the interrupts.

3) The CPU can check bit 7 of the Interrupt Flag register to see if any interrupts
are both active and enabled. That bi t wi l l remain se t until no interrupt is both ac·
tive and enabled.

4) The VIA will remember an interrupt that occurs when VIA interrupts are dis­
abled and will output a request via iiiQ as the VIA Is enabled.

There are several examples of VIA interrupts later in this chapter.

12-8

6530 and 6532 Multifunction Device Interrupts
The 6630 device can provide an interrupt from its Inter­
val timer. The IRO ou tput is also pin PB7 from Port B and
should be set up as an input if it is to be used to cause an
interrup t. The interrupt can be enabled by wri ting to the

r.6~6~3~0~A~N~D,,...,,6~6~32.,..-~,

MULTIFUNCTION
DEVICE INTERRUPTS

timer wi th address line A3 high. The interrupt can be disabled by w riting to the timer
with address line A3 low. It can be c leared by read ing or writ ing the timer after an in ter­
rupt has occurred.

The 6632 device can provide a timer interrupt like the 6630 device. It can also
provide an interrupt baaed on the occurrence of an edge on PA 7; PA? thus operates
much like CA 1 or CB 1 on a 6520 PIA or a 6522 VIA. The interrupt can occur either on a
low-to-high transition (positive edge) or on a high-to-low transition {negat ive edge).

6632 interrupts are controlled and examined by writing to and reading from
specific addresses (see Table 12-2 for a description of the add resses in a 6532 device) .
Note the following·

1) To control the PA? interrupt. you simply write any data whatsoever into the ad­
dress in the 6532 1/0 section given by:

RS = 1 to activate 1/0 rather than the on-board RAM

A2 = 1. A4 = 0

The two least significant address bits (not the data) then con tro l the PA? mode as
fol lows: ---

A 1 = 1 to enable PA? interrupt. 0 to disable it

AO = 1 for a positive (low-to-high) edge detect. 0 for a negative (high-to- low) edge
detect.

2) To read and clear the Interrupt flags. read from the address in the 65321/0 sect ion
given by:

RS = 1 to activate 1/0 rather than the on-board RAM

A2 = 1. AO= 1

Bit 7 is the Timer In terrupt flag and bit 6 is the PA? Interrupt flag. These can easily be
read by means of the Bit Test instruction (Bit 7 is transferred to the Sign flag and bit 6 to
the Overflow flag) .

ACIA Interrupts
The 6860 ACIA can also serve as a source for Interrupts. You
should note the following features of the /ACIA in interrupt­
based systems :

6860 ACIA
INTERRUPTS

1) The transmitter interrupt (ACIA is ready for data) is enabled only if Control
register bit 6 = 0 and Control register bit 5 = 1.

2) The receiver interrupt (ACIA has received new data} is enabled only if Control
register bit 7 = 1.

3) Master reset does not affect the interrupt enable bits.

4) Bit 7 of the Status register Is set If an interrupt has occurred. Th is bit can be
cleared either by reading data from the ACIA or by w riting data into the ACIA

12-9

Table 12-2. Addressing the 6532 Multifunction Device

Selection Unes

Jm RfW A4 A3 A2 A1 AO

1(0)

1!01
l!O)
1(0)

1101

For all operations CS 1 ... 1. ffi = 0
logic levels 0 means low level

1 means tugh level

Addreu M ode

RAM Addressing
Read /Write) RAM. AO - A6 select RAM address

1/0 Addre11ing
Read (Write) Port A data

Read !Write! Port A Data D1rect1on Register
Read (Write) Port B da1a

Read (Wrile) Port B Data Direction Register

Edge-Detection Control
Disable interrupt from PA7
Eneble interrupt from PA 7
Negative edge detect
Pos11+ve edge detect

Read and Clear In terrupt Flags
Bit 7 is the T 1mer Flag
811 6 IS !he PA7 Flag

Write Count to Interval Timar
and disable limer interrupt
and enable timer interrupt
and decrement every <l>2 pulse
and decrement every 8 <l>2 pulses
and decrement every 64 $2 pulses
and decrement every 1024 <P2 pulses

X means level of that signal does not matter (either 0 or 11

12-10

6602 Polling Interrupt Systems
Moat 6602 Interrupt systems must poll each PIA, VIA, ACIA,
or other device to determine which one caused an interrupt.
The polling method la:

1) Check each PIA by examining Control register bits 6 and 7:

BIT
BMI
BVS

PIACR
INTl
INT2

;CHECK PIA STATUS BITS
;BRANC H TO INTERRUPT 1 IF BIT 7 SET
;BRANCH TO INTERRUPT 2 IF BIT 6 SET

2) Check each VIA by examining Interrupt Flag register bit 7 :

POLLING
INTERRUPTS

BIT VIAIFR ;ARE ANY INTERRUPTS ACTIVE ON THIS VIA'
BMI INTV ;YES. GO EXAMINE ALL OF FLAG REGISTER

You must still examine the Interrupt Flag reg ister if there is more than one potent ia l in­
terrupt source from a part icu lar VIA. All that bit 7 tel ls you is tha t at least one source is
both active and ena bled.

3) Check each ACIA by examining Status register bit 7 :

BIT ACIASR ;ARE ANY INTERRUPTS ACTIVE ON THIS ACIA?
BMI INTA ;YES. GO DETERMINE WHICH ONE IF NECESSARY

The interrupt could still be either a receiver or a transmitter interrupt.

The important features of a 6602 polling system are:

1) The first interrupt examined has the highest priority, since the remaining in­
terrupts will not be examined if the first one is active. The second interrupt has
the next highest priority. and so on.

2) The service routine must clear the interrupt flags from PIAs, VIAs. ACIAs. or
other devices if the clearing is not performed automatically.

The programmer should be particularly careful of:

PIAs being used as interrupting output ports.
A dummy read of the port is necessary. since the Interrupt flag is not clea red auto­
matically when data is written into the port. PIA Status Onterruptl flags are cleared
only when the Data registers are read

VIAs being used in the independent input mode or through addresses that do
not affect the Interrupt flags.

The Interrupt flag must then be explicitly cleared by writing a logic T into the appropri­
ate bit of the Interru pt Flag register.

Polling routines are adequate if there are only a few inputs.
However, If there are many inputs, polling routines are
slow and awkward because:

1) The average number of polli ng operations increases

DISADVANTAGES
OF POLLING
INTERRUPTS

linearly with the number of inputs. On the average. of course. you'l l have to poll
half of the inputs before fi nding the correct one. You can reduce the average num­
ber of polling operations somewhat by checking the most frequent inputs f irst.

2) PIA. VIA. and ACIA addresses are rarely consecutive or evenly spaced; therefore,
sepa rate instructions are necessary to examine each input. Polling routines are
therefore difficult to expand. Tables of 1/0 addresses could be used by placing the
base add ress on page zero and using the post-indexed add ressing mode or by plac­
ing the entire table on page zero and using the pre-indexed addressing mode.

3) Interru pts that are polled first may shut out those that are polled la ter unless the
order of polling is varied. However. the lack of consecutive addresses makes vary­
ing the order of pol li ng difficult.

12-11

6602 Vectored Interrupt Systems
The problem of polling in 6502-based systems has typically been
solved by special methods. unique to a particular application or
microcomputer. Note that there is no way to know that the
8602 has accepted an interrupt other than by recognizing the

6602
VECTORED
INTERRUPTS

addresses FFFE and FFFF when they appear on the Address Bus. Special hardware
can then substitute the vector provided by the actual sourca.4 We will not discuss
6502 vec tored interrupt systems any further

12-12

EXAMPLES
A Startup Interrupt
Purpose : The computer waits for a VIA interrupt to occur before starting actual opera-

tions.

Many systems remain inactive until the operator actual ly starts them or until a Data
Ready signal is received. On RESET. such systems must in itialize the Stack Pointer. ena­
ble the sta rtup interrupt. and execute an endless loop or jump-to-self instruction
Remember that RESET disables the processor interrupt (by setting I to 1) as well as all
the VIA interrupts (by clearing all the VIA interrupt enable bi ts) . In the flowchart. the
decision as to whether startup is active is made in hardware (i.e .. by the CPU examining
the interrupt input interna l ly) rather than in software.

Flowchart:

Source Program:

Main Program:

HERE

LOX
TXS
LOA
STA
LOA
STA
STA
cu
JMP

#$FF

#0
VIAPCR
#%10000010
VIAIFR
VIAIER

HERE

Interrupt Service Routine:

·=INTRP
LOA
STA
LOX
TXS
JMP

#%10000010
VIAIFR
$FF

START

Eod

:PUT STACK AT END OF PAGE 1

:MAKE ALL CONTROL LINES INPUTS

:CLEAR CA 1 INTERRUPT FLAG
:ENABLE CA 1 INTERRUPT
:ENABLE CPU INTERRUPT
:WAIT FOREVER

:CLEAR CA 1 INTERRUPT FLAG
:REINITIALIZE STACK POINTER

12-13

Object Program:

Memory Address Memory Contents Instru ction
(Hex) (Hex) (Mnemonic)

Main Progra m:

0000 A2 LOX #$FF
0001 FF
0002 9A TXS
0003 A9 LOA #0
0004 00
0005 80 STA VIAPCR

0006}
0007 VIAPCR

0008 A9 LOA #%10000010
0009 82
OOOA 80 STA VIAIFR

OOOBf
oooc VIAIFR

0000 80 STA VIAIER

OOOEf
OOOF VIAIER

0010 58 cu
0011 4C HERE JMP HERE
0012 11
0013 00

Interrupt Service Routine:

INTRP A9 LOA #%10000010
INTRP+l 82
INTRP+2 80 STA VIAIFR
INTRP+3f
INTRP+4 VIAIFR

INTRP+5 A2 LOX #$FF
INTRP+6 FF
INTRP+7 9A TXS
INTRP+B 4C JMP START
INTRP+9 f
INTRP+A START

12-14

The exact locat ion of the interrupt service routine varies
w ith the microcomputer. If your microcomputer has no
monitor. you can simply place whatever address you want
in memory locations FFFE and FFFF (or whatever locations

INTERRUPTS ON
PARTICULAR
MICROCOMPUTERS

respond to those addresses) . You must then start the interrupt service routine at the ad·
dress you chose. Of course, you should place the routine so that it does not interfere
with fixed addresses or with other programs.

If your microcomputer has a mon itor. the monitor will occu py ad·
dresses FFFE and FFFF. Those addresses will either contain a start ·
ing address at which you must p lace your interrupt service
rout ine. or will conta in the start ing address of a routine that allows
you to choose the starting address of the interrupt service routine
routine would be:

INTERRUPT
HANDLING
BY MONITORS

A typical monitor

MONINT JMP (USRINT) :JUMP TO USER SUPPLIED INTERRUPT ADDRESS

You must then place the address of your service routine in memory locations USRINT
and USRINT + 1. Remember that MONINT is an address in the monitor program and its
value is in addresses FFFE and FFFF

You can include the loading of memory locations USRINT and USA INT+ l in your main
program.

LDA #USRL :LOAD Lss·s OF USER INTERRUPT ADDRESS
STA USRINT
LDA #USRM :LOAD Mss·s OF USER INTERRUPT ADDRESS
STA USRINT+1

These instructions must precede the enabling of the interrupts

The ma in program only enables the interrupt from the startup VIA. We have assumed
that the startup line is attached to VIA input CA 1 and that the active edge is the trailing
one (i .e., a high-to-low transition). Other configurations would merely require differen t
values in the VIA Peripheral Control register

Note that the VtA interrupt is enabled and the Stack Poi nter is loaded before the CPU
interrupt is enabled (by clearing the I bit) . What would happen if you clea red the I bit
before loading the Stack Pointer? This wil l not be a potential problem if the monitor
already places a value in the Stack Pointer

In this example, the return address and Status register that the 6502 stores in the Stack
on accepting an interrupt are not useful. Thus the service routine simply reinit ializes the
Stack Pointer.

Note that we could replace the JMP HERE instruction with a conditi onal branch that
provided a guaranteed jump. such as BNE HERE. The Zero flag is not zero since the last
operat ion was the one that enabled the CA 1 interrupt. This shortcut is often helpful to
make up for the fact that the 6502 has no unconditional branch with relat ive address­
ing.

Remember that RESET and accepting an Interrupt automatically disable the inter­
rupt system. Thia allows the real startup routine to configure all ·the VIA1 and
other interrupt sources without being interrupted. Note that you must explicitly
clear the CA 1 Interrupt flag or else it will interrupt again as soon as the interrupt system
is re-enabled. You could also clear the flag by reading the VIA' s Output Register A from
the handshaking address (see Table 11·7l.

12-15

A Keyboard Interrupt
Purpose: The computer wai ts for a keyboard interrupt and places

the data from the keyboard into memory locaton 004 0
KEYBOARD
INTERRUPT

Sample Problem:

Keyboard data 06
Resu It (0040) 06

Flowchart :

Source Program:

Main Program·

HERE

LOX
TXS
LOA
STA
STA
LOA
STA
STA
CLI
JMP

#$FF

#0
VIAPCR
VIADDRA
#%10000010
VIAIFR
VIAIER

HERE

Interrupt Service Routine:

" =INTRP
PHA
LOA VIA ORA
STA $40
PLA
RTI

:PUT STACK AT END OF PAGE 1

: MAKE ALL CONTROL LINES INPUTS
:MAKE PORT A LINES INPUTS

CLEAR KEYBOARD INTERRUPT FLAG
ENABLE KEYBOARD INTERRUPT FROM VIA
ENABLE CPU INTERRUPT
DUMMY MAIN PROGRAM

SAVE ACCUMU LATOR IN STACK
GET KEYBOARD DATA
SAVE KEYBOARD DA TA
RESTORE ACCUMULATOR FROM ST ACK

12- 16

Object Program:

Memory Address Memory Contents Instruc tion
(Hex) (Hex) (Mnemonic)

Main Program:

ooou A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A9 LDA #0
0004 00
0005 SD STA VIAPCR

0006}
0007

VIAPCR

ooos SD STA VIADDRA

0009}
OOOA

VIADDRA

ooos A9 LDA #%10000010
oooc S2
OOOD SD STA VIAIFR

OOOE}
OOOF

VIAIFR

0010 SD STA VIAIER

00111
0012

VIAIER

0013 5S CLI
0014 4C HERE JMP HERE
0015 14
0016 00

Interrupt Service Routine:

INTRP 4S PHA
INTRP+l AD LDA VIADRA

INTRP+21
INTRP+3

VIAORA

INTRP+4 S5 STA $40

INTRP+5 40
INTRP+6 6S PLA
INTRP+7 40 RTI

You must configure the VIA completely before enabling the interrupts. This includes
establishing the directions of ports. determining the transit ions to be recognized on
strobe lines. and enabling latches (remember that setting bit 0 of the Auxiliary Control
register enables the Port A latch).

The JMP HERE is an endless loop (jump-to-self) instruction that is used to represent the
main program. After interrupts are enabled in a working system. the main program goes
about its business until an interrupt occurs and then resumes execution after the inter­
rupt service routine is completed.

12-17

The RTI instruction at the end of the service routine transfers
control back to the JMP instruction in the main program. If you
want to avoid this. you can simply change the Program
Coun1er in the Stack. Remember that the Stack is always lo­
cated on page 1 (addresses 0 100 - OlFF). the Stack Pointer

CHANGING THE
INTERRUPT
RETURN
ADDRESS

conta ins the add ress of the next empty location. and the interrupt response places the
Program Counter in the Stack underneath the Status register. Thus the following pro­
gram will increment the Program Counter in the Stack without removing it.

TXS
INC
BNE
INC

$0 102.X
DONE
$0103.X

DONE {next instruction)

;MAKE STACK POINTER INTO INDEX
:INCREMENT LSB'S OF RETURN ADDRESS

:ANO CARRY TO MSB'S IF NECESSARY

Since the 6502 does not automatically save its regis ters (other than the Status register).
you can use them to pass parameters and results between the main program and the in­
terrupt service routine. So. you could leave the data in the Accumulator instead of in
memory location 0040. This is. however. a dangerous practice that shou ld be avoided
in all but the most trivial systems. ln most applications. the processor is using its
registers during normal prog ram execution: having the interrupt service routines ran­
domly change the con tents of those registers would surely cause havoc. In general, no
interrupt service routine should ever altar any register unless that register's con­
tents have bean saved prior to its alteration and will be restored at the completion
of the routine.

Note that you need not explicitly re-enable the interrupts at the end of the service
routine. The reason is that the RTI instruction automatically restores the old Status
(P) register with the Interrupt Disable bit in its original state. In fact you will have
to alter the Interrupt Disable bit in the Stack (bit 2 of the top location) if you do not want
the interrupts to be re-enabled.

Using the Stack is the most general approach to saving and restoring registers.
The instruction PHA saves the contents of the Accumulator in the Stack and the
instruction PLA restores the contents of the Accumulator from the Stack. This
method can be expanded indefinitely (as long as there is room in the Stack) since
nested service routines will not destroy the data saved by the earlier routines.

You can save all the registers in the Stack (remember that Status is automatically
saved) after an interrupt with the sequence:

PHA
TXA
PHA
TYA
PHA

:SAVE ACCUMULATOR
:SAVE INDEX REGISTER X

:SAVE INDEX REGISTER Y

Note that there is no direct way to transfer data between the Stack and the Index
registers. The contents of the Accumulator must be saved first (why?).

You can restore the register> from the Stack (remember that RTI automatically restores
Status) after an interrupt se: vice routine by removing the data from the Stack in the op­
posite order from which it .1as entered

PLA
TAY
PLA
TAX
PLA

:RESTORE INDEX REGISTER Y

:RESTORE INDEX REG ISTER X

:RESTORE ACCUMULATOR

12-18

Note that the Accumulator is saved first and res tored last.

An alternatiove approach would be for the interrupt routine to
maintain control until it received an entire line of text (e.g., a string
of cha racters ending with a carriage return) . The main program
would be:

FILLING A
BUFFER VIA
INTERRUPTS

Main Program:

HERE

LDX
TXS
LDA
STA
STA
STA
LDA
STA
STA
CLI
JMP

#$FF

#0
VIAPCR
VIADDRA
$40
#%10000010
VIAIFR
VIAIER

HERE

Interrupt Service Routine:

ENDL

"=INTRP
PHA
TXA
PHA
LDX
LDA
STA
CMP
BEO
INC
PLA
TAX
PLA
RTI
JMP

$40
VIA ORA
$41 .X
#CR
ENDL
$40

LPROC

;PUT STACK AT END OF PAGE 1

;MAKE ALL CONTROL LINES INPUTS
;MAKE PORT A LINES INPUTS
;CLEAR BUFFER INDEX TO START

;CLEAR KEYBOARD INTERRUPT FLAG
;ENABLE KEYBOARD INTERRUPT FROM VIA
;ENABLE CPU INTERRUPT
;DUMMY MAIN PROGRAM

;SAVE ACCUMULATOR IN STACK
;SAVE INDEX REGISTER X IN STACK

:GET BUFFER INDEX
:GET KEYBOARD DATA
;SAVE DATA IN BUFFER
;IS DATA A CARRIAGE RETURN'
;YES. END OF LINE
;NO. INCREMENT BUFFER POINTER
;RESTORE INDEX REGISTER X FROM STACK

;RESTORE ACCUMULATOR FROM STACK

;PROCESS LINE WITHOUT INTERRUPTS

This program fi lls a buffer starting at memory location 0041 until it receives a carr iage
return character (CR). Memory location 0040 holds the current buffer index.

When the processor receives a carriage return. it leaves the interru pt system disabled
while it handles the line.

An alternative approach would be to fill another buffer while han­
dling the first one; th is approach is called double buffering.

DOUBLE
BUFFERING

The line processing routine is begun at address LPROC with interru pts disabled. and
with the original register contents (P.A. and X) and the return address in the Stack

In a real application, the CPU could perform other tasks between interrupts. It could. for
instance. edit. move. or transmit a line from one buffer while the interrupt was fill ing
another buffer.

12-19

A Printer Interrupt
Purpose : The computer waits for a printer interrupt and sends the data from memory

location 0040 to the printer.

Sample Problem:

51 15 (0040)
Result : Printer receives a 5115 (ASCII 0) when it is ready.

Flowchart :

Source Program:

M ain Program ·

LDX
TXS
STX
LDA
STA
LDA
STA
STA
CLI

HERE JMP

#$FF

VIADDRB
#0
VIAPCR
#%10000010
VIAIFA
VIAIER

HERE

Interrupt Service Rout ine:

" =INTRP
PHA
LDA $40
STA VIAOAB
PLA
All

:PUT STACK AT END OF PAGE 1

: MA~E POAT B LINES OUTPUTS

:MAKE ALL CONTROL LINES INPUTS

:CLEAR PRINTER INTERRUPT FLAG
:ENABLE PRINTER INTERRUPT FROM VIA
:ENABLE CPU INTERRUPTS
:DUMMY MAIN PROGRAM

:SAVE ACCUMULATOR IN STACK
:GET DATA
:SEND DATA TO PRINTER
:RESTORE ACCUMULATOR FROM STACK

12- 20

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

Main Program :

0000 A2 LOX #$FF
0001 FF
0002 9A TXS
0003 BE STX VIAOORB

0004f
0005

VIAOORB

0006 A9 LOA #0
0007 00
0008 80 STA VIAPCR

0009}
OOOA

VIAPCR

0006 A9 LOA #%10000010
oooc 82
0000 80 STA VIAIFR

OOOEf
OOOF

VIAIFR

0010 80 STA VIAIER

0011}
0012

VIAIER

0013 58 CLI
0014 4C HERE JMP HERE
0015 14
0016 00

Interrupt Service Rout ine ·

INTRP 48 PHA
INTRP+1 A5 LOA $40

INTRP+2 40
INTRP+3 80 STA VIAORB

INTRP+4}
INTRP+5

VIAORB

INTRP+6 68 PLA
INTRP+7 40 RTI

12-21

Here. as with the keyboard. you could have the printer continue to
interrupt until it transferred an entire line of text. The main pro­
gram and the service routine would be:

EMPTYING A
BUFFER WITH
INTERRUPTS

Main Program:

LDX #$FF
TXS
STX VIADDRB
LDA #0
STA VIAPCA
STA $40
LDA #%10000010
STA VIAIFA
STA VIAIER
CLI

HERE JMP HERE

Interrupt Service Routine:

·=INTRP

ENDL

PHA
TXA
PHA
LDX
LDA
STA
CMP
BEG
INC
PLA
TAX
PLA
RTI
JMP

$40
$41 .X
VIAORB
#CR
ENDL
$40

LCOMP

;PUT STACK AT END OF PAGE 1
:MAKE PORT B LINES OUTPUTS

:MAKE ALL CONTROL LINES INPUTS
;INITIALIZE BUFFER INDEX TO ZERO

:CLEAR PAINTER INTERRUPT FLAG
:ENABLE PAINTER INTERRUPT FROM VIA
:ENABLE CPU INTERRUPT
:DUMMY MAIN PROGRAM

:SAVE ACCUMULATOR IN STACK
;SAVE INDEX REGISTER X IN STACK

:GET BUFFER INDEX
:GET A BYTE OF DAT A FROM BUFFER
:SEND DATA TO PRINTER
;IS DATA A CARRIAGE RETURN?
:YES. END OF LINE
:NO. INCREMENT BUFFER POINTER
:RESTORE INDEX REGISTER X FROM STACK

: RESTORE ACCUMULATOR FROM ST ACK

:HANDLE COMPLETED LINE

Again. double buffering could be used to allow 1/0 and processing to occur at the same
time without ever halting the CPU.

12-22

A Real-Time Clock lnterrupt6·6

Purpoee: The computer waits for an interrupt from a real-time
clock

REAL-TIME
CLOCK

A real-time clock simply provides a regular series of pulses. The interval between
the pul1es can be used as a time reference. Real-time clock interrupts can be
counted to give any multiple of the basic time interval. A real-time clock can be pro·
duced by divid ing down the CPU clock. by using a separate timer or a programmable
t imer like the ones available in the 6522 V1A or in the 6530 or 6532 Multifunction
devices (see Chapter 1 l l. or by using ex ternal sources such as the AC line frequency

Note the tradeoffs involved in determining the frequency of
the real-time clock. A high frequency (say 10 kHz) allows the
creation of a wide range of time intervals of high accuracy. On the
other hand, the overhead involved in counting real-time clock

FREQUENCY
OF REAL-TIME
CLOCK

interrupts may be considerable. and the counts will qu ickly exceed the capacity of a
single 8-bit register or memory location. The choice of frequency depends on the preci­
sion and timing requirements of your application. The clock may. of cou rse. consist
part ly of hardware; a counter may count high frequency pulses and interrupt the pro­
cessor only occasionally. A program wil l have to read the counter to measure time to
high accuracy.

One problem is synchronizing operations with the real­
time clock. Clearly. there will be some effect on the preci·
sion of the timing interval if the CPU starts the measure­
ment randomly during a clock period. rather than exactly at
the beginning. Some ways to synchronize operations are:

SYNCHRONIZATION
WITH REAL-TIME
CLOCK

1) Start the CPU and clock together RESET or a startup interrupt can start the clock as
well as the CPU

2) Allow the CPU to start and stop the clock under program control

3) Use a high-frequency clock so that an error of less than one clock period will be
small

4) Line up the clock (by waiting for an edge or interrupt) before starting the measure·
ment.

A real-time clock interrupt should have very high priority,
since the precision of the timing intervals will be affected by
any delay in servicing the interrupt. The usual practice is to
make the real-time clock the highest priority interrupt except for

PRIORITY
OF REAL-TIME
CLOCK

power failure. The clock interrupt service routine is generally kept extremely short
so that it does not interfere with other CPU activities.

12-23

al Walt for Real-Time Clock

Source Program:

Main Program:

LDX #$FF
TXS
LDA #0
STA VIAPCA
LDA #%10000010
STA VIAIFR
STA VIAIEA
CLI

HERE JMP HERE

Interrupt Service Routine:

·=INTRP

:PUT STACK AT END OF PAGE 1

:MAKE ALL CONTROL LINES INPUTS

:CLEAR CLOCK INTERRUPT FLAG
:ENABLE CLOCK INTERRUPT FROM VIA
:ENABLE CPU INTERRUPT
:DUMMY MAIN PROGRAM

PHA :SAVE ACCUMULATOR IN STACK
LDA # %10000010
STA VIAIFA :CLEAR CLOCK INTERRUPT FLAG
PLA ; RESTORE ACCUMULATOR FROM ST ACK
BAK

12-24

Object Progrem:

Memory ACdress Memory Contents Instruct ion
(Hex) (Hex) (Mnemonic)

Main Program:

0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A9 LDA #0
0004 00
0005 8D STA VIAPCR

0006f
0007

VIAPC R

0008 A9 LDA #%10000010
0009 82
OOOA 8D STA VIAIFR

OOOBf
oooc VIAIFR

OOOD SD STA VIAIER

OOOEf
OOOF

VIAIER

0010 5S CLI
00 11 4C HERE JMP HERE
0012 11
0013 00

Interrupt Service Routine:

INTRP 4S PHA
INTRP+1 A9 LDA #%10000010
INTRP+2 S2
INTRP+3 SD STA VIAIFR

INTRP+4f
INTRP+5

VIAIFR

INTRP+6 6S PLA
INTRp+7 00 BRK

If bit 0 of the VIA Peripheral Control register is 0. the interrupt will occu r on the high-to­
low (falling) clock edge. 1f that bit is 1. the interrupt will occur on the low-to-high (ris­
ing) clock edge.

The Clock Interrupt flag must be explicitly cleared in the interrupt service routine since
no 1/0 transfer is required. Note that Port A could st ill be used for data as long as that
data was transferred using the address that does not affect the interrupt flags (see Ta­
ble 11-7).

12-25

We could. of course. generate the pulse itself using one of the 6522 timers. The follow­
ing example uses timer 1 to produce a single pulse 5000 (13881e) clock cycles in
length. Remember the following:

1) The timer 1 counters are loaded from two memory locations (VlATll and
VIAT1CH) : loading the most significant bi ts of the timer coun t into VIAT1CH starts
the timer and clears the Tl Interrupt flag (bit 6 of the Interrupt Flag register) .

2) The mode of operation of timer 1 is controlled by bits 6 and 7 of the Auxi liary Con­
trol register:

bit 6 = 0 for a single pulse and 1 for continuous operation

bit 7 = 0 to disable output pulses on P87 and 1 to generate such pulses

3) The conclusion of the timing interval sets the timer 1 Interrupt flag (bit 6 of the In-
terrupt Flag register)

Table 11-7 describes the addressing of the VIA. Figure 11-10 describes the Auxiliary
Control register. and Figure 12-3 describes the Interrupt Flag register.

Main Program:

LOX #$FF
TXS ;PUT STACK AT END OF PAGE 1
LOA #0
STA VIAACR :GENERATE ONE PULSE FROM TIMER 1
LOA #%11000000
STA VIAIFR :CLEAR TIMER 1 INTERRUPT
STA VIAIER ;ENABLE TIMER 1 INTERRUPT
LOA #$88 ;PULSE LENGTH ~ 5000 (1388 HEX)
STA VIAT1L
LOA #$13
STA VIATlCH ;START TIMING INTERVAL
cu ;ENABLE CPU INTERRUPT

HERE JMP HERE ;DUMMY MAIN PROGRAM

Interrupt Service Routine:

·~INTRP

PHA :SAVE ACCUMULATOR IN STACK
LOA #% 11000000
STA VIAIFR ;CLEAR CLOCK INTERRUPT FLAG
PLA ; RESTORE ACCUMULATOR FROM ST ACK
BAK

The only change in the service routine is the position of the Clock Interrupt flag in the
Interrupt Flag register

12-26

bl Walt for 10 Real-Time Clock Interrupts

Source Program:

Main Program:

LOX
TXS
LOA
STA
STA
LOA
STA
STA
LOA
cu

WTTEN CMP
BNE
SEI
BAK

#$FF

#0
VIAPCR
$40
#%10000010
VIAIFR
VIAIER
#10

$40
WTTEN

Interru pt Service Routine:

·=INTRP

:PUT STACK AT END OF PAGE 1

:MAKE ALL CONTROL LINES INPUTS
:CLEAR CLOCK COUNTER

:CLEAR CLOCK INTERRUPT FLAG
:ENABLE CLOCK INTERRUPT FROM VIA
:NUM BER OF COUNTS= 10
:ENABLE CPU INTERRUPT
: HAVE TEN COUNTS ELAPSED 7
:NO. WAIT
:YES. DISABLE CPU INTERRUPT

PHA :SAVE ACCUMULATOR IN STACK
INC $40 :INCREMENT CLOCK COUNTER
LOA #%10000010
STA VIAIFR :CLEAR CLOCK INTERRUPT FLAG
PLA : RESTORE ACCUMULATOR FROM ST ACK
RTI

Clearly we could generate the pulses from the 6522 timer-for example. we could use
timer 1 in its continuous mode (bit 6 of the Auxiliary Control register= 1) The only
other change would be the bit position of the Interrupt flag .

12- 27

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

Main Program

0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A9 LDA #0
0004 00
0005 SD STA VIAPCR

0006 f
0007

VIAPCR

ooos S5 STA $40
0009 40
OOOA A9 LDA #%10000010
OOOB S2
oooc SD STA VIAIFR

OOOD }
OOOE

VIAIFR

OOOF SD STA VIAIER

0010 1
0011 VIAIER

0012 A9 LDA #10
0013 OA
0014 5S cu
0015 C5 WTTEN CMP $40
0016 40
0017 DO BNE WTTEN
001S FC
0019 7S SEI
001A 00 BAK

Interrupt Service Routine

INTRP 4S PHA
INTRP+1 E6 INC $40
INTRP+2 40
INTRP+3 A9 LOA #%10000010
INTRP+4 S2
INTRP+5 SD STA VIAIFR
INTRP+6 }
INTRP+7 VIAIFR

INTRP+S 6S PLA
INTRP+9 40 RTI

12-28

This interrupt service rout ine merely updates the counter in memory location 0040. It is
transparent to the main program.

A more realistic real-time clock interrupt routine could main­
tain real time in several memory locations. For example, the
following routine uses addresses 0040 through 0043 as follows:

0040 - hundredths of seconds
0041 - seconds
0042 - minutes
0043 - hours

We assume that the routine is triggered by a 100 Hz clock.

Flowchart:

Start

12-29

MAINTAINING
REAL TIME

Source Program:

·=INTRP
PHA :SAVE ACCUMULATOR IN STACK
LDA #%10000010
STA VIAIFR :CLEAR CLOCK INTERRUPT FLAG
INC $40 :UPDATE HUNDREDTHS OF SECONDS
LDA $40
SEC :IS THERE A CARRY TO SECONDS?
SBC #100
BNE ENDINT :NO, DONE
STA $40 :YES, MAKE HUNDREDTHS ZERO
INC $41 :UPDATE SECONDS
LDA $41
SBC #60 :IS THERE A CARRY TO MINUTES'
BNE END INT :NO, DONE
STA $41 : YES, MAKE SECONDS ZERO
INC $42 :UPDATE MINUTES
LDA $42
SBC #60 :IS THERE A CARRY TO HOURS?
BNE EN DINT :NO, DONE
STA $42 :YES, MAKE MINUTES ZERO
INC $43 : UPDATE HOURS

ENDINT PLA : RESTORE ACCUMULATOR FROM ST ACK
RTI

Now a wait of 300 ms cou ld be produced in the main program with the routine:

LDA $40 :G ET CURRENT REAL TIME
CLC
ADC #30 :DESIRED TIME IS 30 COUNTS LATER
CMP #100 :MOD 100
ace WAIT30
SBC #100

WAIT30 CMP $40 :WAIT UNTIL DESIRED TIME
BNE WAIT30

We do not need explicit SET CARRY (SEC) instructions except in the first operation in
the interrupt service routine . The other operations in the interrupt service routine are
only performed if the previous subtraction produced a zero result (and hence also pro­
duced a Carry of 1 indicating no borrow). In the wait program. the subtraction is only
performed at all if the Carry is 1 (otherwise a branch occurs).

Of course. the program could perform other tasks and check the elapsed time only oc­
casionally. How would you produce a delay of seven seconds? Of three minutes?

Sometimes you may want to keep time either as BCD digits or as ASCII characters. How
would you revise the last program to handle these alternatives?

12-30

W hen it is no longer needed, you can disable the clock. interrupt
for any other interrupt) in any of the following ways:

1) By executing an SEI instruction in the main program. This dis-

DISABLING
INTERRUPTS

ables the entire interrupt system. An SEI instruction in the service routine has no
effect. since RTI restores the old I flag; anyway, the 6502 automatically disables in­
terrupts during the service routine.

2) By clearing the appropriate bit in the Interrupt Enable register (see Figure 12-2)
either during the service routine or during the main program. This disables only the
single interrupt source from one VIA.

3) By setting the Interru pt Disable flag in the Stack. du ring the service routine. The
following program will do the job (remember that the Interrupt Disable flag is bit 2
of the Status reg ister and that the Status register is the top entry in the Stack -
see Figure 12-1):

PLA :GET STATUS REGISTER
ORA #%00000010 :SET INTERRUPT OISABLE FLAG
PHA :RETURN STATUS REGISTER TO STACK

RTI will then cause a return to the main program with the enti re interrupt system
disabled.

Note. however. that you must be very careful about not re-enabling the interrupts
automatical ly, since the main program would be completely unaware that inter­
rupts were no longer allowed. In general, all interrupt service routines should re­
enable the interrupts before returning; any other policy means that the ser­
vice routine• are not transparent to the main program.

12-31

A Teletypewriter Interrupt
Purpose : The computer waits for data to be received from a te letypewriter and stores

the data in memory location 0040 .

a) Using a 8860 ACIA

(7·bit cha racters with odd parity and two stop bits) .

Source Program:

Ma in Prog ram:

LOX # $FF
TXS
LOA #%00000011
STA ACIACR
LOA #%11000101
STA ACIACR
cu

HERE JMP HERE

Interru pt Service Routine:

"=INTRP
PHA
LDA ACIADR
STA $40

:PUT STACK AT END OF PAGE 1

:MASTER RESET ACIA

:ENABLE ACIA INTERRUPT

: ENABLE CPU INTERRUPT
:DUMMY MAIN PROGRAM

SAVE ACCUMULATOR IN STACK
GET DATA FROM ACIA
SAVE DATA

ACIA
INTERRUPT
ROUTINE

PLA RESTORE ACCUMULATOR FROM STACK
RTI

12-32

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

Main Program :

0000 A2 LOX #$FF
0001 FF
0002 9A TXS
0003 A9 LOA #%00000011
0004 03
0005 80 STA ACIACR

00061
0007 ACIACR

0008 A9 LOA #%11000101
0009 cs
OOOA 80 STA ACIACR

00081
oooc ACIACR

0000 58 CLI
OOOE 4C HERE JMP HERE
OOOF OE
0010 00

Interrupt Service Routine :

INTRP 48 PHA
INTRP+l AD LOA ACIADR

INTRP+21
INTRP+3

ACIADR

INTRP+4 85 STA $40
INTRP+5 40
INTRP+6 68 PLA
INTRP+7 40 RTI

Remember that the ACIA has no RESET input. so a Master Reset (making Control
register bits 0 and 1 both ' 1') is necessary before the ACIA is used. The ACIA Control
register config uration is:

Bit 7 = 1 to enable the receive interrupt

Bit 6 = 1. Bit 5 = 0 to disable the transmitter interrupt and make RTS high
(inactive)

Bit 4 = 0. Bit 3 = 0. Bit 2 = 1 to select 7-bit data with odd parity and two
stop bits

Bit 1=0. Bit 0 = 1 for+ 16 clock (1760 Hz)

To determine if a particular ACIA is the source of an interrupt. the CPU must examine
the Interrupt Request bit. bit 7 of the Status register. The program must examine the
Receive Data Register Fu l l bit (Status register bit 0) and the Transmit Data Register
Empty bit (Status register bit 1) to differentiate between receive and transmit interrupts.

Either reading the Receive Data reg ister or wri t ing into the Transmit Data register clears
the AClA Interrupt Request bit.

12-33

bl Using a 6522 VIA

(Received data tied to both data bit 7 and to control line 1 of
the VIA.)

START BIT
INTERRUPT

Source Program:

Main Program·

LDX #$FF :PUT STACK AT END OF PAGE 1
TXS
LDA #0
STA VIAPCR :MAKE ALL CONTROL LINES INPUTS
STA VIADDRA
LDA #%10000010
STA VIAIFR :CLEAR START BIT INTERRUPT FLAG
STA VIAIER :ENABLE START BIT INTERRUPT FROM VIA
CLI :ENABLE CPU INTERRUPT

HERE JUMP HERE :DUMMY MAIN PROGRAM

Interrupt Service Routine:
0 =INTRP
PHA :SAVE ACCUMULATOR IN STACK
LDA #%00000010
STA VIAIFR :CLEAR START BIT INTERRUPT FLAG
STA VIAIER :DISABLE START BIT INTERRUPT
JSR TTYRCV : FETCH DATA FROM TTY
LDA #%10000010
STA VIAIER :RE-ENABLE START BIT INTERRUPT
PLA :RESTORE ACCUMULATOR FROM STACK
RTI

12-34

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)

Main Program:

0000 A2 LDX #$FF
0001 FF
0002 9A TXS
0003 A9 LDA #0
0004 00
0005 SD STA VIAPCR

0006 }
0007

VIAPCR

ooos SD STA VIADDRA

0009 }
OOOA

VIADDRA

0008 A9 LDA #%100000 10
oooc S2
OOOD SD STA VIAIFR
OOOE

VIAIFR
OOOF
0010 SD STA VIAIER

0011 }
0012

VIAIER

0013 5S CLI
0014 4C HERE JMP HERE
0015 14
0016 00

Interrupt Service Routine :

INTRP 4S PHA
INTRP+1 A9 LDA #%000000 10

INTRP+2 02
INTRP+3 SD STA VIAIFR

INTRP+4}
INTRP+5

VIAIFR

INTRP+6 SD STA VIAIER

INTRP+7 }
INTRP+S

VIAIER

INTRP+9 20 JSR TTYRCV

INTRP+10}
INTRP+11

TT YRCV

INTRP+12 A9 LDA #%10000010
INTRP+13 S2
INTRP+14 SD STA VIAIER

INTRP+15}
INTRP+16

VIAIER

INTRP+17 6S PLA
INTRP+1S 40 RTI

12-35

Subroutine TTYACV is the teletypewriter receive routine shown in the previous chapter.

The edge used to cause the interrupt is very important here. The transition from the
normal '1' (MARK) state to the ·o· (SPACE) state must cause the interrupt. since th is
transition identifies the start of the transmission. No ·o· to ' 1' transition will occur until a
nonzero data bi t is received.

The service rout ine must disable the VIA interrupt. since otherwise each '1' to ·o· transi­
tion in the character will cause an interrupt. Of course. you must re-enable the VIA in·
terrupt after the entire character has been read.

Note how VIA interrupts are enabled or disabled. Bit 7 of the Interrupt Enab le register is
a "Set/Clear Control" bit If that bit is 0. subsequent ·1 · bits clear interrupt enable bits
and hence disab le the corresponding interrupts: if that bit is 1. subsequent · 1 · bits set
interrupt enable bits and hence enable the corresponding interrupts. The processor
cannot aqually write into bit 7 of the Interrupt F!ag register. so either an enabl ing or a
disabling pattern can be used to clear the interrupt flags. Remember the desc ri pt ions of
the Interrupt Enable register and Interrupt Flag register in Figures 12-2 and 12-3.

12-36

MORE GENERAL SERVICE ROUTINES
More general 1ervlce routines that are pert of a complete
interrupt-driven 1y1tem must handle t he following tasks :

1) Saving all regl1tera that are uaed In the Interrupt ser­
vice routine in the Stack 10 that the Interrupted pro-
gram can be correctly reaumed.

TASKS FOR
GENERAL SERVICE
ROUTINES

Remember that the 6502 only has Push instructions for the Accumulator and for
the Status (P) register. Pushing the Status register is unnecessary after an interrupt
since the interrupt response does th is automatically. A routine to save all the
registers in the Stack wou ld be (as shown earlier) :

PHA
TXA
PHA
TYA
PHA

:SAVE ACCUMULATOR IN STACK
:SAVE INDEX REGISTER X IN STACK

:SAVE INDEX REGISTER Y IN STACK

In aome 6602 programs, certain memory locations on page zero are treated aa
extra reg isters. Such locatlon1 may have to be aaved and re1tored during In­
terrupt 1ervlce routine1. The procedure to save the contents of memory location
0040 w ould be. for example:

LDA
PHA

$40 :SAVE M EMORY LOCATION 0040 IN STACK

Of course. only those reg isters that are used by the interrupt service routine must
be saved.

2) Re1torlng all regi1ter1 from the Stack after completing the interrupt 1ervice
routine. Remember that registers must be restored in the opposite order from that
in which they were saved.

3) Enabling and dl1abling interrupt• appropriately. Remember that the CPU auto-
matically disables its interrupts upon accept ing one.

The service routine• 1hould be transparent a1 far as the interrupt program i1 con­
cerned (i.e .. they should have no incidental effects).

Any standard 1ubroutine1 that are used by an Interrupt service rout ine must be
reentrant. If some subroutines cannot be made reentrant, th• interrupt service
routine mu1t have 1eparate versions to use. 7

12-37

PROBLEMS
1) A Test Interrupt

Purpose : The computer waits for a VIA interrupt to occur. then executes the endless
loop instruction:

HERE JMP HERE

until the next in terrupt occurs.

2) A Keyboard Interrupt
Purpose: The computer waits for a 4-digit entry from a keyboard and places the digits

into memory locations 0040 through 0043 (first one received in 0040). Each
digit entry causes an interrupt. The fourth entry should also result in the dis·
abling of the keyboard interrupt.

Sample Problem:

Keyboard data 04, 06. 01 . 07

Result: (0040) 04
(004 1) 06
10042) 01
(0043) 07

3) A Printer Interrupt
Purpose : The computer sends four characters from memory locations 0040 to 0043

(starting with 0040) to the printer. Each character is requested by an inter­
rupt . The fourth transfer also disables the printer interrupt.

4) A Real-Time Clock Interrupt
Purpose : The computer clears memory location 0040 initially and then complements

memory location 0040 each time the real-time clock interrupt occurs.

How would you change the program so that it complements memory loca­
tion 0040 after every ten interrupts? How would you change the program so
that it leaves memory location 0040 at zero for ten clock periods. FF16. for
five clock periods. and so on continuously? You may want to use a display
rather than memory location 0040 so that it will be easier to see.

5) A Teletypewriter Interrupt
Purpose: The computer receives TTY data from an interrupting 6850 ACIA and stores

the characters in a buffer starting in memory loca tion 0040. The process
continues until the computer receives a carriage return (OD1sl. Assume that
the characters are 7-bit ASCII with odd parity. How would you change your
program to use a VIA? Assume that subroutine TTYRCV is available. as in
the example. Include the carriage return as the fina l character in the buffer.

12-38

REFERENCES

A. Osborne. An Introduction to Microcomputers: Volume 1 - Basic Concepts.
(Berkeley: OSBORNE/McGraw-Hill. 19771. pp. 5-14 to 5-34.

2. R. L. Baldridge. "Interrupts Add Power, Complexity to Microcomputer System
Design· ·. EDN. August 5. 1977. pp. 67-73.

3 . L. Leventhal. 6800 Assemb l y Language Programming _(Berkeley:
OSBORNE/McGraw-Hi ll. 19791. pp. 12-5 to 12-25.

4. MCS6500 Microcomputer Family Hardware Manual. MOS Technology Inc .. pp.
104-108.

5. J. Gieryic. "SYM-1 6522-Based Timer". Micro. April 1979. pp. 11 31 to 11 :32.

6. M. L. DeJong. "A Simple 24-Hour Clock for the AIM 55··. M icro. March 1979. pp
10:5 to 10:7. --

7. For further discussion and some reaHife examples of designing 6502- and 6800-
based systems with interrupts. see the following :

6602

T. Travis. "Patching a Program into a ROM", Electronics. September 1. 1976. pp. 98 -
101 ·---

G. L. Zick and T. T. Sheffer. "Remote Failure Analys is of Micro-Based Instrumentation".
Computer. September 1977. pp. 30-35.

6800

S. C. Baunach. "An Example of an M6800-based GPIB !nterface'. EDN. September 20.
1977. pp. 125-1 28.

LE. Cannon and P. S. Kreager. "Using a Microprocessor: a Real-Life Application. Part 2
- Software". Computer Design. October 1975. pp. 81-89

D. Fullager et al.. "Interfacing Data Converters and Microprocessors". Electronics.
December 8. 1976. pp. 81-89.

S. A. Hill. "Multiprocess Control Interface Makes Remote µ P Command Possible". EDN.
February 5. 1976. pp. 87-89 -

W . S. Holderby, "Designing a Microprocessor-based Terminal for Factory Data Collec­
tion". Computer Design. March 1977. pp. 81 -88.

A. Lange. "OPTACON Interface Permits the Blind to 'Read' Digital Instruments". EDN.
February 5. 1976. pp. 84-86. -

D. Logan and P. S. Kreager. "Using a Microprocessor: a Real-Life Application. Part 1 -
Hardware", Computer Design, September 1975. pp. 69-77

12-39

A Moore and M. Eidson. "Printer Control''. Application Note available from Motorola
Semiconductor Products. Phoenix. AZ.

M. C. Mulder and P. P. Fasang. "A Microprocessor Control led Substation Alarm Log­
ger". IECI '78 Proceedings · Industrial Applications of Microprocessors, March
20-22. 1978. pp. 2-6.

P. J . Zsombar-Murray et al. . "Microprocessor Based Frequency Response Analyzer".
IECI '78 Proceedings • Industrial Applicat ions of Microprocessors, March 20-22.
1978. pp. 36-44.

The Proceedings of the IEEE's Industrial Electronics and Control Instrumentation
Group's Annual Meeting on " Industrial Applications of Microprocessors" contains
many interesting articles. Volumes (starting with 1975) are available from IEEE Service
Center. CP Department. 445 Hoes Lane. Piscataway. NJ 08854.

12-40

Chapter 13
PROBLEM DEFINITION AND

PROGRAM DESIGN

THE TASKS OF SOFTWARE DEVELOPMENT
In the previous chapters. we have concentrated on the writing of short programs in as­
sembly language. While this is an important topic. it is only a smal l part of sof tware
development. Although writing assembly language programs is a major task for the
beginner. it soon becomes simple. By now. you should be fami liar with standard
methods for programming in assembly language on the 6502 microprocessor. The
next four chapters will describe how to formulate tasks as programs and how to
combine short programs to form a working system.

Software development consists of many stages. Figure
13-1 is a flowchart of the software development process Its
stages are:

• Prob lem definition

• Program design

·Cod ing

· Debugging

·Testing

· Documentation

• Maintenance and redesign

STAGES OF
SOFTWARE
DEVELOPMENT

Each of these stages is important in the construction of a working system Note that
coding. the writing of programs in a form that the computer understands. is only one of
seven stages.

In fact. coding is usually the easiest stage to define and per­
form. The rules for writing computer programs are easy to learn
They vary somewhat from computer to computer. but the basic
techniques remain the same. Few software projects run into trou­

RELATIVE
IMPORTANCE
OF CODING

ble because of cod ing: indeed, coding is not the most time-consuming part of software
development. Experts estimate that a programmer can write one to ten fully debugged
and documented statements per day. Clearly. the mere coding of one to ten statements
is hardly a full day's effort On most software projects. coding occupies less than 25% of
the programmer's t ime

Measuring progress in the other stages is difficult. You can say
that half of the program has been written. but you can hArdly say
that half of the errors have been removed or half of the problem
has been defined. Timetables for such stages as program design.

MEASURING
PROGRESS
IN STAGES

debugging. and testing are difficult to produce. Many days or weeks of effort may result
in no clear progress. Furthermore. an incomplete job in one stage may result in tremen­
dous problems later. For example. poor problem definition or program design can make
debugging and testing very diff icult. Time saved in one stage may be spent many times
over in later stages ·

13-1

Start

No

Eod

Figure 13-1 Flowchart of Software Development

13-2

DEFINITION OF THE STAGES
Problem definition is the formulation of the task in terms of PROBLEM
the requirements that it places on the computer. For example. DEFINITION
what is necessary to make a computer control a tool. run a series
of electrical tests. or handle commu nications between a central control ler and a remote
instrument? Problem definition requires that you determine the forms and rates of in­
puts and outputs. the amoun t and speed of processing that is needed. and the types of
possible errors and their handling. Problem definit ion takes a vague idea of bu i ld ing a
computer-controlled system and defines the tasks and requirements for the computer

Program design is the outline of the computer program which PROGRAM
will perform the tasks that have been defined. In the design DESIGN
stage. the tasks are described in a way that can easi ly be con-
verted into a program. Among the useful techniques in this stage are flowcharting,
structured programming, modular programming, and top-down design.

Coding is the writing of the program in a form that the com- (CODING J
puter can either directly understand or translate. The form may
be machine language. assembly language. or a high-level language.

Debugging, also called program verification. is making the pro­
gram do what the design specified that it would do. In this

I DEBUGGING I
stage. you use such tools as breakpoints. traces. simulators. logic analyzers. and in-cir­
cuit emulators. The end of the debugging stage 1s hard to define. since you never know
when you have found the last error.

Testing, also referred to as program validation. is ensuring that
the program performs the overall system tasks correctly. The
designer uses simulators. exercisers. and vanous statistical techniques to measure the
program's performance. This stage is like quality control for hardware.

Documentation is the description of the program in the rl D_O_C_U_M_E_N_T_A_T_l_O_N""'I

proper form for users and maintenance personnel. Docu-
mentation also allows the designer to develop a program library so that subsequent
tasks will be far simpler. Flowcharts. comments. memory maps. and library forms are
some of the tools used 1n documentation.

Maintenance and redesign are the servicing, improvement,
and extension of the program. Clearly. the designer must be
ready to handle field problems in computer·based equipment.
Special d iagnostic modes or programs and other maintenance

MAINTENANCE
AND
REDESIGN

tools may be requi red. Upgrading or extension of the program may be necessary to
meet new requirements or handle new tasks

The rest of this chapter will consider only the problem definition and program
design stages. Chapter 14 will discuss debugging and test ing. and Chapter 15 w ill dis­
cuss documentation. extension. and redesign. We will bring all the stages together in
some simple systems examples in Chapter 16.

PROBLEM DEFINITION
Typical microprocessor tasks require a lot of definition. For example. what must a pro­
gram do to control a scale. a cash register. or a signa l generator? Clearly. we have a
long way to go just to define the tasks involved

13-3

DEFINING THE INPUTS
How do we start the definition? The obvious place to begin 1s with the inputs. We
should begin by listing all the inputs that the computer may receive in this applica­
tion.

Examples of inputs are:

• Data btocks from transmission lines

• Sta tus words from peripherals

• Data from A/D converters

Then, we may ask the following questions about each input:

1) What is its form: i.e .. what signals will the computer actually
receive?

FACTORS
IN INPUT

2) When is the input available and how does the processor know it is available? Does
the processor have to request the input with a strobe s1gnal?Does the input provide
its own clock?

3) How long is it available?

4) How often does it change. and how does the processor know that it has changed?

5) Does the input consist of a sequence or block of data? Is the order important?

6) What should be done if the data contains errors'? These may include transmission
errors. incorrect data. sequencing errors, extra data. etc.

7) Is the input related to other inputs or outputs?

DEFINING THE OUTPUTS

The next step to define is the output. We must list all the outputs that the computer
must produce. Examples of outputs include:

• Data blocks to transmission !ines

• Control words to peripherals

· Data to D/A converters

Then, we may ask the following questions about each output:

1) What is its form: i.e., what signals must the computer produce?

2) When must it be available. and how does the peripheral kn ow it is available?

3) How long must it be available?

4) How often must it change. and how does the peripheral know that it has changed?

5) Is there a sequence of outputs?

6) What should be done to avoid transmission errors or to sense and recover from pe­
ripheral failures?

7) How is the output related to other inputs and outPuts?

13-4

PROCESSING SECTION
Between the reading of input data and the sending of output results is the processing
section. Here we must determine exactly how the computer must process the in·
put data. The questions are:

1) What is the basic procedure (algorithm) for transforming input
data into output results?

2l What time constraints exist? These may include data rates.
delay times. the time constants of input and output devices. etc.

FACTORS IN
PROCESSING

3) What memory constraints exist? Do we have limits on the amount of program
memory or data memory. or on the size of buffers?

4) What standard programs or tables must be used? What are their requirements?

5) What special cases exist. and how should the program handle them?

6) How accurate must the results be?

7) How should the program handle processing errors or special conditions such as
overflow. underflow. or loss of signif icance?

ERROR HANDLING
An important factor in many applications Is the handling of errors. Clearly. the
designer must make prov1s1ons for recovering from common errors and for diagnosing
malfunctions. Among the questions that the designer must ask at the definition
stage are :

1) What errors could occur? ERROR
21 Which errors are most likely? If a person operates the CONSIDERATIONS

system, human error is the most common. Following
human errors. communications or transm1ss1on errors are more common than
mechanical. electrical. mathematical. or processor errors.

3) Which errors will not be immediately obvious to the system? A special problem is
the occurrence of errors that the system or operator may not recognize as incorrect

4) How can the system recover from errors with a minimum loss of time and data and
yet be aware that an error has occurred?

5) Which errors or malfunctions cause the same system behavior? How can these er­
rors or malfunctions be distinguished for d iagnostic purposes?

6) Which errors involve special sys tem procedures? For example. do parity errors re­
quire retransmission of data?

Another question is: How can the field technician systematically find the source of
malfunctions without being an expert? Built-in test programs. special diagnostics. or
signature analysis can help.1

13-5

HUMAN FACTORS

Many microprocessor-based systems involve human interact ion.
Human factors must be considered throughout the develop·
ment process for such systems. Among the questions that the
designer must ask are:

OPERATOR
INTERACTION

1) What input procedures are most natural for the human operator?

2) Can the operator easi ly determine how to begin. continue and end the inpu t
operations I

3) How is the opera tor informed of procedural errors and eq uipment malfunctions I

4) What errors is the operator most likely to make?

5) How does the operator know that data has been entered correc tly ?

6) Are displays in a form that the operator can easi ly read and understand ?

7) Is the response of the system adequate for the operator?

8) Is the system easy for the operator to use?

9) Are there guiding features for an inexperienced operator?

10) Are there shortcuts and reasonab le op t1ons for the experienced operator?

11) Can the operator always determine or reset the state of the system after interrup ­
tions or distractions?

Bu ilding a system for people to use is d iffi cult. The microprocessor can make the
system more powerfu l, more flexible. and more responsive. However. the designer still
must add the human touches that can greatly increase the usefulness and attractive­
ness of the system and the productivity of the human opera tor.2

13-6

EXAMPLES
Response to a Switch
figure 13-2 1how1 a simple system in which the input is
from a single SPST switch and the output is to a single LED
display. In response to a switch closure. the processor
turn1 the display on for one second. This system should be
easy to defin e.

let us first examine the input and answer each of the questions
previously presented:

DEFINING
SWITCH A ND
LIGHT SYSTEM

SWITCH AND
LIGHT INPUT

1) The input is a single bit which may be either 'O' (switch closed) or T (switch
open).

2) The input is always available and need not be requested.

3) The input is available for at least several mdl1seconds after the closu re

4) The input will seldom change more than once every few seconds. The processor
has to handle only the bounce m the switch. The processor must monitor the
switch to determine when 1t 1s closed

5) There 1s no sequence of inputs

6) The obvious input errors are switch failure. failure in the input circuitry. and the
operator attempting to close the switch again before a suff1c1ent amount of time
has elapsed. We will discuss the handling of these errors later

7) The input does not depend on any other inputs or outpu ts

The next requirement in defining the system is to examine the
output. The answers to our questions are :

1) The output is a single bi t. which is 'O' to turn the display on.
T to turn it off.

SWITCH
AND LIGHT
OUTPUTS

2) There are no time constraints on the output The peripheral does not need to be in­
formed of the availability of data

3) If the display is an LED. the data need be available for only a few m1ll1seconds at a
pulse rate of about 100 times per second. The observer will see a continuously 11t
display

4) The data must change (go off) alter one second.

5) There is no sequence of outputs

6) The possible output errors are display failure and failure in the output circuitry.

7) The output depends only on the switch input and time.

The processing section is extremely simple. As soon as the switch input becomes
a logic 'O', the CPU turns the light on (a logic '0') for one second. No time or memo­
ry constraints exist.

Let us now look at the possible errors and malfunctions. These
are:

· Another swi tch closure before one second has elapsed

• Swi tch failure

• Display failure

• Computer failure

SWITCH AND
LIGHT ERROR
HANDLING

Su rely the fi rst error is the most likely The simplest solution is for the processor to ig­
nore switch closu res until one second has elapsed. This b rief unresponsive period will
hardly be noticeable to the human operator. Furthermore. ignoring the switch du ring
this period means that no debouncing circuitry or software is necessary. since the
system will not reac t to the bounce anyway.

13-7

CPU

The switch input is a ·1· if the 1\Nitch is operi . ·o· if the

slNitch is closed. The CPU applies tile output to tile

cathode of the LED: a ·o· lights tha display.

Input

P0<1

Ou1pu1

P"'1

Figu re 13-2. The Switch and Light System

Clearly. the last three fai lures can produ ce unpredictable results. The display may stay
on. stay off. or change state randomly. Some possible ways to isolate the failures would
be:

· Lamp-test hardware to check the display; i.e .. a button that turns the light on in­
dependently of the processor

• A direct connection to the swi tch to check its operation

•A diagnostic program that exercises the input and output circuits

If both the display and switch are working. the computer is at fault. A field technician
with proper equipment can determine the cause of the failure

13-8

A Switch-Based Memory Loader
Figure 13-3 shows a system that 1llow1 the user to enter
data into any memory location In a microcomputer. One In­
put port. DPORT, reads data from eight toggle switches.
The other Input port. CPORT. la used to read control Infor­

DEFINING A
SWITCH-BASED
MEMORY LOADER

mation. There are three momentary switches: High Address, low Address and
Data. The output is the value of the last completed entry from the data switches:
eight LEDs are used for the dl1play.

The system will also. of course. req uire various resistors. buffers. and drivers

We shall first examine the Inputs. The characterist ics of the switches are the same as
in the previous example; however. here there is a distinct sequence of inputs. as
follows:

1) The opera tor must set the data switches according to the eight most significant
bits of an address. then

2) press the High Address button. The high address bits will appear on the lights. and
the program wi l l interpret the data as the high byte of the address.

3) Then the operator must set the data swi tches with the value of the least significant
by te of the address and

4) press the Low Address button. The low add ress bits will appear on the lights. and
the prog ram w ill consider the data to be the low byte of the address.

5) Finally. the opera tor must set the desired data into the data switches and

6) press the Data button. The d isplay wil l now show the data. and the program stores
the data in memory at the previously entered address.

The operator may repeat the process to enter an entire program. Clearly. even in this
simplif ied situation. we will have many possible sequences to consider How do we
cope with erroneous sequences and make the system easy to use 7

Output is no problem. After each input, the program sends to the displays the
complement (since the displays are active·low) of the input bits. The output data
remains the same until the next input opera t ion

The proce11lng section remains quite aimple. There are no time or memory con­
straints. The program can debounce the switches by waiting for a few milliseconds. and
must provide complemented data to the displays

The moat likely errors are operator mistakes. These include

· Incorrect entries

• Incorrect order
• Incomplete entries; for example. forgett ing the data

MEMORY
LOADER
ERROR
HANDLING

The system must be able to handle these problems in a reasonable way. since they are
certa in to occu r in actua l operat ion

The designer must also conalder the effect• of equipment failure. Just as before.
the possible difficulti es are:

• Switch fai lu re

• Display failure

• Computer failu re

13-9

CPU

Da1.1
Bus

lf'lout

Pon

DPORT

lflPt.JI

Port

CPO RT

Outou•
Pon

J_

J_

J_

Figu re 13-3. The Switch-Based Memory Loader

13- 10

-=-

High Add1ess

low Address

Data

' 5 v

In this system. however. we must pay more attention to how these fai lures affect the
system. A computer failure wil l presumably cause very unusual behavior by the system.
and will be easy to detect. A display fa i lu re may not be immediately noticeable: here a
Lamp Test feature wi l l al low the operator to check the operation. Note that we wou ld
like to test each LED separately. in order to diagnose the case in which output lines are
shorted together. In addition. the operator may not immediately detect swi tch fai lure:
however. the opera tor should soon notice it and establish w hich switch is faulty by a
process of elimination.

Let us look at some of the possible operator errors. Typical errors
will be:

• Erroneous data

• Wrong order of entr ies or switches

·Trying to go on to the next entry w ithout completing the current
one

OPERATOR
ERROR
CORRECTION
IN MEMORY
LOADER

The operator will presumably notice erroneous data as soon as it appears on the dis·
plays. What is a viable recovery procedure for the operator? Some of the options are·

1) The operator must complete the en try procedure: i.e .. enter Low Address and Data
if the error occu rs in the High Address. Clear ly. this procedure 1s wasteful and
w ould only serve to annoy the operator.

2) The operator may restart the entry process by returning to the high address entry
steps. This solut ion is useful 1f the error was in the High Address. but forces the
operator to re-enter earlier data if the error was in the Low Address or Data stage.

3) The operator may enter any part of the sequence at any time simply by setting the
Data switches with the desired data and pressing the correspondi ng button. This
procedure al lows the operator to make corrections at any point in the sequence

This type of procedure should always be preferred over one that does not allow immedi­
ate error cor rection. has a variety of conclu ding steps. or enters data into the system
w ithout allowing the operator a final check. Any added complica tion in hardware or
software will be justified in increased ope rator efficiency. You should always prefer to
let the microcomputer do the tedious work and recognize arbitrary sequences: it never
gets tired and never forgets what was in the operat ing manual.

A further helpful feature would be status lights that would define the meaning of the
display. Three sta tus lights. marked .. High Address". "Low Address·'. and "Data" .
wou ld let the operator know what had been entered without having to remember which
button was pressed. The processor would have to monitor the sequence. but the added
compl ication in software would simpl ify the operator' s task. Clearly, three separate sets
of displays plus the ability to examine a memory location would be even more helpful to
the operator

We should note that, although we have emphasized human interaction, machine
or system interaction has many of the same characteristics. The microprocessor
should do the work. If complicating the microprocessor's task makes error recov­
ery simple and the causes of failure obvious. the entire system will work better
and be easier to maintain. Note that you should not wait until after the software has
been completed to consider system use and maintenance: instead. you should include
these factors in the problem definition stage

13-11

A Verification Terminal
Figure 13-4 Is a block diagram of a simple credit -verification
terminal. One Input port derives data from a keyboard (see
Figure 13-6): the other Input port accepts verification data
from a transmission line. One output port sends data to a set of

DEFINING A
VERIFICATION
TERMINAL

displays (see Figure 13-6) ; another sends the credit card number to the central
computer. A third output port turns on one light whenever the terminal ls ready to
accept an inquiry. and another light when the operator sends the Information. The
" Busy" light turns off when the response returns. Clearly. the input and output of
data will be more complex than in the previous case. al though the processing is still
simple

Additional displays may be useful to emphasize the meaning of the response. Many ter­
minals use a green light for "Yes". a red light for "No''. and a yellow light for "Consult
Store Manager." Note that these lights will still have to be clearly marked with their
mean ings to allow for a color-blind operator.

Let us first look at the keyboard input. Th is is. of course.
different from the switch input. since the CPU must have some
way of distinguishing new data. We will assume that each key
closure provides a unique hexadecimal code (we can code

VERIFICATION
TERMINAL
INPUTS

each of the 12 keys into one digit) and a strobe. The program will have to recogn­
ize the strobe and fetch the hexadecimal number that identifies the key. There is a
time constraint. since the program cannot miss any data or strobes. The constraint is
not serious. since keyboard entries wi l l be at least several milliseconds apart

The transmi11ion input similarly consists of a series of characters, each identified
by a strobe (perhaps from a UART) . The program will have to recognize each
strobe and fetch the character. The data being sent across the transmission lines
is usually organized into messages. A possible message format is:

•Introductory characters. or header

·Terminal destination address

• Coded yes or no

• Ending characters. or trailer

The terminal will check the header. read the destination address, and see if the
message is intended for it. !f the message is for the terminal. the terminal accepts the
data. The address could be (and often is) hard-wired into the terminal so that the ter­
minal receives only messages intended for it. This approach simplifies the software at
the cost of some flexibility.

The output is also more complex than in the earlier examples.
If the displays are multiplexed , the processor must not only
send the data to the display port but must also direct the data
to a particular display. We will need either a separate control port

VERIFICATION
TERMINAL
OUTPUTS

or a counter and decoder to handle this. Note that hardware blanking controls can
blank leading zeros as long as the first digit in a multi-digit number is never zero. Soft­
ware can also handle this task. Time constraints include the pulse length and frequency
required to produce a continuous display for the operator

The communications output will consist of a series of characters with a particular
format. The program will also have to consider the time required between charac­
ters. A possible format for the output message is:

• Header

• Terminal address

· Credit card number

•Tra iler

13- 12

Keyboard Data

Display

Peooheral Ready Strobe
CPU

To Central Computer

Data Strobe

From Central Coroputer

BUSY O.splay

READY Display

Figure 13-4. Block Diagram of a Verificat ion Term inal

The digit keys allow digit entries.

CLEAR deletes the entire entry

SEND transmits the entry to the central computer

Figure 13-5. Verification Term inal Keyb oard

13-13

READY BUSY

D D

The display consists of ten 7-segment displays. which may be multiplexed. controlled by a shift
register, or addressed separately. Two additional lights. READY and BUSY. are also present

Figure 13-6. Verification Terminal Display

A central communications computer may poll the terminals, checking for data
ready to be sent.

The processing in this system involves many new tasks, such as:

• Identifying the control keys by number and performing the proper actions

·Adding the header. terminal address. and trailer to the outgoi ng message

· Recognizing the header and trailer in the returning message

· Checking the incoming terminal address

Note that none of the tasks involve any complex arithmetic or any
serious time or memory constraints

The number of possible errors in this system is, of course,
much larger than In the earlier examples. Let us first consider
the possible operator errors. These inclu de :

•Entering the credit card number incorrectly

· Trying to send an incomplete credit card number

VERIFICATION
TERMINAL
ERROR
HANDLING

•Trying to send another number while the central computer is processing one

• Cleari ng non-existent entries

Some of these errors can be easi ly handled by correctly structuring the program. For ex­
ample. the program should not accept the Send key until the credit ca rd number has
been completely entered. and it shou ld ignore any additional keyboard entries unti l the
response comes back from the cen tral computer. Note that the operator will know that
the en try has not been sent. since the Busy light will not go on. The operator wi l l also
know when the keyboard has been locked out (the program is ignoring keyboard en­
tries). since entries wi ll not appear on the display and the Ready light wi l l be off.

13- 14

Incorrect entries are an obvious problem. If the operator recog­
nizes an error. he can use the Clear key to make correct ions. The
operator would probably find it more convenient to have two Clear
keys. one that cleared the most recent key and one that cleared

CORRECTING
KEYBOARD
ERRORS

the ent ire entry. Th is would allow both for the situation in which the operator recog­
nizes the error immediately and for the situation in which the opera tor recognizes the
error late in the procedure. The operator should be able to correct errors immediately
and have to repeat as few keys as possible. The operator will. however. make a certain
number of errors without recog nizing them. Most credit card numbers include a self ­
checking digit: the terminal could check the number before permitting 1t to be sent to
the central computer. This step would save the cent ral computer from wasting precious
processing time checki ng the number.

This requires. however. that the terminal have some way of informing the operator of
the error. perhaps by flashing one of the displays or by providing some other special in­
dicator that the operator is sure to notice.

Still another problem is how the operator knows that an entry has been lost or pro­
cessed incorrectly. Some terminals simply unlock after a maximum time delay. The
operator notes that the Busy light has gone off without an answer being received The
operator is then expected to try the entry again. After one or two retries. the operator
should report the failure to supervisory personnel.

Many equipment failures are also possible. Besides the displays, keyboard, an~
processor. there now exist the problems of communications errors or failures and
central computer failures.

The data transmission will probably have to include error checking and correcting pro­
cedures. Some possibilities are·

1) Parity provides an error detection facility but no correction
mechanism The recerver will need some way of request­
ing retransmission. and the sender will have to save a copy
of the data until proper reception is acknowledged. Parity
is. however. very simple to implement.

CORRECTING
TRANSMISSION
ERRORS

2) Short messages may use more elaborate schemes For example. the yes/no
response to the terminal could be coded so as to provide error detec tion and cor­
rection capability

3) An acknowledgement and a l1m1ted number of retries could trigger an 1nd1cator
that would inform the operator of a communications failure (inability to· transfer a
message without errors) or central computer failure (no response at all to the
message within a certain period of time) Such a scheme. along with the Lamp
Test. would allow simple failure diagnosis

A communications or central computer fa ilure indicator should also "unlock·· the ter­
mina t i.e .. allow 1t to accept another entry. This is necessary if the terminal will not ac­
cept entries while a verification 1s in progress. The terminal may also unlock after acer­
tain maximum time delay. Certain entries could be reserved for diagnostics: 1.e certain
credit card numbers could be used to check the internal operation of the terminal and
test the displays.

13-15

REVIEW OF PROBLEM DEFINITION
Problem definition 11 as Important 1 part of software development aa It la of any
other engineering task. Note that It does not require any programming or
knowledge of the computer; rather, it is baaed on an underatanding of the system
and sound engineering judgment. Microproce11ora can offer flexibility that the
designer can use to provide a range of features which were not prevloualy availa­
ble.

Problem definition Is Independent of any particular computer, computer language,
or development system. It should. however, provide guidellne1 as to what type or
speed of computer the application will require and what kind of hard­
ware/software trade-offs the designer can make. The problem definition 1tage la
in fact Independent of whether or not a computer Is used et all. although a
knowledge of the capabilities of the computer can help the designer In 1uggestlng
poasible implementations of procedures.

13-16

PROGRAM DESIGN

Program design is the stage in which the problem definition is formulated as a pro­
gram. If the program is small and simple, this stage may involve little more than
the writing of a one-page flowchart. If the program Is larger or more complex, the
designer should consider more elaborate methods

We will discuss flowcharting, modular programming, structured programming. and
top-down design. We will try to indicate the reasoning behind these methods, and
their advantagee and disadvantages. We wil l not. however. advocate any particular
method since there is no evidence that one method is always superior to all others. You
should remember that the goal is to produce a good working sys tem. not to fol low
religiously the tenets of one methodology or another

All the methodologies do. however. have some obvious princi­
ples in common. Many of these are the same principles that apply
to any kind of design. such as :

1) Proceed in small steps. Do not try to do too much at one
time.

BASIC
PRINCIPLES
OF PROGRAM
DESIGN

2) Divide large jobs into small. logically sepa rate tasks. Make the sub-tasks as inde­
pendent of one another as possible. so that they can be tested separately and so
that changes can be made in one without affecting the others.

3) Keep the flow of control as simple as possible so as to make it easier to fi nd errors.

4) Use pictorial or graphic descriptions as much as possible. They are easier to
visualize than word descriptions. This is the great advantage of flowcharts.

5) Emphasize clarity and s1mplic1ty at first You can improve performance (if neces­
sary) once the system 1s w orking.

6) Proceed in a thorough and systema1ic manner. Use checklists and standard pro­
cedures.

7) Do not tempt fate. Either do not use methods that you are not sure of. or use them
very carefully . Watch for situations that might cause confus ion. and cla ri fy them
as soon as possible.

8) Keep in mind that the system must be debugged. tested and maintained. Plan for
these later stages.

9) Use simple and consistent terminology and methods. Repetitiveness is no fault in
program design. nor is complexity a virtue.

10) Have your design completely formulated before you start cod ing. Resist the
temptation to start writing down instructions : it makes no more sense than mak­
ing parts lists or laying out circuit boards before you know exactly what will be in
the system

11) Be particularly careful of factors that may change Make the implementation of
likely changes as simple as possible.

13- 17

FLOWCHARTING

Flowchart ing is certainly the best-known of all program design methods. Programming
textbooks describe how programmers first write complete flowcharts and then start
writing the actual program. In fact. few programmers have ever worked this way. and
flowchart ing has often been more of a joke or a nuisance to programmers than a design
method. We will try to describe both the advantages and disadvantages of flowcharts.
and show the place of this technique in program design

The basic advantage of the flowchart is that it is a pictorial ADVANTAGES OF
representation. People find such representations much more FLOWCHARTING
meaningful than written descriptions. The designer can visual-
ize the whole system and see the relationships of the various parts- Logical errors and
inconsis tencies often stand out ins tead of being hidden in a printed page. At its best,
the flowchart is a picture of the entire system.

Some of the more specific advantages of flowcharts are :

1) Standa rd symbols exist {see Figu re 13-7) so that fl owcharti ng forms are widely
recognized.

2) Flowcharts can be understood by someone without a programmi ng backgrou nd.

3) Flowcha rts can be used to divide the enti re project into sub·tasks. The flowchart
can then be examined to measu re overall progress.

4) Ftowcharts show the seq uence of operations and can therefore aid in locating the
source of errors.

5) Flowcharting is widely used in other areas besides prog ram ming

6) There are many tools available to aid in flowcharting. including programmer's
templates and automated drawing packages

These advantages are all important The re is no question that
flowcharting wi l l continue to be widely used. But we should
note some of the disadvantages of flowcharting as a pro­
gram design method, e.g. :

DISADVANTAGES
OF
FLOWCHARTING

1) Flowcharts are difficult to design. draw. or change in all except the simplest situa-
t1ons

2) There is no easy way to debug or test a flowchart

3) Flowcharts tend to become cluttered . Designers f ind it difficult to balance between
the amou nt of detail needed to make the flowchart useful and the amount that
makes the flowchart tittle better than a program listing

4) Flowcha rts show only the program organ ization. They do not show the organization
of the data or the st ru c ture of the input/output modules.

5) Flowcharts do not help with hardware or timing problems or give hints as to where
these problems might occu r.

6) Flowcharts allow for highly unstructured design. Lines and arrows backtrack ing
and looping all over the chart are the antithesis of good structu red design princ i­
ples

Thus. flowcharting is a helpful technique that you should not try to extend too far.
Flowcharts are useful as program documentation, since they have standard forms
and are comprehensible to non-programmers. As a design tool. however, flowcharts
cannot provide much more than a start ing ou t line: the programmer cannot debug a
detailed flowchart and the flowchart is often more difficult to design than the program
itself.

13-18

0
D
<>
0

0

--1
c ___)

Input/ Output

Processing operation
(Arithmetic. Logic. Data
Movement)

Decision Logic

Subroutine

Connector point

Connector arrows

Terminal po int
(Beginning or Ending)

Figure 13-7 Standard Flowchart Symbols

13-19

EXAMPLES
Response to a Switch
This simple task, in which a single switch turns on a light
for one second, is easy to flowchart. In fact. such tasks are
typical examples for flowcharting books. although they form a
sma ll part of most systems. The data structure here is so simple
that it can be safely ignored

FLOWCHARTING
SWITCH AND
LIGHT SYSTEM

Figure 13-8 is the flowchart. There is little difficulty in deciding on the amount of
detail required. The flowchart gives a straightforward picture of the procedure. which
anyone could understand.

Note that the most useful flowcharts may ignore program variables and ask questions
di rectly. Of course. compromises are of ten necessary here. Two versions of the
flowchart are sometimes helpful - one general version in layman's language,
which will be useful to non-programmers, and one programmer's version in terms
of the program variables, which will be useful to other programmers.

A third type of flowchart. a data flowchart, may also be "o'"A.,..T'"'A,..-----.
helpful. This flowchart serves as a cross-reference for the other FLOWCHARTS
flowcharts, since it shows how the program handles a particular
type of data. Ordinary flowcharts show how the program proceeds. handling different
types of data at differen t points. Data f lowcharts. on the other hand. show how particu­
lar types of data move through the system, passing from one part of the program to
another. Such flowcharts are very useful in debugging and maintenance, since errors
most often show up as a particu lar type of data being handled incorrectly

13-20

Figure 13-8 Flowchart of One-Second Response to a Switch

13-21

The Switch-Based Memory Loader
This system (see Figure 13-3) is considerably more complex
than the previous example. and involves many more decisions.
The flowchart (see Figure 13-9) is more difficult to write
and is not as straightforward as the previous example. Jn
this example. we face the problem that there is no way to
debug or test the flowchart

FLOWCHARTING
THE
SWITCH-BASED
MEMORY LOADER

The flowchart in Figure 13-9 includes the improvements we suggested as part of the
problem definit ion. Clearly. this flowchart is beginning to get cluttered and lose its
advantages over a written description. Adding other features that define the mean­
ing of the entry with status lights and allow the operator to check entries after comple­
tion would make the flowchart even more complex. Writ ing the complete flowchart
from scra tch could quickly become a formidable task. However. once the program has
been written. the flowchart is useful as documentation

13-22

Figure 13-9. Flowchart of Switch-Based Memory Loader

13-23

The Credit-Verification Terminal
In this application (see Figures 13-4 through 13-61. the
flowchart will be even more complex than in the switch-based
memory loader case. Here. the beat Idea 11 to flowchart sec­
tions separately 10 that the flowcharta remain manageable.
However. the presence of data structures (as in the multi-d igit
display and the messages) will make the gap between
flowchart and program much wider.

FLOWCHARTING
THE CREDIT
VERIFICATION

FLOWCHARTING
SECTIONS

Let us look at some of the sections. Figure 13-10 1hows the keyboard entry process
for the digit keys. The program must fetch the data after each strobe and place the
digit into the display array if there is room for it. If there are already ten d igits in the ar­
ray. the program simply ignores the entry.

The actual program will have to hand le the displays at the same time. Note that either
software or hardware must de-activate the keyboard strobe after the processor reads a
digit.

End

Figure 13-10. Flowchart of Keyboa rd Entry Process

13-24

Figure 13-11 . Flowchart of Keyboard Entry Process with Send Key

Figure 13-11 adds the Send key. This key. of course. is optional. The terminal cou ld
just send the data as soon as the operator enters a complete number. However. that
procedure would not give the operator a chance to check the entire entry. The
flowchart with the Send key is more complex because there are two alternatives.

1) If the operator has not entered ten digits. the program must ignore the Send key
and place any other key into the entry.

2) If the operator has entered ten digits. the program must respond to the Send key by
transferring control to the Send routine. and ignore all other keys.

Note that the flowchart has become much more difficult to organize and to follow.
There is also no obvious way to check the fl ow chart.

13-25

Figu re 13-12. Flowchart of Keyboard Entry Process with Function Keys

Figure 13-12 shows the flowchart of the keyboard entry process with all the func­
tion keys. In this example. the flow of control is not simple. Clearly. some written
description is necessary. The organizat ion and layout of complex flowcharts requires
careful planning. We have followed the process of adding features to the flowchart one
at a 1ime. but th is stlll results in a large amount of redrawing. Again we should remem­
ber that throughout the keyboard entry process. the program must also refresh the dis­
plays if they are multiplexed and not controlled by shift registers or other hardware.

13-26

RT RAN

Figure 13-13. Flowchart of Receive Routine

13-27

Figure 13-13 is the flowchart of a receive routine. We assume that the serial/parallel
convers ion and error checking are done in hardware (e.g .. by a UART). The processor
must:

1) Look for the header (we assume that it is a single character) .

2) Read the destination address (we assume that it is three characters !ong) and see if
the message is meant for this terminal: i.e .. if the three characters agree with the
terminal address

3) Wa it for the trailer character

4) If the message is meant for the terminal. turn off the Busy light and go to Display
Answer routine.

5) In the event of any errors. request retransmission by going to ATAANS routine

This routine involves a large number of decisions. and the flowchart is neither simple
nor obvious.

Clearly, we have come a long way from the simple flowchart (figure 13-8) of the
first example. A complete set of flowcharts for the transaction terminal would be
a major task. It would consist of several interrelated charts with complex logic. and
would requ ire a large amount of effort. Such an effort would be just as difficult as writ­
ing a preliminary program. and not as useful. since you could not check it on the com­
puter.

13-28

MODULAR PROGRAMMING
Once programs become large and complex. flowcharting is no longer a satisfactory
design tool. However. the problem definition and the flowchart can give you some idea
as to how to divide the program into reasonable sub-tasks. The division of the entire
program into sub-tasks or module• ia calfed " modular programming." Clearly. most
of the programs we presented in earlier chapters would typically be modules in a large
system program. The problems that the designer faces In modular programming are
how to divide the program Into modules and how to put the modules together.

The advantages of modular programming are obvious:

1) A sing le module is easier to write. debug. and test than an
entire program.

ADVANTAGES
OF MODULAR
PROGRAMMING

2) A module is likely to be useful in many places and 1n other programs. particularly if
it is reasonably general and performs a common task. You can build up a library of
standard modules.

3) Modular programming allows the programmer to divide tasks and use previously
written programs.

4) Changes can be incorporated into one module rather than into the entire system.

5) Errors can often be isolated and then attr ibuted to a single module.

6) Modular programming gives an idea of how much progress has been made and
how much of the work is left.

The Idea of modular programming is 1uch 1n obvious one
that its diaadvant1ge1 are often ignored. These include:

1) Fitting the modules together can be a maier problem. par­
ticularly if different people wr ite the modules.

DISADVANTAGES
OF MODULAR
PROGRAMMING

2) Modules require very careful documentation. since they may affect oth.ar parts of
the program. such as data structures used by all the modules

3) Test ing and debugging modules separately is difficult. since other modules may
produce the data used by the module being debugged and still other modules may
use the results. You may have to write special programs (called "drivers") just to
produce sample data and test the programs. These drivers require extra program­
ming effort that adds nothing to the system

4) Programs may be very difficult to modularize. 1f you modularize the program poorly.
integration will be very difficult. since almost all errors and changes will involve
severa l modules.

5) Modular programs often require extra time and memory. since the separate
modules may repeat functions.

Therefore. while modular programming is certainly an improvement over trying to write
the entire program from scratch. it does have some disadvantages as well.

Important considerations include restricting the amount of information shared by
modules, limiting design decisions that are subject to change to a single module
and restricting the access of one module to another.3

13-29

An obvious problem is that there are no proven,
systematic methods for modularizing programs. We
should mention the following principles :4

PRINCIPLES OF
MODULARIZATION

1) Modules that reference common data should be parts of the same overall modu le.

2) Two modules in which the first uses or depends on the second. but not the reverse.
should be separate.

3) A module that is used by more than one other module should be part of a different
overall module than the others.

4) Two modules in wh ich the first is used by many other modules and the second is
used by only a few other modules should be separate.

5) Two modu les whose frequenc ies of usage are significantly different should be part
of different modules

6) The structure or organiza tion of related data should be hidden wi thin a single
modu le.

If a program is difficult to modularize, you may need to redefine the tasks that are
involved. Too many special cases or too many variables that require special han­
dling are typical signs of inadequate problem definition.

13-30

EXAMPLES
Response to a Switch
This simple program can be divided into two modules:

Module 1 waits for the switch to be turned on and turns
the light on in response.

Module 2 provides the one-second delay.

MODULARIZING
THE SWITCH
AND LIGHT
SYSTEM

Module 1 is likely to be specific to the system. since It will depend on how the switch
and light are attached. Module 2 w ill be generally useful. since many tasks require
delays. Clearly. it would be advantageous to have a standard delay module that could
provide delays of varying lengths The module will requ ire careful documentation so
that you will know how to specify the length of the delay. how to call the module. and
what registers and memory locations the modu le affec ts

A general version of Module 1 would be far less usefu l. since it w ould have to deal with
different types and connections of swi tches and lights.

You would probably find it simpler to write a modu le for a particular conf1gurat1on of
switches and tights rather than try to use a standard routine Note the d ifference be­
tween this situation and Module 2.

The Switch-Based Memory Loader
The switch-based memory loader is difficult to modularize,
since all the programming tasks depend on the hardware
configuration and the tasks are so simple that modules
hardly seem worthwhile. The flowchart in Figure 13-9 sug­
gests that one module might be the one that waits for the
operator to press one of the three pushbuttons

Some other modules might be :

MODULARIZING
THE
SWITCH- BASED
MEMORY LOADER

• A delay module that provides the delay required to debounce the switches

·A switch and display module that reads the data from the switches and sends it to
the displays

·A Lamp Test module

Highly system-dependent modules such as the last two are unlikely to be generally
useful. This example is not one in which modular programming offers great advantages.

13-31

The Verification Terminal
The verification terminal, on the other hand. lends itself very
well to modular programming. The ent ire system can easily be
divided into three main modules:

• Keyboard and display module

· Data transmission module

· Data reception module

MODULARIZING
THE
VERIFICATION
TERMINAL

A general keyboard and display module could handle many keyboard- and display­
based systems. The sub-modules would perform such tasks as:

• Recogniz ing a new keyboard entry and fetching the data

· Clearing the array in response to a Clear key

• Entering digits into storage

• Looking for the terminator or Send key

• Displaying the digits

Although the key interpretations and the number of digits will vary, the basic entry.
data storage. and data display processes will be the same for many programs. Such
function keys as Clear wou ld also be standard. Clearly. the designer must consider
which modules will be useful in other applications. and pay careful attention to
those modules.

The data transmission module could also be divided into such sub-modules as:

1) Adding the header character

2) Transmitting characters as the output line can handle them

3) Generating delay times between bits or characters.

4) Adding the trailer character.

5) Checking for transmission failures: i.e .. no acknowledgement or inabili ty to
transmit without errors

The data reception module could include sub-modules which:

1) Look for the header character

2) Check the message destination address against the terminal address

3) Store and interpret the message

4) Look for the trai ler character

5) Generate bit or character delays.

Note here how important it is that each design decision (such as
the bit rate. message format. or error-checking procedure) be im­
plemented in only one module. A change in any of these decisions
will then require changes only to that single module. The other

INFORMATION
HIDING
PRINCIPLE

modules should be written so that they are totally unaware of the values chosen or the
methods used in the implementing module. An important concept here is the " infor­
mation-hiding principle.''5 whereby modules share only information that is ab­
solutely essential to getting the task done. Other information is hidden within a
single module.

13-32

Error handling is a typical context in which th is principle should be employed. When a

module detects a lethal error. it should not try to recover; instead. it should inform the
calling module of the error sta tus and allow that module to decide how to proceed. The
reason is that the lower level module often lacks sufficien t info rmation to establish
recovery procedures. For example. suppose that the lower level module is one that ac­
cep ts numeric input from a user. This module expects a string of numeric digits termi­

nated by a carriage return. Entry of a non-numeric character causes the module toter­
minate abnormally. Since the module does not know the context (i.e .. is the numeric
string an operand, a line number. an 1/0 unit number. or the length of a file?l. it cannot
decide how to handle an error. If the module always followed a single error recovery
procedure. it would lose its generality and only be usable in those situations where that
procedure was required.

13-33

REVIEW OF MODULAR PROGRAMMING
Modular programming can be very helpful if you abide by
the following rules :

1) Use modules of 20 to 60 lines. Shorter modules are

RULES FOR
MOOULAR
PROGRAMMING

usually a waste of time. while longer modules are seldom general and may be dif·
ficult to integrate.

2) Try to make modules reasonably general. Differentiate between common
features like ASCII code or asynchronous transmission formats. which wi l l be the
same for many applications, and key identifications. number of displays. or number
of characters in a message. which are likely to be unique to a particular applicat ion.
Make the changing of the latter parameters simple. Major changes like different
character codes should be handled by separate modules

3) Take extra time on modules like delays. display handlers, keyboard handlers, etc.
that will be useful in other projects or in many different places in the present
program.

4) Try to keep modules as distinct and logically separate as possible. Restrict the
flow of information between modules and implement each design decision in a
single module.

5) Do not try to modularize simple tasks where rewriting the entire task may be
easier than assembling or modifying the module.

13-34

STRUCTURED PROGRAMMING
How do you keep modules dist inct and stop them from interacting? How do you
write a program that has a clear sequence of operations so that you can Isolate
and correct errors 1 One answer Is to use the methods known as "structured pro­
gramming" . whereby each part of the program consists of elements from a limited
set of structures and each structure has a single entry and a single exit.

Figu re 13-14 shows a flowchart of an unstructured prog ram. If an error occurs in
Module B. we have five possible sources for that error. Not on ly must we check each se­
quence. but we also have to make sure that any changes made to correct the error do
not affect any of the other sequences. The usual result is that debugging becomes like
wrestling an octopus. Every time you think the situat ion is under control. there is
another loose tentacle somewhere.

The solution is to establish a clear sequence of operations so
that you can isolate errors. Such a sequence uses single-entry.
single-exit modules. The basic modules that are needed are :

1) An ordinary sequence; i.e . a linear structure in which
statements or structures are executed consecutively. In
the sequence :

51
52
53

BASIC
STRUCTURES OF
STRUCTURED
PROGRAMMING

the computer executes Sl first. 52 second. and S3 third. Sl. 52. and S3 may be
single instructions or entire programs.

2) A conditional structure.

The common one is "if C then 51 else S2." where C is a condition and 51 and 52
are statements or sequences of statements. The computer executes 51 if C is true.
and 52 if C is false. Figure 13-15 shows the logic of this structure. Note that the
structure has a single entry and a single exit: there is no way to enter or leave 51 or
S2 other than through the structure

3) A loop structure.

The common loop structure is "while C do 5." where C is a condition and 5 is a
statement or sequence of statements. The computer checks C and executes 5 if C
is true. This structure (see Figure 13-16) also has a single entry and a single exit.
Note that the computer will not execute Sat all if C is originally fa lse. since the
value of C is checked before 5 is executed.

In most structured programming languages. an alternat ive looping construct 1s pro­
vided. This construct is known as the do-until clause. Its basic structure is '"do 5 until
C"'. where C is a condition and 5 is a statement or seq uence of statements. It is similar
to the do-while construct except that the test of the looping condition C is performed at
the end of the loop. This has the effect of guaranteeing that the loop is always executed
at least once. This is illustrated by the flowchart in Figure 13-17. The common index­
controlled or DO loop can be implemented as a special case of either of these two basic
looping cons tructs.

13-35

Figure 13-14. Flowchart of an Unstructured Program

S1art

$1 52

Eod

Figure 13-15. Flowchart of the If-Then-Else Structure

13-36

No

""'

Figure 13-16. Flowchart of the Do-White Structure

""'

Figure 13-17. Flowchart of the Do-Until Structure

4) A case structure.

Although not a primitive structure like sequential. if-then-else. and do-while. the
case structure is so commonly used that we include it here as an adjunct to the
basic structure descriptions. The case structure is "case I of SO. 51. Sn". where l
1s an index and SO. S 1. Sn are statements or sequences of statements. If I is
equal to zero then statement SO 1s executed. if l is equal to 1 then statement Sl 1s
executed. etc. Only one of then statements is executed. After its execution. control
passes to the next sequential statement following the case statement group If 1 1s
greater than n (i.e .. the number of statements in the case statemend. then none of
the statements in the case statement is executed. and control is passed directly to
the next sequential statement following the case statement This 1s illustrated by
the flowchart 1n Figure 13· 18

13-37

No

5 ,

Figure 13-18. Flowchart of the Case Structu re

Note the following features of structured programming:

1) Only the three basic structures, and po11ibly a small
number of auxiliary structures. are permitted.

'""

2) Structures may be nested to any level of complexity so that any structure
can, in turn, contain any of the structures.

3) Each structure has a single entry and a single exit.

Some examples of the conditional structure illustrated in
Figure 13-16 are :

1) 52 included :

if X > 0 then NP05 = NP05 + 1
else NNEG = NNEG + 1

Both Sl and 52 are single statements.

21 52 omitted :

if X fo 0 then Y = 1 /X

EXAMPLES
OF
STRUCTURES

Here no action is taken if C (X #:0) is false. $2 and "else·· can be omitted in this case.

13-38

Some examples of the loop structure illustrated in Figure 13-16 are :

1) Form the sum of integers from 1 to N.

1=0
SUM= 0
do while I< N

I =I+ 1
SUM= SUM+ I

end

The computer executes the loop as long as I < N. If N = 0. the program within the ··do­
while" is not executed at all

2) Count characters in an array SENTENCE until you find an ASCI I period

NCHAR = 0
do while SENTENCE (NC HAR) 1' PERIOD

NCHAR = NCHAR + 1
end

The computer executes the loop as long as the character in SENTENCE 1s not an ASCII
period. The count is zero if the first cha racter is a period.

The advantages of structured programming are :

1) The sequence of operations 1s simple to trace. This allows
you to test and debug easily.

2) The number of structures is l!m1ted and the terminology is
standardized

3) The st ructures can easily be made into modu les

ADVANTAGES OF
STRUCTURED
PROGRAMMING

4) Theoreticians have proved that the g iven set of structures is complete: that is. all
programs can be written in terms of the three structures.

5) The structured vers ion of a program is partly self-documenting and fairly easy to
read.

6) Structured programs are easy to describe with program outlines.

7) Structured programming has been shown in practice to increase programmer pro­
ductivi ty.

Structured programming basically forces much more discipline on the programmer
than does modular programming. The result is more systematic and better­
organized programs .

The disadvantages of structured programming are:

1) Only a few high-level languages (e.g .. PL/M. PASCAL) will
directly accept the structures. The programmer therefore
has to go through an extra translation stage to convert the
structures to assembly language code. The structured ver-

DISADVANTAGES
OF
STRUCTURED
PROGRAMMING

sion of the program, however. is often useful as documentat ion.

2) Structured programs often execute more slowly and use more memory than
unstructured programs

3) Limiting the structures to the three basic forms makes some tasks very awkward to
perform. The completeness of the structu res only means that al l programs can be
implemented with them; it does not mean tha t a given program can be imple­
mented efficiently or conveniently

4) The standard structures are often quite confusing. e.g .. nested '"if-then-else .. struc­
tures may be very difficult to read . since there may be no clear indication of where
mner structures end . A series of nested '"do-while" loops can also be difficul t to read

13-39

5) Structured prog rams consider only the sequence of program operat ions. not the
flow of data. Therefore. the struc tures may handle data awkwardly

6) Few programmers are accustomed to structu red progra mmi ng. Many find the stan-
dard structures awkward and restrictive.

We are neither advocating nor discouraging the use of structured programming. It
Is one way of systematizing program design. In general, structured programming
Is most useful In the following situations:

· Larger programs, perhaps exceeding 1000 instructions

• Applications in which memory usage is not critical.

· Low-volume applications where software development costs,
particularly testing and debugg ing. are important factors.

WHEN TO USE
STRUCTURED
PROGRAMMING

· Appl ications involvi ng string manipulation. process control. or other algorithms ra-
ther than simple bit manipulations.

In the future, we expect the cost of memory to decrease, the average size of
microprocessor programs to increase, and the cost of software development to in­
crease. Therefore. methods like structured programming, which decrease soft­
ware development costs for larger programs but use more memory, will become
more valuable.

Just because structured programming concep ts are usually expressed in high-level
languages does not mean that structured programming is not applicable to assembly
language programming. To the contrary. the assembly language programmer, with
the total freedom of expression that assembly level programming allows, needs
the structuring concepts provided by structured programming. Creating modules
with single entry and exit points, using simple control structures and keeping the
complexity of each module minimal makes assembly language coding more effi­
cient.

13-40

EXAMPLES
Response to a Switch
The 1tructured verelon of thi1 ex1mpfe 11:

SWITCH= OFF
do while SWITCH =OFF

REAO SWITCH
end

LIGHT =ON
DELAY 1
LIGHT= OFF

STRUCTURED
PROGRAMMING
IN THE
SWITCH AND
LIGHT SYSTEM

ON and OFF must have the proper definitions for the switch and hght We assume that
DELAY is a module that provides a delay given by its parameter 1n seconds

A statement in a structured program may actually be a subroutine. However. 1n order to

conform to the rules of structured programming. the subroutine cannot have any ex its
other than the one that returns control to the main program

Since "do-while" checks the condition before executing the loop. we set the variable
SWITCH to OFF before starting. The structured program is straightforward. readable.
and easy to check by hand. However. it would probably require somewhat more memo­
ry than an unstructured program. which would not have to in1uahze SWITCH and could
combine the reading and checking procedures

13-41

The Switch-Based Memory Loader
The switch-based memory loader is a more complex struc­
tured programming problem. We may Implement the
flowchart of Figure 13-9 as follows (a · indicates a com­
ment):

- INITIALIZE VARIABLES

HIADDRESS = 0
LDADDRESS = 0

STRUCTURED
PROGRAMMING
FOR THE
SWITCH-BASED
MEMORY LOADER

- THIS PROGRAM USES A DO-WHILE CONSTRUCT WITH NO CONDITION
• (CALLED SIMPLY DO-FOREVER!. THEREFORE. THE SYSTEM CONTI NU ALLY
• EXECUTES THE PROGRAM CONTAINED IN THIS DO-WHILE LOOP.

do forever

·TEST FOR HIADDRESS BUTTON; PERFORM THE REQUIRED PROCESSING
·IF IT IS ON

,r HIADDRBUTTON = 1 then
begin

HIADDRESS = SWITCHES
LIGHTS = SWITCHES
do

DELAY (DEBOUNCE TIME)
until HIADDRBUTTON ;, 1

end

· TEST FOR LOADDRESS BUTTON: PERFORM LOW ADDRESS PROCESSING
· IF IT IS ON.

,r LOADDRBUTTON = 1 then
begin

LOADDRESS =SWITCHES
LIGHTS =SWITCHES
do

DELAY (DEBOUNCE TIME)
unt il LOADDRBUTTON;, 1

end

· TEST FOR DATABUTTON. AND STORE DATA INTO MEMORY
• IF IT IS ON

end

,f DATABUTTON = 1 then
begin

DATA= SWITCHE~
LIGHTS = SWITCHES
(HIADDRESS. LOADDRESS) = DATA
do

DELAY IDEBOUNCE TIME)
untd DATABUTTON;, 1

end

13-42

• TH E LAST END ABOVE TERMINATES THE
do forever LOOP

Structured programs are not easy to write. but they can give a great deal of insight into
the overall program logic. You can check the logic of the structured program by hand
before writing any actual code.

13-43

The Credit-Verification Terminal
Let us look at the keyboard entry for the transaction terminal.
We will assume that the display array is ENTRY. the keyboard
strobe is KEYSTROBE. and the keyboard data is KEYIN The struc­
tured program without the function keys is:

NKEYS = 10

· CLEAR ENTRY TO START

do while NKEYS > 0
NKEYS = NKEYS - 1
ENTRY(NKEYSI = 0

end

• FETCH A COMPLETE ENTRY FROM KEYBOARD

do while NKEYS < 10
if KEYSTROBE =ACTIVE then

begin

end
end

KEYSTROBE = INACTIVE
ENTRYINKEYSI = KEYIN
NKEYS = NKEYS + 1

STRUCTURED
PROGRAM FOR
THE CREDIT­
VERIFICATION
TERMINAL

STRUCTURED
KEYBOARD
ROUTINE

Adding the SEND key means that the program must ignore extra digits after it has
a complete entry, and must ignore the SEND key until it has a complete entry. The
structured program is:

NKEYS = 10

• CLEAR ENTRY TO START

do while NKEYS > 0
NKEYS = NKEYS - 1
ENTRY(NKEYSI = 0

end

• WAIT FOR COMPLETE ENTRY FOLLOWED BY SEND KEY

do while KEY "'SEND OR NKEYS "'10
rf KEYSTROBE =ACTIVE then

end

begin
KEYSTROBE =INACTIVE
KEY= KEVIN
if NKEYS "'10 AND KEY "'SEND then

beg in

end

ENTRY (NKEYSI =KEY
NKEYS = NKEYS + 1

end

13-44

Note the following features of this structu red program.

1) The second if-then is nested within the first one. since keys are only entered after a
strobe is recognized. If the second if-then were on the same level as the first. a
single key could fill the entry. since its value would be entered into the array duri ng
each iteration of the do-whi le loop.

2) KEY need not be defined initially. since NKEYS is set to zero as part of the clearing
of the entry.

Adding the CLEAR key allows the program to clear the entry originally by simulat­
ing tho pressing of CLEAR ; i e .. by setting NKEYS to 10 and KEY to CLEAR before
starting. The structured program must also only clear d1g1ts that have previously been
filled . The new structured program is:

• SIMULATE COMPLETE CLEARING

NKEYS = 10
KEY= CLEAR

• WAIT FOR COMPLETE ENTRY AND SEND KEY

do while KEY #SEND OR NKEYS # 10

• CLEAR WHOLE ENTRY IF CLEAR KEY STRUCK

if KEY = CLEAR then
begin

KEY= 0
do while NKEYS > 0

NKEYS = NKEYS - 1
ENTRYINKEYSI = 0

end
end

• GET DIGIT IF ENTRY INCOMPLETE

end

if KEYSTROBE =INACTIVE then
begin

KEYSTROBE = INACTIVE
KEY= KEVIN
if KEY < 10 AND NKEYS # 10 then

begin

end

ENTRY(NKEYS) =KEY
NKEYS = NKEYS + 1

end

Note that the program resets KEY to zero after clearing the array. so that the operauon is
not repeated.

13-45

We can similarly build a structured program for the receive
routine. An initial program could just look for the header and
trailer characters. We wil l assume that RSTB is the ind icator that a
character is ready. The structured program is :

• CLEAR HEADER FLAG TO START

HFLAG = 0

·WAIT FOR HEADER AND TRAILER

do whi le HFLAG = 0 OR CHAR ;0 TRAILER

• GET CHARACTER IF READY. LOOK FOR HEADER

if RSTB =ACTIVE then
begin

RSTB = INACTIVE
CHAR = INPUT
if CHAR =HEADER then HFLAG = 1

end

STRUCTURED
RECEIVE
ROUTINE

Now we can add the section that checks the message address against the three
digits in TERMINAL ADDRESS (TERMADDRI. If any of the corresponding digits
are not equal, the ADDRESS MATCH flag (ADDRMATCH) is set to 1.

· CLEAR HEADER FLAG. ADDRESS MATCH FLAG. ADDRESS COUNTER TO START

HFLAG = 0
ADDRMATCH = 0
ADDRCTR = 0

· WAIT FOR HEADER. DESTINATION ADDRESS AND TRAILER

do wh ile HFLAG = 0 OR CHAR ;0 TRAILER OR ADDRCTR ;O 3

• GET CHARACTER IF READY

if RSTB = ACTIVE then
begin

RSTB = INACTIVE
CHAR= INPUT

end

• CHECK FOR TERMINAL ADDRESS AND HEADER

end

if HFLAG = 1 AND ADDRCTR ;0 3 then
begin

ADD RMATCH = 1
ADDRCTR = ADDRCTR + 1

end
if CHAR = HEADER then HFLAG = 1

13-46

The program must now wait for a header. a three-digit identification code. and a trailer.
You must be careful of what happens during the iterat ion when the program finds the
header. and of what happens if an erroneous identification code character 1s the same
as the trailer.

A further addition can store the message in MESSG. NMESS is the number of
characters in the message; if it is not zero at the end, the program knows that the
terminal has received a valid message. We have not tried to minimize the logic ex­
pressions in this program.

· CLEAR FLAGS. COUNTERS TO START

HFLAG = 0
AOORMATCH = 0
AODRCTR = 0
NMESS = 0

·WAIT FOR HEADER. DESTINATION ADDRESS AND TRAILER

do while HFLAG = 0 OR CHAR cl TRAILER or ADD RC TR fo 3

• GET CHARACTER IF READY

1f RSTB =ACTIVE then
begin

RSTB =INACTIVE
CHAR= INPUT

end

· READ MESSAGE IF DESTINATION ADDRESS= TERMINAL ADDRESS

if HFLAG = 1 AND ADDRCTR = 3 then
if ADDRMATCH = 0 and CHAR fo TRAI LER then

begin
MESSGINMESS) =CHAR
NMESS = NMESS + 1

end

• CHECK FOR TERMINAL ADDRESS

ii HFLAG = 1 AND ADDRCTR cl 3 then
if CHAR cl TERMADDR (ADDRCTR) then

begm
ADDRMATCH = 1
ADDRCTR = ADDRCTR + 1

end

• LOOK FOR HEADER

1f CHAR = H~ADER then HFLAG = 1
end

13·47

The program checks for the identification code only if it found a header during a pre­
vious iteration. 1t accepts the message only if it has previously found a header and a
complete. matching destination address. The program must work properly during the
iterations when it f inds the header. the tra iler and the last digit of the destination ad­
dress. It must not try to match the header with the terminal address or place the trailer
or the final digit of the destination address in the message. You might try adding the
rest of the logic from the flowchart (Figure 13-131 to the structured program. Note
that the order of operations is often critical. You must be sure that the program
does not complete one phase and start the next one during the same Iteration.

13-48

REVIEW OF STRUCTURED PROGRAMMING

Structured programming brings discipline to program design. It forces you to limit
the types of structures you use and the sequence of operations. It provides slngle­
entry, single-exit structures, which you can check for logical accuracy. Structured
programming often makes the designer aware of inconaistenciea or possible com­
binations of Inputs. Structured programming is not a cure-all, but It does bring
some order into a process that can be chaotic. The structured program should also
aid in debugging, testing, and documentation.

Structured programming is not simple. The programmer must not only define the
problem adequately, but must also work through the logic carefully. This la
tedious and difficult, but it results in a clearly written, working program.

The particular structures we have presented are not Ideal and
are often awkward. In addition. It can be difficult to dis­
tinguish where one structure ands and another begins. partic­
ularly if they are nested. Theorists may provide better struc­

TERMINATORS
FOR
STRUCTURES

tures in the future, or designers may wish to add some of their own. Some kind of
terminator for each structure seems necessary. since indenting does not always clarify
the situation. "End" is a logical terminator for the " do-while" loop. There 1s no obvious
terminator. however. for the "if-then-else" sta tement: some theorists have suggested
"endif' or "fi" ("if' backwards). but these are both awkward and detract from the
readability of the program.

We suggest the following rules for applying structured pro­
gramming:

1) Begin by writing a basic flowchart to help define the
logic of the program.

RULES FOR
STRUCTURED
PROGRAMMING

2) Start with the " sequential," " if-then-else," and " do-while" constructs. They
are known to be a complete set. i.e .. any program can be written in terms of these
structures.

3) Indent each level a few spaces from the previous level. so that you will know
which statements belong where.

4) Use terminators for each structure; e.g .. "end" for the "do-whi le" and "end1f" or
"ff' for the "if-then -else" The terminators plus the indentation should make the
program reasonably clear.

5) Emphasize simplicity and readability . Leave lots of spaces. use meaningful
names. and make expressions as clear as possible. Do not try to minimize the logic
at the cost of clarity

6) Comment the program in an organized manner

7) Check the logic. Try all the extreme cases or special conditions and a few sample
cases. Any logical errors you find at this level wil l not plague you later.

13-49

TOP-DOWN DESIGN
The remaining problem is how to check and integrate modules BOTTOM-UP
or structures. Certainly we want to divide a large task into DESIGN
sub-tasks. But how do we check the sub-tasks in isolation and
put them together? The standard procedure, called "bottom-up design," requ ires
extra work in testing and debugging and leaves the entire integration task to the
end. What we need is a method that allows testing and debugging in the actual
program environment and modularizes system integration.

This method is " top-down design." Here we start by writing
the overall supervisor program. We replace the undefined sub­
programs by program " stubs, " temporary programs that may
eit her record the entry, provide the answer to a selected test
problem, or do nothing. We then test the supervisor program
to see that its logic is correct.

We proceed by expanding the stubs. Each stub will oft en con­
tain sub-tasks, which we will temporarily represent as stubs.
This process of expansion, debugging. and testing continues
until all the stubs are replaced by work ing programs. Note that
testing and integration occur at each level. rather than all at the
end. No special driver or data generation programs are necessary
We get a clea r idea of exactly where we are 1n the design. Top-
down design assumes modular programming. and is compati-
ble with structured programming as well .

The disadvantages of top-down design are:

1) The overall design may not mesh well with system hard­
wa re.

2) It may not take good adva n tage of existing software

3) Stubs may be difficult to write. particularly if they must
work correctly in seve ral different places

4) Top-down design may not result in generally useful modu les

TOP-DOWN
DESIGN
METHODS

STUBS

EXPANDING
STUBS

ADVANTAGES
OF
TOP-DOWN
DESIGN

DISADVANTAGES
OF
TOP-DOWN
DESIGN

5) Errors at the top level can have catast rophic ef fects. whereas errors in bottom-up
design are usually limited to a particular module

In large programming projects. top-down design has been shown to greatly im­
prove programmer productivity. However, almost all of these projects have used
some bottom-up design in cases where the top-down method would have
resulted in a large amount of extra work.

Top-down design is a useful tool that should not be followed to extremes. It pro­
vides the same discipline for system testing and integration that structured pro­
gramming provides for module design. The method, however, has more general
applicability, since it does not assume the use of programmed logic. However,
top-down design may not result in the most efficient implementation.

13-50

EXAMPLES
Response to a Switch
The first structured programming example actually demon­
strates top-down design as well. The program was :

SWITCH= OFF
do while SWITCH =OFF

READ SWITCH
end
LIGHT= ON
DELAY 1
LIGHT= OFF

TOP-DOWN
DESIGN
OF SWITCH
AND LIGHT
SYSTEM

These statements are really stubs. since none of them is fully defined. For exam­
ple. what does READ SWITCH mean? If the switch were one bit of input port SPORT. 1t
rea l ly means·

SWITCH= SPORT AND SMASK

where SMASK has a T bit in the appropriate pos1t1on. The masking may. of course. be
implemented with a Bit Test instruction.

Similarly. DELAY 1 actually means (if the processor i tself provides the delay):

REG= COUNT
do while REG 1' 0

REG =REG - 1
end

COUNT is the appropriate number to provide a one-second delay. The expanded ver­
sion of the program is:

SWITCH= 0
do while SWITCH = 0

SWITCH = SPORT AND MASK
end
LIGHT= ON
REG= COUNT
do while REG 1' 0

REG= REG · 1
end
LIGHT =NOT (LIGHT)

Certainly this program is more explicit, and could more easily be translated into
actual instructions or statements.

13-51

The Switch-Based Memory Loader

This example is more complex than the first example. so we
must proceed systematically. Here again, the structured pro­
gram contains stubs.

For example. if the HIGH ADDRESS button is one bit of input
port CPORT. "if HIAOORBUTTON ~ 1" rea l ly means :

11 Input from CPORT

2) Complement

3) Logical ANO With HAMASK

TOP-DOWN
DESIGN OF
SWITCH-BASED
MEMORY
LOADER

where HAMASK has a T 1n the appropriate bit position and 'Os' elsewhere. Similarly
the condition "if DATABUTTON = 1" really means:

1) Input from CPORT

2) Complement

3) Logical AND with DAMASK

So, the initial stubs could iust assign values to the buttons. e.g ..

HIADDRBUTTON ~ 0
LOADDRBUTTON ~ 0
DATA BUTTON ~ 0

A run of the supervisor program should show that ti takes the implied "else" path
through the "if-then-else" structures. and never reads the sw itches. Similarly. if the
stub were:

HIADDRBUTTON ~ 1

the supervisor program shou ld stay 1n the "do while H\ADDRBUTTON = 1" loop wait·
ing for the button to be released These simple runs check the ove rall logic

Now we can expand each stub and see if the expansion produces a reasonable
overall result. Note how debugging and testing proceed in a straightforward and
modular manner. We expand the HIADDRBUTTON = 1 stub to:

READ CPORT
HIADDRBUTTON ~ NOT ICPORTI AND HAMASK

The program should wait for the HIGH ADDRESS button to be closed The program
should then display the values of the switches on the lights Th is run checks for the
proper response to the HIGH ADDRESS button

We then expand the LOW ADDRESS button module to·

READ CPORT
LOADDRBUTTON = NOT (CPORT) AND LAMASK

With the LOW ADDRESS button in the closed pos1t1on, the program should display the
values of the sw itches on the lights This run checks for the proper response to the LOW
ADDRESS button

Similarly, we can expand the DATA button module and check for the proper response
to t11at button. The entire program will then have been tested

When all the stubs have been expanded, the coding, debugging, and testing
stages will all be complete. Of course, we must know exactly what results each
stub should produce. However. many logical errors will become obvious at each
level without any further expansion.

13-52

The Transaction Terminal
This example. of course. wi l l have more levels of detai l. We
could start with the following program (see Figure 13· 19 for
a flowchart) :

KEYBOARD
ACK =0
do while ACK = 0

TRANSMIT
RECEIVE

end
DISPLAY

TOP-DOWN
DESIGN OF
VERIFICATION
TERMINAL

Here KEYBOARO, TRANSMIT, RECEIVE, and OISPLAY are program stubs that will
be expanded later. KEYBOARD. for example. could simµly place a ten·dig1t verified
number mto the appropriate buffer

Figure 13·19 ln1t1a1 Flowchart for Transaction Terminal

13-53

'""

Figure 13-20. Flowchart for Expanded KEYBOARD Routine

The next stage of expansion could produce the following pro­
gram for KEYBOARD (see Figure 13-20):

VER =0
do while VER = 0

COMPLETE= 0
do while COMPLETE = 0

KEVIN
KEYDS

end
VERIFY

end

EXPANDING
THE
KEYBOARD
ROUTINE

Here VER = 0 means that an entry has not been verified; COMPLETE = 0 means that
the entry is incomplete. KEYIN and KEYDS are the keyboa rd input and display routines
respectively. VERIFY checks the entry. A stub for KEVIN wou ld simply place a random
entry (from a rand om number table or generator) into the buffer and set COMPLETE to
1.

We would continue by similarly expanding, debugging, and testing TRANSMIT,
RECEIVE, and DISPLAY. Note that you should expand each program by one level
so that you do not perform the integration of an entire program at any one time.
You must use your judgment in defining levels. Too small a step wastes time.
while too large a step gets you back to the problems of system integration that
top·down design is supposed to solve.

13-54

REVIEW OF TOP-DOWN DESIGN
Top-down design brings discipline to the testing and Integration stages of pro­
gram design. It provides a systematic method for expanding a flowchart or prob­
lem definition to the level required to actually write a program. Together with
structured programming. It forms a complete set of design techniques.

Like structured programming, top-down design is not simple. The designer must
have defined the problem carefully and must work systematically through each
level. Here again the methodology may seem tedious, but the payoff can be sub­
stantial if you follow the rules.

We recommend the following approach to top-down
design :

1) Start with a basic flowchart.

2) Make the stubs as complete and as separate as possi­
ble.

FORMAT FOR
TOP-DOWN
DESIGN

3) Define precisely all the possible outcomes from each stub and select a test set.

4) Check each level carefully and systematically

6) Use the structures from structured programming.

8) Expand each stub by one level. Do not try to do too much in one step

7) Watch carefully for common tasks and data structures.

8) Test and debug after each stub expansion. Do not try to do an entire level at a
time.

9) Be aware of what the hardware can do. Do not hesitate to stop and do a little
bottom-up design where that seems necessary.

13-55

REVIEW OF PROBLEM DEFINITION AND PROGRAM DESIGN
You should note that we have spent an entire chapter without mentioning any
specific microprocessor or assembly language, and without writing a single line of
actual code. Hopefully, though, you now know a lot more about the examples than
you would have If we had just asked you to write the programs at the start.
Although we often think of the writing of computer instructions as a key part of
software development, It is actually one of the easiest stages.

Once you have written a few programs, coding will become simple. You will soon
learn the instruction set, recognize which instructions are really useful. and
remember the common sequences that make up the largest part of moat pro­
grams. You will then find that many of the other stages of software development
remain difficult and have few clear rules.

We have suggested here some ways to systematize the important early stages. In
the problem definition stage, you must define all the characteristics of the
system - its inputs, outputs, processing. time and memory constraints, and error
handling. You must particularly consider how the system will interact with the
larger system of which it is a part, and whether that larger system includes
electrical equipment, mechanical equipment, or a human operator. You must start
at this stage to make the system easy to use and maintain.

In the program design stage, several techniques can help you to systematically
specify and document the logic of your program. Modular programming forces you
to divide the total program into small. distinct modules. Structured programming
provides a systematic way of defining the logic of those modules, while top-down
design is a systematic method for integrating and tasting them. Of course, no one
can compel you to follow alt of these techniques; they are, in fact, guidelines more
than anything else. But they do provide a unified approach to design, and you
should consider them a basis on which to develop your own approach.

13-56

REFERENCES
1. Ballard. 0. A .. "Designing Fail-Safe Microprocessor Systems.· Electronics. January

4, 1979. pp. 139-143

"A Designer's Guide to Signature Analysis." Hewlett-Packard Application Note
222. Hewlett-Packard. Inc. Palo Alto. CA. 1977

Donn. E. S. and M. 0 . Lippman. "Efficient and Effective Microcomputer Testing Re­
quires Careful ?replanning." EON. February 20. 1979, pp. 97-107 (includes self-test
examples for 6502). -

Gordon. G. and H. Nadig, "Hexadecimal Signatures Identify Troublespots in
Microprocessor Systems." Electronics. March 3. 1977. pp. 89-96.

Neil. M. and R. Goodner. "Designing a Serviceman's Needs into Microprocessor­
Based Systems." Electronics. March 1. 1979. pp. 122-126

Schweber. W . and L. Pearce. "Software Signature Ana lysis Identifies and Checks
PROMs." EON. November 5. 1978. pp. 79-81

Srini. V. P .. "Fault Diagnosis of Microprocessor Systems ... Computer. January 1977.
pp. 60-65.

For a brief discussion of human factors considerations. see G M oms. " Make Your
Next Instrument Design Emphasize User Needs and Wants ... EON. October 20.
1978. pp. 100-105.

3 0. L. Parnas (see the references below) has been a leader in the area of modular pro­
gramming.

4 Collected by B. W . Unger (see reference below).

Formulated by 0 . L. Parnas.

The following references provide additional informat ion on problem def1n1tion and pro­
gram design ·

Chapin. N .. Flowcharts, Auerbach. Princeton. N. J .. 1971

Dalton. W. F .. "Design Microcomputer Softwa re like Other Systems -Systematical ly,"
Electronics. January 19. 1978. pp. 97-101.

Dijkstra. E. W .. A Discipline of Programming. Prentice-Hall. Englewood Cliffs. N. J ..
1976.

Halstead. M. H .. Elements of Software Science. American Elsevier, New York, 1977.

Hughes. J. K. and J. 1. Michtom. A Structured Approach to Programming, Prent ice-Hall.
Englewood Cliffs. N. J. 1977

Morgan. D. E. and 0. J. Taylor. "A Survey of Methods for Ach ieving Reliable Software."
Computer. February 1977. pp. 44-52 .

Myers. W .. "The Need for Software Engineering," Computer. February 1978. pp. 12-25.

Parnas. 0. L.. "'On the Criteria to be Used in Decomposing Systems into Modules ... Com­
munications of the ACM. December 1972. pp. 1053-1058 --

Parnas. 0 . L."A Technique for the Specificat ion of Software Modu les with Examples."
Communications Q! the ACM. May 1973. pp. 330-336.

Phister. M. Jr .. Data Processing Technology and Econ omics. Santa M onica Publishing
Co .. Santa Monica. CA. 1976

Schneider. V .. "Prediction of Software Effort and Project Durat ion - Four New For­
mulas." SIGPLAN Notices. June 1978. pp. 49-59.

13-57

Shneiderman, 8. et al.. "Experimental Investigations of the Utility of Detailed Flow­
charts in Programming." Communications£! the ACM, June 1977, pp. 373-381.

Tausworthe, R. C .. Standardized Development of Computer Software. Prentice-Halt
Englewood Cliffs. N. J .. 1977.

Unger. B. W ., "Programming Languages for Computer System Simulation," Simulation.
April 1978. pp. 101-110. ----

Wirth. N .. A lgorithms+ Data Structures= Programs. Prentice-Hal l. Englewood Cliffs.
N. J .. 1976.

Wirth. N .. Systematic Programming : an Introduction. Prentice-Hall. Englewood Cliffs.
N. J .. 1973.

Yourdon. E. U .. Techniques of Program Structure and Design. Prentice-Hall. Englewood
Cliffs. N. J .. 19 5.

13-58

Chapter 14
DEBUGGING AND TESTING

As we noted at the beginn ing of the previous chapter. debugging and testing are
among the most t ime·consuming stages of software development. Even though such
methods as modular programming, structured programming, and top·down design
can simplify program• and reduce the frequency of errors, debugging and testing
still are difficult because they are so poorly defined. The selec t ion of an adequate set
of test data is seldom a clear or scientific process. Finding errors sometimes seems like a
game of "pin the tail on the donkey ... except that the donkey is moving and the pro­
grammer must position the tail by remote control. Surely, few tasks are as frustrating as
debugging programs

This chapter will first describe the tools available to aid in debugging. It will then
discuss basic debugging procedures. de1cribe the common type1 of errors, and
present some examples of program debugging. The last section• will describe
how to select test data and test programs.

We wi ll not do much more than describe the purposes of most of the debugging tools.
There is very little standardization in this area. and not enough space to discuss all the
devices and programs that are currently available. The examples should give you some
idea of the uses. advantages. and l1mna1ions of particular hardware or software aids.

SIMPLE DEBUGGING TOOLS
The simplest debugging tools available are :

A single-step facility
A breakpoint facility
A Register Dump program (or utility)

A Memory Dump program

The single-step facility allows you to execute the program one
step at a time. Most 6502-based microcomputers have this
facility. since the circuitry is fairly simple. Of course. the only
things that you will be able to see when the computer executes a single-step are
the states of the output lines that you are monitoring. The most important lines are:

• Data Bus

• Address Bus

• Control lines

• SYNC (synchroniza t ion) and READ/WRITE

If you monitor these lines (either in hardware or in software). you will be able to
1ee the progression of addresses, instructions, and data as the program executes.
You will be able to tell what kind of operations the CPU is performing. This infor­
mation will inform you of such errors as incorrect Jump instructions. omitted or incor­
rect addresses. erroneous operation codes. or incorrect data values. However. you can­
not see the contents of registers and flags without some additiona l debugging facility
or a special sequence of instructions. Many of the operations of the program cannot be
checked in real t ime.

14·1

There are many errors that a single-step mode ca nnot help you
to find. These include timing errors and errors in the interrupt
or OMA systems. Furthermore. the single-step mode is very
slow, typically executing a program at less than one millionth

LIMITATIONS
OF SINGLE­
STEP MOOE

of the speed of the processor itself. To single-step through one second of real processor
time would take more than ten days. The single-step mode is useful only to check the
logic of short instruction sequences.

A breakpoint is a place at which the program will automat- leREAKPOINTi
ically halt or wait ao that the user can examine the current
status of the 1yatem. The program will u1ually not atart again until the operator re ­
quests a resumption of execution. Breakpoints allow you to check or pass through an
entire section of a program. Thus, to see if an initialization rout ine is cor rect you can
place a breakpoint at the end of it and run the program. You can then check memory
locations and reg is ters to see if the entire sect ion is correct. However. note that if the
sect ion 1s not cor rect. you' II still have to pin down the error. either with earl ier break·
points or with a sing le·step mode.

Breakpoints complement the single·st ep mode. You can use breakpoints either to
localize the error or to pass through sections that you know are correct. You can
then do the detailed debugging in the single·step mode. ln some cases. breakpoints
do not affect program timing; they can then be used to check mput/output and inter·
rupts

Breakpoints often use part or all of the microprocessor in terrupt BAK AS A
system. Some microprocessors have a special Software Interrupt BREAKPOINT
or Trap faci lity that can act as a breakpoint. The 6502 BRK (Force
Break) instruction can be used in this way. If you are not already using the maskable in·
terrupt {I AQ) and the non· maskab1e interrupt (NMI) in your system. you can use those
vectors as externally controlled breakpoints. Table 14· 1 gives the address locations of
the 6502 interrupt vectors. Chapter 12 describes the vectors in more detail. The break·
point routine can print register and memory contents. or just wait (by executing a con·
dition jump dependent on a switch input) until the user allows the computer to pro­
ceed. But remember that the interrupts !including BAK) use the Stack and Stack Poin ter
to store the return address and the Status Register. Figure 14-1 shows a routine in
which BAK results in an endless loop. The programmer would have to clear th is break·
point w ith a RESET or interrupt signal.

Table 14·1. 6502 Interrupt Vectors

Input Vector Addreaeea (Hexadecimal)

NMI FFFA, FFFB
RESET FFFC, FFFD
IRQ or BAK FFFE, FFFF

"= BREAK
JMP BREAK

;ADDRESS FOR BREAK ROUTINE
;WAIT IN PLACE

The interrupt service routine must force e jump to address BREAK when it finds
the Break Command flag set (this differentiates between BAK and an IRQ input) .

Figu re 14·1. A Simple Breakpoint Routine

14-2

The simplest method for inserting breakpoints is to replace the first byte of the instruc­
tion with a BRK instruction or to replace the instruction with a JMP or JSR instruction.
The BRK instruction is preferable since only a single byte must be replaced and the
breakpoint will not overrun the subsequent instructions.

Many monitors have facilities for inserting and removing INSERTING
breakpoints implemented via some type of Jump instruction. BREAKPOINTS
Such breakpoints do not affect the timing of the program until
the breakpoint is executed. However. note that this procedure will not work if part or all
of the program is in ROM or PROM. Other monitors implement breakpoints by actually
checking the address lines or the Program Counter m hardware or in software. This
method allows breakpoints on addresses in ROM or PROM. but It may affect the timing
if the address must be checked in software. A more pO'Nerful facility would allow the
user to enter an address to which the processor would transfer control. Another
possibility would be a return dependent on a switch:

·=BRKPT
BIT VIAORA
BPL BRKPT
RTI

:ADDRESS FOR BREAKPOINT ROUTINE
:WAIT FOR SWITCH TO CLOSE

Of course. other V1A data or control lines could also be used. Remember that RTl auto­
matically restores the Status reg ister and re-e nables the interrupt If the interrupt comes
from a VIA control line. the routine would also have to clear the corresponding btt in the
Interrupt Flag register.

14-3

A Register Dump utility on a microcomputer is a program that REGISTER
lists the contents of all the CPU registers. This information is DUMPS
usually not directly ob tainable. The following routine will print
the contents of all the registers on the system printer. if we assume that PRTHEX
prints the contents of the Accumulator as two hexadecimal digits. Figure 14-2 is a
flowchart of the program and Figure 14-3 shows a typical result. We assume that the
rout ine is entered with a JUMP TO SUBROUTINE instruction that stores the old Program
Counter at the top of the Stack. An interrupt or BRK instruc 1ion will s1ore both the Pro­
gram Counter and the Status register at the top of the Stack.

; PLACE ALL CPU REGISTER CONTENTS IN STACK (PC ALREADY ON STACK)

PHP
PHA
TXA
PHA
TYA
PHA
TSX
TXA
CLC
ADC
PHA

#6

: PRINT CONTENTS OF REGISTERS

;SAVE STATUS IF NECESSARY (NOT AFTER IRO)
:SAVE CONTENTS OF ACCUMULATOR
:SAVE INDEX REGISTER X

: SAVE INDEX REGISTER Y

:SAVE ORIGINAL STACK POINTER

:OFFSET BACK TO ORIGINAL VALUE

: ORDER IS S. Y. X. A. P. PCILOWI. PC(HIGHI

LDY
PRNT1 LDA

JSR
INX
DEY
BNE

#7
$0100.X
PRTHEX

PRNTl

:NUMBER OF BYTES= 7
:GET A BYTE FROM STACK
;AND PRINT IT

. RESTORE REGISTERS FROM STACK

PLA
PLA
TAY
PLA
TAX
PLA
PLP
RTS

;PULL AND DISCARD STACK POINTER
:RESTORE INDEX REGISTER Y

:RESTORE INDEX REGISTER X

RESTORE CONTENTS OF ACCUMULATOR
RESTORE STATUS REGISTER IF NECESSARY
RESTORE PC AND SP

14-4

Start

Store all registers
1n Stack.
Count = 7 (number
of bytes in registers)
Base = 010016
lndeK = Stack.

Pointer+ 1

End

Figure 14-2. Flowc hart of Register Dump Program

A6
05
08
3E
24
15
A2

IS)
IYl
IX)
IA)
IP)

IPCU
IPCH)

Figure 14-3. Results of a Typical 6502 Register Dump

14-5

A Memory Dump Is a program that lists the contents of memo- MEMORY
ry on an output device {such 111 a printer). This is a much more DUMP
efficient way to examine data arrays or ent ire programs than just
looking at single locations. However. very la rge memory dumps are not usefu l (except
to supply scrap paper) because of the sheer mass of information tha t they produce
They may also take a long time to execute on a slow printer. Small dumps may,
however. provide the programmer with a reasonable amount of information that
can be examined a1 a unit. Relation1hip1 such as regular repetitions of data pat­
terns or offsets of entire arrays may become obvious.

A general dump is often rather diff icul t to write. The programmer should be carefu l of
the following situa t ions:

1) The size of the memory area exceeds 256 bytes, so that an 8-bi t counter wi l l not
suffice

2) The ending location is an address smaller than the starting location. This can be
treated as an error. or simply cause no output since the user would seldom want to
print the entire memory contents in an unusual order

Since the speed of the Memory Dump depends on the speed of the output device, the
efficiency of the rou t ine seldom matters. The following program will ignore cases
where the starting address is larger than the ending address, and will handle
blocks of any length. We assume that the starting address is in memory addresses
START and START+1 and the ending address is in memory addresses LAST and
LAST+1 . We have assumed that addresses START and START+1 are on page zero. so
tht their contents can be used indi rectly

: PRINT CONTENTS OF SPECIFIED MEMORY LOCATIONS

DUMP LOY
DBYTE LOA

CMP
LOA
SBC
BCC
LOA
JSR
INC
BNE
INC
JMP

DONE ATS

'IFO
LAST
START
LAST+l
START+l
DONE
ISTARTl.Y
PRTHEX
START
DBYTE
START+l
DBYTE

:KEEP OFFSET AT ZERO ALWAYS
:ARE WE BEYOND FINAL ADDRESS>

:YES. DUMP COMPLETED
:NO. GET CONTENTS OF NEXT LOCATION
:PRINT CONTENTS AS 2 HEX DIGITS
:INCREMENT MEMORY POINTER

There is no direct way to perform the 16-bit comparison and increment that this routine
requires.

Figure 14-4 shows the output from a dump of memory locations 1000 to 101F.

23 1F 60 54 37 28 3E 00
6E 42 38 17 59 44 98 37
47 36 23 81 E1 FF FF 5A
34 ED BC AF FE FF 27 02

Figure 14-4. Results of a Typical Memory Dump

14-6

This routine correctly handles the case in which the starting and endmg locations are
the same (try itH. You will have to interpret the results carefully if the dump area in·
eludes the Stack. since the dump subroutine itself uses the Stack. PRTHEX may also
change memory and Stack locations.

In a memory dump. the data can be displayed in a number of different ways. Common
forms are ASCII characters or pairs of hexadecimal dig its for 8-bit values and four hex·
adec1mal digits for 16-bit values. The format should be chosen based on the intended
use of the dump. It is almost always easier to interpret an ob1ect code dump if it is dis­
played in hexadecimal form rather than ASCII form.

A common and useful dump format is illustrated here:

1000 54 68 65 20 64 75 60 70 The dump

Each line consis ts of three parts. The line starts with the hexadecimal address of the
first byte displayed on the line. Following the address are eight or sixteen bytes dis­
played in hexadecimal form. Last is the ASCII representa tion of the same eight or six­
teen bytes. Try rewriting the memory dump program so that it will print the address and
the ASCII characters as well as the hexadecimal form of the memory contents

14-7

MORE ADVANCED DEBUGGING TOOLS
The more advanced debugging tools that are most widely used are :

· Simulator programs to check program logic

• Logic analyzers to check signals and timing

Many variations of both these tools exist. and we shall discuss only tne standard
features.

The simulator is the computerized equ ivalen t of the pencil-and- SOFTWARE
paper computer. 1t is a computer program that goes through the SIMULATOR
operating cycle of another computer, keeping track of the con-
tents of all the registers. flags. and memory locations. We could. of course. do this
by hand. but it would require a large amount of effort and close attention to the exact
effects of each instruction. The simulator program never gets tired or confused, forgets
an instruction or register, or runs out of paper.

Most simulators are large FORTRAN programs. They can be purchased or used on the
time-sharing services. The 6502 simulator is available in several versions from different
sources.

Typical simulator features are:

1) A breakpoint facility. Usually. breakpoints can be set after a particula r number of
cycles have been executed. when a memory location or one of a set of memory
locations is referenced. when the contents of a location or one of a set of locations
are altered. or on other conditions

2) Register and memory dump facilities that can display the values of memory loca­
tions, reg isters. and 1/ 0 ports.

3) A trace facility that will print the contents of particular registers or memory loca­
tions whenever the program changes or uses rhem

41 A load facility that allows you to set values ini tially or change them during the
simulation.

Some simulators can also simulate input/output. interrupts. and even OMA

The simulator has many advantages:

1) It can provide a complete description of the status of the computer. since the
simulator program is not restric ted by pin limitations or other characteristics of the
underlying circuitry

2) It can provide breakpoints. dumps. traces. and other fac i lities, without using any of
the processor's memory space or control system. These facilities will therefore not
interfere with the user program

3) Programs, starting points, and other condi tions are easy to change

4) All the facilities of a large computer. including peripherals and software. are availa-
ble to the microprocessor designer.

On the other hand, the simulator is limited by its software base and its separation
from the real microcomputer. The major limitations are:

1) The simulator cannot help with timing problems. since it operates far more slowly
than real time and does not model actual hardware or interfaces

2) The simulator cannot fully model the input/output section

3) The simulator is usually quite slow. Reproducing one second of actual processor
time may require hours of computer time. Using the simulator can be quite expen­
sive.

14-8

The simulator represents the software side of debugging; it has the typical advan·
tages and limitations of a wholly software·based approach. The simulator can pro­
vide insight into program logic and other software problems, but cannot help with
timing, 1/0 , and other hardware problems.

The logic or microprocessor analyzer is the hardware solution LOGIC
to debugging. Basically. the analyzer is the parallel digital var- ANALYZER
sion of the standard oscilloscope. T he analyzer displays informa-
tion 1n binary. hexadecimal or mnemonic form on a CRT. and has a variety of triggering
events. thresholds. and inputs. Most analyzers also have a memory so that they can d is­
play the past contents of the busses.

The standard procedure is to set a triggering event. such as the occurrence of a pa rticu­
lar address on the Address Bus or instruction on the Data Bus. For example. one might
trigger the analyzer if the microcomputer tries to store data in a particular address or ex·
ecu te an input or output instruction. One may then look at the sequence of events tha t
preceded the breakpoint. Common problems you can find in this way incklde short
noise spikes (or glitches) , incorrect signal sequences. overlapping wave· forms,
and other timing or signaling errors. Of course. a software simulator could not be
used to diagnose those errors any more than a logic analyzer coukt conveniently
be used to find errors in program logic.

Logic analyzers vary in many respects. Some of these are:

1) Number of input lines. At least 24 are necessary to monitor
an 8-bit Data Bus and a 16-bit Address Bus Still more are
necessary for control signals. clocks. and other important in­
puts.

IMPORTANT
FEATURES
OF LOGIC
ANALYZERS

2) Amount of memory Each previous state that is saved will occupy several by tes

3) Maximum frequency. It must be several MHz to handle the fastest processors.

4) Minimum signal width (important for catching glitches).

5) Type and number of tr iggering events al lowed. Importa nt features are pre- and
post-trigger delays: these allow the user to display events occurring before or
after the trigger event

6) Methods of connecting to the microcomputer. This may require a rather complex
interface.

7) Number of display channels.

8) Binary. hexadecimal or mnemonic displays

9) Display forma ts

10) Signal hold time requirements.

11) Probe capacitance.

12) Single or dual thresholds

All of these factors are important in comparing different logic and microprocessor
analyzers. since these instruments are new and unstandardized. A tremendous variety
of products is already available and th is variety will become even grea ter in the fu ture

Logic analyzers. of course. are necessary only for systems with complex timing.
Simple applications with low-speed peripherals have few hardware problems that
a designer cannot handle with a standard oscilloscope.

14-9

DEBUGGING WITH CHECKLISTS
The designer cannot possibly check an entire program by hand: however. there are
certain trouble spots that the designer can easily check. You can use systematic hand
checking to find a large number of errors without resorting to any debugging tools.

The question is where to place the effort. The answer is on
points that can be handled with either a yes·no anwer or with
a simple arithmetic calculation. Do not try to do complex
arithmetic. follow all the flags, or try every conceivable case. Limit

WHAT TO
INCLUOE IN
CHECKLIST

you r hand checking to matters that can be settled easily. Leave the complex problems
to be solved with the aid of debugging tools. But proceed systematically: build your
checklist. and make sure that the program performs the basic operations correctly

The first step Is to compare the flowchart or other program documentation with
the actual code. Make sure that everything that appears in one also appears in the
other. A simple checklist will do the job. It is easy to completely omit a branch or a pro·
cessing section

Next concentrate on the program loops. Make sure that all registers and memory
locations used inside the loops are 1n111al1zed correctly This 1s a common source of er·
rors: once again, a simple checklist will suffice

Now look at each conditional branch. Select a sample case that should produce a
branch and one that should not try both of them. Is the branch correct or reversed? If
the branch involves checking whether a number is above or below a threshold, try the
equality case Does the correct branch occur? Make sure that you r choice is consistent
with the problem definition

Look at the loops as a whole. Try the first and last iterations by hand. these are often
troublesome special cases What happens if the number of iterations 1s zero: i.e .. there
is no data or the table has no elements? Does the program fall through correctlyi Pro·
grams of ten will perform one iteration unnecessarily, or. even worse. decrement coun·
ters past zero before checking them

Check off everything down to the last statement. Don't assume (hopefully} that
the first error is the only one in the program. Hand checking will allow you to get
the maximum benefit from debugging runs, since you will get rid of many simple
errors ahead of time.

A quick review of the hand checking questions:

1) Is every element of the program design in the program (and
vice versa for documentation purposes)?

HAND
CHECKING
QUESTIONS

2) Are all registers and memory locations used inside loops initialized before they
are used?

3) Are all conditional branches logically correct?

4) Do all loops start and end properlyi

51 A re equality cases handled correctly?

6) Are trivial cases handled correctly?

14-10

LOOKING FOR ERRORS
Of course, despite all these precautions (or If you skip over COMMON
some of them). programs often still don't work. The designer ERRORS
is left with the problem of how to find the mistakes. The hand
checklist provides a starting place if you didn' t use it earlier; some of the errors
that you may not have eliminated are :

1) Failure to initialize variables such as counters, pointers, sums, indexes, etc.
Do not assume that the registers, memory locations, or flags necessarily con tai n
zero before they are used.

2) Inverting the logic of a conditional jump, such as using Branch on Carry Set
when you mean Branch on Carry Clear Be particularly careful of the fact that the
6502 (unlike most other microprocessors) uses the Carry as an inverted borrow
after a subtraction or comparison. So the effects of a com parison or subtraction are
as follows (A is the contents of the Accumulator. M the contents of the memory
location) :

Zero flag = 1 if A = M
Zero f lag= 0 if A i"M
Carry flag = 1 if A ~ M
Carry flag = 0 if A < M

Note particularly that Carry= 1 if A= M lthe equality easel So Branch on Carry
Set means iump 1f A > Mand Branch on Carry Clear means iump 1f A < M If you
want the equality case on the other side. try either reversing the roles of A and Mor
adding 1 to M For example. 1f you want a 1ump 11 A ~ 10 use

CMP #10
BCS ADDR

IL on the other hand. you want a 1ump if A > 10 use

CMP #11
BCS ADDR

3) Updating counters, pointers. and indexes in the wrong place or not at all. Be
sure that there are no paths through a loop that either skip or repeat the updating
1ns1ruct1ons.

4) Failure to fall through correctly in trivial cases such as no data in a buffer. no
tests to be run. or no entries in a transaction Do not assume that such cases will
never occur unless the program specifically eliminates them.

Other problems to watch for are:

5) Reversing the order of operands. Remember that instructions like TAX move the
contents of A to X. not the other way around.

6) Changing condition flags before you use them.

Almost all instructions except stores and branches affect the Sign and Zero flags
Note especially that PLP and RTI may change all the flags

7) Confusing the Index registers and the indexed memory location.

Note that INX and INY increment the Index registers while INC AOOR .X and other
similar ins tru ctions increment the contents of an indexed memory location.

8) Confusing data _and addresses.
Remember that LDA #$40 loads A with the number 4015. while LOA $40 loads A
with the contents of memory location 004015. Be particularly care ful when using
the pre-indexed and post-indexed addressing modes in which a pair of addresses
on page zero contains the actual or base add ress of the data.

14-11

9) Accidentally reinit ializing a register or memory location.

Make sure that no Jump instructions transfer cont rol back to initialization state­
ments.

10) Confusing numbers and characters.

Remember that the ASCI I and EBCDIC representations of digits diHer from the
digits themselves. For example, ASCII 7 1s 3715. whereas hex 0715 is the ASCII
BELL character

11) Confusing binary and decimal numbers.

Remember that the BCD representation of a number differs from its binary repre­
sentation. For example. BCD 36. when treated as a simple hexadecimal constant
is equivalent to 54 decimal (try it}.

12) Reversing the order in subtraction. Be careful also with other operations (like
division) that do not commute. Remember that SBC. CMP. CPX. and CPY all
subtract the contents of the addressed memory loca t ion from the contents of the
Accumulator or Index register. -

13) Ignoring the effects of subroutines and macros.

Don't assume that calls to subroutines or invocations of macros will not change
flags. registers. or memory locations. Be sure of exactly what effects subroutines
or macros have. Note that ti is very important to document these effects so that
the user can determine them without going through the entire listing

14) Using the Shift instructions improperly.

Remember the precise effects of ASL. LSR. AOL. and ROA. They are 1-bit shifts
that affect the Carry. Sign. and Zero flags. ASL and LSR both c!ear the empty bit:
ROA and AOL are circular shifts that include the Carry in the circular register
Remember that the Carry. S1gn. and Zero flags are affected even if these instruc­
tions are applied to the data in a memory location.

15) Counting the length of an array incorrectly.

Remember that there are five (not four) memory locations included in addresses
0300 through 0304, inclusive.

16) Confusing 8- and 16-bit quantities.

Addresses are actually 16 bits long. The only 6502 register that can hold a com­
plete address is the Program Counter

17) Forgetting that addresses or 16-bit data occupy two memory locations.

Absolute direct or absolute indexed addresses occupy two memory locations. as
do the addresses that are stored on page zero for use in post-indexing or pre-in­
dexing. The Program Counter also occupies two memory locat ions when it is
stored in the Stack. Note that 1n the pre-indexed and post-indexed addressing
modes. two memory locations are used even though only one is specified. The ad­
dress immediately following the one specified is also needed to hold the indirect
address

JMP indirect will not work properly 1f the indirect address crosses a page
boundary. See the discussion of indirect addressing in Chapter 3 for a description
of this peculiarity

18) Confusing the Stack and the Stack Pointer.

The instruction TXS affects the Stack Pointer. not the contents of the Stack. PHA.
PLA. PHP. and PLP transfer data 10 or from the Stack. Remember that JSR. RTS.
RTL and BRK also use the Stack. Remember also that you must ini tialize the Stack
Pointer before calling any subroutines or allowing any interrupts. The 6502 Stack
1s always on page one; only the eight least significant bits of the Stack address are
actually in the Stack Pointer.

14-12

19) Changing a register or memory location before using it.

Remember that LDA. STA. LDX. STX. LDY, STY. TAX. TXA. etc. all change the
contents of the destination (but not the source).

201 Forgetting to transfer control pa1t sections of the program that should not be
executed in particular situation1.

Remember that the computer wi l l proceed sequentially th rough the program
memory unless specifically ordered not to do so

21 I Forgetting that the Carry Is always Included In addition and subtraction
operations.
The 6502 only has Add-with-Carry and Subtract-with Borrow instructions. unlike
many other processors which have regular Add and Subtract instructions that do
not include the Carry. The Carry must be explic itly cleared before an addition and
set before a subtraction if its value 1s not to affect the operation. Note. however.
the comparison instructions (CMP. CPX. CPY) do not include the Carry.

22) Inverting the significance of the Carry in subtraction.
1n subtraction and comparison instructions. the resulting Carry 1s an inverted bor­
row - that 1s. the Carry es set if no borrow is required. Accordingly. the subtract­
with-Borrow instruction subtracts the inverted Carry (1 - Carry) along with the
contents of the specified memory location

23) Using the decimal mode improperly.
When the Decimal Mode flag 1s set. all anthmet•c results are decimal thus the
flag must be explicitly cleared after the decimal operations are completed: other­
wise it will change the resu lts of operations which were not intended to be
decimal. Note that all paths that include a Set Decimal Mode instruction must also
include a Clear Decimal Mode instruction: be particularly careful of fall-through
cases and error exits.

24) Using the Bit Test instruction Improperly.
Note that the Bit Test instruction sets the sign and overt low flags accord ing to bits
7 and 6 of the tested memory location. without regard to the contents of the Ac­
cumulator. This instruction is convenient fo r testing status bits in 6520 PIAs and
for other bit checking operations. but it requires careful documentation since its
results are often unclear to a reader

DEBUGGING
INTERRUPT­
DRIVEN
PROGRAMS

Interrupt-driven programs are particularly difficult to debug,
since errors may occur randomly. If. for example. the program
enables the interrupts a few instructions too early. an error will oc·
cur only if an interrupt is received while the program is executing
those few instructions. In fact you can usually assume that ran­
domly occurring errors ere cau1ed by the interrupt system.2 Typical errors in inter­
rupt-driven programs are :

11 Forgetting to re-enable interrupts after accepting one and servicing it.

The processor disables the interrupt system automatically on RESET or on accept­
ing an interrupt. Be sure that no possible sequences fa i l to re-enab le the interrupt
system. Remember tha t. in addition to re-enabling interrupts. the program often
has to perform some action to cause the interrupting signal to be reset. 1f this is not
done. it will appear as if the interrupting device is constantly requesting service.

2) Using the Accumulator before saving it; i.e .. PHA must precede any operations
that change the Accumulator.

3) Forgetting to save and restore the Accumulator.

14-13

4) Restoring registers in the wrong order.

If the order in which they were saved was:

PHA :SAVE ACCUMULATOR CONTENTS
TXA :SAVE INDEX REGISTER X
PHA
TYA :SAVE INDEX REGISTER Y
PHA

the order of restoration should be :

PLA :RESTORE INDEX REGISTER Y
TAY
PLA :RESTORE INDEX REGISTER X
TAX
PLA :RESTORE ACCUMULATOR CONTENTS

5) Enabling interrupts before establishing all the necessary conditions such as
priority. flags. PIA and VIA configurations. pointers. counters. etc.

A checklist can aid here

6) Leaving results in registers and destroying them in the restoration process.

As noted earlier. registers should not be used to pass in format ion between the pro­
gram and the interrupt service routines.

7i Forgetting that the interrupts (including BRK) leave the old Program Counter
and Status Register in the Stack whether you use them or not.

You may have to re-in itialize or update the Stack Pointer.

8) Ignoring the po11ibility that the service routine may be entered with the
Decimal Mode flag set.

You may have to include a CLO instruction in the service routine if this possibil ity
exists. Note that RTI wil l automatically restore the original state of the flag at the
end of the service routine.

9) Not disabling the interrupt during multi-word t ransfers or instruction se­
quences.

Watch particularly for situations where the interrupt service routine may use the
same memory locations that the program is usrng

Hopefully, these fists will at least give you some ideas as to where to look for er­
rors. Unfortunately, even the most systematic debugging can still leave some
truly puzzling problems, particularly when interrupts are involved.3

14-14

Start

Result ,. 0

'""
Figure 14-5. Flowchart of Decimal to Seven-Segment Conversion

Debugging Example 1 : Decimal to Seven-Segment Conversion

The program converts a decimal number in memory location
0040 to a seven-segment code in memory location 0041 . It
blanks the display if memory location 0040 does not contain a
decima l number.

Initial Program (from flowchart in Figu re 14-5):

#$40 :GET DATA

DEBUGGING
A CODE
CONVERSION
PROGRAM

LDX
CPX
BCC
LOA
STX
BRK
.BYTE
.BYTE

#9
DONE

:IS DATA GREATER THAN 9,
:YES. DONE

DONE
SSEG

(SSEG.XI
$41

$3F.$06.$5B.$4F.$66
$60.$70.$07 .$7D.$6F

:GET ELEMENT FROM TABLE
:SAVE SEVEN-SEGMENT CODE

Using the checklist procedure. we were able to find the fo llowing errors:

1) The block that cleared Result had been omitted.

2) The Conditional Branch was incorrect.

For example, if the data is zero. CPX #9 clears the Carry, since 0 < 9 and a borrow is
required. However. the Jump utilizing the inverted condit ion (i.e .. BCS DONE) still did
not produce the correc t result. Now the program handles the equality case incorrectly
si nce. if the data is 9, CPX #9 sets the Carry and causes a jump. The correct version is:

CPX
BCS

#10
DONE

:IS DATA A DECIMAL DIGIT?
:NO. KEEP ERROR CODE

14-15

Second Program:

DONE
SSEG

LDA
LOX
CPX
BCS
LDA
STX

BAK
.BYTE
.BYTE

#0
#$40
#10
DONE
(SSEG.X)
$41

:GET BLANK CODE FOR DISPLAY
:GET DATA
:IS DATA A DECIMAL DIGIT?
:NO. KEEP ERROR CODE
:GET ELEMENT FROM TABLE
:SAVE SEVEN-SEGMENT CODE OR ERROR

CODE

$3F.$06.$5B.$4F.$66
$60.$70.$07 .$7D. $6F

This version was hand checked successfully.

Since the program was simple. the next stage was to single-step through it wi th real
data. The data selected for the trials was:

0 (the smallest number)
9 (the largest number)

10 (a boundary case)
6B15 la randomly selected easel

The first trial was with zero in location 0040. The f.rst error was obvious - LOX#$40
loaded the number 40 into X. not the contents of memory location 0040. The correct
1nstruct1on was LOX $40 (direct rather than immediate addressing). After this
correction was made. the program moved along with no apparent errors until it tried to
execute the LOA (SSEG.X) instruction

The contents of the Address Bus during the data fetch was 063F. an address that was
not even being used. Clearly. something had gone wrong.

It was now time for some more hand-checking. Since we knew that BCS DONE was cor­
rect. the error was clear ly in the LOA instruction. A hand check showed

LOA (SSEG.X) adds the contents of Index Register X to the page-zero address SSEG and
uses the sum to fetch the address that contains the actual data. In the present case.
since Register X con ta ins zero. the indirect address is in memory locations SSEG and
SSEG+ 1 - that is. it is 063F. The instruct ion is therefore getting an address from a
table that consists of data. The correct instru ction is LOA SSEG.X - we want to get
data from the table. not the address of the data

Even with this correction, the program still produced a result of zero. rather than the
expected 3F. The error was obviously in the last instruction - it should be STA $41 .
not STX $41 . Note the importance of following through to the very end of the program.
rather than quitting after what might seem to be the last error.

The revised program now was ·

Third Program:

DONE
SSEG

LOA
LDX
CPX
BCS
LDA
STA

BRK
.BYTE
.BYTE

#0
$40
#10
DONE
SSEG.X
$41

$3F.$06.$5B.$4F.$66
$6D.$7D.$07.$7D.$6F

14-16

:GET ERROR CODE FOR DISPLAY
:GET DATA
:IS DATA A DECIMAL DIGIT'
:NO. KEEP ERROR .CODE
:GET ELEMENT FROM TABLE
:SAVE SEVEN-SEGMENT CODE OR ER­

ROR CODE

The results now were:

Data Resu lt

00 3F
09 6F
QA 6F
6B 6F

The program was not clearing the result if the data was invalid. i.e .. greater than 9. The
program never stored the blank code since the destination address DONE was
misplaced- it should have been attached to the STA $41 instruction. After these cor­
rections were made. the program produced the correct results for all the test cases

Since the program was simple. it could be tested for all the decimal digits The results
were :

Data Result

0 3F
1 06
2 5B
3 4F
4 66
5 60
6 70
7 07
B 70
9 6F

Note that the result for number 8 1s wrong - it should be 7F. Since everything else is
correct. the error is almost su re ly in the table In fact. entry 8 in the table had been
miscopied.

The final program is:

; DECIMAL TO SEVEN-SEGMENT CONVERSION

LDA #0 ;GET BLANK CODE FOR DISPLAY
LDX $40 ;GET DATA
CPX #10 ;IS DATA A DECIMAL DIGIT'
BCS DONE ;NO. KEEP ERROR CODE
LDA SSEG.X ;GET SEVEN-SEGMENT CODE FROM

TABLE
DONE STA $41 ;SAVE SEVEN-SEGMENT CODE OR

ERROR CODE
BRK

SSEG .BYTE $3F.$06.$5B.$4F.$66
.BYTE $60. $7D. $07.$7F.$6F

14-17

The errors encountered in this program are typica l of the ones that 6502 assembly
language programmers should anticipate. They include :

1) Failing to initialize registers or memory locations.
2) Invert ing the logic on condi tional branches.
3) Branching incorrectly in the case in which the operands are equal.
4) Confusi ng immediate and direct addressing. i.e .. data and addresses.
5) Failing to keep track of the current contents of regis ters.
6) Branchi ng to the wrong place so that one path through the program is incorrect.
7) Copying lists of numbers (or instructions) incorrectly.
8) Using the indirect addressing modes incorrectly.

Note that straightforward instructions (like ANO. DEC. INC) and simple addressing
modes seldom cause any problems. Among the particularly annoyi ng errors that are
frequent in 6502 assembly la nguage programming are using the Carry improperly after
subtraction or comparison (the Carry is set if no borrow is required) and forgetting to
clear the Decimal Mode flag

14-18

Debugging Example 2: Sort into Decreasing Order
The program sorts an array of unsigned 8-bit binary numbers into
decreasing order. The array begins in memory location 0041 and
its length is in memory location 0040.

Initial Program (from flowchart in Figure 14-6)·

DEBUGGING
A SORT
PROGRAM

LDY #0 :CLEAR INTERCHANGE FLAG BEFORE PASS
LDX $40 :GET LENGTH OF ARRAY

PASS LDA $41 .X :IS NEXT PAIR OF ELEMENTS IN ORDER'
CMP $42.X
sec COUNT :YES. NO INTERCHANGE NECESSARY
STA $42.X :NO. INTERCHANGE PAIR

COUNT DEX :CHECK FOR COMPLETED PASS
BNE PASS
DEY :WERE ALL ELEMENTS IN ORDER>
BNE PASS :NO. MAKE A NOTHER PA SS
BAK

The hand check sh ows that atl the blocks in the flowchart have been implemented 1n
the program and that all the reg isters have been initial ized. The cond1t1onal branches
must be exam ined carefully. The instruction BCC COUNT must force a branch 11 the
value in A is greater than or equal to the next element m the array Remember that w e
are sorting elements into decreasing order and we are moving backward throu gh the
array in the usual 6502 manner. The equali ty case mus1 not resul t man interchange.
since such an interchange w ould create an end less loop. w 11 h the two equal elements
always being swapped

Try an example:
1004 11 =30
10042) = 37

CMP $42.X results in the calculat ion of 30 - 37. The Carry is cleared since a borrow is
required. This example should result in an interchange but does not

BCS COUNT wil l provide the proper branch in this case. If the two numbers are equal.
the comparison wilt set the Carry and BCS COUNT is again correct

How about BNE PASS at the end of the program? If there are any elements out of order.
the interchange flag will be one, so the branch is wrong. It shou ld be BEO PASS.

Now let's hand check the first iteration of the program. The init ializat ion results in the
following values:

X = LENGTH 121
y = 0

The effects of the loop instruct ions are·

LDA $41 . x :A= 100431
CMP $42. x : 100431-100441
BCS COUNT
STA $42. x : 100441 = 100431

COUNT DEX :X = LENGTH -1 111
BNE PASS

The indexed addresses are clearly incorrect since they are both beyond the end of the
array. We will change them by subtracting two from the addresses included 1n the
indexed instruct ions. This offset is a common problem in 6502 assembly language
programs, because arrays and tables have a zeroth element. Thus an array with five
elements occupies memory addresses BASE through BASE+4. not BASE+1 through
BASE+5. When using indexed addressing on the 6502 microprocessor. be careful that
your addresses are not in error at one end of the array or the other.

14-1 9

EM

Figure 14-6. Flowcha rt of Sort Program

14-20

The initialization now results 1n the values :

X = LENGTH 121
y = 0

The effects of the loop instructions are:

LOA $3F.X :A= 100411
CMP $40.X : 100411-100421
BCS COUNT
STA $40. x : 100421 = 100411

COUNT DEX :X =LENGTH - 1 111
BNE PASS

Note that we have alre;idy checked the Conditional Branch instructions. Clearly the
logic is incorrect. If the first two elements are out of order. the results after the fi rst
iteration should be:

Instead. they are:

10041)
10042)

x

1004 1)
10042)

x

OLD 10042)
OLD 100411
LENGTH - 1

UNCHANGED
OLD 1004 1)
LENGTH - 1

The interchange requi res a bit more care and the use of the Stack:

PHA
LOA $40.X
STA $3F.X
PLA
STA $40.X

An interchange always requires a temporary storage place 1n which one number can be
saved while the other one is being transferred.

All these changes require a new copy of the program. t e

LOY #0 :CLEAR INTERCHANGE FLAG BEFORE PASS

LOX $40 :GET LENGTH OF ARRAY

PASS LOA $3F.X : IS NEXT PAIR OF ELEMENTS IN ORDER'
CMP $40.X
BCS COUNT :YES. NO INTERCHANGE NECESSARY
PHA :NO. INTERCHANGE ELEMENTS USING THE STACK

LOA $40.X
STA $3F.X
PLA
STA $40.X

COUNT DEX :CHECK FOR COMPLETED PASS
BNE PASS
DEY :WERE ALL ELEMENTS IN ORDER?

BEO PASS : NO. MAKE ANOTHER PASS
BAK

How about the last iteration? Le(s say that there are three elements :

10040)
10041)
100421
10043)

03 (number of elemen ts)
02
04
06

14-21

cdch time through. the program decrements X by 1. So. du ring the thi rd iteration.
(X) = 1. The effects of the loop instructions are:

LOA
CMP

$3F.X
$40.X

; IAI = 100401
; 100401 - 10041 I

This is incorrect: the program has tried to move beyond the starting address of the data.
The previous iteration shou ld. in fact have been the last one. si nce the number of pairs
is one less than the number of elements. The fi rst element in the array has no pre·
decessor to which it can be compa red. The correction is to reduce the number of itera·
tions by one; this can be accompl ished by placing DEX after LOX $40. We must also
add 1 to all the addresses in the indexed instructions.

How about the t rivial cases 7 What happens If the array contains no elements at
all. or only one element7 The answer la tha t the program does not work correctly
and may change a whole block of data improperly and w ithout any warning (try
i tll . The corrections t o handle the triv ial cases are simple but essential; the cost
is only a few byt es of memory to avoid problems that could be very difficult to
solve later.

The new program is:

LOY #0 ;CLEAR INTERCHANGE FLAG BEFORE PASS
LOX $40 ;G ET LENGTH OF ARRAY
CPX #2 ;DOES ARRAY HAVE 2 OR MORE ELEMENTS?
BCC DONE ; NO. NO ACTION NECESSARY
DEX ;NUMBER OF PAIRS= LENGTH - 1

PASS LOA $40.X ;IS NEXT PAIR OF ELEMENTS IN ORDER'
CMP $41.X
BCS COUNT ;YES. NO INTERCHANGE NECESSARY
PHA ;NO. INTERCHANGE ELEMENTS USING THE STACK
LOA $41 ,X
STA $40.X
PLA
STA $41 ,X

COUNT DEX ;CHECK FOR COMPLETED PASS
BNE PASS
DEY ;WERE ALL ELEMENTS IN ORDER?
BEO PASS ;NO. MAKE ANOTHER PASS

DONE BRK

Now it"s t ime to check the program on the computer or on the simulator. A simple set of
data rs :

(0040)
(0041)
100421

02
00
01

length of array
array to be sorted

This set consists of two elements in the wrong order. The prog ram should require two
passes. The first pass should reorder the elements. producing

(00411 01
10042) = 00

y = 01

reordered array

Interchange flag

The second pass should find the elements in the proper (descending) order and pro·
duce·

y = 00 Interchange flag

14-22

This program is rather long for single stepping. so we will use breakpoints instead. Each
breakpoint will halt the computer and print the contents of all the registers. The break­
points will come:

1) After DEX to check the initialization

21 After CMP $41 .X to check the comparison.

3) After STA $41 .X to check the interchange.
4) After DEY to check the completion of a pass through the array

The contents of the registers after the first breakpoint were:

Register
x
y

P (status)

Contents
_ 0_1_

00

25 (35 1f you use BRK to create
the breakpoint since the Break
Command flag will be set)

These are all correct. so the program 1s performing the initiahzatton correctly m this
case

The results at the second breakpoint were :

These results are also correct

Register
A
x
y
P !status)

The results at the third breakpoint were:

Checking memory showed :

Register

A
x
y

P (status)

(0041) 01
(00421 00

The results at the fourth breakpoint were :

Register

A
x
y

P (status)

Contents

00
01
00
A4 IB4 11 you use BAK)

Contents

00
01
00
26 (36 of you use BAK)

Contents

---00-
00
FF
A4 (B4 ii you use BAK)

The Zero flag (bit 1 of the Status Register) is incorrect. md1cating that no interchange
occurred. Register Y does not contain the correct value- I! should have been set to
one after the interchange. In fact. a look at the prog ram shows that no instruction ever
changes Index Register Y to mark the interchange. The correction is to place the in­
struction LOY #1 alter BCS COUNT.

14-23

Now the procedure is to load Index Register Y with the correc t value (zero). se t the Zero
flag to 1. and continue. The second iteration of the second breakpoint gives:

Register ~

A 02
x 00
y 00
P (status) 25 (35 if you use BAK)

Clearly the program has proceeded incorrectly wi thout reinitia lizing the registers (par·
ticularly Index Register X) . The Conditional Branch that depends on the interchange
should transfer con trol back to a point that reinit ializes X: note that we do not need to
reinitial ize Y (i t will be zero anyway - why?) nor do we need to check the leng th of the
array again.

The final version of the program is ·

SORT LOY #0 :CLEAR INTERCHANGE FLAG TO STA RT
LDX $40 : DOES ARRAY HAVE 2 OR MORE ELEMENTS?
CPX #2
BCC DONE :ND. NO ACTION NECESSARY

ITER LOX $40 :YES. NUMBER OF PAIRS= LENGTH - 1
DEX

PASS LDA $40.X :IS NEXT PAIR OF ELEMENTS IN ORDER?
CMP $41.X
BCS COUNT :YES. NO INTERCHANGE NECESSARY
LDY #1 :NO. SET INTERCHANGE FLAG
PHA :INTERCHANGE ELEMENTS USING THE STACK
LOA $41 .X
STA $40.X
PLA
STA $41.X

COUNT DEX :CHECK FOR COMPLETED PASS
BNE PASS
DEY :WERE ALL ELEMENTS IN ORDER?
BED ITER :NO. MAKE ANOTHER PASS

DONE BAK

Ctearly we cannot check all the possible input values for this program. Two other simple
sets of data for debugging purposes are·

1) Two equal elements

(0040) 02
(0041) 00
(00421 00

2) Two elements already in decreasing order

(0040) 02
(0041) 01
(0042) 00

14-24

INTRODUCTION TO TESTING
Program testing is closely related to program debugging.
Surely some of the test cases will be the same as the test
data used for debugging, such as:

· Trivial cases such as no data or a single element
· Spacial cases that the program singles out for some reason

USING TEST
CASES FROM
DEBUGGING

· Simple examples that exercise particular parts of the program

In the case of the decimal to seven-segment conversion program, these cases
cover all the possible situations. The test data consists of :

• The numbers 0 through 9

• The boundary case 10

• The random case 68

The program does not distinguish any other cases Here debugging and testing are
virtually the same.

In the sorting program. the problem is more difficult. The number of elements could
range from 0 to 255. and each of the elements could lie anywhere in that range. The
number of possible cases is therefore enormous. Furthermore. the program is
moderately complex. How do we select test data that will give us a degree of confi­
dence in that program? Here testing requires some design decisions. The testing
problem is part icularly difficult if the program depends on sequences of real-time data.
How do we select the data. generate 11. and present 11 to the microcomputer in a
realistic manner?

Most of the tools mentioned earlier for debugging are helpful
in testing also. Logic or microprocessor analyzers can help
check the hardware: simulators can help check the software.
Other tools can also be of assistance. e.g. ,

1) 1/0 simulations that can simulate a variety of devices from a single input and a
single output device

2) In-circuit emulators that allow you to attach the prototype to a development
system or control panel and test it.

3) ROM simulators that have the flexibility of a RAM but the timing of the par ticular
ROM or PROM that will be used in the fina l system.

4) Real-time operating systems that can provide inputs or interrupts at specific
times (or perhaps randomly) and mark the occurrence of outputs. Real-time br~ak­
points and traces may also be included

5) Emulations {often on m1croprogrammable computers) that may provide real-time
execution speed and programmable 1/0. 4

6) Interfaces that allow another computer to control the 1/0 system and test the
microcomputer program

7) Testing programs that check each branch in a program for log ical errors.

8) Test generation programs that can generate random data or other distributions

Formal testing theorems exist. but they are usually applicable only to very short
programs.

You must be careful that the test equipment does not invalidate the test by
modifying the environment. Often, test equipment may buffer, latch, or condition
input and output signals. The actual system may not do this, and may therefore
behave quite differently.

14-25

Furthermore, extra software in the test environment may use some of the memo­
ry space or part of the interrupt system. It may also provide error recovery and
other features that will not exist in the final system. A software test bed must be
just as realistic as a hardware test bed. since software failure can be just as critical as
hardware failure.

Emulations and simulations are, of course, never precise. They are usually ade­
quate for checking logic, but can seldom help test the interface or the timing. On
the other hand, real-time test equipment does not provide much of an overview of
the program logic and may affect the interfacing and timing.

14-26

SELECTING TEST DATA
Very few real programs can be checked for all cases. The designer must choose a
sample set that in some sense describes the entire range of possibilities.

Testing should. of cou rse. be part of the total development pro- STRUCTURED
cedu re. Top-down des ign and structured programmrng provide for TESTING
testing as part of the design. This is called structured testing.5
Each module within a structured program should be checked sepa rately Testing, as
well as design, should be modular, structured, and top-down.

But that leaves the question of selecting test data for a
module. The designer must first list all special cases that a
program recognizes. These may include·

T riv1al cases

• Equality cases

• Special situations

The test data should include all of these

You must next identify each class of data that statements
within the program may distinguish. These may include·

Positive or negative numbers

Numbers above or below a particular threshold

TESTING
SPECIAL
CASES

FORMING
CLASSES
OF DATA

Data that does or does not include a pamcular sequence or character

Data that is or is not present at a particular t1rne

If the modules are short. the total number of classes should still be small even though
each d1v1s1on is mult1pl1cat1ve: i.e. three two-way d1v1s1ons result in 2 x 2 x 2 = 8
classes of data

You must now separate the classes according to whether the
program produces a different result for each entry in the class
(as in a table) or produces the same result for each entry {such
as a warning that a parameter is above a threshold). In the dis­

SELECTING
DATA FROM
CLASSES

crete case. one may include each element if the tota l number 1s small or sample if the
number is large. The sample should include all boundary cases and at least one case
selected randomly. Random number tables are available 1n books, and random number
generators are part of most computer fac1lit1es.

You must be careful of distinctions that may not be obvious. For example, an 8-bit
microprocessor will regard an 8-bit unsigned number greater than 127 as nega­
tive. The programmer must consider this when using conditional branches that
depend on the Sign flag . You must also watch for instructions that do not affect
flags , overflow in signed arithmetic. and the distinctions between address-length
(16-bit) quantities and data-length (8-bitl quantities.

14-27

Testing Example 1 : Sort Program
The specia l cases here are obvious:

• No elements in the array

• One element. magnitude may be selected randomly

TESTING
A SORT
PROGRAM

The other special case to be cons idered is one in which elements are equal.

There may be some problem here with signs and data leng th. Note tha t the array itself
must contain fewer than 256 elements. The use of the instruction LOY #1 rather than
INY to set the In terchange flag means that there will be no problems if the nu mber of
elemen ts or in terchanges exceeds 128. We could check the effects of sign by picking
half the regular test cases with numbers of elements between 128 and 255 and half
between 2 and 127. All magnitudes should be chosen randomly so as to avoid un­
conscious bias as much as possible.

Testing Example 2: Self-Checking Numbers lseeChapter~S_I ___ ~

Here we will presume that a prior validity check has ensured that
the number has the right length and consists of valid digr1s. Since
the program makes no other distinctions. test data should be
selected randomly Here a random number table or random num­

TESTING AN
ARITHMETIC
PROGRAM

ber generator will prove ideal; the range of the random numbers is 0 to 9

14-28

TESTING PRECAUTIONS
The designer can simplify the testing stage by designing pro­
grams sensibly. You should use the following rules:

1) Try to eliminate trivial cases as early as possible without
introducing unnecessary distinctions

RULES FOR
TESTING

2) Minimize the number of special cases. Each special case means additional testing
and debugging time.

3) Consider performing validity or error checks on the data prior to processing.

4) Be careful of inadvertent and unnecessary distinctions. particularly in handling
signed numbers or using operations that refer to signed numbers

5) Check boundary cases by hand. These are often a source of errors. Be sure that the
problem defi nition specifies what is to happen in these cases

6) Make the program as general as reasonably possible. Each d1st1nct1on and separate
routine increases the required testing.

7) Divide the program and design the modules so that the testing can proceed in
steps in conjunction with the other stages of software development.6

CONCLUSIONS
Debugging and testing are the stepchitdren of the software development process.
Most projects leave far too little time for them and most textbooks neglect them.
But designers and managers often find that these stages are the most expensive
and time-consuming. Progress may be very difficult to measure or produce.
Debugging and testing microprocessor software is particularly difficult because
the powerful hardware and software tools that can be used on larger computers
are seldom available for microcomputers.

The designer should plan debugging and testing carefully. We recommend the
following procedure:

1) Try to write programs that can easily be debugged and tested. Modular pro­
gramming, structured programming, and top-down design are useful techni­
ques.

2) Prepare a debugging and testing plan as part of the program design. Decide
early what data you must generate and what equipment you will need.

3) Debug and test each module as part of the top-down design process.

4) Debug each module' s logic systematically. Use checklists, breakpoints. and
the single-step mode. If the program logic is complex. consider using the soft­
ware simulator.

51 Check each module 's timing systematically if this is a problem. An
oscilloscope can solve many problems if you plan the test properly. If the
timing is complex. consider using a logic or microprocessor analyzer.

6) Be sure that the test data is a representative sample. Watch for any classes of
data that the program may distinguish .- Include all special and trivial cases.

7) If the program handles each element differently or the number of cases is
large. select the test data randomly)

8) Record all test results as part of the documentation. If problems occur, you
will not have to repeat test cases that have already been checked.

14-29

REFERENCES

1. For more information about logic analyzers. see:

N. Andreiev. ''Special Report : Troubleshooting Instruments. " f.QN. October 5.
1978. pp. 89-99

R. L. Down. " Understanding Logic Analyzers." Computer Design June 1977. pp.
188-191.

A. Gasperini. " A Guide to Digital Troubleshooting Aids." Instruments and Control
Systems. February 1978. pp. 39-42.

A. Lorentzen. "Troubleshooting Microprocessors with a Logic Analyzer System."
Computer Design. March 1979. pp. 160-164 (includes a 6502-based example).

M. Marshall. "What to Look for in Logic Timing Analyzers." Electronics. March 29.
1979. p. 109-114.

K. Pines. "What Do Logic Analyzers Do? ·. Digital Design, September 1977. pp. 55-
72.

I Spector ... Logic Analysis by Telephone:· EON. March 20. 1979. pp. 139-142.

2. W. J. Weller. Assembly Level Programming for Small Computers. Lexington Books.
Lexington . MA. 1975. Chapter 23.

3. A. L. Baldridge. "Interrupts Add Power. Complexity to Microcomputer System
Design:· EON. August 5. 1977. pp. 67-73.

4. H. A. Burris. "'Time-Scaled Emulations of the 8080 Microprocessor," Proceedings of
the 1977 National Computer Conference. pp. 937-946.

5. D. A. Walsh ... Structured Testing:· Datamation . July 1977. pp. 111-118.
P. F. Barbuto Jr. and J. Geller. "Tools for Top·Down Testing."' Datamatton. October
1978. pp. 178-182.

6. R. A. DeMillo et aL. "' Hints on Test Data Selection : Help for the Practicmg Pro­
grammer:· Computer. April 1978. pp. 34-41

W. F. Dalton. ··oesign Microcomputer Software." Electronics, January 19. 1978. pp.
97-101 .

7. T. G Lewis. Oistnbut ion Sampling for Computer Simulauon. Lexington Books.
Lexington. MA. 1975
R. A. Mueller et al.. ·· A Random Number Generator for Microprocessors." Simulation.
Apri l 1977. pp. 123-127.

14-30

Chapter 15
DOCUMENTATION AND REDESIGN

The working program 11 not the only requirement of aoftware development. Ade­
quate documentation 11 also an important part of a software product. Not only
does documentation help the designer In the testing and debugging stsge1, It Is
also essential for later use and extension of the program. A poorly documented
program wlll be difficult to maintain, u1e, or extend.

Occasionally, a program uae1 too much memory or executes too slowly. The
designer must then Improve It. Thia stage la called redesign, and requires that you
concentrate on the parts of the program that can yield the moat lmpJovement.

SELF-DOCUMENTING PROGRAMS
Although no program 11 ever completely Hlf·document·
Ing, some of the rules that we mentioned earlier can help.
These Include:

•Clear. simple structu re with as few transfers of control
(jumps) as possible

• Use of meaningful names and labels

RULES FOR
SELF-DOCUMENTING
PROGRAMS

• Use of names for 1/0 devices. parameters, numerical factors, etc.

• Emphasis on simplicity rather than on minor savings in memory usage. execution
time. or typing

For example. the following program sends a string of characters to a te letypewriter:

LOX $40
w LOA $0FFF.X

STA $AOOO
JSR xxx
DEX
BNE w
BAK

Even without commen ts we can improve the program. as follows:

MESSG 41000
COUNT 440
TTYVIA 4AOOO

LOX COUNT
DUTCH LOA MESSG- 1 .X

STA TTY VIA
JSR BITDLY
DEX
BN E OUTCH
BAK

Surely th is program is easier to understand than the earlier version. Even w ithout
further documentation. you could probably guess at the function of the program and
the meanings of most of the variables. Other documentation technique• cannot
1ub1tltute for self-documentation.

15- 1

Some further notes on choosing names:

1) Use the obvious name when it is available, like TTY or CRT
for output devices. START or RESET for addresses. DELAY 01

SORT for subroutines. COUNT or LENGTH for data.

CHOOSING
USEFUL
NAMES

2) Avoid acronyms like S 16BA for SORT 16-BIT ARRAY. These seldom mean
anything to anybody. - - - -

3) Use full words or close to full words when possible. like DONE. PRINT. SEND, etc

4) Keep the names as distinct as possible.

15-2

COMMENTS
The most obvious form of additional documentation is the comment. However.
few programs (even those used as examples in books} have effective comments.
You should consider the following guidelines for good comments.

1) Don't repeat the meaning of the Instruction code. Rather. rC_O_M_M-EN_Tl_N_G.,
expla in the purpose of the instruction in the program. Com- GUIDELINES
ments like

DEX :X=X-1

add nothing to documentation. Rather. use

DEX :LINE NUMBEA=LINE NUMBEA· 1

Remember that you know what the operation codes mean and anyone else can
look them up in the manual. The important point is to explain what task the
program is performing.

2) Make the comments as clear as possible. Do not use abbreviations or acronyms
unless they are well-known Oike ASCII. VIA. or UART) or standard {like no for num­
ber. ms for millisecond. etc.). Avoid comments like

DEX : LN =LN-1
or

DEX :DEC LN BY 1

The extra typi ng simply is not all that expensive

3) Comment every important or obacure point. Be part icularly careful to mark
operations that may not have obvious functions. such as

AND #%00100000 :TUAN TAPE READER BIT OFF
or

LDA GCODL.X :CONVERT TO GRAY CODE USING TABLE

Clearly, 1/0 operat ions often require extensive comments. If you·re not exact ly
sure of what an instruction does. or if you have to think about it. add a clarifying
comment. The comment will save you time later and will be helpful in documenta­
t ion.

4) Don't comment the obvious. A comment on each line simply makes it difficult to
find the important points. Standard sequences like

DEX
BNE SEARCH

need not be marked un less you're doing something specia l. One comment w ill
often suffice for several li nes. as in

LSA A :GET MOST SIGNIFICANT DIGIT
LSR A
LSR A
LSR A

LDA
LDX
STA
STX

$40
$41
$41
$40

:EXCHANGE MOST SIGNIFICANT. LEAST
SIGNIFICANT BYTES

5) Place comments on the lines to which they refer or at the start of a se­
quence.

6) Keep your comments up-to-date. If you change the program. change the com­
ments.

15-3

7) U1e standard forms and term1 in commenting. Don't worry about repetitiveness
Varied names for the same things are confusing. even if the variations are just
COUNT and COUNTER, START and BEGIN, DISPLAY and LEDS. or PANEL and
SWITCHES

There's no real gain in not being consistent. The variat ions may seem obvious to
you now. but may not be clear later: others wil l get confused from the very begin·
ning.

8) Make comment• mingled with instructions brief. Leave a complete explanation
to header comments and other documentation. Otherwise. the program gets lost
in the commen ts and you may have a hard time even finding it.

9) Keep improving your comment1. If you come to one that you cannot read or un·
derstand. take the t ime to change it . If you find that the listing is getting crowded.
add some blank lines. The comments won't improve themselves: in fact. they wil l
just become worse as you leave the task behind and forget exactly what you did.

10) Before every major section, sub1ectlon, or subroutine, Insert a number of
comments deacrlbing the functions of the code that followa. Care should be
taken to describe all inputs. outputs. and side effects. as well as the algorithm
employed.

11) It is good practice when modifying wor1<ing program• to use comments to in­
dicate the date, author, and type of modification made.

Remember, comments are Important. Good ones will aave you time and effort. Put
some work into comments and try to make them as effective 11 poaaible.

15-4

Commenting Example 1: Multiple-Preci1ion
Addition

The basic program is:

ADDWD

LOX
CLC
LOA
ADC
STA
DEX
BNE
BAK

$40

$40.X
$50.X
$40.X

A DOWD

COMMENTING
EXAMPLES

First. comment the important points. These are typicalty initializations. data fetches.
and processing operations. Don' t bother with standard sequences like updating poin­
ters and counters. Remember that names are clearer than numbers. so use them freely.

The new version of the program 1s:

:MULTIPLE-PRECISION ADDITION

:THIS PROGRAM PERFORMS MUL Tl-BYTE BINARY AOOlTION

: INPUTS: LOCATION 0040 (HEXI =LENGTH OF NUMBERS (IN BYTESI
LOCATIONS 0041 THROUGH 0050 (HEXI =FIRST NUMBER STARTING
WITH MSB'S
LOCATIONS 0051 THROUGH 0060 (HEXI =SECOND NUMBER STARTING
WITH MSB'S

OUTPUTS: LOCATIONS 0041 THROUGH 0050 (HEXI =SUM STARTING W ITH
MSB'S

LENGTH
NUMBl
NUMB2

ADDWD

=$40
=$41
=$51
LOX
CLC
LOA
ADC
STA
DEX
BNE
BAK

LENGTH :COUNT = LENGTH OF NUM BERS (IN BYTESI

NUMBl -1.X :GET BYTE FROM STRING 1
NUMB2-1.X :ADD BYTE FROM STRING 2
NUMB1·1 ,X :STORE RESULT IN STRING 1

ADDWD :CONTINUE UNTIL ALL BYTES ADDED

15-5

Second. look for any instructions that might not have obvious
func tions and mark them. Here. the purpose of CLC is to clear the
Carry the first time through.

QUESTIONS
FOR
COMMENTING

Third. ask yourself whether the comments tell you what you would need to know if you
wanted to use the program. e.g.:

1) Where is the program entered? Are there alternative entry points?

2) What parameters are necessary? How and in what form must they be supplied?

3) What operations does the program perform?

4) From where does it get the data?

5) Where does it store the results?

6) What special cases does it consider?

7) What does the program do about errors?

8) How does it exit?

Some of the questions may not be relevant to a particular program and some of the
answers may be obvious. Make sure that you won't have to sit down and dissect the
program to figure out what the answers are. Remember that too much explanation is
just dead wood that you will have to clear out of the way. Is there anything that you
would add to or subtract from this listing? If so. go ahead - you are the one who has to
feel that the commenting is adequate and reasonable.

:MULTIPLE-PRECISION ADDITION

:THIS PROGRAM PERFORMS MUL Tl -BYTE BINARY ADDITION

. INPUTS: LOCATION 0040 (HEX) =LENGTH OF NUMBERS (IN BYTES)
LOCATIONS 004 1 THROUGH 0050 (HEX)= FIRST NUMBER STARTING
WITH MSB'S
LOCATIONS 0051 THROUGH 0060 IHEX) =SECOND NUMBER STARTING
WITH MSB'S

OUTPUTS: LOCATIONS 0041 THROUGH 0050 IHEXI =SUM STARTING WITH
MSB'S

LENGTH
NUMBl
NUMB2

ADDWD

=$40
=$41
=$51
LOX
CLC
LOA
ADC
STA
DEX
BNE
BAK

:LENGTH OF NUMBERS (IN BYTES)
:MSB'S OF 1 ST NUMBER AND RESULT
:MSB'S OF SECOND NUMBER

LENGTH :COUNT =LENGTH OF NUMBERS (IN BYTES)
:CLEAR CARRY TO START

NUMBl-1 .X :GET BYTE FROM STRING 1
NUMB2-1.X :ADD BYTE FROM STRING 2
NUMBl-1.X :STORE RESULT IN STRING 1

ADDWD :CONTINUE UNTIL ALL BYTES ADDED

15-6

Commenting Example 2: Teletypewriter Output
The basic program is:

LDA $60
ASL A
LDX #11

TBIT STA $AOOO
JSR BITDLY
ROR A
SEC
DEX
BNE TBIT
BRK

Commenting the important points and add ing names gives:

:TELETYPEWRITER OUTPUT PROGRAM

:THIS PROGRAM PRINTS THE CONTENTS OF MEMORY LOCATION 0060 (HEX) TO THE

TELETYPEWRITER

INPUTS: CHARACTER TO BE TRANSMITTED IN MEMORY LOCATION 0060

OUTPUTS: NONE

NBITS
TDATA

TTY VIA

TBIT

=11
=$60

=$AOOO
LDA
ASL
LDX
STA
JSR
ROR
SEC
DEX
BNE
BRK

TDATA
A
#NBITS
TTYVIA
BITDLY
A

TBIT

.NUMBER OF BITS PER CHARACTER
:ADDRESS OF CHARACTER TO BE

TRANSMITTED
:TELETYPEWRITER OUTPUT DATA PORT
:GET DATA
:SHIFT LEFT AND FORM START BIT
:COUNT =NUMBER OF BITS IN CHARACTER
:SEND NEXT BIT TO TELETYPEWRITER
:WAIT 1 BIT TIME
:GET NEXT BIT
: SET CARRY TO FORM STOP BITS

:COUNT BITS

15-7

Note how easily we could change this prog ram so that it would transfer a whole string
of data. starting at the address in page-zero locations DPTR and DPTR + 1 and ending
with an "03" character (ASCll ETX). Furthermore. let us make the termina l a 30
cha racter per second device with one stop bit (we will have to change subroutine
BITDLY). Try maki ng the changes before looking at the lis ting

;STRING OUTPUT PROGRAM

;THI S PROGRAM TRANSMITS A STRING OF CHARACTERS TO A 30 CPS TERMINAL
TRANSMISSION CEASES W HEN AN ASCII ETX (03 HEX) IS ENCOUNTERED

INPUTS : LOCATIONS 0060 AND 0061 (HEX) CONTAIN ADDRESS OF
STRING TO BE TRANSMITTED

OUTPUTS: NONE

DPTR
ENOCH
NBITS
TRMVIA

TC HAR

TBIT

460
=$03
=1 0
=$AOOO
LOY
LOA
CMP
BEG
ASL
LDX
STA
JSR
ROR
SEC
DEX
BNE
INY
JM P

DONE BRK

#0
(DPTRl.Y
ENOCH
DONE
A
#NBITS
TRMVIA
BITDLY
A

TBIT

TCHAR

:POINTER TO OUTPUT DATA BUFFER
;ENDING CHARACTER =ASCII ETX
;NUMBER OF BITS PER CHARACTER
;TERMINAL OUTPUT DATA PORT
:POINT TO START OF OUTPUT DATA BUFFER
;GET A CHARACTER FROM BUFFER
;IS IT ENDING CHARACTER'
;YES, DON E
;NO, SHIFT LEFT AND FORM START BIT
;COUNT =NUMBER OF BITS PER CHARACTER
;SEND NEXT BIT TO TERMINAL
;WAIT 1 BIT TIME
:GET NEXT BIT
;SET CARRY TO FORM STOP BIT

;COUNT BITS
;PROCEED TO NEXT CHARACTER

Good comments can make it easy for you to change a program to meet new require­
ments. For example. try changing the last program so that it:

• Starts each message wi th ASCII STX (021 el fol lowed by a three-digit identification
code stored in memory locations IDCODE through IDCODE+ 2

• Adds no start or stop bi ts

• Wai ts 1 ms between bits

• Transmits 40 characters. starting with the one located at the address in DPTR and
DPTR+1

· Ends each message with two consecutive ASCII ETXs (0315)

15-8

FLOWCHARTS AS DOCUMENTATION
We have already described the use of flowcharts as a design tool
in Chapter 13. Flowcharts are also useful in documentation, partic ­
ularly if :

•They are not so detai led as to be unreadable

• Their decision points are clearly explained and marked

• They include all branches

• They correspond to the actual program listings

HINTS FOR
USING
FLOWCHARTS

Flowcharts are helpful if they give you an overall picture of the program. They are not
helpful if they are just as difficult to read as an ordinary listing.

STRUCTURED PROGRAMS AS DOCUMENTATION
A structured program can serve as documentation for an assembly language program
if:

• You describe the purpose of each section in the comments

· You make it clear which statements are included in each cond1t1onat or loop structure
by using indentation and ending markers

•You make the total structure as simple as possible

· You use a consistent. well-defined language

The structured program can help you to check the logic or improve it. Furthermore.
since the structured program is machine-independent. it can also aid you in implement­

ing the same task on another computer.

15-9

MEMORY MAPS
A memory map is simply a list of all the memory a11ignment1 In a program. The
map allows you to determine the amount of memory needed, the locations of data
or subroutines, and the parts of memory not allocated. The map is a handy reference
for finding storage locations and entry points and for dividing memory between
different rout ines or programmers. THe map wi ll also give you easy access to data and
subroutines if you need them in later extensions or in maintenance. Sometimes a
graphical map is more helpful than a listing.

A typical map would be :

Address Routine

EOOO·E1 FF INTRPT
E200-E240 BRKPT
E241-E250 DELAY
E251-E270 DSPLY
E271-E3F9 MAIN
E3FA-E3FF

0000 NKEYS
0001-0002 KPTR
0003-0041 KBFR
0042-0051 DBFR
0051 -006F TEMP
0100-01FF STACK

Program Memory

Purpose

TYPICAL
MEMORY
MAP

Interrupt Service Routine for Keyboard
Service Routine for Break Instruction
Delay Program
Display Control Program
Main Program
Interrupt and Reset Vectors

Data Memory

Number of Keys
Keyboa rd Buffer Pointer
Keyboard Buffer
Display Buffer
Temporary Storage
RAM Stack

Remember that the 6502 RAM Stack is always on page 1 of memory

15-10

PARAMETER AND DEFINITION LISTS
Parameter and definition lists at the start of the program and each subroutine
make understanding and changing the program far simpler. The following rules can
help:

1 I Separate RAM location•. 1/0 units, parameters, defini­
tions, and memory system constants.

RULES FOR
DEFINITION
LISTS

2) Arrange lists alphabetically when possible, with a descrip­
tion of each entry.

3) Give each parameter that might change a name and include It In the llata. Such
parameters may include timing constants. inputs or codes corresponding to partic­
ular keys or functions. control or masking patterns. starting or ending characters.
thresholds. etc.

4) Make the memory system constants into a separate list. These constants wi ll
include Reset and interrupt service addresses. the starting address of the program.
RAM areas. Stack areas. etc.

5) Give each port used by an 1/0 device a name. even though devices may share
ports in the current system. The separation will make expansion or reconfiguration
much simpler.

A typical list of definitions will be :

:MEMORY SYSTEM CONSTANTS

INTRP
RA MST
RESET
STPTR

: 1/0 UNITS

DSPLY
KBDIN
KB DOT
TTYVIA

4E200
=$0
=$E300
=$01FF

=$AOOO
=$A001
=$AOOO
=$ABOO

: RAM LOCATIONS

NKEYS
KPTR
KBFR
DBFR
TEMP

·=RAMST
·=·+1
·=·+2
·=·+$40
·=·+$10
·=·+$14

:PARAMETERS

BOUNCE
GOKEY
MSC NT
OPEN
TPULS

=2
= 10
=$C7
=$OF
=1

:INTERRUPT ENTRY POINT

TYPICAL
DEFINITION
LIST

:START OF DATA STORAGE AREA
: RESET ADDRESS
:TOP ADDRESS IN RAM STACK (ON PAGE 1)

:OUTPUT VIA FOR DISPLAYS
:INPUT VIA FOR KEYBOARD
:OUTPUT VIA FOR KEYBOARD
:TTY DATA PORT

:NUMBER OF KEYS
:KEYBOARD BUFFER POINTER
:KEYBOARD INPUT BUFFER
:DISPLAY DATA BUFFER
:TEMPORARY STORAGE

.DEBOUNCING TIME IN MS
:IDENTIFICATION OF 'GO' KEY
:COUNT FOR 1 MS DELAY
:PATTERN FOR OPEN KEYS
:PULSE LENGTH FOR DISPLAYS IN MS

15-11

DEFINITIONS

ALLHI
STCON

=$FF
=$80

;ALL ONES PATTERN
;PATTERN FOR START CONVERSION PULSE

Of course, the RAM entries will usually not be in alphabetical order. since the designer
must order these so as to minimize the number of address changes required in the pro·
gram.

15-12

LIBRARY ROUTINES
Standard documentation of 1ubroutlne1 will allow you to bulld up a library of
useful programs. The idea 1s to make these programs easily accessible. A standard for·

mat wil l allow you or anyone else to see at a glance what the program does. The best
procedu re is to make up a standard form and use 1t conslff8ntly. Save these programs
in a well-orga nized manner Hor example. according to processor. language, and type of
programl. and you wi ll soon have a useful set. But remember that, without organiza­
tion and proper documentation, using the library may be more difficult than rewrit­
ing the program from 1cr1tch. Debugging a system requires a precise understanding

of all the effects of each subroutine.

Among the information that you w ill need in the standard form 1s:

• Purpose of the program

• Processor used

• Language used

·Parameters required and how they are passed to the subroutine

• Results produced and how they are passed to the main program

• Number of bytes of memory used

STANDARD
PROGRAM
LIBRARY
FORMS

• Number of clock cycles required. This number may be an average or a tvo•cal figure.
or tt may vary widely. Actual execution time will. of course. depend on the processor
clock rate and the memory cycle time

· Registers affected

·Flags affected

·A typical example

· Error handling

·Special cases

· Documented program listing

If the program 1s complex. the standard library form should also include a general
flowchart or a structured program. As we have mentioned before. a library program is
most likely to be useful if 1t performs a single d1st1nct funct ion in a reasonably general

manner

15-13

LIBRARY EXAMPLES

Library Example 1 : Sum of Data
Purpose : The program SUMS computes the sum of a set of 8-bit unsigned binary num­

bers.

Language: 6502 Assembler.

Initial Condltion1 : Add ress one less than the start ing address of the set of nu mbers in
memory locations 0040 and 004 1, length of set in Index Regis ter Y.

Final Condition1 : Sum in Accumulator.

Requirements:

Memory
Time

Reg isters
RAM

All flags affected.

9 bytes
7+12n clock cycles. where n is the length of the set of·
numbers. May be longer if page boundaries are crossed.
A.Y
locations 0040 and 0041 .

Typical Case : (all data in hexadecimal)

Start :
10040 and 0041 I 004F

y 03
100501 27
10051 1 3E
100521 26

End :
A 8 8

Error Handling: Prog ram ignores all carr ies. Carry bit ref lec ts only the last operation.

Listing:

Ini tial contents of lndex register Y must be 1 or more Decima l Mode
flag should be cleared.

:SUM OF 8-BIT OATA

SUMS
AOD8

LDA
CLC
ADC
DEY
BNE
ATS

#0

1$401.Y

ADDS

SUM =ZERO
CLEAR CARRY EAC H TIME
SUM = SUM + DAT A ENTRY

15-14

Library Example 2 : Decimal-to-Seven Segment Conversion
Purpoae: The program SEVEN converts a decimal number to a seven-segment display

code.

Language: 6502 Assembler.

lnltlel Conditiona: Data in Index Register X.

Flnel condltiona : Seven-segment code in Accumulator.

Requirements:

Memory

Time

Registers
All f lags affected.

19 bytes. including the seven-segment code table (10
entries).
16 clock cycles if the data is valid. 13 if it is not
May be longer 1f page boundaries are crossed.
A. X

Input data in Index Register X is unchanged

Typ l~I Case : (data in hexadecimal)

Start :
x 05

End :
A 60

Error Handling: Program returns zero 1n the Accumulator tf the data is not a decimal
digit.

Listing :

:DECIMAL TO SEVEN-SEGMENT CONVERSION

SEVEN

DONE
SSEG

LOA
CPX
BCS
LOA

RTS
BYTE

. BYTE

#0
#10
DONE
SSEG.X

:GET ERROR CODE TO BLANK DISPLAY
;IS DATA A DECIMAL DIGIT>
: NO. KEEP ERROR CODE
:YES. GET SEVEN-SEGMENT CODE FROM

TABLE

$3F. $06.$5B.$4F.$66
$60.$70.$07.$7F.$6F

15-15

Library Example 3 : Decimal Sum
Purpose: The program DECSUM adds two multi-word decimal numbers.

Language: 6502 Assembler.

Initial Conditions: Add ress of MSBs of one number in memory locations 0040 and
0041 , add ress of MSBs of other number in memory locations 0042
and 0043. Length of numbers (in bytes) in Index Register Y. Num­
bers arranged starting with most significant digits.

Final Conditions: Su m replaces number with starting address in memory locations
0040 and 0041 .

Requirements:

Memory
Time

Registers
RAM

Al l flags affected

14 bytes.
11 + 22n clock cycles. where n is the number of
bytes. May be longer if page boundaries are crossed.
A. y
memory locations 0040 throug h 0043.
Carry shows if sum produced a carry Decimal Mode
flag is cleared.

Typical Case: (all data in hexadecimal)

Start:
(0040 and 0041) 0060
(0042 and 0043) 0050

(Y) 02

(0060) 55
(00611 34

(00501 15
(00511 88

End :

(0060) 71
(0061) 22
Carr.y 0

Error Handling: Program does not check the validity of decimal inputs. The contents of
Index Reg is ter Y must be 1 or more

l isting:

:MULTI-DIGIT DECIMAL (BCD) ADDITION

DECSUM

DECADD

SEO
CLC
DEY
LOA
ADC
STA
TYA
BNE
CLO
ATS

($401.Y
1$421.Y
1$401.Y

DEC ADD

:MAKE ALL ARITHMETIC DECIMAL
:CLEAR CARRY TO ST ART

:GET 2 DECIMAL DIGITS FROM STRING 1
:ADD PAIR OF DIGITS FROM STRING 2
;STORE RESULT IN STRING 1

;RETURN TO BINARY ARITHEMETIC MODE

15-16

TOTAL DOCUMENTATION
Complete documentation of microprocessor software wi l l in- DOCUMENTATION
elude all or most of the elements that we have mentioned. So. PACKAGE
the total documentation package may involve :

• General flowchart•
• A written description of the program

• A list of alt parameters and definitions

• A memory map

• A documented listing of the program

• A deacrlption of the test plan and test re1ults

The documentation may also include:

• Programmers' flowcharts

• Data flowcharts
• Structured programs

The documentation procedures outlined above are the minimal acceptable set of
documents for non-production software. Production 1oftware demands even
greater documentation efforts. The following documents should also be produced·

• Program Logic Manual

•User's Guide

• Maintenance Manual

The program logic mainual exl>M'd1 on the w ritten explanation produced with the
1oftwara. It should be written for a technically competent individua l who may not
possess the detai led knowledge assumed in the written explanation in the software.
The program logic manual should explain the system's design goals. the algorithms
used. and what tradeoffs were necessary.

It should then explain in great deta il what data structures were employed and how they
are manipulated. It should provide a step-by-step gu ide to the operations of the pro­
gram. Finally. it should contain any special tables or graphs that help explain the pro­
gra m. Code conversion charts. sta te diagrams. translation matrices. and flowcharts
should be inc luded.

The U1er'1 guide le probably the most Important and most overlooked piece of
documentation. No matter how wall a 1y1tam 11 designed, It Is useless if no one
can take advantage of lt1 features. The User's guide should introduce the system to
all users. sophisticated and unsophist icated. It should then provide detailed expla na·
tions of system featu res and their use. Freq uent examples will help to clarify the points
in the text. Step-by-step directions should be provided (a nd tested!). Prog rammers with
detailed knowledge of a system often take shortcuts tha t the genera l reader cannot
follow. Further discussion of the writing of User"s guides is beyond the scope of this
book. However. remember that you can never spend too much effort in preparing a
User's guide. since it will be the most frequently referenced system document.

The maintenance manual le da1ignad for the programmer who has to modify the
1ystam. It should outline step-by-step procedures for those reconfigurations designed
into the system. In add ition. it should describe any provis ions bui lt into the prog ram for
fu ture expansion.

Documentation should not be t•k•n lightly or postponed until the end of the soft­
ware development. Proper documentation, combined with proper programming
practices, 11 not only an Important part of the final product but can also make
development simpler. fa1ter, and more productive. The da1lgnar should make con-
1l1tant and thorough documentation part of every stage of software development.

15-17

REDESIGN

Sometimes the designer may have to squeeze the last microsecond of speed or
the last byte of extra memory out of a program. As larger single-chip memories have
become available, the memory problem has become less serious. The time problem, of
course. is serious only if the application is time-critical; in many applications the
microprocessor spends most of its time waiting for external devices. and program speed
tS not a maj or factor.

Squeezing the last bit of performance out of a program is
seldom as important as some writers would have you believe.
In the first place, the practice is expensive for the following
reasons ·

COST OF
REDESIGN

1) It requires extra programmer time. which is often the single largest cost in software
development.

2) It sacrifrces structure and simplicity with a resulting increase in debugging and
testing lime.

3) The programs require extra documentation.

4) The resulting programs w ill be difficult to extend. maintain. or re-use.

In the second place, the lower per-unit cost and higher performance may not really
be important. Will the lower cost and higher performance real ly sell more units? Or
would you do better with more user-oriented featu res? The only applications that
would seem to justify the extra effort and time are very high-volume, low-cost
and low-performance applications where the cost of an extra memory chip will far
outweigh the cost of the extra software development. For other applications. you
will find that you are playing an expensive game for no reason

However, if you must redesign a program, the following
hints will help. First, determine how much more perfor­
mance or how much less memory usage is necessary. If
the required improvement is 26% or less, you may be

~------~
MAJOR OR
MINOR
REORGANIZATION

able to achieve it by reorganizing the program. If it is more than 25%, you have
made a basic design error: you will need to consider drastic changes in hardware
or software. We w ill deal first with reorganization and later with drastic changes

Note particularly that saving memory can be critical 1f it allows a program to f it into the
lim ited amouni of ROM and RAM ava ilable 1n a simple one-c hip or two-chip microcom­
puter. The hardware cost for small systems can thus be substantially reduced. if their
requi rements can be limited to the memory size and 1/0 limitations of that particular
one-chip or two-chip system.

15-18

REORGANIZING TO USE LESS MEMORY
The following procedures will reduce memory usage for 6602
assembly language programs :

1) Replace repetit ious In-line code w ith subroutines. Be

SAVING
MEMORY

sure. however. that the Call and Return instructions do not offset most of the gain
Note that th is replacement usually results in slower programs because of the time
spent in transferring con trol back and forth.

2) Place the most frequently used data on page zero •nd access it with one­
byte addresses. You may even want to place a few 1/ 0 addresses there.

3) Use the Stack when possible. The Stack Pointer is automatically updated after
each use so that no explicit updating instructions are necessary. Remember.
however. that the 6502 Stack can never be longer than one page.

4) Eliminate Jump instructions. Try to reorganize the program instead

5) Take advantage of addreeses that you can manipulate a1 8 ·bit quantities.
These include page zero and add resses that are multiples of 10015. For example.
you might try to place all ROM tables in one 10015·byte section of memory. and
all RAM variables into another 10015·bvte section.

6) Organize data and tables 10 that you can address them without worry ing
about addre11 calculation carries or w ithout MY actual index ing. This will
again al low you to manipulate 16-bit addresses as 8-b•t quant1t 1es.

7) Use the Bit Telt or Shtft instructions to aperat e on bi t positions at eit her end
of a word.

8) Use lef tover results from prev ious sections of the program.

9) Take advantage of such instructions as ASL. DEC. INC. LSR, ROL, and ROR.
which operate directly on memory locations without using registers.

10) Use INC or DEC to set or reset flag bits.

11) Use relative jumps rather than jumps with direct addressing.

12) Use BRK. RTS. and RTI to perform jumps and reach subroutines. if they are
not already being used. These instructions can act as one-byte CALL instructions
if the required data and addresses are already in the Stack.

13) Watch for special short forms of instructions such as the Accumulator shifts
(ASL A. LSR A. ROL A. and ROR Al and BIT.

14) Use algorithms rather than tables to calculate arithmetic or logical expressions
and to perform code conversions. Note that this replacement may result in slower
programs

15) Reduce t he size of mathematical tables by interpolating between entries. Here
again. we are saving memory at the cost of execution time.

16) Take advantage of the CPX and CPY instructions t o perform comparisons
without involving the Accumulator.

Although some of the methods that reduce memory usage also
save time. you can generally save an appreciable amount of
time only by concentrating on frequently executed loops. Even
completely eliminating an instruction that is executed only once

SAVING
EXECUTION
TIME

can save at most a few microseconds. But a savings in a loop that is executed fre­
quently will be multip lied many times over.

15-19

So. if you must reduce execution time, proceed as follows :

1) Determine how frequently each program loop Is executed. You ca n do this by
hand or by using the software simulator or another testing method.

2) Examine the loops In the order determined by their frequency of execution.
starting with the most frequent. Contin ue through the list unti l you achieve the re·
quired reduct ion.

3) First. see if there are any operations that can be moved outside the loop, i.e ..
repetitive calculations. data that can be stored in a register or on the Stack, data or
addresses that ca n be stored on page zero, specia l cases or errors that can be
handled elsewhere, etc. Note that th is will require extra initializa tion and memory
but will save time.

4) Try to eliminate Jump statements. These are very time·consuming.

5) Replace subroutines with ln·llne code. This will save at least a Call and a Return
instruction

6) Use page zero for temporary data storage.

7) Use any of the hints mentioned in saving memory that also decrease execu·
tion time. These include the use of B·b it addresses. BAK. RTL special short forms
of instructions, etc.

8) Do not even look at Instructions that are executed only once. Any changes
that you make in such instruct ions only invite errors for no appreciable gain.

9) Avoid Indexed and Indirect addressing whenever possible because they take
extra time.

1 O) Use tables rather than algorithms; make the tables handle as much of the tasks
as possible even if many entries must be repeated.

15-20

MAJOR REORGANIZATIONS
If you need more than a 26°/o increase In speed or decrease in memory usage. do
not try reorganizing the code. Your chances of getting that much of an improve·
ment are small unless you call in an out1kle expert. You are generally better off
making a major change.

The most obvious change is a bet ter algorithm. Particularly if BETTER
you are doing sorts. searches, or mathematical calculations. you ALGORITHMS
may be able to find a faster or shorter method in the literature.
Libraries of algorithms are avai lable in some journals and from professional groups. See.
for example. the references at the end of this chapter.

More hardware can replace some of the software. Counters. shift registers.
arithmetic units. hardware multipl iers. and other fast add·oos can save both ttme and
memory. Calculators. UAATs. keyboards. encoders. and other SIO"Ner add·ons may save
memory even though they operate slowly. Compatible parallel and senal interfaces. and
other devices specially designed for use with the 6502 or 6800. mav save time by tak·
ing some of the burden off the CPU

Other changes may help as well :

1) A CPU with a longer word will be faster 1f the data is long
enough. Such a CPU w ill use less total memory 16-bu pro­
cessors. for example. use memory more eHK:iently than B·btt
processors. since more of their instructions are one w ord ·1ong

OTHER
MAJOR
CHANGES

2) Versions of the CPU may exist that operate •t higher clock rates. But remem·
ber that you will need faster memory and 1/0 ports. and you will have to adjust any
delay loops.

3) Two CPU• ruy be .,._ to do the job in parallel or separately if you can divide
the job and solve the commun1cat1ons problem.

4) A speciaMy microprogrammed processor may be able to execute the same pro·
gram much futer. The cost. however. will be much higher even if you use an off­
the·shelf emulation

5) You can make t radeoffa between time and memory. Lookup tables and function
ROMs will be faster than algorithms. but will occupy more memory .

Thia k ind of problem, in which a large ~mprovement is necea·
sary, usually results from lack of adequate planning in the
defini t ion and deslgn stages. In the problem definition stage
you should det ermine which processor and methods will be

...-----..
DECIDING
ON A MAJOR
CHANGE

adequate to handle the problem. If you misjudge, the coat later will be high. A
cheap solution mey result In an unwarranted expenditure of expensive develop·
ment time. Do not try t o just get by; the beat solut ion is usually to do the proper
design and chalk a failure up to experience. If you have followed such methods as
flowcharting, modular programming, structured programming, top·down design,
and proper documentation. you will be able to salvage a lot of your effort even if
you have to make a major change.

15-21

REFERENCES
1. Collected Algorithms from ACM. ACM. Inc .. P. 0 . Box 12105. Church Street Sta·

tion. New York 10249.

2. T. C. Chen, "Automatic Computation of Exponentials. Logarithms, Ratios, and
Squa re Roots." IBM Journal of Research and Development. Volume 18, pp.
380-388. Ju ly. 1972.

3. H. Schmid. Decimal Computation. Wiley- lnterscience. New York. 1974.

4. D. E. Knuth. The Art of Computer Programming. Volume 1: Fundamental
Algorithms. Addison-Wesley. Reading. Mass .. 1967.

5. D. E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical
Algorithms. Addison-Wesley. Reading, Mass .. 1969.

6. 0. E. Knut h. The Art of Computer Prog ramming. Volume 3: Sorting and Search­
ing. Add ison-Wesley. Reading. Mass .. 1973.

7. 8. Carnahan et al.. Applied Numerical Methods. Wiley, New York. 1969.

8. A. M. Despain ... Fourier Transform Computers Using CORDIC Iterations." IEEE
Transactions on Computers. October 1974. pp. 993-1001 .

9. Y. L. Luke. Algorithms for the Computation of Mathematical Functions. Academic
Press. New York. 1977.

10. K. Hwang. Computer Arithmetic, Wiley. New York. 1978.

11 . New methods for performing arithmetic opera tions on computers are often dis­
cussed in the triennial Symposium on Computer Arithmetic. The Proceedings
(starting with 1969) are ava ilable from the IEEE Computer Society. 5855 Naples
Plaza. Long Beach. CA 90803.

12. A. D. Edgar. and S. C. Lee. "FOCUS Microcomputer Number System." Com·
munications of the ACM. March 1979. pp. 166-177

15-22

Chapter 16
SAMPLE PROJECTS

PROJECT #1: A Digital Stopwatch
Purpose: This project is a digital stopwatch. The operator enters

two digits (minutes and tenths of minutes) from a
calculator-like keyboard and then presses the GO key.
The system counts down the remaining ttme on two

STOPWATCH
INPUT
PROCEDURE

seven-segment LED displays (see Chapter 11 for a description of unencoded
keyboards and LED displays).

Hardware: The pro1ect uses one input port and one output port {one 6522 Versatile In­
terface Adapter or VIA). two seven-segment displays. a 12-key keyboard. a 7404 in­
verter. and either a 7400 NANO gate or a 7408 ANO gate. depending on the polarity of

the seven-segment displays. The displays may requi re drivers. inverters. and res istors.
depending on their polarity and conf iguration

The hardware is organized as shown in Figure 16-1. Output lines 0. 1. and 2 are used to

scan the keyboard. Input lines 0. 1. 2. and 3 are used to determine whether any keys
have been pressed. Output lines 0. 1. 2. and 3 are used to send BCD digits to the seven­
segment decoder/drivers. Output line 4 is used to activate the LED displays (1f lme 4 is
'1'. the displays are lid. Output line 5 is used to select the left or nght display. output
line 5 is '1' if the left display is being used. ·o· if the nght display 1s being used. Thus.
the common line on the left display should be active 1f ltne 4 is· 1· and hne 5 •S · 1·. while
the common line on the right display should be active 1f lme 4 is · 1 · and line 5 is 'O'
Output line 6 controls the right hand decimal point on the left display It may be driven
with an inverter or simply left on

Keyboard Connections: The keyboard •S a simple calculator keyboard available for
50¢ from a local source. It consists of 12 unencoded key-switches arranged 1n four rows
of three columns each Since the wiring of the keyboard does not coincide with the ob­
served rows and columns. the program uses a 1able to identify the keys. Tables 16-1
and 16-2 contain the input and output connections for the keyboard. The decimal point

key is present for operator convenience and for future expansion: the current program
does not actually use the key.

In an actual appl ication. the keyboard would require pullup resistors to ensure that the
inputs would actually be read as logic 'l's when the keys were not being pressed. It

would also require current-lim1t1ng resistors or open-col lector drive rs on the ou tput port
to avoid damaging the VIA drrvers m the case where two ou tputs were driving against
each other. This could occur 11 two keys in the same row were pressed at the same time.
thus connecting two different column ou tputs.

16-1

PB7 !not used)
PBe.._--------~

Outpu1PB5L---------A-l--------
Port PB4 ..__ ______ __,.....__.__ ____ _

MA PB3 .._--------<H-+------l--+----~
Port e1PB2 .._-----<t----<H-+----+-+-l--+---~

P61 .._ ___ __,._l----<H-+----e-+-+-l--+--~

P6o

l;~~tt PA2
Dilpl9¥ Oil play

IVIA .. , cm- °"""' Port Al •• (left) higli1\

PAo

Common Common

Figure 16-1 . 1/0 Configuration for a Digital Stopwatch

Table 16-1 . Input Connections for Stopwatch Keyboard

Input Bit Keys Connected

0 '3'. '5'. ·a·
1 '2'. '6'. ·9·
2 '0'. ., .'7'
3 4' 'GO'

Table 16-2. Output Connections for Stopwatch Keyboard

Output Bit Keys Connected

0 '0'. '2'. '3'. '4'
1 ., . '8'. '9'. 'GO'
2 '5'. '6'. '?','

16-2

General Program Flowchart :

Start

'""
Display Connections: The displays are standard seven-segment displays with their
own integra l decoders. Clearly. undecoded seven-segment displays would be cheaper
but would require some additional software (the seven-segment conversion rout ine
shown in Chapter 7). Data is entered into the display as a single binary coded decimal
digit: the digits are represented as shown in Figure 11-22. The decimal point is a sing le
LED that is turned on when the decimal point input is a logic T . You can find more in­
formation about displays in References 12 and 13 at the end of th is chapter

16-3

Program Description:

The program is modular and uses several subroutines. The emphasis is on clarity and
generality rather than efficiency: obviously. the program does not utilize the full
capabilities of the 6502 processor Each section of the listing will now be described in
detail.

1) Introductory Comments
The introductory comments fully describe the prog ram: these comments are a
reference so that other users can easily apply. extend. and understand the pro­
gram. Standard formats. indentations. and spacings increase the readabil ity of the
program.

2) Variable Definitions

All variable definitions are placed at the start of the program so that they can easi ly
be checked and changed. Each variable is placed in a list alphabetically with other
variables of the same type: comments describe the meaning of each variable. The
categories are:
a) Memory system constants that may vary from sys tem to system depending on

the memory space allocated to different programs or types of memories
b) Temporary storage (RAM) used for vanables
cl 1/0 (VIA) addresses

d) Defmit1ons

The memory system constan ts are placed in the definitions so that the user may
relocate the program. temporary storage. and memory stack without making any
other changes. The memory cons tants can be changed to accommodate other
programs or to coincide with a particular system's allocation of ROM and RAM ad­
dresses.

Temporary storage is allocated by advancing the location counter as shown in
Chapter 3. An - (Equate) pseudo-operat ion names the temporary storage
locations. An ORG (origin) pseudo-operation places the temporary storage
locat ions in a particular part of memory. No values are placed 1n these locations so
that the program could eventually be placed in ROM or PROM and the system
could be operated from power-on reset without reloading
Each memory address occupied by a VIA is named so tha t the addresses can
easily be changed to handle varied configurations. The naming also serves to
clearly distinguish control registers from data registers.
The definitions clarify the meaning of certain cons tants and allow parameters to
be changed easily. Each definit ion is given in the form (binary. hex. octa l. ASCII. or
decimal) rn which its meaning 1s the clearest. Parameters (such as debounce time)
are placed here so that they can be varied with system needs.

3) Initialization

Memory locations FFFC and FFFD {the 6502 RESET locations) contain the starti ng
address of the main program. The main program can thus be placed anywhere in
memory and reached via a "RESET' signal.

The initia lization consists of three steps:
a) Place a starting value in the Stack Pointer. The Stack is used only to store

subroutine return addresses. Note that the Stack Poi nter is only 8 bits long
since the 6502 Stack is always on page one of memory.

bl Configure the VIA

cl Start the number of digi t keys pressed at zero.

16-4

4) look for Key Closure

Flowchart :

'""
Key closures are identified by grounding all the keyboard columns and then
checking for grounded rows li.e .. column-to-row switch closuresl . Note that the
program does not assume that the unused input bits are all high: instead. the bits
attached to the keyboard are isolated with a logical AND instruction

5) Debounce Key

The program debounces the key ck>sure in sofrware by waiting for two millise­
conds. This is usually long enough for a clean con tact to be made. Subroutine
DELAY counts with Index Register X for one milhsecond. The number of mill i­
seconds is in Index Register Y. DELAY would have to be adjusted if a slower clock
or slower memones were being used. You could make the change simply by
redefining the constant MSCNT.

16-5

6) Identify Key Closure

Flowchart :

Start

The particular key closed is identified by grounding single columns and observing
whether a closure is found. Once a closure is found (so the key column is deter­
mined), the key row can be determined by shifting the input until a grounded bit
1s found

The output patterns required to ground single keyboard columns are obtained by
shifting the original pattern left one bit after each column is examined. The high­
est numbered key in the keyboard 1s used as a marker to indicate that all the col­
umns have been grounded without a closure being found. When this value is
reached. the error code FF is placed in the Accumulator to indicate to the main
program that the closure could not be identified (i .e .. the key closure ended or a
hardware error occurred).

The key 1dentif1cat1ons are in table KTAB in memory. The
keys in the first column (attached to the least significant out­
put bit) are followed by those in the second column. etc
Within a column. the key in the row attached to the least significant input bit is
first. etc. Thus. each time a column is scanned without finding a closu re. the num­
ber of keys in a column (NROWS) must be added to the key table index in order to
move to the next column The key table index is also incremented before each bit
1n the row inputs is examined: this process stops when a zero input 1s found. Note
that the key table index is inil!alized to -1. since it is always incremented once in

the search fo r the proper row.

If we cannot identify the key closure. we simply ignore it and look for another
closure

16-6

71 Act on Key Identification

If the program has enough digits hwo in this simple easel. it looks only for the GO
key and ignores all other keys. 1f it finds a digit key, it saves the value in the key ar­
ray, increments the number of digit keys pressed. and increments the key array
pomter.

lf the entry is not complete. the program must wait for the key closure to end so
that the system will not read the same closu re again. The user must wait between
key closures (i.e .. release one key before pressing another onel. Note that the pro­
gram will identify double key closures as one key or the other. depending on
which closure the identification routine finds first. An improved version of this
program would display digits as they were entered and would allow the user to
omit a leading or trailing zero. (i.e., key in··.". "7". "GO" to get a count of seven·
tenths of a minute).

81 Set Up Display Output

The digits are placed in memory locations with bit 4 set so thal the output 1s sent
to the displays. Bits 5 and 6 are set for the most significant digi t to direct the out·
put to the left display and to light the decimal pomt LEO.

91 Pulse the LED Displays

Each display is turned on for two m1ll1seconds. Thcs process 1s repeated 1500
times in order to get a total delay of 0.1 minutes. or 6 seconds. The pulses are fre·
quent enough so that the LED displays appear to be lit contWlUOUSty

16-7

1 Q) Decrement Display Count

Flowchart:

Ston

'""

'""

End of timer

program

The value of the less significant digit is reduced by one. If this affects bit 4
(LEDON - used to turn the displays on), the digit has become negative. A borrow
must then be obtained from the more significant digit If the borrow from the more
significant digit affects bit 4, the count has gone past zero and the countdown is
finished. Otherwise. the program sets the value of the less significant digit to 9
and continues.

Note that comments describe both sections of the program and individual statements.
The comments explain what the program is doing, not what specific instruction codes
do. Spacing and indentation have been used to improve readability.

16-8

PROGRAM NAME: STOPWATCH
DATE OF PROGRAM :4/28/79
PROGRAMMER LANCE A. LEVENTHAL
PROGRAM REQUIREMENTS : DD l221) BYTES
RAM REQUIREMENTS : 5 BYTES
1/0 REQUIREMENTS : 1 INPUT PORT, 1 OUTPUT PORT (1 6522 VIA)

;THIS PROGRAM IS A DIGITAL STOPWATCH THAT ACCEPTS INPUTS FROM A
CALCULATOR-LIKE KEYBOARD AND THEN PROVIDES A COUNTDOWN

; ON TWO 7-SEGMENT LED DISPLAYS IN MINUTES AND TENTHS
; OF MINUTES

:KEYBOARD

:A 12-KEY KEYBOARD IS ASSUMED
:THREE COLUMN CONNECTIONS ARE OUTPUTS FROM THE PROCESSOR
, SO THAT A COLUMN OF KEYS CAN BE GROUNDED
;FOUR ROW CONNECTIONS ARE INPUTS TO THE PROCESSOR SO THAT
; COMPLETED CIRCUITS CAN BE IDENTIFIED
:THE KEYBOARD IS DEBOUNCED SY WAITING FOR TWO MILLISECONDS

AFTER A KEY CLOSURE IS RECOGNIZED
:A NEW KEY CLOSURE IS IDENTIFIED BY WAITING FOR THE OlD ONE

TO END SINCE NO STROBE IS USED
:THE KEYBOARD COLUMNS ARE CONNECTED TO BITS 0

TO 2 OF THE VIA 8 PORT
:THE KEYBOARD ROWS ARE CONNECTED TO BITS 0

TO 3 OF THE VIA A PORT

;DISPLAYS

:TWO 7-SEGMENT LED DISPLAYS ARE USED WITH SEPARATE DECODERS
; (7447 OR 744B DEPENDING ON THE TYPE OF DISPLAY)
:THE DECODER DATA INPUTS ARE CONNECTED TO BITS 0 TO 3

OF THE VIA B PORT
:BIT 4 OF THE VIA B PORT IS USED TO ACTIVATE THE LED

DISPLAYS IBIT 4 IS 1 TO SEND DATA TO LEDS)
:BIT 5 OF THE VIA 8 PORT IS USED TO SELECT WHICH

LED IS BEING USED (BIT 5 IS 1 IF THE LEADING DISPLAY
IS BEING USED, 0 IF THE TRAILING DISPLAY IS BEING USED)

:BIT 6 OF THE VIA B PORT IS USED TO LIGHT THE DECI MAL
POINT LED ON THE LEADING DISPLAY (BIT 6 IS 1 IF

: THE DISPLAY IS TO BE LIT)

:METHOD

:STEP 1 - INITIALIZATION
, THE MEMORY STACK POINTER {USED FOR SUBROUTIN E RETURN
; ADDRESSES) IS INITIALIZED. THE NUMBER OF DIGIT KEYS PRESSED IS SET
: TO ZERO

:STEP 2 - LOOK FOR KEY CLOSURE
ALL KEYBOARD COLUMNS ARE GROUNDED AND THE KEYBOARD ROWS
ARE EXAMINED UNTIL A CLOSED CIRCUIT IS FOUND

16-9

STEP 3 - DEBOUNCE KEY CLOSURE
A WAIT OF 2 MS IS INTRODUCED TO ELIMINATE KEY BOUNCE

STEP 4 - IDENTIFY KEY CLOSURES
THE KEY CLOSURE IS IDENTIFIED BY GROUNDING SINGLE KEYBOARD

COLUMNS AND DETERMINING THE ROW AND COLUMN OF THE KEY
CLOSURE. A TABLE IS USED TO ENCODE THE KEYS ACCORDING TO THEIR
ROW AND COLUMN NUMBER
IN THE KEY TABLE. THE DIGITS ARE IDENTIFIED BY THEIR VALUES.
THE DECIMAL POINT KEY IS NO. 10. THE "GO" KEY IS NO. 11

STEP 5 - SAVE KEY CLOSURE
DIGIT KEY CLOSURES ARE SAVED IN THE DIGIT KEY ARRAY UNTIL
TWO DIGITS HAVE BEEN IDENTIFIED. DECIMAL POINTS. FURTHER DIGITS.
AND CLOSURES OF THE "GO" KEY BEFORE TWO DIGITS HAVE BEEN
IDENTIFIED ARE IGNORED
AFTER TWO DIGITS HAVE BEEN FOUND. THE "GO" KEY IS USED TO
START THE COUNTDOWN PROCESS

:STEP 6 - COUNT DOWN TIMER INTERVAL ON LEDS
A COUNTDOWN IS PERFORMED ON THE LEDS WITH THE LEADING DIGIT
REPRESENTING THE REMAINING NUMBER OF MINUTES AND THE TRAILING

: DIGIT REPRESENTING THE REMAINING NUMBER OF TENTHS OF MINUTES

:STOPWATCH VARIABLE DEFINITIONS

:MEMORY SYSTEM CONSTANTS

BEGIN =$0400
STKBGN =$FF
TEMP =0

:RAM TEMPORARY STORAGE

" =TEMP
DCTR "="+2
KEYNO "="+2

NKEYS "="+1

:1/0 UNITS AND VIA ADDRESSES

VIAORB =$AOOO
VIAORA =$A001
VIADDRB =$A002
VIADDRA =$A003
VIAPCR =$AOOC

:DEFINITIONS

DECPT =%01000000
ECODE =$FF

GOKEY =11
KLAST =11

:STARTING ADDRESS FOR PROGRAM
:STARTING STACK ADDRESS ON PAGE 1
:STARTING ADDRESS FOR RAM STORAGE

: 16-BIT COUNTER FOR TIMING LOOP
:DIGIT KEY ARRAY -HOLDS IDENTIFICA­

TIONS OF DIGIT KEYS THAT HA' 1E BEEN
PRESSED

:NUMBER OF DIGIT KEYS PRESSED

:OUTPUT PORT FOR KEYBOARD AND DISPLAY
:INPUT PORT FOR KEYBOARD
:DATA DIRECTION REGISTER FOR PORT B
:DATA DIRECTION REGISTER FOR PORT A
:VIA PERIPHERAL CONTROL REGISTER

:CODE TO LIGHT DECIMAL POINT LED
:ERROR CODE IF ID ROUTINE DOES NOT FIND

KEY
:IDENTIFICATION NUMBER FOR "GO" KEY
:HIGHEST NUMBERED KEY

16-10

LEDON
LEDSL
MSC NT
MXKEY

NROWS
OPEN
TPULS
TWAIT

=%00010000
=%00100000
=$C7
=2

=4
=%00001111
=2
=2

0 =$FFFC

;CODE TO SEND OUTPUT TO LEDS
; CODE TO SELECT LEADING DISPLAY
:COUNT NEEDED TO GIVE 1 MS DELAY TIME
:MAXIMUM NUMBER OF DIGIT KEY
; CLOSURES USED
;NUMBER OF ROWS IN KEYBOARD
;INPUT FROM KEYBOARD IF NO KEY CLOSED
;NUMBER OF MS BETWEEN DIGIT DISPLAYS
;NUMBER OF MS TO DEBOUNCE KEYS

:RESET ADDRESS TO REACH STOPWATCH PROGRAM

.WORD BEGIN ;VECTOR TO START OF STOPWATCH
PROGRAM

;INITIALIZATION OF STOPWATCH PROGRAM

"=BEGIN
LOA
STA
STA
LOA
STA
LOX
TXS

#0
VIADDRA
VIAPCR
#$FF
VIADDRB
#STKBGN

;INITIALIZE DIGIT KEY COUNTER

INITL LOA
STA

#0
NKEYS

:MAKE PORT A LINES INPUTS
;MAKE ALL CONTROL LINES INPUTS

;MAKE PORT B LINES OUTPUTS
;INITIALIZE STACK POINTER

;NUMBER Of DIGIT KEYS =ZERO

;SCAN KEYBOARD LOOKING FOR KEY CLOSURE

SRCHK JSR SCA NC

;WAIT FOR KEY TO BE DEBOUNCED

LOY
JSR

#TWAIT
DELAY

IDENTIFY WHICH KEY WAS PRESSED

JSR
CMP
BEQ

IDKEY
#ECODE
SRCHK

;WAIT FOR KEY CLOSURE

:GET DEBOUNCE TIME IN MS
;WAIT FOR KEY TO STOP BOUNCING

;IDENTIFY KEY CLOSURE
:WAS KEY CLOSURE IDENTIFIED?
;NO. WAIT FOR NEXT CLOSURE

16-11

;START TIMING IF "GO" KEY PRESSED AND ENOUGH DIGITS ENTERED

LOX

CPX
BNE
CMP
BEO
BNE

NKEYS

#MXKEY
ENTDG
#GOKEY
STTIM
WAITK

;HAS MAXIMUM NUMBER OF DIGIT KEYS
BEEN ENTERED?

;NO. GO ENTER DIGIT KEY
;YES. IS KEY "GO"?
;YES. STA RT TIMING
;NO, IGNORE KEY

;ENTER DIG IT KEY INTO ARRAY. IGNORE DECIMAL POINT OR "GO" KEY

ENTDG CMP
BCS
INC

STA

#10
WAITK
NKEYS

KEYNO. X

;IS KEY A DIGIT?
;NO, IGNORE IT
;YES. INCREMENT NUMBER OF DIGIT KEYS

ENTERED
;SAVE DIGIT KEY IN ARRAY

;WAIT FOR CURRENT KEY CLOSURE TO END

WAITK JSR SCANO ;WAIT FOR ALL KEYS TO BE RELEASED
BEO SAC HK ;LOOK FOR NEXT CLOSURE ISCANO ALWAYS

SETS ZI

;PROCESS DIGITS FOR DISPLAY

SHIM LOA KEY NO ;GET LEADING DIGITS
ORA #DEC PT .TUAN ON DECIMAL POINT FOR LEADING

DIGIT
ORA #LEDON ; SET OUTPUT TO LEDS
ORA #LEDSL ;SELECT LEADING DISPLAY
STA KEY NO
LOA KEYNO+l ;GET TRAILING DIGIT
ORA #LEDON ; SET OUTPUT TO LEDS
STA KEYNO+l

;PULSE THE LED DISPLAYS

LED LP LOA #6 ; SET COUNTERS FOR 1500 PULSES
STA DCTA+ l

TLOOP LDA #250
STA OCTA

DSPLY LDA KEYNO ;SEND LEADING DIGIT TO LED 1
STA VIAORB
LDY # TPULS ;DELAY BETWEEN DIGITS
JSR DELAY
LDA KEYNO+l ;SEND TRAILING DIGIT TO LED 2
STA VIAORB
LOY #TPULS ;DELAY BETWEEN DIGITS
JSR DELAY
DEC OCTA
BNE DSPLY
DEC DCTA+l
BNE TLOOP

16-12

DECREMENT COUNT ON LEO DISPLAYS

LOA
DEC
BIT
BNE
DEC
BIT
BEO
LOA
ORA
STA
BNE

#LEDON
KEYN0+1
KEYN0+1
LEO LP
KEYNO
KEY NO
INITL
#9
#LEDON
KEYN0+1
LEO LP

:GET BIT PATTERN TO LOOK FOR CARRIES
:COUNT DOWN TRAILING DIGIT
;IS TRAILING DIGIT PAST ZERO ?
:NO. DISPLAY NEW TIME
: YES. COUNT DOWN LEADING DIGIT
:IS LEADING DIGIT PAST ZERO?
:YES. WAIT FOR NEXT TIMING TASK
;NO. MAKE TRAILING DIGIT 9
:SET OUTPUT TO LEDS

: RETURN TO PUl.SING OISPLA YS

:SUBROUTINE SCANC SCANS THE KEYBOARD WAITING FOR A KEY CLOSURE
: ALL KEYBOARD INPUTS ARE GROUNDED

SCANC LOA
STA

KEYCLS LOA
AND
CMP
BED
ATS

#0
VIAORB
VI AO RA
#OPEN
#OPEN
KEYCLS

:GROUND ALL KEYBOARD COLUMNS

:GET KEYBOARD ROW DATA
:IGNORE UNUSED INPUTS
:ARE ANY INPUTS GROUNDED I
;NO. WAIT

:SUBROUTINE DELAY WAITS FOR THE NUMBER OF MS SPECIFIED
IN INDEX REGISTER Y BY COUNTING WITH INDEX REGISTER X

DELAY LOX #MSC NT :COUNT FOR 1 MS DELAY
WTLP DEX :WAIT 1 MS

BNE WTLP
DEY :COUNT MS
BNE DELAY
ATS

:SUBROUTINE IDKEY DETERMINES THE ROW AND COLUMN NUMBER OF
: THE KEY CLOSURE AND IDENTIFIES THE KEY FROM A TABLE

IDKEY LOA #%11111110 :GET PATTERN TO GROUND COLUMN ZERO

STA VI AO RB :GROUND COLUMN ZERO
LOX #$FF :KEY TABLE INDEX~ -1

FCOL LOA VIAGRA :FETCH KEYBOARD ROW DATA
AND #OPEN :IGNORE UNUSED INPUTS
CMP #OPEN :ARE ANY INPUTS GROUNDED I
BNE FROW :YES. DETERMINE WHICH ONE
AOL VIAORB :NO. GROUND NEXT COLUMN
TXA :MOVE KEY TABLE INDEX TO NEXT COLUMN

ADC #NAOWS-1
TAX
CMP #KL AST HAVE ALL COLUMNS BEEN EXAMINED?

BNE FCOL NO. EXAMINE NEXT COLUMN
LOA #ECODE YES. RETURN WITH ERROR CODE IN A
ATS

16-13

:DETERMINE ROW NUMBER OF CLOSURE

FROW INX
LSR A

BCS FROW

:IDENTIFY KEY FROM TABLE

LOA
ATS

:KEYBOARD TABLE

KTAB.X

:INCREMENT KEY TABLE INDEX
:SHIFT INPUTS LOOKING FOR GROUNDED

ROW

:GET KEY NUMBER FROM TABLE

:COLUMNS ARE PRIMARY INDEX. ROWS SECONDARY INDEX.
:THE KEYS IN THE COLUMN ATTACHED TO OUTPUT BIT 0 ARE FOLLOWED

BY THOSE IN THE COLUMN A TT ACHED TO OUTPUT BIT 1 ETC. WITHIN
: A COLUMN. THE KEY ATTACHED TO INPUT BIT 0 IS FIRST. FOLLOWED
: BY THE ONE ATTACHED TO INPUT BIT 1. ETC .

:THE DIG IT KEYS ARE 0 TO 9. THE DECIMAL POINT IS 10. AND "GO" IS 11

KTAB .BYTE 3.2.0.4.B.9. 1. 11.5.6.7. 10

:SUBROUTINE SCANO WAITS FOR ALL KEYS TO BE RELEASED SO THAT THE
NEXT CLOSURE CAN BE FOUND

SCANO LOA
STA

KEYOPN LOA
AND
CMP
BNE
ATS
.END

#0
VIAORB
VIAORA
#OPEN
#OPEN
KEYOPN

:GROUND ALL KEYBOARD COLUMNS

GET KEYBOARD ROW INPUTS
IGNORE UNUSED INPUTS
ARE ANY KEYS BEING PRESSED?
YES. WAIT UNTIL ALL RELEASED

16- 14

PROJECT #2: A Digital Thermometer
Purpose: This project is a digital thermometer which shows the temperature in

degrees Celsius on two seven-segment displays.

Hardware: The project uses one input port and one output port. two seven-segment
displays, a 74LS04 inverter, a 74LSOO NAND gate or a 74LSOB AND gate depending on
the polarity of the displays, an Analog Devices AD7570J 8-bit monolithic A/D con­
verter. an LM311 comparator. and various peripheral drivers, resistors. and capacitors
as required by the displays and the converter. (See Chapter 11 and Reference 1 at the
end of this chapter for discussions of A/D converters.)

Figure 16-2 shows the organization of the hardware. Control line CB2 from the VIA is
used to send a Start Conversion signal to the A/D converter. Input lines 0 through 7 are
attached directly to the eight digital data lines from the converter. Output lines 0
through 3 are used to send BCD digits to the seven-segment decoder/drivers. Output
line 4 activates the displays and output line 5 selects the left or right display Hine 5 is '1'
for the left display). Control line CA 1 is used to determine when the conversion is com­
plete (BUSY becomes one).

The analog part of the hardware is shown in Figure 16-3. The
thermistor simply provides a resistance that depends on tem­
perature. Figure 16-4 is a plot of the resistance and Figure 16-5
shows the range of current values over which the resistance is

THERMOMETER
ANALOG
HARDWARE

constant. The conversion to degrees Celsius in the program is performed with a calibra­
tion table. The two potentiometers can be adjusted to scale the data properly. A clock
for the A/O converter is generated from an RC network. as shown in Figure 16-3. The
values are R7=33 kfl and C1 =1000 pf. so that the clock frequency is about 75 kHz. At
this frequency. the maximum conversion time for eight bits is about 50 microseconds.
When BUSY goes high. it sets bit 1 of the VIA Interrupt Flag register. The 8-bit version
of the converter requires the following special connections. The etght data lines are
082 through 089 (OB 1 is always high during convers ion and 000 k:Jwt. The Short Cycle
8-bit input (pin 26-SCB) is tied low so that only an 8-bit conversic>n as perlc:wmed In the
present case. High Byte Enable (pin 20-HBENI and Low Byte Enable (pm 2 t-LBENI were
both tied high so that the data outputs were aftways enabl-ed

The AJO converter uses the successwe approximation method to perform a conversion.
The Aoc·s data register is cOflnected to the inputs of an internal 0/A converter whose
output (available at OUT 1 and OlJT2) tS compared to the analog input. When a conver­
sion 1s initiated. the AOC logic sets the data register to al! zeroes with the exception of
the most significant bit (MSB). which is set to one. If the analog input is less than the
resulting internally generated analog value. then the MSB is reset to zero; otherwise it
remains a one. The next most s1gn1ficant bit 1s then set to one and the process repeated
until all eight bits have been .. tested '" 1n this way. After the eighth cycle. the value in the
register is the value which most closely corresponds to the analog input

This method is fast. but it requires that the input be stable during the conversion
process. Rapidly changing or noisy inputs would require additional signal conditioning.
The references at the end of this chapter describe more accurate methods for handl ing
analog 1/0

16-15

PB7 - lnotused) ••• - (not used)
Output PB5

Port PB4

(VIA PB3

Port Bl PB2 .. ,
CB2 ••o

I

•I • •
PA7 --- Do 01 02 03 Do o, 02 03

""'-""" PA5

If
Input PA5 Display -Port PA4 AID '"" '"" MA PA3 """-'• 0- °"'"' Port Al PA2 '""' lrigtul

PA1

CA1 PAc BUSY Common Common

' I ,.
0

...... Lf} n -- --
Figure 16-2. l/O Configuration for a Digital Thermometer

16-16

R6

50 kO

Of':.S!l ADJ
.15 v oo-~•"•"•.--0+ 1s v

+15V +5 V
R5

2 MU

R3
22 1

200 11 Vee Voo
VREF

VREF OUTl
-10 v

+5 v "' 1'0

OUT2

R7

JJ 1r.n ":'
-1 5 v

24
CLOCK COMP

+15 v
Cl AD7570J SRO (not used)

~OOOpf AID

RT Converter SYNC (not used)

Thermistor
089

10
PA7

3 ANALOG 11
INPUT

DBB PA6

R4 1'0

RS Gain Adius\ PAS

68 k!I
PA4 To VIA

P.t.3 -· T A

P"2

25
From V1A C82 odput STJIT PAl

To VIA CA1 ... 28 !IJSY
PAO

+5 v Del
18

lno1 usecH

19
oeo tnot usedl

A(,jP«) OGNO

23

'":" A T D

Note If positive VREF •S used . the ANALOG INPUT range is 0 10 -VREF· alld the

COMPA RATOR 's (-I input should be connected to OUT 1 (pin 4) of the AD7570

Ar is the thermistor Ttie analog input from the voltage d ivider is

Since RF"' 68 kO. the input is

Re
K 15 Volt

Ra+ Ar

1.02 Mfl
---Volt
Rr+6Bk 0

R2

5k0

Ar has a minimum value of 34 kO ff = 50°C, see Figure 16-4) so full scale is 10 Volt

Figure 16-3. Digital Thermometer Analog Hardware

16-17

T !"'Cl R(Ohml

0 ,., 000

" 100 000
so 34 000

100 6 000 ----......
100 000 "O..

10

0.01

"
T~t\.lfe f"'C)

.........

Figure 16-4. Thermistor Characteristics
IFenwal GA51J1 Bead)

.................

The curve i1 ~near (i.e., the rHiStll'\Ce is
independent of currend for currents less
than 0. 1 milliampere.

0.1

I/milliampere)

Figure 16-5. Typical E-1 Curve for Thermistor 125'CI

18-18

so

1.0

General Program Flowchart :

16-19

Program Description:

1) Initialization

Memory locat ions FFFC and FFFD (the 6502 Reset locations) contain the starting
address of the program. The initialization configures the VIA and places a value in
the Stack Pointer. The Stack is used only to store subroutine return addresses
Remember that Chapter 11 contains numerous examples of how to con figure VlAs

21 Send Start Convereion Signal to A'D Converter

The CPU pulses the Start Conversion line by first placi ng a one and then a zero on
output line C82_ Each input from the converter requires a starting pulse.

3) Wait for Conversion to be Completed.

A 'O' to T transition on the BUSY line sets bit 1 of the VIA Interrupt Flag Register.
Actually. the converter only requires a maximum of 50 microseconds for an 8-bi t
conversion. so a short delay would also be ad equate. Note that reading the
converter data clears bit 1 of the VIA Interrupt Flag Register so that the next
operation can proceed correc tl y

4) Read Data from A'O Converter

Reading the data involves a single tnput operation. We shou ld note that the Analog
Devices AD7570J has an enable input and tnstate outputs. so that it could be tied
directly to the Microprocessor Data Bus. The 7570 converter is. of course.
underut1l1zed in this part icular application. particularly si nce we are interfacing it to
the 6502 processor through a V1A. A simpler 8-bi t converter such as the National
5357 described 1n Chapter 11 would do the job at lower cost.

16-20

5) Convert Dela to Degrees C.laiua

Flowchart:

.....

The convers4on uses a tabfe that contains the largest in­
put value corresponding to a grven temperature. The pro­
gram searches the table. loot ing for a value greater than
or eQual to the value received from the converter. The first

USING A
CALIBRATION
TABLE

such value 1t finds COfresponds to the required temperature; that is. if the tenth
entry is the first value larger than or equal to the data. the temperature is ten
degrees. This search method is inefficient but adequate for the present applica-
ti on.

The conversion subroutine returns a binary value which is then converted to BCD
by repeatecUy subtracting ten and counting operations until the remainder
becomes negative. The final ten is then added back to produce the least signifi·
cant dig it.

The table could be obtained by calibration or by a mathematical approximation.
The calibration method is simple. since the thermometer must be ca librated any·
way. The table occupies one memory location for each temperature value to be
displayed. 1 Reference 2 describes a method that uses far less memory. To cali·
brate the thermometer. you must first adjust the potentiometers to produce the
proper overall range and then determine the converter outpu t values correspond·
ing to specific temperatures.

16-21

61 Prepare Date for Di1pley

Flowchart :

.....

For the least significant digit. we simply set the bit that turns
on the displays. The result is saved in page zero address
LSTEMP.

The only difference for the most significant digit is that a lead·

BLANKING
A LEADING
ZERO

mg zero is blanked (1. e .. the displays show "blank 7" rather than "07" for 7°C). This
simply involves not setting the bit that turns on the displays if the digit is zero. The
resu lt is saved in page zero address MSTEMP.

16-22

7) Display Temperature for Six Seconds

Flowchart:

Each display is pulsed often enough so that it appears to be li t continuously. If
TPULS were made longer (say 50 ms). the displays would appear to flash on and
off.

The program uses a 16-bit counter in two page-zero memory locations to count the
time between temperature samples.

16-23

:PROGRAM NAME: THERMOMETER
:DATE OF PROGRAM : 5/1/ 79
:PROGRAMMER : LANCE A. LEVENTHAL
:PROGRAM MEMORY REQUIREMENTS : 173 BYTES
:RAM REQUIREMENTS : 5 BYTES
:1/0 REQUIREMENTS : 1 INPUT PORT. 1 OUTPUT PORT (1 6522 VIA)

:THIS PROGRAM IS A DIGITAL THERMOMETER THAT ACCEPTS INPUTS FROM
AN A/D CONVERTER A TT ACHED TO A THERMISTOR. CONVERTS THE INPUT
TO DEGREES CELSIUS. AND DISPLAYS THE RESULTS ON TWO
SEVEN-SEGMENT LED DISPLAYS

:A/ D CONVERTER

:THE AID CONVERTER IS AN ANALOG DEVICES 75 70J MONOLITHIC CONVERTER
WHICH PRODUCES AN B-BIT OUTPUT

:THE CONVERSION PROCESS IS STARTED BY A PULSE ON THE START
CONVERSION LINE (CONTROL LINE 2 ON VIA PORT Bl

:THE CONVERSION IS COMPLETED IN 50 MICROSECONDS AND THE
DIGITAL DATA IS LATCHED

:DISPLAYS

:TWO SEVEN-SEGMENT LED DISPLAYS ARE USED WITH SEPARATE DECODERS
(7447 OR 744B DEPENDING ON THE TYPE OF DISPLAY)

:THE DECODER DATA INPUTS ARE CONN ECTED TO BITS 0 TO 3 OF
VIA PORT B

:BIT 4 OF VIA PORT BIS USED TO ACTIVATE THE LED DISPLAYS
(BIT 4 IS 1 TO SEND DA TA TO LEDS)

:BIT 5 OF VIA PORT B IS USED TO SELECT WHICH LED IS BEING
USED (BIT 5 IS 1 IF THE LEADING DISPLAY IS BEING USED.
0 IF THE TRAILING DISPLAY IS BEING USED)

:METHOD

:STEP 1 · INITIALIZATION
THE MEMORY STACK (USED FOR SUBROUTINE RETURN ADDRESSES) IS
INITIALIZED

:STEP 2 · PULSE START CONVERSION LINE
THE A/ D CONVERTER'S START CONVERSION LINE (CONTROL LINE 2 OF VIA
PORT Bl IS PULSED

:STEP 3 · WAIT FOR AID OUTPUT TO SETTLE
THE BUSY LINE FROM THE CONVERTER IS ATTACHED TO CONTROL
LINE 1 ON PORT A OF THE VIA WHEN BUSY GOES HIGH TO SIGNAL
CONVERSION COMPLETED. IT SETS BIT 1 OF THE VIA INTERRUPT
FLAG REGISTER

:STEP 4 · READ A/D VALUE. CONVERT TO DEGREES CELSIUS
A TABLE IS USED FOR CONVERSION. IT CONTAINS THE MAXIMUM
INPUT VALUE FOR EACH TEMPERATURE READING

.STEP 5 · DISPLAY TEMPERATURE ON LEDS
THE TEMPERATURE IS DISPLAYED ON THE LEDS FOR SIX SECONDS
BEFORE ANOTHER CONVERSION IS PERFORMED

16-24

THERMOMETER VARIABLE DEFINITIONS

MEMORY SYSTEM CONSTANTS

BEGIN =$0400
STKBGN =$FF
TEMP = 0

1/0 UNITS AND VIA ADDRESSES

VIAORB =$AOOO
VIAORA = $A001
VIADDRB =$A002
VIADDRA =$A003
VIAPC R =$AOOC
VIAIFR =$AOOD

RAM TEMPORARY STORAGE

" =TEMP
DCTRC · = · +2
INPUT ·=·+1

LSTEMP " = "+1

M STEMP · = · +1

DEFINITIONS

BUSYF =%00000010

LEDON =%00010000
LEDSL =%00100000
MSCNT =$C7
TSAMPH =6

TSAMPL =250

TPULS =2

"=$FFFC

:STARTING ADDRESS FOR PROG RAM
:STARTING STACK ADDRESS ON PAGE 1
:STARTING ADDRESS FOR RAM STORAGE

!OUTPUT PORT DISPLAYS
: INPUT PORT FOR CONVERTER
:DATA DIRECTION REGISTER FOR PORT B
:DATA DIRECTION REGISTER FOR PORT A
:VIA PERIPHERAL CONTROL REGISTER
:VIA INTERRUPT FLAG REGISTER

:DISPLAY PULSE COUNTER
:TEMPORARY STORAGE FOR CONVERTER

INPUT
:LEAST SIGNI FICANT DIGIT OF
: TEMPERATURE
:MOST SIGNIFICANT DIGIT OF

TEMPERATURE

:PATTERN FOR EXAMINING BUSY
STATUS

:CODE TO SEND OUTPUT TO LEDS
:CODE TO SELECT LEADING DI SPLAY
:COUNT NEEDED TO GIVE 1 MS DELAY
:TSAMPH X TSAMPL IS THE NUMBER OF
:TIMES THE DISPLAYS ARE PULSED IN A

TEMPERATURE SAMPLI NG PERIOD.
THE LENGTH OF A SAMPLING PERIOD
IS THUS 2"TPULS"TSAMPH"TSAMPL
MILLISECONDS THE FACTOR OF 2"TPULS
IS INTRODUCED BY THE FACT THAT
EACH OF 2 DISPLAYS IS PULSED FOR
TPULS MS

:DISPLAY PULSE LENGTH IN MS

RESET ADDRESS TO REACH THERMOMETER PROG RAM

WORD BEGIN

16·25

INITIALIZATION OF THERMOMETER PROGRAM

·~BEGIN

LOX
TXS
LDA
STA
LOA
STA
LOA

STA
LDA
STA

#STKBGN

#0
VIADDRA
#$FF
VIADDRB
#%11000001

VIAPCR
#BUSYF
VIAIFR

:INITIALIZE STACK POINTER

:MAKE PORT A LINES INPUTS

:MAKE PORT B LINES OUTPUTS

:START CONVERSION LOW. BUSY
ACTIVE LOW-TO-HIGH

:CONFIGURE VIA PERIPHERAL CONTROL
:CLEAR BUSY FLAG INITIALLY

:PULSE START CONVERSION LINE

START LDA
STA
LOA
STA

%1110000 1 .SEND START CONVERSION HIGH
VIAPCR.
#%11000001 :SEND START CONVERSION LOW
VIAPCR

:WAIT FOR BUSY TO GO HIGH AND READ DATA

LDA
WTBSY BIT

BEG
LOA

#BUSYF
VIAIFR
WTBSY
VIAORA

:HAS CONVERSION BEEN COMPLETED>
:NO. WAIT
: YES. READ DAT A FROM CONVERTER

:CONVERT DATA TO TEMPERATURE IN DECIMAL

JSR CO NVR

JSR BIN BCD

:CONFIGURE DIGITS FOR DISPLAY

ORA
STA
TXA
BEG
ORA
ORA

SVMSD STA

LEDON
LSTEMP

SVMSD
#LEDON
#LED SL
MSTEMP

:PULSE THE LED DISPLAYS

PULSE LDA
STA

TLOOP LOA
STA

#TSAMPH
DCTR+1
#TSAMPL
OCTA

:CONVERT DATA TO TEMPERATURE
IN BINARY

:CONVERT BINARY TO BCD

:SET OUTPUT TO LEDS (LSD IN A)
:SAVE LEAST SIGNIFICANT DIGIT
:GET MOST SIGNIFICANT DIGIT
:LEAVE DISPLAY OFF IF MSD IS ZERO
: SET OUTPUT TO LEDS
:SELECT LEADING DISPLAY
:SAVE MOST SIGNIFICANT DIGIT

:16-BIT COUNTER FOR DISPLAY PULSES

16-26

DSPLY LDA
STA
LDY
JSR
LDA
STA
LDY
JSR
DEC
BNE
DEC
BNE
BEO

MSTEMP
VIAD RB
#TPULS
DELAY
LSTEMP
VIAD RB
#TPULS
DELAY
OCTA
DSPLY
DCTR+l
TLOOP
START

:OUTPUT TO LEADING DISPLAY

:DELAY DISPLAY PULSE LENGTH

:OUTPUT TO TRAILING DISPLAY

: DELAY DISPLAY PULSE LENGTH

:HAS COUNT REACHED ZERO?
:NO. KEEP PULSING DISPLAYS
:YES. GO SAMPLE TEMPERATURE AGAIN

:SUBROUTINE DELAY WAITS FOR THE NUMBER Of MS SPECIFIED IN
: INDEX REGISTER Y BY COUNTING WITH INDEX REGISTER X

DELAY LDX #MSC NT :COUNT FOR 1 MS DELAY
WTLP DEX :WAIT 1 MS

BNE WTLP
DEY
BNE DELAY :COUNT MS
ATS

:SUBROUTINE CONVR CONVERTS INPUT FROM AID CONVERTER TO
DEGREES CELSIUS BY USING A TABLE. INPUT DATA IS IN
THE ACCUMULATOR AND THE RESULT IS A BINARY NUMBER IN

: THE ACCUMULATOR

:REGISTERS USED: A.X
:MEMORY LOCATION USED: INPUT

CONVR STA
LDX

CHVAL INX
LDA
CMP
BCC
TXA
ATS

INPUT
#$FF

DEGTB.X
INPUT
CHVAL

:SAVE INPUT READING
:START TABLE INDEX AT -1
:INCREMENT TABLE INDEX
:GET ENTRY FROM TABLE
:IS AID INPUT BELOW ENTRY/
:NO. KEEP LOOKING
:YES. RETURN WITH TIN ACCUMULATOR

:TABLE DEGTB WAS FOUND BY CALIBRATION.
:DEGTB CONTAINS THE LARGEST INPUT VALUE WHICH CORRESPONDS

TO A PARTICULAR TEMPERATURE READING (I.E .. THE FIRST ENTRY
IS DECIMAL 5B SO AN INPUT VALUE OF 5B IS THE LARGEST
VALUE GIVING A ZERO TEMPERATURE READING -VALUES
BELOW ZERO ARE NOT ALLOWED

DEGTB .BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

5B.61 .63.66.69. 71 . 74. 77.80.84
87.90.93.97.101 .104.108
112.116.120.124.128.132. 136
141 .145.149.154.158.163.167
172.177.181 .186.191 .195.200
204.209.214.218.223.227.232
236.241 ,245.249.253.255

18-27

SUBROUTINE BINBCO CONVERTS A BINARY NUMBER LESS THAN 100 INTO
TWO BCD DIGITS. THE INPUT DATA IS IN THE ACCUMULATOR AND THE
RESULT IS IN INDEX REGISTER X (MOST SIGNIFICANT DIGIT) AND THE
ACCUMULATOR (LEAST SIGNIFICANT DIGIT)

;REGISTERS USED· A.X

BINBCD LOX
SEC

SUBTEN INX
SBC
BCS
ADC
RTS
.END

#$FF

#10
SUBTEN
#10

;TENS COUNT = - 1
;SET CARRY INITIALLY
;INCREMENT TENS COUNT
;CAN TEN STILL BE SUBTRACTED?
;YES. CONTINUE
;NO. ADD BACK LAST TEN

16-28

REFERENCES

1. E. A. Hnatek. A User's Handbook of D/A and AID Converters. Wiley. New York.
1976

2. T. A. Seim, "Numerical Interpolation for Microprocessor-Based Systems." Com­
puter Design. February 1978. pp. 111-116. - -

D. H. Sheingold. ed .. Analog-Dig ital Conversion Notes. Analog Devices. Inc .. P. 0 .
Box 796. Norwood. MA. 02062. 1977

4. 0 . P. Burton, and A. L Dexter. Microprocessor SystemS Handbook. Analog
Devices. Inc .. P. 0 . Box 796. Norwood. MA 02062. 19n

5. J. B. Peatman. Microcomputer-based Design. McGraw-H._ - YOO:. 1977

6. F. Molinari. et al.. " Shopping for the Right Analog VO Boa<d.'" Electronic Design.
October 11 . 1978. pp. 238-243. -----

7. Auslander. 0 . M. et al.. " Direct D1g1tal Process Control : Practice and AkJorithms
for M icroprocessor Apphcat1ons ... Proceedings of the IEEE February 1978. pp.
199-208

8. R. J . Bibbero. M1croprocessors in Instruments and Control Wile¥. New York. 1977

9. A. Mrozowski. "Analog Output Chips Shrinl: A-0 Conver5ron Software."
Electronics. June 23. 1977. pp. 130-133

10. P. R. Aony et al. ''Mterocomputet'" Interfacing Sample and Hold Devices." Com­
puter Design. Decembe< 1977. pp 106-108

11 . P. H. Garrett Ana Systems for Microprocessors and M inicomputers. Reston
Publishing Co.. eston. VA. . 1 78

12. The Optoelectronics Data Book. Texas Instruments. Inc .. P. 0 . Box 5012. Dallas.
TX . 1978

13. The Optoelectronic Designer's Catalog. Hewlett-Packard. Inc .. 1820 Embarcadero
Road. Palo Alto. CA 94303. 1978.

16-29

Index

Accumulator. Using the. 4-2
ACIA Interrupt Routine. 12-32
ACIA Interrupts. 6850. 12-9
ACIA Reg isters

6551 . 11 - 118
6850. 11-111

AID Converter Interface. 11-98
Address Field. Numbers and Characters. 3- 111
Addressing Modes. 3- 111

Post -Indexed (Indirect!. 5-20
Pre-Indexed Ondirect). 5-22

Addresses. Storing. 3-7
Algebraic Notation. 1-8
Algorithms. Better. 15-21
Arithmetic and Logical Expressions. 2-11
Arithmetic Program. Testing an. 14-28
Arithmetic w ith Tables. 4- 15
ASCII Characters. 2- 11
ASCII, Handling Data rn . 6- 1
Assembler. 1-5

Ar1thmet1c Expressions. 3-111
Choosing an. 1-6
One-pass. 2-16
Two-pass. 2-16

Assembly Language. Appl1 ca t1ons for. 1- 10
Assembly Language Fields. 2- 1
Assembly Language Program. 1-4

Binary and BCD. Accuracy 1n. 8-6
Binary. Decimal Accuracy 1n. 8-3
Binary Instructions. 1-1
Binary Rounding. 8-21
Bii Test Instruction. 11-79
Bootstrap Loader. 2- 17
Bouom-Up Design. 13-50
Breakpoint 14-2

Inserting. 14-3
BAK lns1ruc t1 on. 12-4

As a Breakpoint . 14-2

Credit Venfica11on. Flowcharting the. 13-24
Credit Ver1fica 11on Terminal . St ructured

Program for the. 13-44
Cross-Assembler . 2- 16

0/A Converter Interface. 11 -93
Data. Forming Classes of. 14-27
Data Flowcharts. 13-20
Debouncmg 1n Software. 11 -47

wi th Cross-Coupled NANO Gates. 11-50
Debugging. 13-3

Using Test Cases from. 14-25
Deciding on a Major Change. 15-2 1
Decimal Data or Addresses. 2- 10
Decimal Mode. 8-5

Decimal Numbers. Doubling and Halving. 8-21
Decimal Rounding. 8-22
Def1mng Names. 2-6
Defm 111on List. Rules for. 15- 11

Typi cal. 15- 11
Del1n111ons. Placemen t ol. 2-7
Dehm11ers. 2-2
D1v1s1on Algorithm. 8-12
Documenta tion. 13-3
Documen1a 11on Package. 15-17
Documenting Status and Conlrol Transfers.

11 - 80
Double Bullenng. 12-19

8-811 Summation. 5-4
Errors. Common. 14- 11

Considerat ions. 13-5
Example Format. 4- 1
Examples. Guidelines for . 4- 1
E)(temal Refer ences. 2-8

Flowcharts. Hints for Using. 15-9
Flowchmt1ng. Advantages of. 13- 18

Disadvantages of. 13- 18
See11ons. 13-24

Cahbra11on Table. Using a. 16-21 Format. 2-2
Checkhst. Wha t to Incl ude 1n. 14- 10 FORTRAN. l -7
Code Conversion Program. Debugging a. 14- 15
Coding. 13-3

Relative Importance of. 13-1
Combining Conuol lnformatmn. 11-79
Commenting Examples. 15-5

Guidelines. 15-3
Questions for. 15-6
Techniques. 2- 15

Common-Anode or Common-Cathode Displays.
11 -65

Compiler. 1-7
OptimtZ1ng. 1-8
Cost of. 1-8

Computer Program. 1-2
Conditional Branches. Long. 5-11
Cont rol and Status Information. 11-78

General Service Rou11nes. Tasks IOI. 12-37
EL6Hand Assembly, 1-5
Hand Checking Oues11ons. 14- 10
Hashing. 9-4
Hexadecimal l oader . 1-3
High-level Language. 1- 11

xxi

Appl1ca11ons for. 1- 11
Advantages of. 1-9
Disadvantages of. 1-9
Ineffic iency of. 1-8
Machine Independence of. 1-7
Overhead for. 1-9
Ponabil1 ty of. 1-7
Syntax of. 1-8
Unsu1 tab1l1ty of. 1-10

Index (Continued)

lntormation Hiding Principle. 13-32
lnput. Factors in. 13-4
Input Systems. Characteristics of. 12-1
Instruction Execution. Status Changes with.

3-18
Instruct ions. Defining a Sequence of. 2-13
Interrupt -Driven Programs. Debugging. 14-13
Interrupt Handling by Monitors. 12-15
Interrupt Inputs. 12-3
Interrupt. Non-Maskable. 12-2. 12-4
Interrupt Response. 12-3
Interrupt Return Address. Changing the. 12-18
Interrupt System. Special Features of. 12-3
Interrupts. Disabling. 12-31

Disadvantages of 12-2
Emptying a Buffer with. 12-22
Enabling and Disabling. 12-2
on Particular M1crocomputers. 12-15
Reasoning Behind. 12-1
6530 and 6532 Multifunction Device. 12-9
Vectored . 12-12

1/ 0 Device Table. 11-123
1/ 0 Devices. Synchronizing with. 11 -78

Jump and Branch Terminology. 9-17

Key Closure. Wa1t1ng for a. 11 -84
Key Table. 16-6
Keyboard Errors. Correcting. 13-15
Keyboard Interrupt. 12-16
Keyboard Routine. Expanding the. 13-54
Keyboard Scan. 11-81

Label Field. 2-2
labeling. Rules of. 2-4
labels. Choosing. 2-3
Labels in Jump Instructions. 2-2
language Levels. Appli cation Areas for. 1-1 O

Future Trends in. 1-11
leading Ze ro. Blanking a. 16-22
LED Control. 11-61
Link Editor. 2-17
Linking loaders. 2-17
Location Counter. 2- 7
Logic Analyzer. 14-9

Important Features of 14-9
Logical Devices. 11-123

Machine Language. Applications for. 1-10
Program. 1-2

Macro Assembler. 2-16
Macros. Advantages of. 2-14

Disadvantages of. 2- 14
Maintenance and Redesign. 13-3
Matrix Keyboard. 11-81
Measuring Progress in Stages. 13-1
Memory Dump. 14-6
Memory. Saving. 15-19

Usmg Page Zero of. 4-3

Memory loader Error Hand ling. 13-9
Operator Error Correction in. 13-11

Memory Map. Typical. 15-10
Meta-Assembler. 2-16
Microassembler. 2-16
Mnemonics. Problem wi th. 1-4
Modular Programming. Advantages of. 13-29

Disadvantages of. 13-29
Rules for. 13-34

Modularizat ion. Principles of. 13-30
Multiplication Algorithm. 8-7

Names. Choice of. 2-6. 15-2
Names. Use of. 2-6
Non-Decimal Number Systems. 2-10
Notation. Differences in. 3-5

Ob1ect Program. 1-2. 1-5
Octal or Hexadecimal . 1-3
One-Pass Assembler. 2-16
Operator In teraction. 13-6
Origin Pseudo-Operation. Set. 3- 110

Passing Parameters. 10-1
PIA Interrupts. 6520. 12-5
Polling, 12-2

Interrupts. 12- 11
Interrupts. Disadvantages of. 12-11

Portability. 1-6
Priority. 12-2
Problem De finition. 13-3
Processing. Factors in . 13-5
Program Design. 13-3

Basic Princi ples of. 13-17
Programming Gu1dehnes. 4-2
Pseudo-Operations. 2-4

BYTE. 08YTE. TEXT. WORD. 3-109

RAM. All ocating. 2-7
ln1t1al 1zmg. 2-B

Real Time. Maintaining. 12-29
11eal-Time Clock. 12-23

Frequency of. 12-23
Priority of. 12-23
Synchronization with. 12-23

Redesign. Cost o f. 15-18
Reentrant Subroutine. 10-2
Register Dumps. 14-4
Relocating Loader. 2- 17
Relocation. 10-2
Relocat ion Constant. 2-3
Resident Assemb ler. 2- 16
Reorganization. Major or Minor. 15-18
Rollover. 11 -90

Saving Memory. 15-19
Saving Execution Time. 15-19
Searching Methods. 9-6
Selecting Data from Classes. 14-27

xxii

Index (Continued)

Self-Checking Numbers. 8-17
Self-Document ing Programs. Rules for. 15-1
Separating Status Informat ion. 11 -79
Simple Sorting Algorithm. 9-12
Sing le-Step. 14-1

Limi tations of. 14-2
Software Simulator. 14-8
6520 PIA Interrupts. 12-5
6522 VIA Interrupts. 12-6

Enabling and Disabling. 12-6
6551 ACIA Configurat ion. Example of. 11 - 118
6551 ACIA Registers. 11 - 118
6800/6502 Addressing Mode Comparison.

3-105
Instruction Comparison. 3-106
Register Companion. 3- 105
S1milar1tv. 3-105
S1atus Comparison. 3- 105

6850 ACIA Configuration. Example of. 11 - 115

Switch and Light Error Handling. 13- l
Switch and Light Input . 13· 7
Switch and light Ou tputs. 13-7
Swi tch and light System. De lin ing. 13-7

Flowcharting. 13-20
Modularizing the. 13-31
Struc tured Programming in the. 13-41
Top-Down Design o f. 13-51

Switch-Based Memory loader. Defining a. 13-9
Flow charting !he. 13-22
Modularizing the. 13·31
Struc tured Programm ing for. 13-42
Top -Down Design of. 13-52

Switch Bounce. 11-47
Symbol Table. 2-6

Terminamrs for Structures. 13-49
Testing. 13-3

Aids. 14-25

~~;g :~::. ~e~~~=~5Fe~!~~;5
1 of. 11 _ 111 Spec ial Cases. 14-27

6850 ACIA Interrupts. 12-9 ~~~~~~;~t~~s~;~.1 °id~=~~~~se.o:.6; ~~SO

Rules for . 14-29

Sort Program. Debugging a. 14-19 Disadvantages o f. 13-50
Testing a. 14-28 Forma l for. 13-55

Sorting Methods. Other. 9-15 Methods. l3-50

~~~t~:,:'~~~e~~P~~nt . Stages of. 13_ 1 Transmission Errors. Correcting. 13-15 

Standard Interfaces. 11-124 ;~~ ~~,~~a~~-u1s;~~O~ 
11

·
56 

S1andard Progra m Library Forms. 15-13 TTY Receive Mode. 11 - 103 
S1art Bit Interrupt. 12-34 TTY. Standard. 11 -103 

~:~~;~:~~ ~:~~:~~c~~~;i~e~~-~-44 TTY Transmit Mode. 11 - 108 
Structured Programming. Advantages of. 13-39 Two-Pass Assembler. 2· 16 

Basic Structures o f. 13-35 
Disadvantages o f. 13-39 
Ru les for. 13-49 
When to Use. 13-40 

Structured Receive Routine. 13-46 
Struc tu red Testing. 14-27 
St ructu res. Examples of. 13-38 

Ru les for. 13-49 
Stubs. 13-50 

Expanding. 13-50 
Subrou tine Instructi ons. 10-1 
Subroutine l ibrary. 10- 1 
Subroutines. Documen t ing. 10-2 

UART. 11 -11 0 

Variables. local or Global. 2- 14 
Vec toring . 12-2 
Venhcauon Term inal. Defining a. 13-12 

Error Handhng. 13- 14 
Inputs. 13-12 
Modularizing the. 13-32 
Outpu ts. 13- 12 
Top-Down Design of. 13-53 

VIA Interrupts. 6522. 12-6 
Enabling and Disabling 6522. 12-6 
F1 ll1ng a Bulfer. 12- 19 

xx iii 



About the Author 

Lance A. Leventhal is a partner in Emulative Systems Company, a San 
Diego-based consulting firm specializing in microprocessors and 
microprogramming. He serves as Technical Editor of the Society for 
Computer Simulation and as a Contributing Editor for Digital Design. 
He is a national lecturer on microprocessors for the IEEE, the author of 
five books and over forty articles on microprocessors, and a regular 
contributor to such publications as Simulation, Digital Design, and 
Kilobaud. 

Dr. Leventhal' s previous experience includes affiliations with Linkabit 
Corporation, lntelcom Rad Tech, Naval Electronics Laboratory Center 
and Harry Diamond Laboratories. He received a B..A. degree from 
Washington University in St. Louis, Missouri, and M.S. and Ph.D. 
degrees from the University of California at San Diego. He is a mem­
ber of SCS, ACM, and IEEE. 



OSBORNE/McGraw-Hill GENERAL BOOKS 

An Introduction to Microcomputen series 
by A<Uim 0.bome 
VohffneO-The~allook 
Volume 1 - Bale Conc.puo 
Volume 2 - Some Real Mlcroproceuon l11171t ed.) 
Volume 3 - Some Reel Support Devlcee 111171 ed.) 

Volume 2 1978-1979 Update 8erlea 
Volume 3 1978-19711 Upd.lta -

The 8089 l/D Proceuor .._ 
by Adam Osborne 

The 8088 Book 
by R. Rector and G. Alexy 

8080 Progo•••• .... tor logic DMign 
by A<Uim Osborne 

6800 Progo•1w1>11111 for Logic Deoign 
by Adam Osborne 

ZIO Programming for Logic Design 
by Adam Osborne 

8090A/8085 Auembly Language Programming 
by L. Leventhal 

8800 Auembly Language Programming 
by L. Leventhal 

Z8000 Auembly Language Programming 
by L. Leventhal et al. 

Running Wild: The Next Industrial Revolution 
by Adam Osborne 

PET-CBM Personal Computer Guide 
by Carroll Donahue and Janice Enger 

PET and the IEEE 488 Bus IGPIB) 
by E. Fisher end C. W. Jensen 

OSBORNE/McGraw-Hill SOFTWARE 

Practical Bale Programs 
by L. Poole et al. 

Some Common BASIC Programs 
by L. Poole and M . Borchers 

Some Common BASIC Programs PET Cauatte 
Some Common BASIC Programs PET Diak 
Some Common BASIC Programs TRS-80 C111ette 

Payroll with Coat Accounting - CBASIC 
by Lon Poole et al. 

Account• Payable and Accounts Receivable - CBASIC 
by Lon Poole et al. 

General Ledger - CBASIC 
by Lon Poole et al. 

Some Common BHic Programs - PET/CBM 
edited by Lon Poole et el. 




	6502 Assembly Language Programming (Cover)
	Copyright 1979 McGraw-Hill
	Acknowledgements
	Contents
	Figures
	Tables
	Chapter 1: Introduction to Assembly Language Programming
	How This Book Has Been Printed
	The Meaning of Instructions
	A Computer Program
	The Programming Problem
	Using Octal or Hexidecimal
	Instruction Code Mnemonics
	The Assembler Program
	Additional Features of Assemblers
	Disadvantages of Assembly Language
	High-Level Languages
	Advantages of High-Level Languages
	Disadvantages of High-Level Languages
	High-Level Languages for Microprocessors
	Which Level Should You Use?
	How About the Future?
	Why This Book?

	References

	Chapter 2: Assemblers
	Features of Assemblers
	Assembler Instructions
	Labels
	Assebler Operation Codes (Mnemonics)
	Pseudo-Operations
	The Data Pseudo-Operations
	The Equate (or Define) Pseudo-Operation
	The Origin Pseudo-Operation
	The Reserve Pseudo-Operation
	Linking Pseudo-Operations
	Housekeeping Pseudo-Operations
	Labels with Pseudo-Operations

	Addresses & the Operand Field
	Conditional Assembly
	Macros
	Comments
	Types of Assemblers
	Errors
	Loaders
	References

	Chapter 3: The 6502 Assembly Language Instruction Set
	CPU Status Registers & Status Flags
	6502 Memory Addressing Modes
	Memory - Immediate
	Memory - Direct
	Implied or Inherent Addressing
	Accumulator Addressing
	Pre-Indexed Indirect Addressing
	Post-Indexed Indirect Addressing
	Indexed Addressing
	Indirect Addressing
	Relative Addressing

	6502 Instruction Set
	Abbreviations
	Instruction Mnemonics
	Instruction Object Codes
	Instruction Execution Times
	Status
	ADC - Add Memory, with Carry, to Accumulator
	AND - AND Memory with Accumulator
	ASL - Shift Accumulator or Memory Byte Left
	BCC - Branch if Carry Clear (C=0)
	BCS - Branch if Carry Set (C=1)
	BEQ - Branch if Equal to Zero (Z=1)
	BIT - Bit Test
	BMI - Branch if Minus (S=1)
	BNE - Branch if Not Equal to Zero (Z=0)
	BPL - Branch if Plus (S=0)
	BRK - Force Breack (Trap of Software Interrupt)
	BVC - Branch if Overflow Clear (V=0)
	BVS - Branch if Overflow Set (V=1)
	CLC - Clear Carry
	CLD - Clear Decimal Mode
	CLI - Clear Interrupt Mask (Enable Interrupts)
	CLV - Clear Overflow
	CMP - Compare Memory with Accumulator
	CPX - Compare Index Register X with Memory
	CPY - Compare Index Register Y with Memory
	DEC - Decrement Memory (by 1)
	DEX - Decrement Index Register X (by 1)
	DEY - Decrement Index Register Y (by 1)
	EOR - Exclusive-OR Accumulator with Memory
	INC - Increment Memory (by 1)
	INX - Increment Index Register X (by 1)
	INY - Increment Index Register Y (by 1)
	JMP - Jump via Absolute or Indirect Addressing
	JSR - Jump to Subroutine
	LDA - Load Accumulator from Memory
	LDX - Load Index Register X from Memory
	LDY - Load Index Register Y from Memory
	LSR - Logical Shift Right of Accumulator or Memory
	NOP - No Operation
	ORA - Logically OR Memory with Accumulator
	PHA - Push Accumulator Onto Stack
	PHP - Push Status Register (P) Onto Stack
	PLA - Pull Contents of Accumulator from Stack
	PLP - Pull Contents of Status Register (P) from Stack
	ROL - Rotate Accumulator or Memory Left, Through Carry
	ROR - Rotate Accumulator or Memory Right, Through Carry
	RTI - Return from Interrupt
	RTS - Return from Subroutine
	SBC - Subtract Memory from Accumulator with Borrow
	SEC - Set Carry
	SED - Set Decimal Mode
	SEI - Set Interrupt Mask (Disable Interrupts)
	STA - Store Accumulator in Memory
	STX - Store Index Register X in Memory
	STY - Store Index Register Y in Memory
	TAX - Move from Accumulator to Index Register X
	TAY - Move from Accumulator to Index Register Y
	TSX - Move from Stack Pointer to Index Register X
	TXA - Move from Index Register X to Accumulator
	TXS - Move from Index Register X to Stack Pointer
	TYA - Move from Index Register Y to Accumulator

	6800/6502 Compatibility
	MOS Technology 6502 Assembler Conventions
	Assembler Field Structure
	Labels
	Pseudo-Operations
	Examples
	Examples

	Labels with Pseudo-Operations
	Addresses
	Other Assembler Features


	Chapter 4: Simple Programs
	General Format Examples
	Guidelines for Solving Problems
	Program Examples
	8-Bit Data Transfer
	8-Bit Addition
	Shift Left One Bit
	Mask Off Most Significant Four Bits
	Clear a Memory Location
	Word Dissassembly
	Find Larger of Two Numbers
	16-Bit Addition
	Table of Squares
	Ones Complement

	Problems
	1) 16-Bit Data Transfer
	2) 8-Bit Subtraction
	3) Shift Left Two Bits
	4) Mask Off Least Significant Four Bits
	5) Set a Memory Location to All Ones
	6) Word Assembly
	7) Find Smaller of Two Numbers
	8) 24-Bit Addition
	9) Sum of Squares
	10) Twos Complement


	Chapter 5: Simple Program Loops
	Examples
	Sum of Data
	16-Bit Sum of Data
	Number of Negative Elements
	Maximum Value

	Justify Binary Fraction
	Post-Indexed (Indirect) Addressing
	Pre-Indexed (Indirect) Addressing

	Problems
	1) Checksum of Data
	2) Sum of 16-Bit Data
	3) Number of Zero, Positive, & Negative Numbers
	4) Find Minimum
	5) Count 1 Bits


	Chapter 6: Character-Coded Data
	Examples
	Length of a String of Characters
	Find First Non-Black Character
	Replace Leading Zeros with Blanks
	Add Even Parity to ASCII Characters
	Pattern Match

	Problems
	1) Length of Teletypewriter Message
	2) Find Last Non-Blank Character
	3) Truncate Decimal String to Integer Form
	4) Check Even Parity in ASCII Characters
	5) String Comparison


	Chapter 7: Code Conversion
	Examples
	Hex to ASCII
	Decimal to Seven-Segment
	ASCII to Decimal
	BCD to Binary
	Convert Binary Number to ASCII String

	Problems
	1) ASCII to Hex
	2) Seven-Segment to Decimal
	3) Decimal to ASCII
	4) Binary to BCD
	5) ASCII String to Binary Number

	References

	Chapter 8: Arithmetic Problems
	Examples
	Multiple-Precision Binary Addition
	Decimal Addition
	8-Bit Binary Multiplication
	8-Bit Binary Division
	Self-Checking Numbers Double Add Double Mod 10

	Problems
	1) Multiple-Precision Binary Subtraction
	2) Decimal Subtraction
	3) 8-Bit by 16-Bit Binary Multiplication
	4) Signed Binary Division
	5) Self-Checking Numbers Aligned 1, 3, 7 Mod 10

	References

	Chapter 9: Tables and Lists
	Examples
	Add Entry to List
	Check an Ordered List
	Remove Element from Queue
	8-Bit Sort
	Using an Ordered Jump Table

	Problems
	1) Remove an Entry From a List
	2) Add an Entry to an Ordered List
	3) Add an Element to a Queue
	4) 16-Bit Sort
	5) Using a Jump Table with a Key

	References

	Chapter 10: Subroutines
	Subroutine Documentation
	Examples
	Hex to ASCII
	Length of String of Characters
	Maximum Value
	Pattern Match
	Multiple-Precision Addition

	Problems
	1) ASCII to Hex
	2) Length of Teletypewriter Message
	3) Minimum Value
	4) String Comparison
	5) Decimal Subtraction

	References

	Chapter 11: Input/Output
	Timing Intervals (Delays)
	Delay Routines
	Delay Program
	6502 Input/Output Chips
	6520 Peripheral Interface Adapter
	PIA Control Register
	Configuring PIA
	Examples of PIA Configuration
	Using the PIA to Transfer Data
	6522 Versatile Interface Adapter (VIA)
	Configuring the VIA
	CA2 Input
	CA2 Output

	Examples of VIA Configuration
	Using the VIA to Transfer Data
	VIA Interrupt Flag Register
	VIA Timers
	Operation of 6522 VIA Timer 2
	Operation of 6522 VIA Timer 1
	6530 & 6532 Multifunction Support Devices
	Examples
	Pushbutton Switch
	Toggle Switch
	Multi-Position (Rotary, Selector, or Thumbwheel) Switch
	Single LED
	Seven-Segment LED Display

	Problems
	1) On-Off Pushbutton
	2) Debouncing a Switch in Software
	3) Control for a Rotary Switch
	4) Record Switch Positions on Lights
	5) Count on a Seven-Segment Display


	More Complex I/O Devices
	Examples
	Unencoded Keyboard
	Encoded Keyboard
	Digital-to-Analog Converter
	Analog-to-Digital Converter
	Teletypewriter (TTY)

	6850 Asynchronous Communications Interface Adapter (ACIA)
	6551 Asynchronous Communications Interface Adapter (ACIA)
	Logical & Physical Devices
	Standard Interfaces
	Problems
	1) Separating Closures from an Unencoded Keyboard
	2) Read a Sentence from an Encoded Keyboard
	3) Variable Amplitude Square Wave Generator
	4) Averaging Analog Readings
	5) 30 Character-per-Second Terminal


	References

	Chapter 12: Interrupts
	6502 Interrupt System
	6520 PIA Interrupts
	6522 VIA Interrupts
	6530 & 6532 Multifunction Device Interrupts
	ACIA Interrupts
	6502 Polling Interrupt Systems
	6502 Vectored Interrupt Systems

	Examples
	Startup Interrupt
	Keyboard Interrupt
	Printer Interrupt
	Real-Time Clock Interrupt
	Teletypewriter Interrupt

	More General Service Routines
	Problems
	1) Test Interrupt
	2) Keyboard Interrupt
	3) Printer Interrupt
	4) Real-Time Clock Interrupt
	5) Teletypewriter Interrupt

	References

	Chapter 13: Problem Definition & Program Design
	Tasks of Software Development
	Definition of the Stages
	Problem Definition
	Defining the Inputs
	Defining the Outputs
	Processing Section
	Error Handling
	Human Factors
	Examples
	Response to a Switch
	Switch-Based Memory Loader
	Verification Terminal

	Review of Problem Definition
	Program Design
	Flowcharting
	Examples
	Response to a Switch
	Switch-Based Memory Loader
	Credit-Verification Terminal

	Modular Programming
	Examples
	Response to a Switch
	Switch-Based Memory Loader
	Verification Terminal

	Review of Modular Programming
	Structured Programming
	Examples
	Response to a Switch
	Switch-Based Memory Loader
	Credit-Verification Terminal

	Review of Structured Programming
	Top-Down Design
	Examples
	Response to a Switch
	Switch-Based Memory Loader
	Transaction Terminal

	Review of Top-Down Design
	Review of Problem Definition & Program Design
	References


	Chapter 14: Debugging & Testing
	Simple Debugging Tools
	More Advanced Debugging Tools
	Debugging with Checklists
	Looking for Errors
	Debugging Example 1: Decimal to Seven-Segment Conversion
	Debugging Example 2: Sort into Decreasing Order

	Introduction to Testing
	Selecting Test Data
	Testing Example 1: Sort Program
	Testing Example 2: Self-Checking Numbers

	Testing Precautions
	Conclusions
	References

	Chapter 15: Documentation & Redesign
	Self-Documenting Programs
	Comments
	Commenting Example 1: Multiple-Precision Addition
	Commenting Example 2: Teletypewriter Output

	Flowcharts as Documentation
	Stuctured Programs as Documentation
	Memory Maps
	Parameter & Definition Lists
	Library Routines
	Library Examples
	Library Example 1: Sum of Data
	Library Example 2: Decimal-to-Seven Segment Conversion
	Library Example 3: Decimal Sum

	Total Documentation
	Redesign
	Reorganizing to Use Less Memory
	Major Reorganizations
	References

	Chapter 16: Sample Projects
	Project #1: Digital Stopwatch
	Project #2: Digital Thermometer
	References

	Index
	About the Author
	Osborne/McGraw-Hill General Books & Software
	6502 Assembly Language Programming (Back Cover)

